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Abstract

Leveraging pre-trained language models001
(PLMs) has become a universal approach for002
various natural language processing tasks. The003
models achieve good performances in general,004
however, they also reproduce prejudices for005
certain groups in the imbalanced datasets006
for pre-training (i.e. corpus with more male007
examples). In this paper, we tackle the gender008
biases in the Gender Pronoun Resolution009
(GPR) task. The PLMs have two types of010
gender biases: stereotype and skew. While the011
previous studies mainly focused on the skew012
problem, we aim to mitigate both gender biases013
in PLMs. Our methods employ two regular-014
ization terms, Stereotype Neutralization (SN)015
and Elastic Weight Consolidation (EWC). The016
models trained with the methods show to be017
neutralized and reduce the biases significantly018
on the WinoBias GPR dataset compared to the019
public BERT. We also invented a new gender020
bias quantification metric called the Stereotype021
Quantification (SQ) score. In addition to the022
metrics, embedding visualizations were used023
to interpret how our methods have successfully024
debiased the models.025

1 Introduction026

Natural language understanding (NLU) refers to027

computer’s understanding of human language and028

is the basis of all text related studies. As a ma-029

jor framework for NLU, Transformer (Vaswani030

et al., 2017)-based pre-trained language models031

(PLMs), such as BERT (Devlin et al., 2019) or032

RoBERTa (Liu et al., 2020), have gained popular-033

ity among many AI researchers. The advantage of034

using PLMs is that the models can be good initial-035

izers for efficient transfer learning on downstream036

tasks. However, as massive amount of text data are037

used to train PLMs, the models also inherit societal038

biases in the data without any constraints. They039

not only learn how to effectively observe the lin-040

guistic features and contextual information but also041

learn to discriminate certain groups, replicating the 042

stereotypes from the imbalanced datasets. 043

Among various societal biases, this paper fo- 044

cuses on measuring and alleviating the gender bias 045

in natural language understanding. To estimate the 046

gender bias, we follow the Gender Pronoun Reso- 047

lution (GPR) scheme, which is a gender-focused 048

coreference resolution task, as in the previous stud- 049

ies (Kurita et al., 2019a; de Vassimon Manela et al., 050

2021; Zhao et al., 2018). In this task, the mod- 051

els have to find a proper gendered pronoun to be 052

placed in a sentence with occupational attributes. 053

For example, with a sentence “[MASK] is a doc- 054

tor and has a high salary.”, the model prediction 055

would likely be the most appropriate gendered pro- 056

noun for the masked token. GPR can reveal two 057

types of gender biases in the models: stereotype 058

and skew. Stereotype refers to unequal assignment 059

of gender pronouns to stereotypical professions 060

by the gender stereotypes prevalent in the soci- 061

ety. If the ‘[MASK]’ token is often predicted as 062

‘he’ without any contextual information, the model 063

has a stereotypical concept of the job ‘doctor’ as 064

a ‘men’s job.’ Skew is the models’ preference of 065

assigning certain gender’s pronouns, especially the 066

masculine pronouns, on most of the cases due to 067

male-oriented large scale dataset such as Wikipedia 068

(Graells-Garrido et al., 2015). 069

The previous studies on gender biases in GPR 070

(Zhao et al., 2019; de Vassimon Manela et al., 2021) 071

suggested data augmentation and online skewness 072

mitigation as bias mitigation methods. However, 073

those approaches focus on handling the skew prob- 074

lem, leaving stereotype problem and deterioration 075

of PLMs’ linguistic ability behind. In this paper, 076

we employ two types of regularization terms into 077

fine-tuning phase to reduce stereotype and skew 078

biases while preserving the model’s original ability 079

as a language model. The Stereotype Neutraliza- 080

tion (SN) and Elastic Weight Consolidation (EWC) 081

terms are added to the original GPR loss. During 082
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GPR fine-tuning, the SN term lets the stereotypical083

