
Under review as a conference paper at ICLR 2023

ACTION MATCHING: A VARIATIONAL METHOD FOR
LEARNING STOCHASTIC DYNAMICS FROM SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic dynamics are ubiquitous in many fields of science, from the evolution
of quantum systems in physics to diffusion-based models in machine learning.
Existing methods such as score matching can be used to simulate these physical
processes by assuming that the dynamics is a diffusion, which is not always the
case. In this work, we propose a method called “Action Matching” that enables us
to learn a much broader family of stochastic dynamics. Our method requires access
only to samples from different time-steps, makes no explicit assumptions about
the underlying dynamics, and can be applied even when samples are uncorrelated
(i.e., are not part of a trajectory). Action Matching directly learns an underlying
mechanism to move samples in time without modeling the distributions at each
time-step. In this work, we showcase how Action Matching can be used for several
computer vision tasks such as generative modeling, super-resolution, colorization,
and inpainting; and further discuss potential applications in other areas of science.

1 INTRODUCTION

The problem of learning stochastic dynamics is one of the most fundamental problems in many
different fields of science. In physics, porous medium equations (Vázquez, 2007) describe many
natural phenomena from this perspective, such as Fokker Planck equation in statistical mechanics,
Vlasov equation for plasma, and Nonlinear heat equation. Another prominent example is from
Quantum Mechanics where the state of physical systems is a distribution whose evolution is described
by the Schrödinger equation. Recently, stochastic dynamics have achieved very promising results in
machine learning applications. The most promising examples of this approach are the diffusion-based
generative models (Song et al., 2020b; Ho et al., 2020).

Informal Problem Setup In this paper we approach the problem of Learning Stochastic Dynamics
from their samples. Suppose we observe the time evolution of some random variable Xt with the
density qt, from t0 to t1. Having access to samples from the density qt at different points in time
t ∈ [t0, t1], we want to build a model of the dynamics by learning how to move samples in time such
that they respect the marginals qt. In this work, we propose a method called “Action Matching” as a
solution to this problem.

Learning Stochastic Dynamics vs. Time-Series There is an important distinction between the
problem of learning stochastic dynamics and time-series modeling (e.g., language, speech or video
modeling). In time-series, the samples come in trajectories, where the samples in each trajectory
are usually highly correlated. However, in learning stochastic dynamics, we only have access to
independent samples at any given time-step (i.e., uncorrelated samples through time). This degree
of freedom allows us to solve different types of problems that can not be approached by time-series
modeling. We provide several examples in our experiment section, but also point out that sometimes
it is even physically impossible to obtain samples along trajectories. For example, in Quantum
Mechanics, the act of measurement at a given point collapses the wave function which prevents us
from obtaining further samples along that trajectory.

Generative Modeling with Action Matching From the Machine Learning perspective, the problem
of learning stochastic dynamics is a generalization of generative modeling. One way so solve
generative modeling is to first construct a distributional path (stochastic dynamics) from the data

1

Under review as a conference paper at ICLR 2023

Figure 1: Score Matching learns a model for every distribution, while Action Matching learns the
transition rule between distributions according to the continuity equation. Here, we illustrate that
learning the dynamics might be a much simpler task than learning all the distributions individually.

distribution to a tractable prior distribution (e.g., Gaussian or uniform), and then learn to move
along this path to generate samples. The most prominent example of this approach is the recent
developments in diffusion generative models (Song et al., 2020b; Ho et al., 2020), where a stochastic
differential equation (SDE) is constructed to move the samples from the data distribution to the prior,
and the reverse SDE is constructed by learning the score function of the intermediate distributions via
Score Matching (Hyvärinen & Dayan, 2005). Action Matching can be used for generative modeling
in a similar way, where we also construct a stochastic dynamics between the data distribution and the
prior. However, the important distinction is that this dynamics is constructed solely from samples of
the intermediate distributions, rather than analytical SDEs used in diffusion. This heavily relaxes the
constraint on the dynamics required in SDEs, and enables Action Matching to learn a much richer
family of dynamics between the two distributions. For example, in both widely used VP-SDEs and
VE-SDEs (Song et al., 2020b), the conditionals qt(xt|x0) are tractable Gaussian distributions, while
in Action Matching, the dynamics can have any arbitrary conditional qt(xt|x0), as long as it can be
sampled from. We can also use Action Matching to learn the dynamics constructed by SDEs as SDEs
can be sampled from. In Section 5.1, we provide a rich family of dynamics, that can be learned with
Action Matching, without the knowledge of the underlying process.

Another important distinction between SDEs and Action Matching is that the Action Matching
modeling capacity is spent only on learning how to move the samples (in a consistent way with the
marginals), and does not make any attempt to learn the marginals themselves. However, in diffusion
models such as VP-SDEs or VE-SDEs, all the capacity of the model is spent on learning the score
function of the individual densities ∇ log qt(x) for the backward diffusion. This is wasteful if the
evolution of the density is simple, but the densities themselves are complicated. An illustrative
toy example of this is provided in Fig. 1, where a complicated density is evolving with a constant
velocity through time. In this case, Action Matching only needs to learn a constant velocity vector
field, without learning anything about the individual marginals. As a practical example of this, we
will consider the colorization task in the experiment section, and argue that moving directly from a
grayscale image to the colored image with action matching is much easier than moving from Gaussian
noise to a colored image with a conditional diffusion that conditions on the grayscale image.

In short, compared to diffusion generative models, Action Matching has the following advantages:

1. Action Matching relies only on samples and does not require any knowledge of the underly-
ing stochastic dynamics, which is essential when we only have access to samples.

2. Action Matching is designed to learn only the dynamics, rather than the individual distribu-
tions qt, which is useful when a complicated distribution has a simple dynamics.

3. Action Matching’s applicability extends beyond that of diffusion models, as it can learn a
much richer class of stochastic dynamics (see Theorem 1).

