LLM CHEMISTRY ESTIMATION FOR MULTI-LLM RECOMMENDATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-LLM collaboration promises accurate, robust, and context-aware solutions, yet existing approaches rely on implicit selection and output assessment without analyzing whether collaborating models truly complement or conflict. We introduce *LLM Chemistry* — a framework that measures when LLM combinations exhibit synergistic or antagonistic behaviors that shape collective performance beyond individual capabilities. We formalize the notion of chemistry among LLMs, propose algorithms that quantify it by analyzing interaction dependencies, and recommend optimal model ensembles accordingly. Our theoretical analysis shows that chemistry among collaborating LLMs is most evident under heterogeneous model profiles, with its outcome impact shaped by task type, group size, and complexity. Evaluation on classification, summarization, and program repair tasks provides initial evidence for these task-dependent effects, thereby reinforcing our theoretical results. This establishes LLM Chemistry as both a diagnostic factor in multi-LLM systems and a foundation for ensemble recommendation.

1 Introduction

Large Language Models (LLMs) are increasingly capable across tasks from code generation to open-domain question answering. Yet no single model excels universally (Chang et al., 2024). Different LLMs bring varied strengths—reasoning, generation, or domain expertise—spurring interest in multi-LLM collaboration: systems that coordinate multiple models to solve tasks collectively. By combining complementary abilities, such collaboration promises more accurate, robust, and context-aware solutions than any single model alone (Feng et al., 2024; Tran et al., 2025), though a key challenge lies in selecting ensembles that reliably exploit these strengths.

To address this challenge, a growing body of work has proposed numerous collaborative strategies positioned at different stages of the inference pipeline: (1) before inference, e.g., LLM routers (Rosenbaum et al., 2018); (2) during inference, e.g., ensemble decoding (Li et al., 2024a; Mavromatis et al., 2024); and (3) after inference, e.g., LLM Cascades (Chen et al., 2024b; Yue et al., 2024) and LLM compensatory cooperation (Zhao et al., 2024). These strategies aim to harness the strengths of multiple and frequently collaborating LLMs.

Existing methods focus primarily on selecting *strong individual models*—often large, high-performing closed-source LLMs such as ChatGPT, Claude, and Gemini— without considering how their interactions affect group performance (Hu et al., 2024a). Yet evidence shows these interactions can substantially influence collaborative outcomes (Liu et al., 2024) and even transmit unrelated behavioral traits via generated data (Cloud et al., 2025). Work on compound AI systems has examined LLM assignment across modules under resource constraints, but assumes modular independence and ignores potential synergy—or interference—when models collaborate on a single task.

To illustrate how such dynamics play out in practice, consider a *statement credibility classification* task: "Small businesses create 70 percent of the jobs in America. (Eric Cantor)." A single model may be precise but brittle (e.g., misclassifying unusual variations of this claim as *false*), while another may be broader but noisier (e.g., giving inconsistent answers such as *true*, mostly true, half true). Individually, neither suffices. Yet when models are combined and allowed to interact through multiple rounds of response generation and critique, they may converge on a more accurate answer—or entrench errors—showing that while multi-model solutions can outperform individual models, their collective performance depends as much on interaction as on individual accuracy (Du et al., 2023).

 Motivated by this, we shift focus from allocation to interaction: rather than treating LLMs as isolated units, we study how they perform jointly on a single task, aiming to identify subsets that exhibit strong collaborative synergy—what we call *LLM Chemistry*. This raises a central question: *For a given task, how can we identify which LLMs work best together, i.e., exhibit strong chemistry?*

To address this question, we propose a framework for quantifying LLM Chemistry among LLMs collaborating on shared tasks. We formalize this notion and present algorithms that identify interaction dependencies among models and recommend those with strong chemistry. Informally, an LLM a interacts with an LLM b if the benefit of using a on a task changes in the presence of b, and vice versa. We evaluate such chemistry purely through *performance evaluation*, i.e., how effectively LLMs achieve objectives together. Our experiments across three benchmarks provide initial evidence that interaction dynamics shape collective performance—sometimes amplifying, sometimes constraining. This suggests model selection alone may be insufficient, since outcomes also depend on interaction effects as well as individual strength. We model collaboration as a two-stage process of response generation and evaluation, a common setup in multi-LLM collaboration frameworks (Du et al., 2023; Madaan et al., 2023; Zhang et al., 2024). In all benchmarks, LLMs interact through this process rather than via independent subgoal assignment.

We summarize our technical contributions as follows:

- We introduce and formalize the notion of LLM Chemistry and present CHEME, an algorithm for computing the LLM chemistry within a group of LLMs.
- We introduce the concept of Model Interaction Graphs (MIGs) as a mechanism to encode the performance and cost tradeoffs of different LLM interactions in CHEME.
- We present RECOMMEND, an algorithm for selecting optimal LLM combinations that exhibit strong chemistry for collaborative tasks.
- We conduct empirical experiments across three diverse benchmarks demonstrating that interactions significantly influence collaborative performance and thus LLM Chemistry.

2 LLM CHEMISTRY

2.1 PRELIMINARIES

Basic Concepts. Let Q be a query that needs answering. Suppose we have a group of candidate LLMs (denoted by S), each with recorded past performance (e.g., accuracy of LLMs and a quality score for their outputs). Our goals are: (1) to quantify how LLMs interact—their *chemistry*—when jointly answering Q; (2) to assess the impact of their interactions on performance; and (3) to identify the optimal *configuration* (i.e., subset of LLMs) for Q. Figure 2 illustrates this process.

Given a configuration $X\subseteq S$ chosen to answer Q, we introduce $cost_Q(X)$ as the total cost incurred by using X, and $used(X)\subseteq X$ as the subset of LLMs that successfully generated an answer for Q. Note that $X\setminus used(X)$ may be non-empty if some LLMs in X did not contribute an output. The cost is defined as follows: assume X produces n>0 outputs for Q. Each output o_i has a quality score $q_i\in [0,10]$ (the consensus grade), each producing LLM has accuracy $a_i\in [0,1]$ (its reliability score; see below for how q_i and a_i are computed), and a weight $w_i=1/i$. Since q_i is in [0,10], we normalize it to [0,1] to match accuracy $a_i\colon q_i^{norm}=q_i/10$. Accordingly, we define the per-answer penalty (a measure of the joint error in quality and accuracy, which decreases as either improves) as $penalty_i=(1-q_i^{norm})(1-a_i)$. The total cost over all n answers, weighted by w_i , is:

$$cost_Q(X) = \sum_{i=1}^{n} w_i \cdot penalty_i \tag{1}$$

The best-case scenario ($q_i^{norm} = 1, a_i = 1$): penalty is 0. Lower values in either quality or accuracy, increase the penalty (thus, the total cost). E.g., consider three answers with (rank, quality, accuracy): (1, 9.0, 0.90), (2, 8.0, 0.80), (3, 7.0, 0.70). Using weights $w_i = 1/i$, the total cost is 0.01 + 0.02 + 0.02 + 0.02.

¹Weights are positive reals, inversely proportional to rank, so higher-ranked answers add more to the cost.

0.0297 = 0.0597. This shows low penalties for high-quality, high-accuracy answers, with penalties rising down the ranks; this cost analysis sets the stage for defining LLM benefit within an ensemble.

Presence Benefit of an LLM in an Ensemble. Given Equation 1 and disjoint sets $X, Y \subseteq S$, the *presence benefit* of an LLM is the change in performance cost when Y is selected in addition to X,

Definition 1 (Benefit). Given two LLM sets $X, Y \subseteq S$ and a query Q, the benefit of X with respect to Y and Q is defined as $benefit_Q(X, Y) = cost_Q(Y) - cost_Q(X \cup Y)$.