words to be distanced from words with gender-084

inherent characteristics (e.g., sister, nephew) on085

the embedding space, making the embeddings of086

stereotypical words lose the gender information.087

On the other hand, the EWC term helps the model088

to keep the essential parameters of BERT to some089

extent so that the model does not lose its linguistic090

knowledge. The evaluation results on WinoBias091

dataset (Zhao et al., 2018) showed the effectiveness092

of the proposed regularization terms in model debi-093

asing and maintaining decent NLU performances.094

For evaluation, we follow F1-score based metrics095

from de Vassimon Manela et al. (2021) to quantify096

the two types of gender bias. In addition, we pro-097

pose a new metric, the Stereotype Quantification098

(SQ) score, to measure the consistency of a model099

in gender pronoun prediction. The SQ score is a100

probabilistic metric, based on the variance of gen-101

der pronoun predictions with stereotypical occupa-102

tions. If a model consistently predicts the pronouns103

with fair probability (≈ 0.5), the model gets a low104

SQ score. With the mentioned metrics, we aim105

to prove that our models can mitigate gender bias106

problems in PLMs.107

Our contributions are summarized as follows:108

• We propose bias mitigation methods that en-109

able the PLMs to find proper gender pronouns110

in the given context without stereotypical or111

skewed misconceptions.112

• A new metric, the SQ score, is employed to113

quantify the consistency of the model predic-114

tions towards stereotypical terms.115

• Our model, BERT-ASE, alleviates the gender116

biases successfully on the WinoBias dataset,117

and performs well on the original GPR task.118

2 Gender Biases: Stereotype and Skew119

2.1 Bias Evaluation in GPR120

GPR task is a coreference resolution task that deals121

with gendered pronouns. Given the context, the122

model predicts the appropriate gendered pronoun123

for the referent. Since the linguistic ability of the124

model comes from the training corpus that reflects125

the real-world bias, the model suffers from the bias126

in the corpus. With this inseparable nature of GPR127

task and the gender bias, GPR task is often used to128

investigate the gender bias in the models.129

The model’s coreference decisions for gendered 130

pronoun can be interpreted in two ways: pro- 131

stereotypical prediction and anti-stereotypical pre- 132

diction. The pro-stereotypical prediction refers 133

to the prediction of the pronoun that is in line 134

with the perception of the real-world, and the anti- 135

stereotypical prediction is the prediction that does 136

not follow the common stereotype. For a sen- 137

tence “The tailor waited for the doctor and handed 138

[MASK] a suit.”, the ‘[MASK]’ token would be 139

often considered as ‘him’ because the doctor is 140

stereotypically expected to be the men’s job. Given 141

the sentence, the pro-stereotypical pronoun for the 142

referent is ‘him’ and the anti-stereotypical pronoun 143

is ‘her’. The result for GPR task in terms of the 144

gender bias evaluation is regarded ideal when the 145

model is able to make the pro-stereotypical and 146

anti-stereotypical coreference decisions evenly. 147

2.2 Stereotype 148

Recent works on gender stereotypes in GPR task 149

(de Vassimon Manela et al., 2021; Sun et al., 150

2019) used the difference in F1 scores between 151

pro-stereotypical and anti-stereotypical test sets to 152

measure the stereotypes in professions. 153

µstereo =
1

2
(|F1♂pro−F1♂anti|+ |F1

♀
pro−F1

♀
anti|)

(1) 154

F1pro denotes F1 score of predicting corre- 155

sponding pro-stereotypical gendered pronouns and 156

F1anti denotes F1 score of predicting the oppo- 157

site (anti-stereotypical) gendered pronoun. With 158

respect to gender g, |F1gpro − F1ganti| is a metric 159

showing the tendency of models to assign partic- 160

ular gender to the stereotypical professions. If 161

|F1gpro − F1ganti| is a relatively big value, this 162

indicates that the model is biased on the pro- 163

stereotypical words or inversely biased on the anti- 164

stereotypical words. 165

Gender Preserving Debiasing Bolukbasi et al. 166

(2016) identified a gender subspace present in word 167

embedding space to eliminate the stereotypes from 168

the pre-trained word embeddings. By projecting 169

the embedding of the stereotypical words to a gen- 170

der subspace to be orthogonal, gender-related in- 171

formation in the embedding of those words were 172

removed. Kaneko and Bollegala (2019) developed 173

this approach further by integrating the Bolukbasi 174

et al. (2016)’s approach into the training phase. 175

With four kinds of objective function, their debi- 176

asing approach is to preserve the gender-related 177
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information for the gender-inherent terms but to178

get rid of the stereotype from the gender-biased179

terms. They concluded that keeping the linguistic180

information for the terms is essential not to harm181

the original performance of the model.182

2.3 Skew183

Another gender bias in the PLMs is skew. It is184

the tendency of the model to make dominant pre-185

dictions on a specific gender, and the fundamental186

cause of skew comes from the gender-imbalanced187

datasets used in the pre-training phase. For ex-188

ample, BERT was pre-trained on the BookCorpus189

dataset (Kobayashi, 2018) and English Wikipedia.190

The BookCorpus dataset suffers from gender im-191

balance (Tan and Celis, 2019), and only 15.5% of192

the biographies are of women in English Wikipedia193

(Graells-Garrido et al., 2015; Wagner et al., 2016).194

ELMO (Peters et al., 2018) was trained on the Bil-195

lion Word corpus (Chelba et al., 2014), which has196

substantial imbalance in the counts of male and197

female pronouns. The widely used skew quantifi-198

cation metric (de Vassimon Manela et al., 2021) is199

as follows:200

µskew =
1

2
(|F1♂pro−F1

♀
pro|+ |F1♂anti−F1

♀
anti|)