Our contribution is two-fold: 1) In Section 2, we discuss a mathematically rigorous problem formula-
tion for learning stochastic dynamics, why this problem is well-defined, and what types of dynamics
we aim to learn. 2) In Section 3, we discuss Action Matching as a variational framework for learning
these dynamics. Finally, as some of the possible applications of Action Matching, we discuss several

2

Under review as a conference paper at ICLR 2023

computer vision tasks, such as generative modeling, super-resolution, colorization, and inpainting;
and provide experiments.

2 PROBLEM FORMULATION OF LEARNING CONTINUOUS DYNAMICS

Continuity Equation Suppose we have a set of particles in space X ⊂ Rd, initially distributed
as qt0 . Let each particle follow a time-dependent ODE (continuous flow) with the velocity field
v : [t0, t1]×X → Rd as follows

∂

∂t
x(t) = vt(x(t)) , x(t0) = x . (1)

From fluid mechanics, we know that the density of the particles at time t, denoted by qt, evolves
according to the continuity equation

∂

∂t
qt = −∇ · (qtvt) , (2)

which holds in the distributional sense, where∇· denotes the divergence operator.

Note that even though we arrived at the continuity equation using ODEs, the continuity equation
can describe a rich family of density evolutions in a wide range of stochastic processes, including
those of SDEs (see Equation 37 of Song et al. (2020b)), or even those of the porous medium equation
(Otto, 2001) that are more general than SDEs. This is intuitively because in modeling the density
evolution, we only care about respecting the marginals qt, and not the underlying stochastic process
that resulted in those marginals. This motivates us to restrict ourselves to ODEs of the form Eq. (1),
and the continuity equation, without losing any modelling capacity. In fact, as the following theorem
shows, under mild conditions, any continuous dynamics can be modeled by the continuity equation,
and moreover any continuity equation results in a continuous dynamics.
Theorem 1 (Adapted from Theorem 8.3.1 of Ambrosio et al. (2008)). Consider a continuous
dynamic with the density evolution of qt, which satisfies mild conditions (absolute continuity in the
2-Wasserstein space of distributions P2(X)). Then, there exists a unique (up to a constant) function
s∗t (x), called “action”, such that vector field v∗t (x) = ∇s∗t (x) and qt satisfies the continuity equation

∂

∂t
qt = −∇ · (qt∇s∗t (x)) . (3)

In other words, the ODE ∂
∂tx(t) = ∇s∗t (x) can be used to move samples in time such that the

marginals are qt.

Furthermore, we know that∇s∗t (x), defined in Eq. (3), minimizes the kinetic energy functionalK(vt),
defined below, along qt (Ambrosio et al., 2008)

K(vt) :=
1

2

∫ t1

t0

Eqt(x)∥vt(x)∥
2
dt , ∇s∗t = argmin

vt

{
K(vt)

∣∣∣∣ ∂∂tqt = −∇ · (qtvt)
}
, (4)

where the optimization is over all vt satisfying the continuity equation with qt. We can use the optimal
value of the optimization in Eq. (4) to attribute a unique kinetic energy value K to any stochastic
dynamics qt as follows:

K :=
1

2

∫ t1

t0

Eqt(x)∥∇s
∗
t (x)∥

2
dt , (5)

Using Theorem 1, the problem of learning the dynamics can be boiled down to learning the unique
vector field ∇s∗t , only using samples from qt. Motivated by this, we restrict our search space of
velocity vectors to the family of curl-free vector fields

St = {∇st | st : X → R} . (6)

We use a neural network to parameterize the set of functions st(x), and propose Action Matching for
learning the neural network such that st(x) approximates s∗t (x). Once we have learned the vector
field∇s∗t , we can move samples forward or backward in time by simulating the ODE in Eq. (1) with
the velocity ∇s∗t . The continuity equation ensures that samples at any given time t ∈ [t0, t1] are
distributed according to qt.

3

Under review as a conference paper at ICLR 2023

3 ACTION MATCHING

The main development of this paper is the Action Matching method, which allows us to recover the
true action s∗t of a continuous dynamic and thereby simulate it, while having access only to samples
from qt. In order to do so, we define the variational action st(x), parameterized by a neural network,
that approximates s∗t (x), by minimizing the “ACTION-GAP” objective

ACTION-GAP(s, s∗) :=
1

2

∫
Eqt(x)∥∇st(x)−∇s

∗
t (x)∥

2
dt . (7)

Note that this objective is intractable, as we do not have access to ∇s∗. We now propose action
matching as a variational framework for optimizing this objective.

We first show that the problem of minimizing the intractable Eq. (7), is tightly related to estimating
another intractable quantity: the kinetic energy of a continuous dynamics. As discussed in Theorem 1,
we can attribute a kinetic energy K quantity to any absolutely continuous dynamics qt, using the true
action s∗ (see Eq. (4)). In order to estimate the intractable K, we define a tractable variational kinetic
energy lower bound (KILBO) as a functional of an arbitrary variational action s as follows:

KILBO(s) = Eqt1 (x)
[st1(x)]− Eqt0 (x)

[st0(x)]︸ ︷︷ ︸
action-increment

−
∫

Eqt(x)

[
1

2
∥∇st(x)∥2 +

∂st
∂t

(x)

]
dt︸ ︷︷ ︸

smoothness (regularization)

. (8)

The following proposition establishes that Eq. (7) is the gap between KILBO and the true kinetic
energy.

Proposition 1. For an arbitrary variational action s, KILBO(s) is a lower bound on the true kinetic
K, and the gap can be characterized with

K = KILBO(s) + ACTION-GAP(s, s∗) . (9)

Thus, since K is not a function of s, the following optimization problems are equivalent

argmax
s
{KILBO(s)} = argmin

s
{ACTION-GAP(s, s∗)} , (10)

where the equality is up to an additive constant. The KILBO gap is tight iff∇st(x) = ∇s∗t (x).

See Appendix A for the proof. Proposition 1 indicates that maximizing the KILBO results in estimating
the true kinetic energy, as well as matching the variational action to the true action. Note that unlike
the intractable K, maximizing KILBO is tractable, as we can use the samples of qt to obtain an
unbiased low variance estimate of KILBO.