The value of $benefit_Q(X,Y)$ can be negative if adding X to Y raises the total cost, indicating degraded rather than improved performance. Understanding such degradations—and, more broadly, how LLMs affect each other's effectiveness—is key to analyzing model chemistry.

Quality and Accuracy Scores. We define the quality of an output o_i (its consensus score q_i) as the aggregated estimate of its quality from multiple LLMs, and the accuracy of an LLM (a_i) as how closely its evaluations align with these consensus grades. We compute quality scores q_i using a consensus-based approach inspired by the *Vancouver crowdsourcing algorithm* (de Alfaro & Shavlovsky, 2014). We apply the *Minimum Variance Linear Estimator* (MVLE) to iteratively infer consensus scores for each output and a consensus variance for each LLM. The consensus score becomes q_i , with higher values assigned to models whose outputs consistently align with low-variance consensus. In this setup, as in MVLE, the *inverse variance* serves as a proxy for *review accuracy*. *Generation accuracy* measures how well an LLM's outputs match ground truth reference answers, computed by direct comparison when available (values in [0.0, 1.0]), or set to 0.0 when none exist.

To complement this, we compute a *continuous* accuracy a_i for an LLM by combining generation and review accuracy. With ground truth, we weight them 75%/25%; without it, 25%/75%. For example, o3-mini on statement classification has generation accuracy 1.0 and review accuracy 0.846, yielding $a_i = 0.962$. We use MVLE over traditional voting to compute q_i and a_i for its statistical grounding, robustness to noise, and ability to refine reliability estimates.

2.2 THE LLM CHEMISTRY PROBLEM

Beyond assessing individual contributions, we aim to understand how LLMs in a set S interact when jointly answering a query Q. These interactions—whether cooperative or redundant—can significantly impact the overall effectiveness of the ensemble. Intuitively, two LLMs a and b interact when their individual benefits are dependent. This can occur in two ways. First, if a and b exhibit overlapping performance (q_i, a_i) profiles—i.e., they produce similar or redundant outputs on Q—then one can substitute for the other. Building on our notion of LLM chemistry, this constitutes a negative chemistry, as using both LLMs adds little benefit over using just one. Second, if a and b contribute complementary outputs—e.g., one extracts factual content while the other interprets it—their combination can yield a better answer than either alone. This constitutes a positive chemistry.

We formalize this intuition by defining the *LLM Chemistry* between two LLMs a and b, denoted $chem_O(a,b,S)$, as the change in the benefit of a when b is added to a set X:

Definition 2 (LLM Chemistry). Given LLMs a, b in S, and $X \subseteq S$ be a set of LLMs in S such that $X \cap \{a,b\} = \emptyset$, the chemistry between LLMs a and b w.r.t. Q is defined as:

$$chem_Q(a, b, S) = \max_{X \subseteq S \setminus \{a, b\}} \frac{\Delta(a, b, X)}{cost_Q(X \cup \{a, b\})}$$
 (2)

where $\Delta(a, b, X)$ is the absolute difference between benefit_Q($\{a\}, X$) and benefit_Q($\{a\}, X \cup \{b\}$).

This definition reflects how strongly LLMs a and b complement each other when answering a query Q. Specifically, the LLM chemistry is highest when a and b provide highly complementary information, and lowest when their outputs are redundant, conflicting, or erroneous. To ensure that chem(a,b) is independent from any specific choice of X, we define it explicitly as the maximum interaction effect across all possible subsets $X \subseteq S \setminus \{a,b\}$. This approach captures the worst-case interaction scenario, ensuring the measure reflects the strongest potential chemistry between two LLMs, independent of particular subset selections. For clarity, we omit Q in cost(X), benefit(X,Y), and $chem_Q(a,b,S)$ when it is clear from context.

The LLM chemistry between any pair of LLMs is critical to understanding how the set S influences answers to Q. This leads to a key problem addressed in this paper:

Problem 1 (LLMs Chemistry Problem (**LLMCP**)). Given a set of LLMs S, a subset $X \subseteq S$, and a threshold $\tau \ge 0.0$, find all pairs of distinct LLMs $a,b \in S$ such that $chem(a,b,S) > \tau$ w.r.t. Q.

In this problem, we aim to identify pairs of LLMs that exhibit sufficiently strong chemistry for answering Q. The goal is not to compute exact chemistry values, but to decide whether chemistry is sufficiently high. Detecting strong chemistry requires finding only a single LLM configuration where threshold τ is exceeded, while ruling it out requires checking all relevant configurations. Thus, worst-case complexity remains as high as computing full LLM Chemistry.

3 Criteria for Optimal LLM Selection

In our formulation of *LLMCP*, LLM interactions are evaluated by cost(X) (Equation 1) to determine the optimal LLM selection for a query Q. This requires computing chem(a,b) for every LLM pair a,b across all subsets $X \subseteq S$, giving a lower bound of $\Omega(2^{|S|},|S|^2)$.

In practice, the optimization of LLM selection should not depend on a particular set X in an arbitrary way. For instance, adding more LLMs to the available set should not increase the cost of answering Q, since a larger set only broadens the space of possible responses. To avoid such anomalies, we make a natural assumption on S. Conceptually, we assume S is made of diverse and independently strong LLMs whose strengths compensate for one another's weaknesses, rather than reinforce them. Informally, we say S is **diverse** if its members exhibit heterogeneous performance characteristics—i.e., they differ meaningfully in their performance (q_i, a_i) profiles. Conversely, S is **homogeneous** if all models produce similar responses with comparable accuracy (i.e., aligned performance profiles).

This diversity assumption has profound implications for cost function behavior and thus on LLM Chemistry estimation. Under this assumption, cost(X) should exhibit structure that reflects the reliability and diversity of the underlying models. Rather than treating all LLM combinations as equally unpredictable, we posit that cost varies predictably with model quality, accuracy, and set composition. This motivates three key properties of the cost function. These properties—monotonicity, linearity, and submodularity—not only align with practical expectations but also play a central role in making the selection of optimal LLM sets computationally feasible.

3.1 Properties of the Cost Function

We formalize three properties that characterize Equation 1:

Property 1 (Monotonicity). The cost of a set X for answering Q, cost(X), is monotonically decreasing with the output quality scores q_i and the accuracy values a_i of the LLMs producing them.

This property means the cost decreases as an LLM's accuracy or output quality increases, reflecting the intuition that accurate, high-quality outputs lower the total cost. (Proof in Appendix A.1.)

Property 2 (Linearity of Cost). The cost(X) separates as a sum of terms, each depending only on the quality q_i of an individual LLM output and the accuracy a_i of its producing LLM.

This property means the cost is additive: each LLM affects the total cost only through its own contribution, with no cross-terms or interactions between outputs. (Proof in Appendix A.1.)

Property 3 (Submodularity). For all sets $X \subseteq Y \subseteq S$ and any LLM $a \in S \setminus Y$, Equation 1 satisfies: $cost(X) - cost(X \cup \{a\}) \ge cost(Y) - cost(Y \cup \{a\})$.

This property implies diminishing returns: for any given LLM a, its marginal benefit is larger when added to a smaller set X than to a larger superset Y. (Proof in Appendix A.1.)

3.2 MODEL INTERACTION GRAPHS (MIGS)

To efficiently compute LLM chemistry, we introduce the *Model Interaction Graph* (MIG), a directed acyclic graph (DAG) over subsets of S. The MIG encoding draws inspiration from the *Index Benefit Graph* (IBG) (Frank et al., 1992). Figure 1 shows an MIG for $S = \{a, b, c\}$.