(2)201

where a larger value of |F1♂ − F1♀| shows the202

bigger degree of the model’s skewness towards one203

specific gender.204

Online Skewness Mitigation de Vassi-205

mon Manela et al. (2021) came up with a206

post-processing method called ‘Online Skewness207

Mitigation’ to alleviate the skew problem in PLMs.208

This approach is to normalize the probability of209

a masked pronoun predicted as a certain gender210

in an occupational context by dividing it with the211

prior probability of choosing that gender in an212

un-occupational context. They suggested to use213

this post-processing method after fine-tuning with214

the augmented dataset.215

3 Proposed Methods216

3.1 Basic Approaches217

To address both gender bias problems, we adopt218

two well-performing approaches, data augmenta-219

tion (Zhao et al., 2019) and MLM-based GPR fine-220

tuning, as the primary methods in our work.221

Data Augmentation Data augmentation plays222

an important role in preventing the models from223

learning the biases in the datasets, especially for the224

skew problem where pronouns of a specific gender 225

is assigned dominantly than the other’s. OntoNotes 226

5.0 (Weischedel et al., 2017), a widely used dataset 227

for the GPR task, is gender-imbalanced corpus with 228

more male examples. Zhao et al. (2019) proposed 229

data augmentation as a bias mitigation method for 230

the PLMs. After identifying the subset of sentences 231

containing gendered terms, a gender-reversed ver- 232

sion of each sentence is added to the training cor- 233

pus to build a gender-balanced dataset. For exam- 234

ple, the sentence “The King was pleased that his 235

Lords had vanquished their enemies.” would be 236

transformed into “The Queen was pleased that her 237

Ladies had vanquished their enemies.” and added 238

to the dataset. 239

GPR Fine-tuning Our model conducts a masked 240

language modeling (MLM) to do the GPR task. 241

With an input sentence, we mask the pronouns with 242

‘[MASK]’ tokens. Given a masked input sequence, 243

the model is trained to predict the correct gendered 244

pronoun for the ‘[MASK]’ tokens. The objective 245

function is a cross-entropy loss between the origi- 246

nal pronouns and the logits of the ‘[MASK]’ tokens. 247

This MLM loss is denoted as LMLM below. 248

LMLM =
1

|M |

M∑
m∈masked

CE(W · hm, xm) (3) 249

where CE denotes the cross entropy loss, and hm 250

is the last hidden state of the masked token xm. W 251

is a linear layer for the MLM task. 252

3.2 Bias Mitigation Methods 253

While the mentioned approaches deal with skew- 254

ness effectively, it does not explicitly address the 255

stereotype problem and degradation of the mod- 256

els’ original GPR performance. In this section, 257

we propose two regularization terms to mitigate 258

gender biases during the training time: Stereotype 259

Neutralization (SN) and Elastic Weight Consolida- 260

tion (EWC). The SN regularization lets the embed- 261

dings of the pro-stereotypical occupation terms lose 262

the gender-specific characteristics, and the EWC 263

term helps to avoid performance degradation of 264

the model on the original GPR task. BERT-ASE, 265

BERT trained with the two terms, gains both decent 266

GPR performance and debiased embeddings. 267

3.2.1 Stereotype Neutralization (SN) 268

SN aims to remove the gender-related properties 269

in the embeddings of the stereotypical words using 270

a gender directional vector during the fine-tuning 271
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step. The gender directional vector represents the272