KILBO can be decomposed into an action-increment and a smoothness term. If we only optimize the
action-increment term, we learn large values for st(x) at t1 and small values for st(x) at t0. In this
case, st(x) tends to learn a degenerate function with sharp transitions in both x and t directions. The
smoothness term acts as a regularization term by penalizing large gradients with respect to both x
direction

(
1
2∥∇st(x)∥

2
)

, and t direction
(

∂st(x)
∂t

)
.

4 GENERATIVE MODELING USING ACTION MATCHING

While Action Matching has a wide range of applications in learning the continuous dynamics, in
this work, we focus on the applications of Action Matching in generative modeling task. In Action
Matching generative models, we first have to define a dynamics (i.e., noising process) that transforms
samples from the data distribution q0 = π to samples of a prior distribution q1 (e.g., standard
Gaussian). Action Matching is then used to learn the vector field ∇s⋆ of the chosen dynamics. Once
∇s⋆ is learned, we can sample from the target distribution by first sampling from the prior, and then
moving the samples using a reverse ODE with the velocity∇s⋆. Finally, Action Matching enables
use to compute the exact log-likelihood of the data.

4

Under review as a conference paper at ICLR 2023

Figure 2: Examples of different noising processes used for different vision tasks. At t = 0, we start
from the data distribution. Depending on the task, the noising process gradually destroys all or partial
information of data, and replace it with prior noise.

4.1 NOISING PROCESSES IN ACTION MATCHING GENERATIVE MODELS

To learn the vector field ∇s⋆, Action Matching only requires samples from the intermediate distri-
butions qt, t ∈ [0, 1], that define the noising process. We now provide a broad family of noising
processes that can be used for generative modeling tasks. Consider the process

xt = ft(x0) + σtε, x0 ∼ π(x), ε ∼ p(ε) , (11)

where ft(x0) is some transformation of the data, which could be nonlinear. At t = 0, f0 is the identity
function, and σ0 = 0. Thus, x0 is distributed according to the data distribution, i.e., q0(x0) = π(x0).
The noising process then gradually eliminates information from the samples using ft, and increases
the variance of noise σt. At t = 1, ft would become the zero function and we have σ1 = 1. Thus, x1
would be distributed as q1(x1) = p(x1).

We now demonstrate that the same general idea can be used to construct different noising processes
for solving different vision tasks, such as diffusion image generation, super-resolution, colorization,
inpainting, and torus image generation. See Fig. 2 for the examples of these sampling processes. We
will demonstrate Action Matching learning these dynamics in the experiment section.

Action Matching for Learning the Diffusion Dynamics Diffusion processes can be viewed as a
special case of the process in Eq. (11), when ft(x0) is a linear transformation ft(x0) = αtx0

xt = αtx0 + σtε, ε ∼ N (0, 1) , (12)

where αt and σt we can be chosen such that the marginals of Eq. (12) corresponds to the marginals
of VP-SDE and VE-SDE (Equation 29 from Song et al. (2020b)). This sampling process corresponds
to the unconditional image generation task since this dynamics transforms all the information in the
image into the Gaussian noise. We can use Action Matching to learn the dynamics of Eq. (12), solely
from samples of Eq. (12), without any knowledge of the underlying diffusion process.

The Equations (11) and (12) showcase that Action Matching generalizes diffusion, by allowing ft to
be any non-linear function, ε ∼ p be any noise model. In contrast, Denoising Score Matching uses
linear function ft for VP-SDE and VE-SDE, with the tractable Gaussian conditional.

Super-Resolution and Inpainting Action Matching provides a lot of freedom in the choice of the
sampling process, which we demonstrate in the conditional generation tasks. Consider the following
sampling processes

xt = mask · x0 + (1−mask) · (αtx0 + σtε) , (13)

where the mask variable has the same dimensions as x0 and every coordinate of the mask vector
is in {0, 1}. Thus, the noising process is only applied to the subset of pixels, which can be used to
learn the inpainting and super-resolution tasks. In the inpainting task, the mask itself is a Bernoulli
random variable that decides either the top-half or the bottom-half of the image is destroyed. In the
super-resolution case, the mask is fixed, and keeps one pixel in each 2× 2 block, while the remaining
pixels are transformed to noise.

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Generative Modeling using Action Matching

Require: dataset {xi}Ni=1, x
i ∼ π(x) = q0(x)

Require: parametric model st(x, θ)
for learning iterations do

sample a batch of data {xi0}ni ∼ π(x) = q0(x0)
sample a batch of noise {εi}ni ∼ q1(x1) = p(ε)
sample times {ti}ni ∼ Uniform[0, 1]
sample two batches {xi1}ni , {xiti}

n
i using xiti = fti(x

i
0) + σtiε

i

L = 1
n

∑n
i

[
s0(x

i
0)− s1(xi1) + 1

2

∥∥∇st(xiti)∥∥2 + ∂st(x
i
ti
)

∂t

]
update the model θ ← Optimizer(θ,∇θLθ)

end for
return trained model st(x, θ∗)

Colorization Another option for the conditional generation is the interpolation between the original
datapoint and its nonlinearly transformed version with some noise added. For instance, we do image
colorization using this approach

xt = αtx0 + σt(10
−1ε+ gray(x0)) , (14)

where the function gray(x0) returns the grayscale version of image x0. Note that function gray(x0)
is not injective, since it maps several different colorizations to the same grayscale image. As we
show further, Action Matching sampling process is a bijection; hence, the addition of noise is crucial
for sampling from the data distribution images given the same conditioning. At the same time, the
added noise partially destroys the information. To avoid this corruption of the conditional image, we
concatenate the original grayscale image with the input.