A central property of MIGs, inherited from IBGs, is that reasoning about subsets does not require every subset to be explicitly represented: larger nodes contain enough information to compute cost(X) and used(X) for overlapping subsets, allowing the MIG to compactly encode all necessary information and avoid exponential blowup. Each node in the MIG represents an LLM set $X \subseteq S$ and stores both used(X) and cost(X). Edges capture how costs change as LLMs are added or removed. Nodes and edges are constructed hierarchically, starting from the full set S; at each step, for each node X and used LLM $a \in used(X)$, we create a new node $X' = X \setminus a$ with a directed edge from X to X'

216

217

218

219

220

221

222

224

225

226

227

228

229

230 231

232233

234 235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261262

263

264

265

266

267

268

269



Figure 1: MIG for $S = \{a, b, c\}$. Underlined elements indicate used(X) (LLMs with $a_i \geq 0.5$). Sample cost values are provided in each node.

 $X' = X \setminus a$ with a directed edge from X to X', unless X' already exists.

4 COMPUTING LLM CHEMISTRY FOR MULTI-LLM RECOMMENDATION

4.1 Computing LLM Chemistry

In this section, we introduce CHEME (Algorithm 1). Given a query Q, CHEME builds a MIG and looks at its structure to compute chem(a,b,S) for every pair of LLMs in S w.r.t. Q. It does so by iterating over all subsets $X\subseteq S$ to compactly encode costs associated with various combinations of LLMs over relevant subsets of S. CHEME explicitly enumerates subsets to compute this maximum value, directly aligning with Definition 2.

For example, given the MIG in Figure 1, assume additional hypothetical costs $cost(\{c\}) = 0.15$ and $cost(\emptyset) = 0.20$, and the case where $X = \{c\}$. Using the MIG costs, we have $benefit(\{a\},\{c\}) = 0.08$, $benefit(\{a\},\{b,c\}) = 0.01$, yielding $chem(a,b,\{c\}) = \frac{|0.08-0.01|}{0.05} = 1.4$. As $\{c\}$ is the only relevant subset, the LLM chemistry for (a,b) is also 1.4.

CHEME yields the following main result:

Theorem 1. LLM Chemistry emerges in S as a function of the MIG iff models exhibit heterogeneous performance (q_i, a_i) profiles; for (near-)identically performing models, cost-based selection pressure van-

Algorithm 1: Computes chem(a,b,S) for all LLM pairs a,b using memoized MIG lookups. \mathcal{G}_Q encodes subset relationships. Solves **LLMCP**. Sets $\tau=0$ to retain all chemistry information for later analysis.

```
Function: CHEME
   Input
            : A set of LLMs S.
   Output: The LLM chemistry for each distinct a,b \in S.
              : Hash table t_O: S \times S \to \mathbb{R}. Memoized
                node-and-cost lookup.
1 Initialize t_Q[a,b] \leftarrow 0 for each distinct a,b \subseteq S
   Construct the MIG \mathcal{G}_Q for Q
   for k \leftarrow 0 to |S| do
         if Y is undefined then
                continue
              foreach distinct a, b \in S - X do
                    Let X_a \leftarrow X \cup \{a\}, X_b \leftarrow X \cup \{b\},\
                      X_{ab} \leftarrow X \cup \{a,b\}
                    \text{Memoize } Y_a\supseteq X_a, Y_b\supseteq X_b, Y_{ab}\supseteq X_{ab}
                     in \mathcal{G}_Q and their costs
                    if any of Y_a, Y_b, Y_{ab} are undefined then
                         continue
                    d \leftarrow \frac{|\mathit{benefit}(\{a\}, Y) - \mathit{benefit}(\{a\}, Y_b)|}{|A|}
14
                    t_Q[a,b] \leftarrow \max\{t_Q[a,b],d\}
                    t_Q[b,a] \leftarrow \max\{t_Q[b,a],d\}
```

ishes, so no interaction effects can be detected (chemistry = 0). (Proof in Appendix A.2).

This novel, counter-intuitive finding suggests that model diversity (i.e., model performance diversity) is essential for chemistry estimation: near-maximal performance makes chemistry-based multi-LLM recommendation unnecessary, while near-zero performance makes them infeasible.

A direct consequence of Theorem 1 is that chemistry scales with model performance diversity, as formalized in Corollary 1:

Corollary 1. Chemistry in S varies monotonically with model performance diversity: as diversity increases, chemistry either always increases or always decreases, depending on task type. (Proof in Appendix A.2)

Theorem 1 and Corollary 1 establish the theoretical basis for LLM Chemistry, which we now operationalize in the next subsection to select effective ensembles for a given query, directly addressing the central question posed in the introduction.

4.2 MULTI-LLM RECOMMENDATION

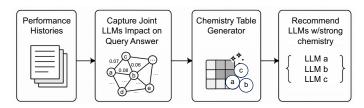


Figure 2: Illustration of LLM Chemistry estimation process for multi-LLM recommendation. A snapshot of the performance histories is provided in Appendix A.5.

We illustrate our LLM Chemistry estimation process for multi-LLM recommendation process in Figure 2. The figure outlines the main stages of a multi-LLM recommendation session, from an initial MIG construction for Q from past performance histories to LLM Chemistry estimation, to the recommendation of an optimal LLM configuration. The central goal of this process is to recommend a set of LLMs that maximizes the benefit of collaboration while minimizing the cost of answering Q. To formalize this, we define $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ as a collection of non-empty subsets of S, where each $X_i \subseteq S$ is a candidate LLM configuration. Subsets may overlap, meaning the same LLM can appear in multiple configurations.

To evaluate how well these subsets group related LLMs, we define a loss function $\mathcal{L}(\mathcal{X})$ that measures unrealized chemistry potential for \mathcal{X} . $\mathcal{L}(\mathcal{X})$ has two components: (1) inter-subset loss $\mathcal{L}_{inter}(\mathcal{X})$, the potential lost between LLMs placed into different subsets, and (2) intra-subset loss $\mathcal{L}_{intra}(\mathcal{X})$, the potential not realized within a subset compared to the theoretical maximum. Two parameters control these trade-offs: $\alpha \in [0,1]$ balances the components, and $\beta > 0$ penalizes larger subsets to favor smaller, targeted recommendations (Equation 3).

$$\mathcal{L}(\mathcal{X}) = \alpha \cdot \mathcal{L}_{inter}(\mathcal{X}) + (1 - \alpha) \cdot \mathcal{L}_{intra}(\mathcal{X}) + \beta \cdot |\mathcal{X}| \tag{3}$$

$$\mathcal{L}_{inter}(\mathcal{X}) = \sum_{\substack{a,b \in S \\ a \neq b, \text{ different subsets}}} chem(a,b,S) - \sum_{\substack{X_i, X_j \in \mathcal{X} \\ i < j}} \sum_{\substack{a \in X_i \\ b \neq a}} chem(a,b,S) \tag{4}$$

$$\mathcal{L}_{intra}(\mathcal{X}) = \sum_{a < b \in S} chem(a, b, S) - \sum_{X_i \in \mathcal{X}} \sum_{a < b \in X_i} chem(a, b, S)$$
 (5)

These loss terms capture unrealized chemistry from separation (inter-subset) and incomplete groupings (intra-subset²) of LLMs in \mathcal{X} . In this paper, we set $\alpha=0.5$ to weight them equally and $\beta=0.5$ to moderately penalize large subsets, typically recommending up to 10 LLMs.

Algorithm 2 recommends the optimal LLM subset from historically-derived configurations by leveraging pre-computation and the error function in Equation 3. Rather than exploring the exponential space of all possible subsets $(2^{|S|})$, it evaluates only n historical subsets as starting points and performs local optimization through hill climbing with at most iters iterations per starting point. This algorithm has a runtime complexity of $O(n \times iters \times |S|^3)$, which is polynomial in the input size and exponentially better than the brute-force approach of evaluating all subsets. This algorithm systematically explores the search space by starting from each historical subset in \mathcal{X} , and applying local search through single LLM additions, removals, or swaps to find a better configuration. It uses the LOSS function to evaluate each candidate solution and guide the optimization process. Specifically, LOSS computes intra-subset chemistry as $\sum_{a < b \in X} chem(a, b, S)$ and inter-subset chemistry as $\sum_{a < b \in X} chem(a, b, S)$.