gender subspace which captures the inherent gen-273

der information in the embedding space (Boluk-274

basi et al., 2016; Kaneko and Bollegala, 2019).275

We follow the previous work on the gender di-276

rectional vector using the static word embeddings277

(Word2Vec (Mikolov et al., 2013) and GloVe (Pen-278

nington et al., 2014)) as in Eq.(4), but we modify279

the vector to fit into Transformer-based PLMs.280

vgs =
1

|Ω|
∑

(wf ,wm)∈Ω

(E(wm)− E(wf )) (4)281

where the gender-inherent word list Ω contains the282

pairs of feminine words wf and masculine words283

wm in which gender characteristic should not be284

removed, such as ‘sister’ and ‘brother’. E is the285

embedding of each word obtained from the PLMs.286

We then normalize vgs and define a gender di-287

rectional vector vgd suitable for PLMs. The nor-288

malized vector vgd has the information of gender289

direction and relationship between the terms from290

the two genders on the embedding space.291

vgd =
vgs

||vgs||
(5)292

The normalization step is important because the293

vector vgd without scaling may fluctuate the loss,294

making the fine-tuning phase unstable. Once vgd295

is calculated, the gender directional vector is un-296

changed throughout the training stage.297

Using the gender directional vector, we neutral-298

ize the stereotypical words in Vs, which denotes299

166 professions that are associated with a specific300

gender in a prejudicial manner (Kaneko and Bol-301

legala, 2019). The orthogonal regularization term,302

RSN , is the dot product of the stereotypical word303

embedding w ∈ Vs and the gender directional304

vector vgd. We add this term to the original loss305

LMLM so that the model can make embeddings of306

stereotypical words without gender characteristics.307

308

RSN =
∑
w∈Vs

|v⊤gdw| (6)309

3.2.2 Elastic Weight Consolidation (EWC)310

The EWC regularization is one of the approaches311

to prevent catastrophic forgetting of the original312

model parameters when re-training the model with313

multiple tasks (Kirkpatrick et al., 2017). Although314

fine-tuning with augmented datasets addresses the315

skew problem, the linguistic power of the PLMs316

can be hampered, resulting in performance deteri- 317

oration for the baseline GPR tasks. For example, 318

Online Skewness Mitigation (de Vassimon Manela 319

et al., 2021) was effective in alleviating the skew 320

problem, but the baseline GPR performance sig- 321

nificantly fell compared to the public BERT. To 322

prevent this phenomenon, we adopt EWC to pre- 323

serve the essential parameters of the PLMs while 324

fine-tuning with the augmented dataset. In EWC, 325

the Fisher information is used to quantify the im- 326

portance of the parameters (i.e. the amount of in- 327

formation carried by the parameters to model the 328

distribution of the dataset). We pre-calculate the 329

Fisher information using the public BERT and the 330

baseline GPR dataset before fine-tuning. 331

Fj = E[∇2LMLM (θoj )] (7) 332

where θoj denotes the parameters of the j-th layer of 333

the original pre-trained model (e.g., public BERT) 334

and ∇2LMLM (θoj ) is the gradients of the j-th layer 335

resulting from the baseline GPR loss. The higher 336

the Fj value is, the more important the j-th layer 337

parameters are. Based on the Fisher information 338

Fj , we compute the EWC term and add it to the 339

LMLM when training with the augmented dataset. 340

REWC = λ
∑
j

Fj(θj − θoj )
2 (8) 341

REWC penalizes when the fine-tuned model’s pa- 342

rameters θj differ from the original parameters θoj 343

according to their importance Fj . 344

3.2.3 Hybrid Approach: BERT-ASE 345

Since the proposed regularization terms can con- 346

tribute to the overall quality of the PLMs, we in- 347

corporate both of them to maximize the benefits. 348

This hybrid loss is formulated by adding the SN 349

and EWC term to the MLM loss. 350

LASE = LMLM +RSN +REWC (9) 351

The hybrid loss LASE can reduce the stereotypi- 352

cal traits of the model and prevent the degradation 353

of the model’s inherent linguistic ability simulta- 354

neously while resolving the skewness problem by 355

data augmentation. 356

4 Bias Quantification 357

Probabilistic-based metrics are essential when eval- 358

uating intrinsic biases in PLMs (Kurita et al., 359

2019b). Ahn and Oh (2021) introduced Categori- 360

cal Bias (CB) Score, defined as the variance of log 361
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normalized probabilities for measuring multi-class362