Generative Modeling on a Torus Finally, we consider the problem of learning a stochastic
dynamics on a manifold. Here we consider a distribution on torus, where every coordinate of the data
vector to be in [0, 1] with periodic boundary conditions. Then, the sampling process interpolating
between the data distribution on the noise distribution is

xt = (x0 + σtε) mod 1, ε ∼ N (0, 1). (15)
Note that q1 converges to the uniform distribution on the torus when σt →∞.

4.2 LEARNING, SAMPLING, AND LIKELIHOOD EVALUATION OF ACTION MATCHING
GENERATIVE MODELS

Learning Once we define the noising process for qt, ∀t ∈ [0, 1], we apply Action Matching as
described in Algorithm 1. It samples points with different time-steps and then minimizes the objective
(7) w.r.t. the parameters θ of st(x, θ). In practice, we found that the performance of Algorithm 1
might be hindered by high variance of the objective estimate. To reduce the variance of the objective
(7), we propose to weight it over time and also adaptively select the distribution of sampled time-steps.
We derive the weighted KILBO objective in Appendix A, and further discuss the details of training in
Appendix B.

Sampling We sample from the target distribution via the trained function st(x(t), θ∗) by solving
the following ODE backward in time:

∂

∂t
x = ∇xst(x(t), θ

∗), x(t = 1) = ε , ε ∼ p(ε). (16)

Recall that this sampling process is justified by Eq. (3), where st(x(t), θ∗) approximates s∗t .

Evaluating the Log-likelihood for the generation tasks can be done by integrating the same ODE
forward, i.e.,

log q0(x(0)) = log q1(x(1)) +

∫ 1

0

dt ∇2s∗t (x(t)),
∂

∂t
x = ∇xs

∗
t (x(t)), x(t = 0) = x, (17)

where we approximate s∗t by st(x(t), θ∗) and assume the density q1(x) to be a known analytic
distribution.

6

Under review as a conference paper at ICLR 2023

Figure 3: Illustration of the difference between Score Matching and Action Matching noising
processes on the colorization task. We argue that Action Matching provides a more efficient way
to learn the colorization model since the process requires less changes between the input and the
resulting images. The additional channels are used to condition all the inputs on the grayscale image.

4.3 ACTION MATCHING VS. SCORE MATCHING GENERATIVE MODELS

In this section, we give more insights on Action Matching by drawing connections and highlighting
differences to Score Matching (Hyvärinen & Dayan, 2005) and recently introduced generative models
relying on Score Matching (Song et al., 2020b; Ho et al., 2020).

The most fundamental difference between Action Matching and Score Matching is that they approach
completely different estimation problems. Indeed, Score Matching estimates the gradient of the
log-density from samples of the distribution, while Action Matching cannot be applied for a single
distribution. Instead, Action Matching learns the underlying mechanism of a stochastic dynamics,
i.e., learns how distributions change in time. We schematically depict this difference in Fig. 1.

Despite the fundamental difference in the problem setup both methods can be applied for generative
modeling. For generative modeling, we have the freedom to choose the stochastic dynamics between
the target distribution and the prior. Hence, by choosing the dynamics to be a diffusion (Fokker-Planck
equation) with known drift and diffusion coefficients, one can learn the score of every marginal and
then sample using the corresponding ODE or SDE (Song & Ermon, 2019). Furthermore, if the drift
term is affine then Denoising Score Matching (Vincent, 2011) can be applied to learn the score model.
More precisely, the model from (Song et al., 2020b) requires samples from the noising process and
the analytic formulas for the drift and diffusion coefficient, where the drift term has to be affine.

Action Matching requires only samples from the process to learn the dynamics. Hence, it includes
the case of diffusion even without the knowledge of the drift and diffusion coefficient. Moreover,
it can learn a much broader family of generative processes, which can have better properties for
different applications. In Fig. 3, we give an example of such a process for the colorization task. Since
Score Matching can be defined only for the diffusion, its forward process removes all the information
about the image resulting in pure noise. In contrast, for Action Matching, we can remove just the
information about the color of image while adding some low-variance noise along the way. For both
models, we concatenate the grayscale image with the input. However, we argue that, for Action
Matching, less computational efforts are needed since we have to apply less modifications to the
original image to color it. We discuss and provide evidence for this in Section 5.1.

5 EXPERIMENTS

5.1 GENERATIVE MODELING

Action Matching has a wide range of applications in modeling density evolutions. In this section, we
showcase the applications of Action Matching in generative modeling tasks, since they are among the
most challenging high-dimensional stochastic dynamics. Action Matching generative models should
not be directly compared with diffusion models, as they make different assumptions, and have access
to different information. A score matching diffusion model such as VE-SDE and VP-SDE explicitly
relies on the analytic forms of drift and the diffusion coefficients of the SDE. In contrast, Action
Matching infers the underlying vector field of any arbitrary continuous stochastic dynamics, solely
from the samples. For this reason, we expect Action Matching generative models to under-perform in
this setting.

7

Under review as a conference paper at ICLR 2023

Dataset Task BPD↓ FID↓
SM AM SM AM

CelebA Diffusion 2.56 3.78 4.60 18.07
CelebA Superres – – 1.22 4.92
CelebA Inpainting – – 2.02 10.71
CelebA Torus – 3.90 – 18.09

CIFAR-10 Diffusion 3.19 4.31 12.05 53.86
CIFAR-10 Superres – – 5.94 26.42
CIFAR-10 Colorization – – 5.35 7.91
CIFAR-10 Torus – 6.42 – 39.42

Table 1: Experimental results for Ac-
tion Matching (AM) and Score Match-
ing (SM) on computer vision tasks.
Diffusion and Torus map images to
known distributions; hence, for them,
we report negative log-likelihood in
bits per dimension (BPD). For all tasks,
we report FID evaluated between gen-
erated images and the test data. For
CelebA, we use 20k images. For
CIFAR-10, we use 10k images.

Figure 4: Faster conver-
gence of Action Match-
ing (AM) compared to
Score Matching (SM)
in FID values and gen-
erated samples qual-
ity for the colorization
task on CIFAR-10.