 $^{^2}$ In Equation 5, $a < b \in S$ denotes an arbitrary ordering, with each unordered pair a,b counted once.

These become loss terms by subtracting from the theoretical maxima (maxT and maxI), using all LLMs in S), then combining per Equation 3.

In homogeneous cases—i.e., (near-)identically performing models—LLM chemistry evaluates to zero by Theorem 1. Thus the RECOMMEND algorithm either selects a single LLM configuration above the threshold τ when all models are strong, or yields none if all are weak.

5 EXPERIMENTS

324

325

326

327

328

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

366

367

368369

370

371

372

373

374375

376

377

5.1 EXPERIMENT SETUP

We evaluate our approach on three key aspects: (1) ensemble effectiveness —whether chemistry-based selection outperforms baseline selection strategies in their respective tasks, (2) chemistry-complementarity correlation—how well chemistry scores predict *ensemble complementarity*³, and (3) interaction effects across task complexity—how chemistry differs by task and difficulty.

Datasets: We evaluate on three benchmark datasets across diverse collaborative LLM scenarios: (1) *Liar benchmark* (Wang, 2017) for

```
Algorithm 2: Optimal LLM Subset Recommendation for Q.
```

```
Function: RECOMMEND
   Input: LLMs S, query Q, factor \alpha, max iters.
   Output: Optimal subset X^* for Q.
   best \leftarrow \emptyset; minLoss \leftarrow \infty
 2 Get \mathcal{X}_Q = \{X_1, \dots, X_n\} from past runs
    // Precompute using CHEME
3 maxT \leftarrow \sum_{a < b \in S} chem(a, b, S)
4 maxI \leftarrow \sum_{a,b \in S, a \neq b} chem(a,b,S)
 5 foreach X_i \in \mathcal{X}_Q do
         cur \leftarrow X_i;
          loss \leftarrow LOSS(cur, maxT, maxI, \alpha)
         if loss < minLoss then
              best \leftarrow cur; minLoss \leftarrow loss
             Local search via hill
              climbing
        for iter \leftarrow 1 to iters do
              bestN \leftarrow null; minN \leftarrow \infty
10
              for
each neighbor\ X' of cur\ {\bf do}
11
                    lossN \leftarrow
                     LOSS(X', maxT, maxI, \alpha)
13
                    if lossN < minN then
                        bestN \leftarrow X'; minN \leftarrow lossN
14
              if minN > loss then
15
                   break
17
              cur \leftarrow bestN; loss \leftarrow minN
              if loss < minLoss then
                   best \leftarrow cur; minLoss \leftarrow loss
19
20 return best
```

(English) statement credibility classification (4,000 statements with context and labels); (2) *MTS-Dialog benchmark* (Ben Abacha et al., 2023) for clinical notes summarization (1,700 doctor-patient conversations and notes); and (3) *Quixbugs benchmark* (Lin et al., 2017) for automated program repair (40 buggy code snippets with fixes).

Task complexity: Datasets span different domains, and we categorize their *task complexity* by considering both computational resources and reasoning effort. Following (Qi et al., 2025), we distinguish three levels of task complexities: low (minimal reasoning or compute), medium (extended reasoning or compute), and high (substantial reasoning or compute, often beyond model capability). Under this characterization, *Liar* is low, *MTS-Dialog* medium, and *Quixbugs* high.

Models: We evaluate on a diverse pool of LLMs spanning different model families and capabilities: GPT-40, o1/3/4-mini, Claude Sonnet 3.5/3.7, Gemini 2.0 flash (closed-source models), and Llama 3.1/3.3 70B, Mixtral 8x22B, FireFunction v2, Qwen 2.5 32B (open-weights models). We selected these models to capture variation in architectures, skills, and resource demands across open- and closed-weight ecosystems, providing a representative basis for evaluation.

Metrics: We report (1) Ensemble Effectiveness and Improvement over Best Baseline - overall ensemble accuracy via soft voting over model accuracies (correct if mean accuracy > 0.5, majority rule), (2) Ensemble complementarity - extent of diverse strengths among ensemble members, and (3) Chemistry correlation coefficients measuring chemistry-complementarity relationships.

Protocol: For each benchmark, we evaluate all selection strategies across three group size configurations: N=3,5,10 models. For each size configuration, we conduct 10 independent trials per selection strategy, with each trial executing across 10 records, resulting in $\approx 1,800$ total experimental task executions across all configurations (exact number varies due to likely execution failures). Selection strategies include: (1) Remote - closed-source models, (2) Local - open-weights models, (3) Random - randomly selected models, (4) Performance - top-k best individual performers, and

³We define ensemble complementarity as the extent to which LLM ensemble members contribute different strengths, providing better coverage of accuracy-quality trade-offs than any single model. We measure this using hypervolume (S-metric (Zitzler & Thiele, 2002)) and Rao's quadratic entropy (Rao, 1982), combined into a single index balancing performance coverage with member diversity.

(5) Chemistry - models recommended by our approach. Performance metrics are aggregated across tasks within each trial. Performance metrics are aggregated per trial, with ANOVA used for strategy comparisons and Pearson correlations for chemistry-complementarity, with significance at p < 0.05. These baselines follow LLM ensemble practice (Lu et al., 2024): random and top-k are standard, while remote vs. local reflects deployment constraints often discussed in applied studies.

5.2 RESULTS AND ANALYSIS

Table 1 evaluates whether chemistry-based selection improves ensemble effectiveness compared to baseline strategies. For statement credibility classification, chemistry yields measurable gains over baselines (+14.9% at N=5, +2.6% at N=10), with the largest gains in ensembles of size 5. For automated program repair, chemistry matches baseline effectiveness across group sizes (0.0%), reflecting ceiling effects where performance has saturated. For clinical note summarization, chemistry underperforms in small groups (-30.0% at N=3) but converges to baseline in larger ensembles (+0.2% at N=5, -0.1% at N=10). These results indicate that chemistry's contribution to effectiveness is positive in some tasks and ensemble sizes, neutral in others, and negative when ensembles are small or saturated, underscoring its task- and size-dependent role in ensemble effectiveness.

Table 1: Comparison of Ensemble Effectiveness: Chemistry-Based vs. Baseline Selection (PERF.)

Task	Group Size (N)	Chemistry	Best Baseline	Improvement $(\Delta\%)$
Statement Credibility	3	0.547	0.542	+0.9%
Classification	5	0.680	0.592	+14.9%
Classification	10	0.679	0.662	+2.6%
Clinical Notes	3	0.700	1.000	-30.0%
Summarization	5	1.000	0.998	+0.2%
Summanzation	10	0.999	1.000	-0.1%
Automated Program	3	1.000	1.000	+0.0%
Repair	5	1.000	1.000	+0.0%
Kepair	10	1.000	1.000	+0.0%

Note: Ensemble effectiveness = Overall ensemble accuracy (via soft voting). Values are average ensemble effectiveness across all configurations for each group size, comparing chemistry-based selection with the best baseline. Improvement (Δ %) = Relative difference: (Chemistry — Baseline)/Baseline × 100. Chemistry-based = Algorithm 2's output. See Table 4 for model compositions of best ensembles.

Table 2 examines how well chemistry scores predict ensemble complementarity. For statement credibility classification, chemistry is positively associated with complementarity ($r=0.319,\,p<0.001$), suggesting that higher chemistry scores correspond to ensembles that cover the accuracy-quality trade-off more effectively.⁴ By contrast, automated program repair ($r=-0.154,\,p<0.01$) and clinical note summarization ($r=-0.226,\,p<0.001$) show negative correlations, indicating that higher chemistry scores are linked to ensembles with reduced model performance diversity. These findings provide evidence that chemistry is a significant predictor of complementarity across all three tasks, but the direction of the relationship differs: in classification it signals beneficial complementarity, whereas in program repair and summarization it reflects reductions in performance diversity consistent with saturation effects where little additional complementarity can be realized.