bias. Based on the previous work, we modify the363

log probability bias score to quantify gender bias364

with the masked token prediction.365

The proposed metric, Stereotype Quantification366

(SQ) score, uses the variance of log probability in367

gender pronoun assignments with pro-stereotypical368

professions for both genders. The SQ score supple-369

ments the F1-score based bias metrics which only370

capture the correctness of the model’s prediction by371

indicating the quantitative likelihood regarding the372

model’s prediction. Since the SQ score sums up the373

variance of probabilities of assigning gender pro-374

nouns to the pro-stereotypical occupations, lower375

SQ score shows the model has a steady consistency376

in its prediction probabilities. The equation of the377

SQ score is as follows:378

SQ =
1

|J |
∑
j∈J

V arm,f (log p) (10)379

where J is the set of professions. m and f represent380

the gender terms of male and female respectively.381

5 Datasets382

OntoNotes We used OntoNotes 5.0 (Weischedel383

et al., 2017) for GPR training following previous384

works. OntoNotes 5.0 is a large-scale corpus that385

contains multi-genre and multilingual contents. For386

our work, we only used the English dataset and387

its train split. Adapting the Zhao et al. (2018)’s388

approach, we made training examples by masking389

the gender pronouns in the dataset and augmented390

the dataset to have examples with both genders.391

WinoBias After fine-tuning the model with392

OntoNotes 5.0, we evaluated our model’s perfor-393

mance with WinoBias, a dataset for GPR task and394

gender bias measurement. Winobias consists of395

two types of examples, Type 1 and 2. As the pre-396

vious work (de Vassimon Manela et al., 2021), we397

used WinoBias Type 2 sentences for evaluating398

our models because Type 1 sentences tend to have399

ambiguity in pronoun resolution. Since Type 1 ex-400

amples do not overlap with Type 2’s at all and can401

be used in the GPR setting, we utilized Type 1 to402

calculate the Fisher information required for EWC403

term. We list the WinoBias Type 1 and 2 examples404

in Appendix A.405

WinoBias Type 2 consists of 396 sentences406

with stereotypical occupations for both genders.407

For evaluation, the gender pronouns in sentences408

are masked and sentences are duplicated by re- 409

placing the original gender pronoun to the oppo- 410

site pronoun. The model is considered unbiased 411

if the model has similar accuracies for both the 412

pro-stereotypical and anti-stereotypical words in a 413

given gender context. 414

6 Results 415

6.1 Model Performances 416

6.1.1 Gender Bias Evaluation: WinoBias 417

Table 1 presents the bias mitigation results on Wino- 418

Bias Type2. To clearly quantify the bias mitigation 419

results, we report the scores of three bias metrics 420

(stereotype, skew, and SQ score) where lower value 421

indicates that the model is well debiased. 422

The BERT model without fine-tuning showed 423

relatively high score in all three bias metrics. In 424

particular, the results of F1-male were extremely 425

higher compared to F1-female, implying that the 426

vanilla pre-trained model produces skewed predic- 427

tions for male gender due to the influence of the 428

training corpus. Furthermore, BERT-U and BERT- 429

UO, the models fine-tuned with the unaugmented 430

GPR dataset, had significantly large SQ scores, pre- 431

dicting a specific gender with a high probability. 432

The results of both model types imply that gender 433

biases can be induced when trained with gender- 434

skewed datasets. BERT-A and BERT-AO, models 435

fine-tuned with augmented datasets, achieved lower 436

skew and SQ score compared to BERT models fine- 437

tuned on the unaugmented setting, empowering our 438

assumption that the data augmentation can mitigate 439

the skew problem. However, BERT-A and BERT- 440

AO gained high stereotype, which indicates that 441

augmented setting cannot solely handle both types 442

of gender biases. 443

The results of our methods in Table 1 present 444

that the proposed methods effectively mitigated the 445

stereotype problem while maintaining the low SQ 446

score and skew. The SN term significantly allevi- 447

ated stereotype and skew inherent in the models, 448

and EWC also showed better results than BERT- 449

AO. Regarding that BERT-AO has higher stereo- 450

type and skew than our methods, the results prove 451

that using the post-processing approaches has lim- 452

itations in debiasing the PLMs to a greater extent. 453

Our hybrid model with SN and EWC combined, 454

BERT-ASE, achieved the lowest SQ score among 455

all models, and lowest stereotype and skew when 456

excluding BERT-SN. 457
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WinoBias Type 2

Setting Model F1-Male F1-Female Bias
Pro Anti Pro Anti Stereo Skew SQ

No Fine-tuning BERT 66.41 58.89 31.78 16.98 11.15 38.26 1.15
Fine-tuning
w/ unaugmented data

BERT-U* 65.87 56.46 38.13 21.51 13.02 31.35 16.75
BERT-UO* 62.96 53.22 45.08 31.02 11.9 20.04 10.41

Fine-tuning
w/ augmented data

BERT-A* 66.07 46.53 54.49 28.69 22.7 14.7 0.43
BERT-AO* 64.78 50.11 49.69 29.1 17.63 18.05 0.26
BERT-SN (Ours) 50.77 47.79 52.02 49.37 2.81 1.41 0.35
BERT-EWC (Ours) 63.71 49.66 50.3 31.41 16.46 15.83 0.14
BERT-ASE (Ours) 53.29 43.38 56.07 47.02 9.48 3.21 0.11

Table 1: Overall bias mitigation results on WinoBias Type2 dataset (U: Unaugmented, A: Augmented, O: Online
Skewness Mitigation). * is the reimplemented results of de Vassimon Manela et al. (2021)’s models. The closer the
F1 (%) scores of both genders are to 50%, the less bias the model is.

GPR baseline

Setting Model Man & Woman Alice & Bob
Male Female Avg F1 Male Female Avg F1

No Fine-tuning BERT 96.32 96.25 96.29 97.04 97.07 97.06
Fine-tuning
w/ unaugmented data

BERT-U* 93.83 93.89 93.86 (-2.43) 92.1 91.23 91.67 (-5.39)
BERT-UO* 92.01 92.38 92.2 (-4.09) 94.57 94.44 94.51 (-2.55)

Fine-tuning
w/ augmented data

BERT-A* 90.86 91.23 91.05 (-5.24) 89.51 89.26 89.39 (-7.67)
BERT-AO* 90.72 90.6 90.66 (-5.63) 87.08 86.02 86.55 (-10.51)
BERT-SN (Ours) 94.28 94.2 94.24 (-2.05) 83.63 81.15 82.39 (-14.67)
BERT-EWC (Ours) 95.64 95.66 95.65 (-0.64) 92.22 92.67 92.45 (-4.61)
BERT-ASE (Ours) 93.77 93.95 93.86 (-2.43) 84.56 83.96 84.26 (-12.8)

Table 2: Baseline GPR F1 (%) results on WinoBias dataset, where stereotypical professions are replaced to
gender specific terms such as ‘Woman’, ‘Man’ or names such as ‘Alice’, ‘Bob’. * is the reimplemented results of
de Vassimon Manela et al. (2021)’s models. In baseline evaluation, the higher the F1 (%) scores, better the model
preserves the original PLM’s linguistic ability.