We apply Action Matching to MNIST, CelebA (Liu et al., 2015) and CIFAR-10 datasets for a variety
of computer vision tasks. Namely, we perform unconditional image generation via diffusion as well
as conditional generation for super-resolution, in-painting, and colorization tasks. In addition to these
settings, we also learn unconditional image generation on a torus, where Denoising Score Matching
can not be applied in the original formulation.

For the baseline in unconditional image generation tasks, we use the model from (Song et al., 2020b),
which is the diffusion-based generative process trained with Denoising Score Matching. For the
baseline in conditional image generation tasks, we follow (Saharia et al., 2022), and condition the
model by concatenating the conditioning image as an additional channel with the main input. We refer
to all baselines as Score Matching (SM in Table 1 and Fig. 4). We discuss further implementation
details in Appendix D.1.

We train all models for 300k iterations and report the negative log-likelihood in bits per dimension
(BPD) and FID scores (Heusel et al., 2017) in Table 1. We demonstrate generated images by Action
Matching in Appendix E and provide animations of the generation in github.com/action-matching.

We observe that Denoising Score Matching performs better than Action Matching on all tasks,
which was expected due to the additional information that the Denoising Score Matching objective
uses about the underlying process. However, as we discussed in Section 4.3, we expect Action
Matching to converge faster on the conditional image generation tasks, as it only needs to learn a
cross-domain transformation, rather than learning the conditional generation from the Gaussian noise.
We experimentally verified this hypothesis by evaluating the FID throughout the training process, on
the colorization task, shown in Fig. 4.

5.2 SCHRÖDINGER EQUATION SIMULATION

In this section, we demonstrate that Action Matching can learn a wide range of stochastic dynamics by
applying it to the dynamics of a quantum system evolving according to the Schrödinger equation. The
Schrödinger equation describes the evolution of many quantum systems, and in particular, it describes
the physics of molecular systems. Here, for the ground truth dynamics, we take the dynamics of an
excited state of the hydrogen atom, which is described by the following equation

i
∂

∂t
ψ(x, t) = − 1

∥x∥
ψ(x, t)− 1

2
∇2ψ(x, t). (18)

8

https://github.com/action-matching

Under review as a conference paper at ICLR 2023

Figure 5: On the left, we demonstrate performance of compared algorithms in terms of average MMD
over the time of dynamics. The MMD is measured between generated samples and the training data.
On the right, we report squared error of the score estimation for the score-based methods.

Method Average MMD↓
AM (ours) 5.7 · 10−4 ± 3.1 · 10−4

ALD + SM 4.8 · 10−2 ± 4.8 · 10−3

ALD + SSM 4.7 · 10−2 ± 4.0 · 10−3

ALD + True Scores 3.6 · 10−2 ± 4.1 · 10−4

Table 2: Performance of Action Matching and
the Annealed Langevin Dynamics (ALD) for the
Schrödinger equation simulation. For ALD, we esti-
mate the scores in two ways: Score Matching (SM)
and Sliced Score Matching (SSM). We also demon-
strate that even using true scores does not allow for
the precise simulation.

The function ψ(x, t) : R3 × R→ C is called a wavefunction and it completely describes the state
of the quantum system. In particular, it defines the distribution of the coordinates x by defining its
density as qt(x) := |ψ(x, t)|2, which dynamics is defined by the dynamics of ψ(x, t) in Eq. (18).

For the baseline, we take Annealed Langevin Dynamics as considered in (Song & Ermon, 2019).
It approximates the ground truth dynamics using only scores of the distributions by running the
approximate MCMC method (which does not have access to the densities) targeting the intermediate
distributions of the dynamics (see Algorithm 3). For the estimation of scores, we consider Score
Matching (SM) (Hyvärinen & Dayan, 2005), Sliced Score Matching (SSM) (Song et al., 2020a),
and additionally evaluate the baseline using the ground truth scores. For further details, we refer the
reader to Appendix D.2 and the code github.com/action-matching.

Action Matching outperforms both Score Matching and Sliced Score Matching, precisely simulating
the true dynamics (see Fig. 5 and Table 2). Despite that both SM and SSM accurately recover the
ground truth scores for the marginal distributions (see the right plot in Fig. 5), one cannot efficiently
use them for the sampling from ground truth dynamics. Note, that even using the ground truth scores
in Annealed Langevin Dynamics does not match the performance of Action Matching (see Table 2)
since it is itself an approximation to the Metropolis-Adjusted Langevin Algorithm. Finally, we
provide animations of the learned dynamics for different methods (see github.com/action-matching)
to illustrate the performance difference.

6 CONCLUSION

In this work, we discussed how any continuous dynamics (under mild conditions) can be represented
by a unique continuous vector field minimizing the kinetic energy. This representation provides
a rigorous mathematical formulation for the problem of learning stochastic dynamics. We then
presented Action Matching, as a variational framework for learning this unique vector field solely
from samples of the dynamics. We further demonstrated that Action Matching can learn a wide range
of continuous dynamics, including those of diffusion. We believe the flexibility that Action Matching
introduces will be useful in applications in natural sciences, where stochastic dynamics appear, but
the underlying mechanisms are not controlled, and thus we can only make observations.

9

https://github.com/action-matching/action-matching
https://github.com/action-matching/action-matching

Under review as a conference paper at ICLR 2023

REFERENCES

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2008.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge university
press, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
Conference Proceedings, pp. 1–10, 2022.

Tim Salimans and Jonathan Ho. Should ebms model the energy or the score? In Energy Based
Models Workshop-ICLR 2021, 2021.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on
Demand, 2007.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

10

Under review as a conference paper at ICLR 2023

A ACTION MATCHING

Proposition. For an arbitrary variational action s, KILBO(s) is a lower bound on the true kinetic
K(s∗), and the gap can be characterize with

KILBO(s) = ωt1Eqt1 (x)[st1(x)]− ωt0Eqt0 (x)[st0(x)]−
∫ t1

t0

ωtEqt(x)

[
1

2
∥∇st(x)∥2 +

∂st(x)

∂t
+ st(x)

d logωt

dt

]
dt

= K − ACTION-GAP(s, s∗) ,

Thus, since K is not a function of s, the following optimization problems are equivalent

argmax
s
{KILBO(s)} = argmin

s
{ACTION-GAP(s, s∗)} , (19)

where the equality is up to an additive constant. The KILBO gap is tight iff∇st(x) = ∇s∗t (x).