Table 2: Chemistry-Ensemble Complementarity relationships by Task Type

Task Type	Correlation (r)	Effect Size	p-value	Sig.	n
Statement Credibility Classification	0.319	Moderate	0.000	* * *	400
Clinical Notes Summarization	-0.226	Small-to-Moderate	0.000	***	394
Automated Program Repair	-0.154	Small-to-Moderate	0.008	**	291

Note: r = Pearson's correlation coefficient. Results shown for strongest significant relationships per task type. Significance (Sig.) levels: ***p < 0.001, **p < 0.01, **p < 0.05. Key finding: LLM-Chemistry-ensemble complementarity relationship reverses by task type (r = -0.154 vs r = 0.319).

We treat task complexity as an orthogonal lens to the task-type categories to examine whether chemistry effects scale with difficulty (Table 3). For statement credibility classification (low complexity), chemistry scores correlate positively with complementarity as group size increases (r=0.118, p<0.05 for N=5; r=0.319, p<0.001 for N=10), while effectiveness shows no significant association. For clinical note summarization (medium complexity), chemistry shows no

⁴Due to space limitations, visualizations of these trade-offs are provided in Appendix A.4.

association in smaller groups but correlates positively with complementarity at N=10 (r=0.148, p<0.01). For automated program repair (high complexity), chemistry scores correlate negatively with complementarity in medium groups (r=-0.154, p<0.01) but positively with effectiveness across all group sizes (N=3: r=0.189, p<0.001; N=5: r=0.144, p<0.05; N=10: r=0.229, p<0.001). These results indicate that task complexity moderates chemistry's role: in low-complexity tasks, chemistry enhances complementarity without affecting effectiveness; in medium-complexity tasks, it begins to matter only for larger ensembles; and in high-complexity tasks, chemistry reduces complementarity but consistently improves effectiveness.

Table 3: Task Complexity and Chemistry Effects on Ensemble Performance

Task (Complexity)	Group Size (N)	Complementarity (r)	Sig.	Effectiveness (r)	Sig.	n
Statement Credibility	3	0.089	ns	0.014	ns	368
•	5	0.118	*	-0.068	ns	358
Classification (Low)	10	0.319	* * *	-0.024	ns	400
Clinical Notes	3	0.000	ns	0.000	ns	383
Summarization (Medium)	5	0.000	ns	0.000	ns	357
Summarization (Medium)	10	0.148	**	0.027	ns	409
Automated Program	3	-0.043	ns	0.189	* * *	451
C	5	-0.154	**	0.144	*	291
Repair (High)	10	-0.086	ns	0.229	* * *	335

Note: Values are Pearson's r correlations between chemistry scores and ensemble complementarity (Cols. 3-4) or effectiveness (Cols. 5-6). n = number of ensembles. Significance (Sig.): *** p < 0.001, *** p < 0.01, ** p < 0.05, ns = not significant. Key finding: Chemistry-ensemble correlations vary with task complexity: complementarity dominates at low/medium complexity, effectiveness at high complexity.

Together, the results from Tables 1-3 show that LLM chemistry's contribution to ensembles is not uniform: (1) it improves effectiveness in some tasks and sizes, (2) predicts complementarity in a task-dependent manner, and (3) is further moderated by task complexity and group size.

6 RELATED WORK

As multi-AI systems become increasingly prevalent, researchers have explored **ensemble methods** for aggregating model outputs (Lu et al., 2024; Daheim et al., 2024; Zhang et al., 2024; Chen et al., 2025b) and solving various problems through model collaboration (Miao et al., 2024; Zhou et al., 2024; Feng et al., 2024; Zhao et al., 2024; Tran et al., 2025), **multi-agent communication topologies** for improving operation efficiency and effectiveness (Li et al., 2023; Hu et al., 2024b; Li et al., 2024b; Chen et al., 2024c), **automated selection techniques** for choosing optimal models (Rosenbaum et al., 2018; Chen et al., 2024b; Yue et al., 2024; Dekoninck et al., 2025; Ong et al., 2025; Patidar et al., 2025), and **compound AI frameworks** for orchestrating models across pipeline stages (Chen et al., 2024a; Santhanam et al., 2024; Chen et al., 2025a; Chaudhry et al., 2025; Wang et al., 2025). However, these approaches typically assume model independence or modular separation, overlooking the interaction dynamics that emerge when models collaborate on shared tasks. Unlike these methods, our work explicitly models the interaction effects between LLMs when they collaborate on shared tasks, introducing the novel concept of LLM chemistry to capture both synergistic and antagonistic relationships that influence collaborative performance.

7 CONCLUSIONS AND FUTURE WORK

We introduced the *LLM Chemistry* estimation framework for multi-LLM recommendations that adapts to task demands. We found that chemistry can improve ensemble effectiveness in some tasks and sizes, diminish under ceiling effects where performance has saturated, and vary systematically with task complexity. These structured, non-uniform outcomes are consistent with our theoretical framework, showing that chemistry emerges under heterogeneous performance profiles and manifests differently by task type, ensemble size, and complexity. LLM chemistry estimation can be a *meta-learning signal* for effective ensemble formation, indicating when chemistry is likely to help and when it is not. Looking forward, chemistry-aware modeling may improve next-generation architectures, from Mixture-of-Experts (MoE) and multi-agent systems to human-machine collaboration. Alongside this, linking individual LLM skills to chemistry could explain ensemble performance beyond the current "sum of parts" view.

ETHICS STATEMENT

Our work introduces the notion of LLM Chemistry, a framework for assessing LLM teaming capabilities and recommending optimal ensembles for reliable collaborative task completion. We demonstrate its effectiveness across state-of-the-art models and well-established benchmarks covering tasks of increasing difficulty.

By moving beyond the assumption that only large, high-performance closed-source LLMs guarantee strong performance, our approach enables ensembles that combine both open- and closed-weight models, thereby broadening accessibility and promoting fairness in multi-LLM systems.

We also recognize that LLM ensembles increase computational and energy costs, which must be weighed against their potential gains in robustness. By guiding efficient ensemble formation, our framework can help mitigate these costs and support sustainability. Finally, while our methods aim to improve the reliability of outputs, they could be misused to create more persuasive but deceptive systems; we discourage such applications and stress the importance of transparency in deployment.

REPRODUCIBILITY STATEMENT

The proposed LLM Chemistry pipeline is designed to be easily reproducible. We provide algorithms for computing chemistry (Algorithm 1) and for identifying and recommending optimal subsets of LLMs (Algorithm 2). Proofs and theoretical analyses are included in the Appendix due to page limitations.

To facilitate replication, we will release the full source code of the proposed LLM Chemistry. The repository will include a detailed README.md with setup instructions and scripts to reproduce all experiments. Running the code will require access to the datasets and LLMs described in Section 5.1. The open-weight models are available via the Ollama⁵ platform, while closed-weight models require API access. Links to all the benchmark datasets used in this paper are provided in the References.

REFERENCES

Asma Ben Abacha, Wen-wai Yim, Yadan Fan, and Thomas Lin. An empirical study of clinical note generation from doctor-patient encounters. In *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pp. 2291–2302, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. URL https://aclanthology.org/2023.eacl-main.168.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM transactions on intelligent systems and technology*, 15(3):1–45, 2024. URL https://dl.acm.org/doi/full/10.1145/3641289.