Man & Woman
The man argued with the woman and
slapped [MASK] in the face.

Gold Label
= her

Alice & Bob
Alice argued with Bob and
slapped [MASK] in the face.

Gold Label
= him

Table 3: Examples of baseline GPR task inputs with the
corresponding gold labels. We did experiments on both
‘Alice & Bob’ and ‘Man & Woman’ cases.

6.2 SQ Score Interpretation458

The SQ score can provide detailed explanation459

based on the variance of probabilities of assigning460

gender pronouns to the pro-stereotypical occupa-461

tions. With the proposed SQ score, we found that462

the SQ score results align with two major hypothe-463

ses we set for the work: (1) drawback of transfer464

learning using PLMs and (2) importance of bal-465

anced training dataset. For the public BERT, the466

SQ score was 1.15, but the SQ score increased467

to 16.75 (BERT-U) and 10.41 (BERT-UO) when468

fine-tuned on the gender-skewed dataset. These469

results are in line with the bias intensification prob-470

lem (Caliskan et al., 2017; Leino et al., 2018; Zhao471

et al., 2017) which is known to happen when the472

models are trained with skewed datasets without473

any constraints, highlighting the disadvantages of474

PLM-based transfer learning. On the other hand, 475

the SQ scores for the models fine-tuned with the 476

gender-augmented dataset (BERT-A, BERT-AO, 477

BERT-SN, BERT-EWC, BERT-ASE) are all very 478

low. The results back up the importance of training 479

PLMs on the balanced datasets. 480

6.2.1 Baseline GPR Task Performance 481

Although we aim to mitigate the biases in PLMs, it 482

is essential for the models to keep their linguistic 483

abilities. We evaluated the baseline GPR perfor- 484

mance on two types of gender-specific sentences as 485

in Table 3. The baseline GPR task consists of sen- 486

tences with gold labels, and verifies if the model 487

can predict the correct pronoun. ‘Alice & Bob’ 488

examples follow the baseline GPR evaluation of 489

de Vassimon Manela et al. (2021). For the given 490

sentence “The developer argued with the designer 491

and slapped [MASK] in the face.”, the professions 492

are replaced by the gender-specific names (‘Alice’ 493

and ‘Bob’). As a result, the ‘[MASK]’ token re- 494

placed with the gender-specific terms can have the 495

gold pronoun label as ‘her’ or ‘him’. However, we 496

believe that names like ‘Alice’ cannot fully repre- 497

sent one’s gender nowadays, thus less controversial 498
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Figure 1: [MASK] token logits visualization with two examples: “[MASK] is a doctor and has a high salary.”
and “[MASK] is a nurse and does housework after work.” Light-blue colored bars and pink shaded bars show the
probabilities of the male-related tokens and the female-related tokens, respectively. White bars are the probabilities
of neutral words like ‘it’, ‘they’ or ‘someone’.