Proof.

ACTION-GAP(s, s∗)

=
1

2

∫ t1

t0

ωtEqt(x)∥∇s−∇s∗∥2dt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s−∇s∗∥2dxdt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

ωt

∫
x

qt(x)⟨∇st(x),∇s∗t (x)⟩dxdt+

K︷ ︸︸ ︷
1

2

∫
Eqt(x)∥∇s∗∥2dt

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

ωt

∫
x

⟨∇st(x), qt(x)∇s∗t (x)⟩dxdt+K

(1)
=

1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt+
∫ t1

t0

ωt

∫
x

st(x)[∇ · (qt(x)∇s∗t (x))]dxdt+K

=
1

2

∫ t1

t0

∫
x

ωtqt(x)∥∇s∥2dxdt−
∫ t1

t0

(∫
x

ωtst(x)
∂qt(x)

∂t
dx

)
dt+K

(2)
=

∫ t1

t0

ωtEqt(x)

[
1

2
∥∇st(x)∥2

]
dt−

(
ωtEqt(x)[st(x)]

∣∣t1
t0

−
∫
x

Eqt(x)

[
st(x)

dωt

dt
+ ωt

∂st(x)

∂t

]
dt

)
+K

=

∫ t1

t0

ωtEqt(x)

[
1

2
∥∇st(x)∥2 +

∂st(x)

∂t
+ st(x)

d logωt

dt

]
dt− ωt1Eqt1 (x)[st1(x)] + ωt0Eqt0 (x)[st0(x)] +K

= −KILBO(s) +K ,

where in (1), we have used
∫
V
⟨∇g,f⟩dx =

∮
∂V
⟨fg,ds⟩ −

∫
V
g(∇ · f)dx, and in (2) we have used

integration by parts.

B GENERATIVE MODELING IN PRACTICE

In practice, we found that the naive application of Action Matching (Algorithm 1) for complicated
dynamics such as image generation might exhibit poor convergence due to the large variance of
objective estimate. Moreover, the optimization problem

min
st

1

2

∫
q∗t (x)∥∇st(x)−∇s∗t (x)∥

2
dxdt (20)

might be ill posed due to the singularity of the ground truth vector field ∇s∗t . Indeed, consider the
sampling process

xt = ft(x0) + σtε, x0 ∼ π(x), ε ∼ N (x | 0, 1) , (21)

where the target distribution is a mixture of delta-functions

π(x) =
1

N

N∑
i

δ(x− xi). (22)

11

Under review as a conference paper at ICLR 2023

Algorithm 2 Generative Modeling using Action Matching (In Practice)

Require: dataset {xi}Ni=1, x
i ∼ π(x) = q0(x)

Require: parameteric model st(x, θ), weight schedule ω(t)
for learning iterations do

sample a batch of data {xi0}ni ∼ π(x) = q0(x)
sample a batch of noise {εi}ni ∼ q1(x1)
sample times {ti}ni ∼ p(t)
sample two batches {xi1}ni , {xiti}

n
i using xiti = fti(x

i
0) + σtiε

i

L =
∑n

i
1

p(ti)

[
s0(x

i
0)ω(0)−s1(xi1)ω(1)+ 1

2

∥∥∇st(xiti)∥∥2ω(ti)+ ∂st(x
i
ti
)

∂t ω(ti)+st(x
i
t)

∂ω(ti)
∂ti

]
update the model θ ← Optimizer(θ,∇θLθ)

end for
return trained model st(x, θ∗)

Denoting the distribution of xt as qt(x), we can solve the continuity equation

∂qt
∂t

= −∇ · (qt∇s∗t) (23)

analytically (see Appendix C). The ground truth vector field is

∇s∗t =
1∑
i q

i
t

∑
i

qit

[
(x− ft(xi))

∂

∂t
log σt +

∂ft(x
i)

∂t

]
, qit(x) = N (x | ft(xi), σ2

t). (24)

For generative modeling, it’s essential that q0 = π(x); hence, limt→0 σt = 0 and limt→0 ft(x) = x.
Assuming that σ2

t is continuous and differentiable at 0, in the limit, we have

lim
t→0
∥∇s∗t (x)∥

2 ∝ lim
t→0

1

σ2
t

, and lim
t→0

1

2

∫
q∗t (x)∥∇s∗t (x)∥

2
dxdt ∝ lim

t→0

1

σ2
t

. (25)

Thus, the loss can be properly defined only on the interval t ∈ (δ, 1], where δ > 0. In practice, we
want to set δ as small as possible; hence, ideally, we want to learn st on the whole interval t ∈ [0, 1].
We can get rid of the singularity just by reweighting the objective in time, i.e.,

1

2

∫
q∗t (x)∥∇st(x)−∇s∗t (x)∥

2
dxdt =⇒ 1

2

∫
ω(t)q∗t (x)∥∇st(x)−∇s∗t (x)∥

2
dxdt. (26)

To give an example, we can take σt =
√
t and ft(x) = x

√
1− t, then ω(t) = (1 − t)t3/2 cancels

out the singularities at t = 0 and t = 1.