Gohar Irfan Chaudhry, Esha Choukse, Íñigo Goiri, Rodrigo Fonseca, Adam Belay, and Ricardo Bianchini. Towards resource-efficient compound ai systems. In *Proceedings of the 2025 Workshop on Hot Topics in Operating Systems*, pp. 218–224, 2025. URL https://dl.acm.org/doi/abs/10.1145/3713082.3730377.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia, and James Y Zou. Are more Ilm calls all you need? towards the scaling properties of compound ai systems. Advances in Neural Information Processing Systems, 37:45767–45790, 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/51173cf34c5faac9796a47dc2fdd3a71-Abstract-Conference.html.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while reducing cost and improving performance. *Transactions on Machine Learning Research*, 2024b. ISSN 2835-8856. URL https://openreview.net/forum?id=cSimKw5p6R.

⁵https://ollama.com/

Lingjiao Chen, Jared Davis, Boris Hanin, Peter Bailis, Matei Zaharia, James Zou, and Ion Stoica.

LLMSELECTOR: Learning to select models in compound ai systems. In *ICML 2025 Workshop on Collaborative and Federated Agentic Workflows (CFAgentic @ ICML'25)*, 2025a. URL https://openreview.net/forum?id=NphowWHYJj.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou. AgentVerse: Facilitating multi-agent collaboration and exploring emergent behaviors. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *The Twelfth International Conference on Learning Representations*, volume 2024, pp. 20094–20136, 2024c. URL https://openreview.net/pdf?id=EHq5GDnyq1.

- Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao, Dingqi Yang, Hailong Sun, and Philip S Yu. Harnessing multiple large language models: A survey on llm ensemble. arXiv preprint arXiv:2502.18036, 2025b. URL https://arxiv.org/pdf/2502.18036.
- Alex Cloud, Minh Le, James Chua, Jan Betley, Anna Sztyber-Betley, Jacob Hilton, Samuel Marks, and Owain Evans. Subliminal learning: Language models transmit behavioral traits via hidden signals in data. *arXiv preprint arXiv:2507.14805*, 2025. URL https://arxiv.org/pdf/2507.14805.
- Nico Daheim, Thomas Möllenhoff, Edoardo M. Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan. Model merging by uncertainty-based gradient matching. In *The Twelfth International Conference on Learning Representations*, volume 2024, pp. 11836–11854, 2024. URL https://openreview.net/forum?id=D7KJmfEDQP.
- Luca de Alfaro and Michael Shavlovsky. CrowdGrader: A tool for crowdsourcing the evaluation of homework assignments. In *Proceedings of the 45th ACM technical symposium on Computer science education*, pp. 415–420, 2014. URL https://arxiv.org/pdf/1308.5273.
- Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and cascading for LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=AA189VNNy1.
- Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Forty-first International Conference on Machine Learning*, 2023.
- Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov. Don't hallucinate, abstain: Identifying LLM knowledge gaps via Multi-LLM collaboration. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pp. 14664–14690, 2024. URL https://aclanthology.org/2024.acl-long.786.pdf.
- Martin R Frank, Edward R Omiecinski, and Shamkant B Navathe. Adaptive and automated index selection in RDBMS. In *Advances in Database Technology—EDBT'92: 3rd International Conference on Extending Database Technology Vienna, Austria, March 23–27, 1992 Proceedings 3*, pp. 277–292. Springer, 1992. URL https://dl.acm.org/doi/10.5555/645336.649865.
- Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-LLM routing system. In *Agentic Markets Workshop at ICML 2024*, 2024a. URL https://openreview.net/forum?id=IVXmV8Uxwh.
- Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from graph modeling perspective. In *The Twelfth International Conference on Learning Representations*, volume 2024, pp. 12963–12978, 2024b. URL https://openreview.net/forum?id=Qox9r00kN0.

- Huao Li, Yu Chong, Simon Stepputtis, Joseph P Campbell, Dana Hughes, Charles Lewis, and Katia Sycara. Theory of mind for multi-agent collaboration via large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 180–192, 2023. URL https://aclanthology.org/2023.emnlp-main.13/.
 - Tianlin Li, Qian Liu, Tianyu Pang, Chao Du, Qing Guo, Yang Liu, and Min Lin. Purifying large language models by ensembling a small language model. *arXiv preprint arXiv:2402.14845*, 2024a. URL https://arxiv.org/pdf/2402.14845.
 - Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, and Eugene Ie. Improving multi-agent debate with sparse communication topology. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 7281–7294, Miami, Florida, USA, November 2024b. Association for Computational Linguistics. URL https://aclanthology.org/2024.findings-emnlp.427.pdf.
 - Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A multi-lingual program repair benchmark set based on the quixey challenge. In *Proceedings Companion of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and applications: software for humanity*, pp. 55–56, 2017. URL https://dl.acm.org/doi/abs/10.1145/3135932.3135941.
 - Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network for task-oriented agent collaboration. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=XIIOWp1XA9.
 - Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble, and cooperate! a survey on collaborative strategies in the era of large language models. *arXiv* preprint arXiv:2407.06089, 2024. URL https://arxiv.org/pdf/2407.06089.
 - Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023. URL https://openreview.net/forum?id=S37hOerQLB.
- Costas Mavromatis, Petros Karypis, and George Karypis. Pack of Ilms: Model fusion at test-time via perplexity optimization. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=5Nsl0nlStc.
- Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large language model serving with tree-based speculative inference and verification. In *Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3*, pp. 932–949, 2024. URL https://dl.acm.org/doi/10.1145/3620666.3651335.
- Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route llms from preference data. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=8sSqNntaMr.
- Prasoon Patidar, Alex Crown, Kevin Hsieh, Yifei Xu, Tusher Chakraborty, Ranveer Chandra, and Yuvraj Agarwal. Orchestration for domain-specific edge-cloud language models. *arXiv* preprint *arXiv*:2507.09003, 2025. URL https://arxiv.org/pdf/2507.09003.
- Zhenting Qi, Hongyin Luo, Xuliang Huang, Zhuokai Zhao, Yibo Jiang, Xiangjun Fan, Himabindu Lakkaraju, and James R. Glass. Quantifying generalization complexity for large language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=jpSLXoRKnH.
- C Radhakrishna Rao. Diversity and dissimilarity coefficients: A unified approach. *Theoretical population biology*, 21(1):24–43, 1982. URL https://ricottalab.com/wp-content/uploads/2015/10/rao-1982.pdf.

- Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of non-linear functions for multi-task learning. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=ry8dvM-R-.
- Keshav Santhanam, Deepti Raghavan, Muhammad Shahir Rahman, Thejas Venkatesh, Neha Kunjal, Pratiksha Thaker, Philip Levis, and Matei Zaharia. Alto: An efficient network orchestrator for compound ai systems. In *Proceedings of the 4th Workshop on Machine Learning and Systems*, pp. 117–125, 2024. URL https://arxiv.org/pdf/2403.04311.
- Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O'Sullivan, and Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv* preprint *arXiv*:2501.06322, 2025. URL https://arxiv.org/pdf/2501.06322.
- William Yang Wang. "liar, liar pants on fire": A new benchmark dataset for fake news detection. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 422–426, Vancouver, Canada, July 2017. Association for Computational Linguistics. URL https://aclanthology.org/P17-2067/.
- Xiangwen Wang, Yibo Jacky Zhang, Zhoujie Ding, Katherine Tsai, Haolun Wu, and Sanmi Koyejo. Aligning compound ai systems via system-level DPO. In *Proceedings of the AAAI 2025 Workshop on Advancing LLM-Based Multi-Agent Collaboration (WMAC 2025)*, 2025. URL https://arxiv.org/pdf/2502.17721.
- Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with mixture of thought representations for cost-efficient reasoning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=6okaSfANzh.
- Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents: Large language models collaborating on long-context tasks. *Advances in Neural Information Processing Systems*, 37:132208–132237, 2024. URL https://arxiv.org/pdf/2406.02818.
- Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. *ACM Transactions on Intelligent Systems and Technology*, 15(2):1–38, 2024. URL https://dl.acm.org/doi/10.1145/3639372.
- Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv preprint arXiv:2404.14294, 2024. URL https://arxiv.org/pdf/2404.14294.
- Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. *IEEE transactions on Evolutionary Computation*, 3(4):257–271, 2002. URL https://ieeexplore.ieee.org/document/797969.