yet clearer examples should be involved in the GPR499

evaluation. We evaluated our models on ‘Man &500

Woman’ sentences to observe if the models can find501

appropriate pronouns for gender-specific sentences.502

Table 2 shows the GPR baseline F1-score per-503

formances of the models. The public BERT, which504

exhibited the highest values on bias metrics, demon-505

strated the best performance for both types of base-506

lines. This phenomenon was also observed in507

de Vassimon Manela et al. (2021)’s baseline evalu-508

ation results. We assume that it is due to the differ-509

ence in data distributions of OntoNotes and Wino-510

Bias because OntoNotes is anonymized dataset511

with much longer and complex sentences compared512

to WinoBias. Despite the limitation, BERT-EWC513

gained relatively high F1-score compared to other514

debiased models, proving the effectiveness of in-515

corporating the EWC term into model debiasing.516

BERT-ASE outperforms BERT-A and BERT-AO517

for ‘Man & Woman’, and is similar or slightly518

lower on the ‘Alice & Bob’ examples. Overall,519

BERT-ASE adopted the benefits of each regular-520

ization term well, mitigating the biases and main-521

taining the baseline GPR performance. The decent522

performances of all our models on the baseline task523

and model debiasing show the benefits of employ-524

ing the proposed regularization terms.525

7 Analysis 526

7.1 [MASK] Token Logits Comparison 527

Since either ‘he’, or ‘she’ can be an appropriate 528

answer for the ‘[MASK]’ tokens, it is ideal for the 529

model to have equal probability for predicting each 530

pronoun. We visualized the top-20 mask token log- 531

its value in two examples with pro-stereotypical 532

occupation words and attributes: “[MASK] is a 533

doctor and has a high salary.” and “[MASK] is a 534

nurse and does housework after work.” We com- 535

pared prediction outputs of two models, the public 536

BERT model and BERT-ASE as in the Fig.1. 537

The public BERT model shows to be very stereo- 538

typical towards the jobs and attributes. Given 539

“[MASK] is a doctor and has a high salary.” as 540

an input sentence, the model predicted ‘he’ and 541

other male names, such as ‘Alex’ and ‘Peter’, with 542

high probabilities. The tendency of stereotypical 543

predictions intensifies even more for the “[MASK] 544

is a nurse and does housework after work.” ex- 545

ample. The 95% of the top-ranked tokens for the 546

masked token in the sentence are feminine tokens, 547

like ‘Jenny’ or ‘Sarah’. Moreover, the model pre- 548

dicts ‘she’ with the highest probability, and the 549

difference between the probabilities of predicting 550

‘he’ and ‘she’ was large. The visualization results 551

7



imply that the public BERT tends to match the552

professions and the attributes to a specific gender553

based on the information they grasped from the554

datasets that were used for pre-training.555

On the contrary, our model predicts ‘he’ and556

‘she’ with a uniformly high probability for both of557

the examples. We find the results significant as558

BERT-ASE also predicts neutral pronouns such as559

‘I’, ‘it’, and ‘they’ with high probability compared560

to other gender-skewed names, and that the top-561

ranked tokens for both examples share most of the562

tokens together. The results prove that our model563

can predict the masked tokens without stereotypical564

misconceptions towards gender groups.565

7.2 Visualizing Gender Bias in PLMs566

(a) Public BERT (b) BERT-ASE

Figure 2: A 2D visualization of the embeddings using
PCA and GMM clustering. Purple and yellow dots
represent the embeddings of stereotyped occupational
terms. The ellipses show the results of GMM clustering.

Figure 2 shows the visualization of the sentence567

representations extracted from the public BERT568

model and BERT-ASE. The input sentences are569

from WinoBias consisting of male stereotypical570

professions and female stereotypical professions.571

To create the sentence representations, we aver-572

aged the last transformer layer hidden states for573

every token in the sentence. Then we reduced the574

dimension of the representations using PCA, and575

conducted GMM clustering to analyze the learned576

distribution of the sentences containing profession577

stereotypes. The ellipses demonstrate the mean and578

variance parameters learned for each cluster during579

GMM procedure, and the colors of the ellipse is580

determined by the color of the data points within581

the cluster following the majority vote rule.582

The distance between the two GMM clusters in-583

dicates the degree of stereotype underlying in the584

model. In the case of the public BERT, the clus-585

ters are distinct and the overlapping region of the586

two GMM clusters is small. This implies that the 587

BERT model discriminates sentences containing 588

male stereotypical professions (e.g., supervisors, 589

carpenters) against those with female stereotypical 590

professions (e.g., cleaners, secretaries). However, 591

for BERT-ASE, the distance between the two clus- 592

ters reduced and the intersection region got big- 593

ger. This suggests that the tendency of dividing 594

the stereotypical professions into two different gen- 595

dered groups is alleviated in our proposed model. 596

8 Conclusion 597

This paper suggests a new training scheme for mit- 598

igating gender biases in large scale PLMs using 599

algorithmic regulations. PLMs have a huge draw- 600

back that they inevitably reproduce the societal 601

biases in the datasets used for pre-training. As a 602

result, the real-world applications or systems us- 603

ing PLMs also exhibit prejudices towards certain 604

groups, marking the importance of building ethical 605

AI systems. 606

Focusing specifically on gender biases in coref- 607

erence resolution, we propose two gender bias mit- 608

igation methods, SN and EWC. SN targets to make 609

the gender stereotypical words be distanced from 610

the gender directional vector while EWC focuses 611

on preserving the model’s linguistic power. Be- 612

sides the mitigation techniques, we also propose a 613

new metric to quantify the gender bias called the 614

SQ score. There have been numerous approaches 615

to quantify gender biases in NLU tasks, but most of 616

them were based on F1-score to measure the differ- 617

ence between the predictions of male-version and 618

female-version. On the other hand, our SQ score 619

measures the degree of the prediction consistency 620

towards the pro-stereotypical terms. Using the SQ 621

score as bias quantification metric enables detailed 622

interpretation based on the variance of the model’s 623

predicted logit. 624

The experimental results show that the proposed 625

approaches improve BERT to have much less bi- 626

ases compared to the public version of BERT. EWC 627

and SN work fine individually as bias regulariza- 628

tion terms, but the hybrid model with both terms 629

(BERT-ASE) is the most capable of alleviating the 630

underlying biases in BERT and maintaining the 631

linguistic ability simultaneously. Yet, our methods 632

have remaining challenges, such as performance- 633

debiasing trade-off, and we leave as the future work 634

to find better training mechanisms that can make 635

the PLMs be unbiased and effective. 636
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9 Ethical Considerations637