The second modification of the original Algorithm 1 is the sampling of time-steps for the estimation of
the time integral. Namely, the optimization of (26) is equivalent to the minimization of the following
objective

L(s) =
∫
ω(t1)st1(x)q

∗
t1(x)dx−

∫
ω(t0)st0(x)q

∗
t0(x)dx︸ ︷︷ ︸

boundary part

+ (27)

+

∫ t1

t0

∫
q∗t (x)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
dxdt︸ ︷︷ ︸

middle part

, (28)

which consists of two parts. Estimation of the boundary part involves only sampling from q∗t0 and q∗t1 ,
while the middle part estimate depends on the distribution of time samples, i.e.,∫ t1

t0

p(t)

p(t)︸︷︷︸
=1

∫
q∗t (x)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
dxdt ≃ (29)

≃ Et∼p(t)Ex∼q∗t (x)
1

p(t)

[
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t

]
. (30)

12

Under review as a conference paper at ICLR 2023

Note that for every choice of p(t) we get an unbiased estimate of the original objective function. Thus,
we can design p(t) to reduce the variance of the middle part of the objective. In our experiments,
we observed that simply taking p(t) proportionally to the standard deviation of the corresponding
integrand significantly reduces the variance, i.e.,

p(t) ∝
√
Ex∼qt(ζt − Ex∼qtζt)

2, ζt =
1

2
ω(t)∥∇st(x)∥2 + ω(t)

∂st(x)

∂t
+ st(x)

∂ω(t)

∂t
. (31)

We implement sampling from this distribution by aggregating the estimated variances throughout
the training with exponential moving average and then follow by linear interpolation between the
estimates.

C “SPARSE DATA” REGIME

We start with the case where the dataset consists only of a single point x0 ∈ Rd

q0(x) = δ(x− x0), kt(xt |x) = N (xt | ft(x), σ2
t). (32)

Then the distribution at time t is

qt(x) =

∫
dx′ q0(x

′)kt(x |x′) = N (x | ft(x0), σ2
t). (33)

The ground truth vector field v comes from the continuity equation

∂qt
∂t

= −⟨∇, qtv⟩ =⇒ ∂

∂t
log qt = −⟨∇ log qt, v⟩ − ⟨∇, v⟩. (34)

For our dynamics, we have

∂

∂t
log qt =

∂

∂t

[
− d

2
log(2πσ2

t)−
1

2σ2
t

∥x− ft(x0)∥2
]

(35)

= − d ∂
∂t

log σt +
1

σ2
t

∥x− ft(x0)∥2
∂

∂t
log σt +

1

σ2
t

〈
x− ft(x0),

∂ft(x0)

∂t

〉
(36)

= − d ∂
∂t

log σt +
1

σ2
t

〈
x− ft(x0), (x− ft(x0))

∂

∂t
log σt +

∂ft(x0)

∂t

〉
; (37)

∇ log qt = − 1

σ2
t

(x− ft(x0)); (38)

∂

∂t
log qt = − d ∂

∂t
log σt −

〈
∇ log qt, (x− ft(x0))

∂

∂t
log σt +

∂ft(x0)

∂t

〉
. (39)

Matching the corresponding terms in the continuity equation, we get

v = (x− ft(x0))
∂

∂t
log σt +

∂ft(x0)

∂t
. (40)

For the set of delta-functions, we denote

q0(x) =
∑
i

δ(x− xi), qt(x) =
∑
i

qit(x), qit(x) = N (x | ft(xi), σ2
t). (41)

Due to the linearity of the continuity equation w.r.t. q, we have∑
i

∂qit
∂t

=
∑
i

⟨∇, qitv⟩ =⇒
∑
i

qit

(
∂

∂t
log qit + ⟨∇ log qit, v⟩+ ⟨∇, v⟩

)
= 0. (42)

We first solve the equation for ∂ft
∂t = 0, then for ∂

∂t log σt = 0 and join the solutions. For ∂ft
∂t = 0,

we look for the solution in the following form

vσ =
A∑
i q

i
t

∑
i

∇qit, qit(x) = N (x | f it (xi), σ2
t). (43)

13

Under review as a conference paper at ICLR 2023

Then we have

⟨∇, vσ⟩ =
〈
∇ A∑

i q
i
t

,
∑
i

∇qit
〉
+

A∑
i q

i
t

∑
i

∇2qit (44)

= − A

(
∑

i q
i
t)

2

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+
A∑
i q

i
t

∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2

]
, (45)

(∑
i

qit
)
⟨∇, vσ⟩ = − A∑

i q
i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+A
∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2

]
, (46)

and from (42) we have∑
i

qit

(
− d ∂

∂t
log σt +

〈
∇ log qit, vσ + σ2

t

∂

∂t
log σt∇ log qit

〉
+ ⟨∇, vσ⟩

)
= 0. (47)

From these two equations we have

∑
i

qit⟨∇, vσ⟩ = − A∑
i q

i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

+A
∑
i

qit

[∥∥∇ log qit
∥∥2 − d

σ2

]
= (48)

=
∑
i

qit

(
d
∂

∂t
log σt

)
− A∑

i q
i
t

∥∥∥∥∥∑
i

∇qit

∥∥∥∥∥
2

− σ2
t

∂

∂t
log σt

∑
i

qit
∥∥∇ log qit

∥∥2.
(49)

Thus, we have

A = −σ2
t

∂

∂t
log σt. (50)

For ∂
∂t log σt = 0, we simply check that the solution is

vf =
1∑
i q

i
t

∑
i

qit
∂ft(x

i)

∂t
. (51)

Indeed, the continuity equation turns into∑
i

qit

(〈
∇ log qit, vf −

∂ft(x
i)

∂t

〉
+ ⟨∇, vf ⟩

)
= 0. (52)

From the solution and the continuity equation we write
∑

i qi⟨∇, vf ⟩ in two different ways.

∑
i

qit⟨∇, vf ⟩ = − 1∑
i q

i
t

〈∑
i

∇qit,
∑
i

qit
∂ft(x

i)

∂t

〉
+

∑
i

〈
∇qit,

∂ft(x
i)

∂t

〉
(53)

= −
〈∑

i

∇qit, vf
〉
+
∑
i

〈
∇qit,

∂ft(x
i)

∂t

〉
(54)

Thus, we see that (51) is indeed a solution.