A APPENDIX

A.1 Proofs of Cost Function Properties

We provide detailed proofs for the three properties of the cost function presented in Section 3.1.

Proof of Property 1 (Monotonicity)

Proof. Assume weights $w_i \geq 0$, each term contributing to the cost is of the form $w_i \cdot (1 - q_i^{norm})(1 - a_i)$. This expression decreases as either the output quality q_i^{norm} increases or the LLM accuracy a_i increases, with the other held fixed. Since the total cost is a weighted sum of such terms it is monotonically decreasing in both q_i^{norm} and a_i .

Proof of Property 2 (Linearity)

Proof. By Equation 1, the total cost is defined as: $cost(X) = \sum i = 1^n w_i \cdot (1 - q_i^{norm}) \cdot (1 - a_i)$. Each term depends solely on the quality score q_i of single output o_i and the accuracy a_i of the LLM that produced it. There are no terms involving combinations of multiple outputs or LLMs. Therefore, the total cost is a linear sum of independent contributions, one per output-LLM pair, as claimed.

Proof of Property 3 (Submodularity)

Proof. The cost cost(X) is a weighted sum of penalties from the outputs produced by the LLMs in X. Adding a new LLM a to X can only improve or maintain the best available outputs, thus $cost(X \cup \{a\}) \leq cost(X)$. Since $X \subseteq Y$, the set Y already has more LLMs and thus better or more redundant outputs. As a result, the marginal benefit of adding a to Y is smaller than the benefit of adding a to X. Formally,

$$cost(X) - cost(X \cup \{a\}) \ge cost(Y) - cost(Y \cup \{a\}).$$

Thus, the cost function is submodular.

A.2 THEORETICAL ANALYSIS OF CHEMISTRY EMERGENCE

Having established the algorithmic framework for computing LLM chemistry, we now ask a fundamental question: when does chemistry emerge in model ensembles? Answering this is critical for understanding the conditions under which chemistry-based optimization is feasible and beneficial.

Our analysis reveals a surprising and counter-intuitive result: chemistry emergence is intrinsically linked to model performance diversity, and perfect models paradoxically eliminate the very interactions that chemistry-based methods seek to exploit. This finding has profound implications for ensemble design and optimization strategy selection.

We establish our main theoretical contributions through two key results. First, we prove that chemistry emergence is equivalent to ensemble performance heterogeneity, while homogeneous ensembles yield zero chemistry regardless of individual model strength. Second, we show that chemistry scales monotonically with performance diversity, though the optimal level varies by task requirements. We now formalize our first result by proving Theorem 1.

Proof. If all models share the same performance (q_i^*, a_i^*) profile, then each has identical penalty $p^* = (1 - q_i^{norm*})(1 - a_i^*)$. By the linearity property, $cost(X) = p^* \sum_{i=1}^k w_i$ depends only on set size, so $benefit(\{a\}, X)$ depends only on |X|. Adding b changes only the set size, not the marginal effect of a. Thus

$$\Delta(a, b, X) = 0 \implies chem(a, b, S) = 0.$$

If models' performance differ, penalties vary, so adding a or b changes costs in model-specific ways. Then $benefit(\{a\},X) \neq benefit(\{a\},X \cup \{b\})$ for some X, giving $\Delta(a,b,X) > 0$.

We next prove Corollary 1, linking chemistry growth to model performance diversity.

Proof. By monotonicity, diverse performance (q_i, a_i) profiles create diverse penalties, and by submodularity, this diversity has diminishing returns. Greater performance diversity increases variance in penalties, $Var[penalty_i]$. This amplifies selective pressure, producing more variation in benefits across subsets. Since LLM chemistry depends on

$$\max_{X} \frac{\Delta(a, b, X)}{cost(X \cup \{a, b\})},$$

larger benefit differences yield larger Δ , hence greater chemistry. The precise "beneficial" diversity depends on task demands: high for complementary reasoning, lower for factual consistency.

A.3 REPRESENTATIVE ENSEMBLES: CHEMISTRY VS PERFORMANCE BASELINE

Table 4 reports representative ensembles for each task and group size, showing the model compositions and effectiveness of the best observed LLM configurations (yielded by Algorithm 2) compared with the one yielded by the Performance baseline. These examples complement the average results in Table 1 by highlighting which specific model combinations achieved peak effectiveness.

Table 4: Best observed ensembles (Chemistry vs Best (Performance) baseline) for Statement Classification, Automated Program Repair, and Clinical Note Summarization. Each ensemble corresponds to the configuration achieving the highest single-run effectiveness.

Task	Group Size	Chemistry (models)	Effectiveness	Best Baseline (PERF, models)	Effectiveness
Statement Credibility Classification	3	o4-mini mixtral:8x22b o1-mini	0.600	o4-mini claude-3-5-sonnet-latest o1-mini	0.600
	5	gpt-40 gemini-2.0-flash claude-3-5-sonnet-latest claude-3-7-sonnet-20250219 firefunction-v2	0.700	claude-3-5-sonnet-latest claude-3-7-sonnet-20250219 o4-mini qwen2.5:32b	0.700
	10	firefunction-v2 claude-3-7-sonnet-20250219 o1-mini gpt-4o gemini-2.0-flash claude-3-5-sonnet-latest qwen2.5:32b o4-mini o3-mini	0.800	o4-mini gemini-2.0-flash o3-mini gpt-4o claude-3-7-sonnet-20250219 o1-mini claude-3-5-sonnet-latest firefunction-v2 qwen2.5:32b	0.800
Clinical Notes Summarization	3	firefunction-v2 gemini-2.0-flash claude-3-7-sonnet-20250219	0.700	mixtral:8x22b gpt-4o qwen2.5:32b	1.000
	5	firefunction-v2 gemini-2.0-flash qwen2.5:32b gpt-40 mixtral:8x22b	1.000	gpt-4o o3-mini llama3.1:70b mixtral:8x22b qwen2.5:32b	1.000
	10	mixtral:8x22b firefunction-v2 gpt-4o o4-mini o3-mini gemini-2.0-flash claude-3-5-sonnet-latest llama3.3:latest o1-mini qwen2.5:32b	1.000	gemini-2.0-flash o3-mini mixtral:8x22b o1-mini llama3.1:70b firefunction-v2 gpt-40 o4-mini llama3.3:latest qwen2.5:32b	1.000
Automated Program Repair	3	firefunction-v2 claude-3-7-sonnet-20250219 claude-3-5-sonnet-latest	1.000	gpt-4o claude-3-5-sonnet-latest o4-mini	1.000
	5	o3-mini claude-3-7-sonnet-20250219 gpt-40 mixtral:8x22b llama3.1:70b	1.000	o1-mini firefunction-v2 gpt-40 claude-3-5-sonnet-latest o4-mini	1.000
	10	ol-mini firefunction-v2 o3-mini claude-3-7-sonnet-20250219 qwen2.5:32b gpt-4o claude-3-5-sonnet-latest mixtra!:8x22b llama3.1:70b o4-mini	1.000	o1-mini firefunction-v2 o3-mini claude-3-7-sonnet-20250219 qwen2.5:32b gpt-4o claude-3-5-sonnet-latest mixtra!:8x22b o4-mini llama3.3:latest	1.000

Note: For Clinical Note Summarization (group size 3), Chemistry dropped (0.700 vs. 1.000) as the claude-3-7-sonnet-20250219 model underperformed. This is related to temporary service issues or budget limits at the time of evaluation.