9.1 Performance-debiasing Trade-off638

Our methods tackle the gender biases coming from639

the datasets, and the results showed that they suc-640

cessfully mitigated the underlying biases in the641

PLMs. However, we observed that there is a trade-642

off between model performance and degree of de-643

biasing, as all of our models with mitigation ap-644

proaches had lower performances on the actual645

GPR task than the original pre-trained BERT. Con-646

sidering that both the popularity of PLMs and647

ethical concerns towards gender biases will be-648

come more intensified, reducing the performance-649

debiasing gap of large scale language models650

should be discussed in more depth.651

9.2 Scope of Defining Gender652

In this work, we only focus on neutralizing the653

stereotypical occupation words in GPR tasks, par-654

ticularly handling the binary genders (male and655

female). As the definition of gender is getting656

broadened, our methods and experiments can have657

distinct limitations with the third gender cases, such658

as non-binary using the pronoun ‘they.’ Neverthe-659

less, since there are not enough public datasets and660

criteria for evaluating gender-diverse settings, in-661

cluding the third gender concept into our methods662

and evaluation could make the interpretation of663

model predictions ambiguous. Because our mitiga-664

tion methods have the ability to prioritize neutral665

pronouns ‘they’ or ‘it’ higher than other stereotypi-666

cal gendered terms as seen in Figure 1, we believe667

they can be possibly modified and applied to newer668

settings with various gender schemes. For the fu-669

ture work, we aim to expand our perspectives so670

that our methods can be inclusive to all types of671

genders, and be further applicable in other tasks.672
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A WinoBias Templates825

Table 4 shows the sentence templates and examples826

for each type in WinoBias. The gender pronouns827

that appear in Type 1 can be associated with both828

entities, which is hard to identify the exact refer-829

ent of the gender pronoun. For instance, in the830

first Type 1 example (Ex1) in Table 5, either of the831

developer or the designer can be the one who dis-832

likes the design. On the contrary, WinoBias Type833

2 sentences contain more syntactic cues for coref-834

erence resolution which clarify the referent of the835

predicted gender pronoun.836

Type 1

Format: [entity1] [interacts with] [entity2]
[conjunction][pronoun][circumstances].
Ex1) The developer argued with the designer
because [pronoun] did not like the design.
Ex 2) The laborer kicked the cashier
because [pronoun] was drunk.
Ex 3) The assistant asked the physician
if [pronoun] could borrow some money.
Ex 4) The CEO asked the clerk to produce a report
to justify [pronoun] behavior.

Type 2

Format: [entity1] [interacts with] [entity2] and then
[interacts with][pronoun] for [circumstances].
Ex 1) The developer argued with the designer and
slapped [pronoun] in the face.
Ex 2) The accountant called the cook and
asked [pronoun] to prepare food for a party.
Ex 3) The salesperson asked the secretary to leave and
fired [pronoun].
Ex 4) The guard works harder than the clerk and
gets more appreciation than [pronoun].

Table 4: Two Types of Sentence templates in WinoBias.
GPR evaluation was done on Type 2 sentences, and
Type 1 sentences were used for calculating the Fisher
information in EWC.

B Experimental Setup837

B.1 Re-implementation Settings838

For fair comparison, we re-implemented BERT-U,839

BERT-UO, BERT-A, and BERT-AO following the840

exact parameter settings of de Vassimon Manela841

et al. (2021). We trained our models for eight842

epochs on RTX 3080 GPUs and selected the best843

model with the highest pronoun prediction valida-844

tion accuracy. The reported results are a single-run845

outputs.846

B.2 Proposed Methods Settings847

The default training settings of our proposed meth-848

ods are as follows:849

Data Augmentation Public BERT model for850

masked language modeling from Hugging Face851

(Wolf et al., 2020) was used for training on the852

OntoNotes dataset. We used the Adam optimizer 853

(Kingma and Ba, 2014) and fine-tuned the model 854

for 8 epochs. The learning rate was set to 2 ∗ 10−5 855

and a dropout probability of 0.1 was chosen. 856

Elastic Weight Consolidation (EWC) The λ 857

used for the proportion of the EWC regularization 858

term was set to 0.5. 859

C [MASK] Token Logits of SN and EWC 860

Using the same examples in subsection 7.1, we 861

visualized the masked token logits obtained from 862

BERT-SN and BERT-EWC. Our models showed 863

similar results as to BERT-ASE, predicting the gen- 864

dered pronouns (e.g., ‘he’, ‘she’) with uniformly 865

distributed probabilities and more neutral terms 866

compared to the public BERT. Fig. 3 proves that 867

the individual models with our proposed regulariza- 868

tion terms are fair in masked pronoun predictions. 869

(a) BERT-SN with the doctor
example

(b) BERT-SN with the nurse
example

(c) BERT-EWC with the doc-
tor example

(d) BERT-EWC with the
nurse example

Figure 3: [MASK] token logits visualization as in Fig.1
of BERT-SN and BERT-EWC
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