Finally, unifying vσ and vf , we have the full solution

v = −
(
∂

∂t
log σt

)
σ2
t∑
i q

i
t

∑
i

∇qit +
1∑
i q

i
t

∑
i

qit
∂ft(x

i)

∂t
, qit(x) = N (x | ft(xi), σ2

t), (55)

v =
1∑
i q

i
t

∑
i

qit

[
(x− ft(xi))

∂

∂t
log σt +

∂ft(x
i)

∂t

]
(56)

14

Under review as a conference paper at ICLR 2023

Figure 6: Illustration
that Action Matching
can learn one to many
relations using low
variance noise added
to the image. Here, we
sample different col-
orizations starting from
the same grayscale
input adding different
samples of noise.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF ACTION MATCHING GENERATIVE MODELS

For the architecture of the neural network parameterizing st, we follow (Salimans & Ho, 2021). In
more details, we parameterize st(x) as ∥unet(t, x)− x∥2, where unet(t, x) is the U-net architecture
(Ronneberger et al., 2015). For the U-net architecture, we follow (Song et al., 2020b) with the only
difference is that we set the channel multiplier parameter to 64 instead of 128, thus, narrowing down
the architecture. We have to narrow down the architecture since Action Matching requires taking
the derivative w.r.t. the inputs at each iteration, which is a downside compared to Denoising Score
Matching. Otherwise the training of one model takes a week on 4 gpus. We consider the same U-net
architecture for the baseline to parameterize∇ log qt.

For diffusion, we take VP-SDE from (Song et al., 2020b), which corresponds to αt =

exp(− 1
2

∫
β(s)ds) and σt =

√
1− exp(−

∫
β(s)ds), where β(s) = 0.1+19.9t. For other tasks we

take σt = t and αt = 1− t. All images are normalized to the interval [−1, 1]. For image generation
on the torus, we first normalize the data such that every pixel is in [0.25, 0.75]. Thus we make sure
that the shortest distance between the lowest and the largest pixel values is maximal on the circle
[0, 1].

Although Action Matching learns deterministic mappings, it is possible to learn one-to-many map-
pings by adding small amount of noise to the data. For example, each row of Fig. 6 shows that Action
Matching has learned to generate different colorizations from a single grayscale CIFAR-10 image,
using different noise samples added to the grayscale image in Eq. (14).

D.2 DETAILS ON THE SCHRÖDINGER EQUATION SIMULATION

For the initial state of the dynamics

i
∂

∂t
ψ(x, t) = − 1

∥x∥
ψ(x, t)− 1

2
∇2ψ(x, t) , (57)

we take the following wavefunction

ψ(x, t = 0) ∝ ψ32−1(x) + ψ210(x), and q∗t=0(x) = |ψ(x, t = 0)|2, (58)

where n, l,m are quantum numbers and ψnlm is the eigenstate of the corresponding Hamiltonian (see
Griffiths & Schroeter (2018)). For all the details on sampling and the exact formulas for the initial
state, we refer the reader to the code github.com/action-matching. We evolve the initial state for
T = 14 · 103 time units in the system ℏ = 1,me = 1, e = 1, ε0 = 1 collecting the dataset of samples
from q∗t . For the time discretization, we take 103 steps; hence, we sample every 14 time units.

To evaluate each method, we collect all the generated samples from the distributions qt, t ∈ [0, T]
comparing them with the samples from the training data. For the distance metric, we measure the
MMD distance (Gretton et al., 2012) between the generated samples and the training data at 10
different timesteps t = k

10T, k = 1, . . . , 10 and average the distance over the timesteps. For the

15

https://github.com/action-matching/action-matching

Under review as a conference paper at ICLR 2023

Annealed Langevin Dynamics, we set the number of intermediate steps for M = 5, and select the
step size dt by minimizing MMD using the exact scores∇ log qt(x).

For all methods, we use the same architecture, which is a multilayer perceptron with 5 layers 256
hidden units each. The architecture h(t, x) takes x ∈ R3 and t ∈ R and outputs 3-d vector, i.e.
h(t, x) : R × R3 → R3. For the score-based models it already defines the score, while for action
matching we use st(x) = ∥h(t, x)− x∥2 as the model and the vector field is defined as∇st(x).

Algorithm 3 Annealed Langevin Dynamics

Require: score model st(x), step size dt, number of intermediate steps M
Require: initial samples xi0 ∈ Rd

for time steps t ∈ (0, T] do
set the target distribution qt, such that st(x) ≈ ∇ log qt(x)
for intermediate steps j ∈ 1, . . . ,M do
εi ∼ N (0,1)

xit = xit +
dt
2 st(x

i
t) +
√
dt · εi

end for
save samples xit

end for
return samples {xit}Tt=0

16

Under review as a conference paper at ICLR 2023

E IMAGE EXAMPLES FOR ACTION MATCHING

Figure 7: Action Matching on MNIST diffusion (on the left), torus (on the right).

Figure 8: Action Matching on CelebA for diffusion.

Figure 9: Action Matching on CelebA for superres.

17

Under review as a conference paper at ICLR 2023

Figure 10: Action Matching on CelebA for inpaint.

Figure 11: Action Matching on CelebA for torus.

Figure 12: Action Matching on CIFAR-10 for diffusion.

18

Under review as a conference paper at ICLR 2023

Figure 13: Action Matching on CIFAR-10 for super-resolution.

Figure 14: Action Matching on CIFAR-10 for colorization.

Figure 15: Action Matching on CIFAR-10 for torus.

19

	Introduction
	Problem Formulation of Learning Continuous Dynamics
	Action Matching
	Generative Modeling using Action Matching
	Noising Processes in Action Matching Generative Models
	Learning, Sampling, and Likelihood Evaluation of Action Matching Generative Models
	Action Matching vs. Score Matching Generative Models

	Experiments
	Generative Modeling
	Schrödinger Equation Simulation

	Conclusion
	Action Matching
	Generative Modeling in Practice
	``Sparse Data'' Regime
	Implementation Details
	Details of Action Matching Generative Models
	Details on the Schrödinger Equation Simulation

	Image Examples for Action Matching