A.4 INTERPRETIVE ANALYSIS OF CHEMISTRY EMERGENCE

Having established Theorem 1 and Corollary 1, we now provide a visual interpretation through chemistry maps, which illustrate how the predicted conditions for LLM chemistry emergence manifest across the accuracy-quality space. These maps display the marginal complementarity (Δ CI) of adding a new model to an ensemble, serving as a visual proxy for the theorem's guarantees. In particular, our theorem and corollary link chemistry to model performance heterogeneity: homogeneity implies $\Delta=0$ and thus chem=0, while heterogeneity implies $\Delta>0$ and thus chem>0. The maps make this relationship visible—bright regions mark conditions under which chemistry would emerge ($\Delta>0$, heterogeneity), whereas dark regions reflect redundancy ($\Delta=0$, homogeneity). Intuitively, ensembles with many bright regions have substantial room for chemistry to emerge and improve performance, ensembles with only tiny bright slivers allow for marginal gains at best, and fully dark maps indicate *saturation*, where new members cannot increase CI and performance gains from chemistry are no longer possible. In rare cases, the maps appear nearly uniform with negligible variation in Δ CI; these are interpreted as *saturated ensembles* and not as evidence of broad chemistry. We present chemistry maps for three tasks of varying complexity:

A.5 BENCHMARK SAMPLE RUNS

Each benchmark run produces a CSV file that records the outputs and metrics of LLM executions. The file contains one row for each (*trial*, *model*, *task*) combination, together with the performance and metadata fields listed in Table 5. A collection of such files constitutes our *performance histories* (See Figure 2's first step).

Table 5: Columns present in the CSV file produced by benchmark runs.

Column	Data Type	Description
trial	string	Name or identifier of the benchmark run.
model	string	Name of the evaluated LLM.
task	string	Input task text (prompt or query Q).
latency	float	Time in seconds to generate the LLM output.
temperature	float	Sampling temperature used for generation.
id	string	Unique identifier for the generated output.
result	string	Raw text output produced by the LLM.
quality	float	Consensus-based quality score of the generated output.
gen_accuracy	float	Generation accuracy of the initial generation step.
variance	float	Variance of quality scores (dispersion/confidence measure).
review_accuracy	float	Review accuracy estimated via MVLE (inverse of variance).
accuracy	float	Final accuracy score, combining generation and review.
elapsed	string	Human-readable elapsed generation time.
created	string	Human-readable timestamp of output creation.

Task: Classify a short statement into a category of fakeness

model: gpt-4o

result: "The Chicago Bears have had more starting quarterbacks in the last 10 years than the total number of tenured (UW) faculty fired during the last two decades." is labeled as "true".

latency: 2.0 quality: 1×10^{-10} gen_accuracy: 0.0

review_accuracy: 0.999999998482016 **accuracy:** 0.249999999620504

model: o3-mini

result: "'I'm the only person on this stage who has worked actively just last year passing, along with Russ Feingold, some of the toughest ethics reform since Watergate.' is labeled as 'half-true'."

latency: 31.0

quality: 7.1397913333 **gen_accuracy:** 1.0

review_accuracy: 0.8969102035156231 accuracy: 0.9742275508789058

model: llama3.1:70b

result: "'However, it took \$19.5 million in Oregon Lottery funds for the Port of Newport to eventually land the new NOAA Marine Operations Center-Pacific.' is labeled as 'true'."

latency: 82.0

quality: 1.9353739253 **gen_accuracy:** 0.0

review_accuracy: 0.224749679737892 accuracy: 0.056187419934473

model: gemini-2.0-flash

result: "The economic turnaround started at the end of my term.' is labeled as 'half-true'."

latency: 2.0

quality: 9.0630267113 **gen_accuracy:** 1.0

review_accuracy: 0.8617875069130844 **accuracy:** 0.9654468767282711

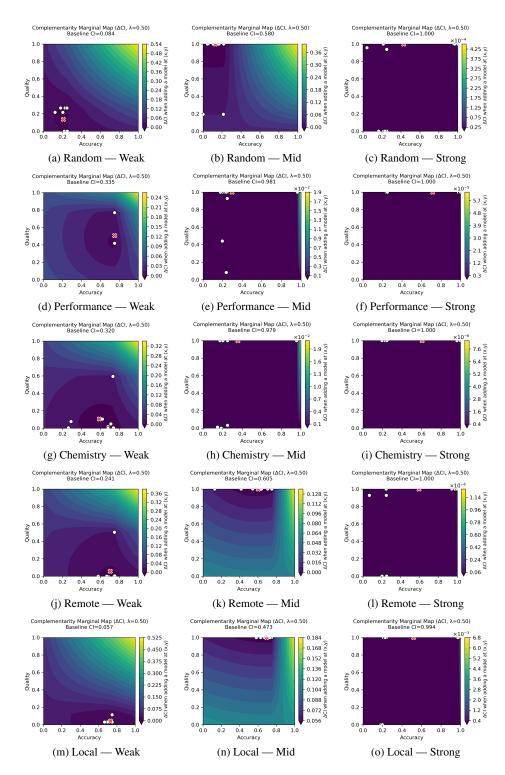


Figure 3: LLM chemistry maps (marginal complementarity, $\Delta {\rm CI}$, trade-off parameter $\lambda=0.5$) for **Statement Credibility Classification** (low complexity, N=10). Rows correspond to strategies (Random, Performance, Remote, Local); the Chemistry row is included for comparison. Columns show **Weak**, **Mid**, and **Strong** ensembles. Weak ensembles display extensive bright regions, indicating substantial chemistry potential and performance gains. Mid ensembles are mixed, with some retaining bright regions and others already saturated. Strong ensembles are almost entirely dark, reflecting saturation where added models are redundant. A few weak panels appear nearly uniform in $\Delta {\rm CI}$; these reflect negligible variation and are treated as saturated rather than as broad chemistry.

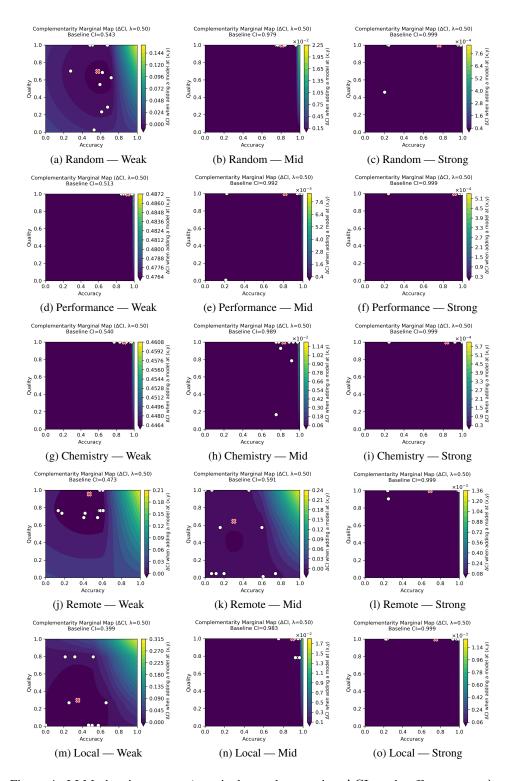


Figure 4: LLM chemistry maps (marginal complementarity, $\Delta {\rm CI}$, trade-off parameter $\lambda=0.5$) for **Clinical Notes Summarization** (medium complexity, N=10). Rows correspond to strategies (Random, Performance, Remote, Local); the Chemistry row is included for comparison. Columns show **Weak**, **Mid**, and **Strong** ensembles. Weak ensembles are mixed: three maps display bright regions (chemistry emergence possible), while two are mostly dark with marginal potential. Mid ensembles are largely dark, with one strategy retaining notable bright regions but most showing only small gains. Strong ensembles are uniformly dark with tiny slivers, indicating near-complete saturation where added models provide little benefit.

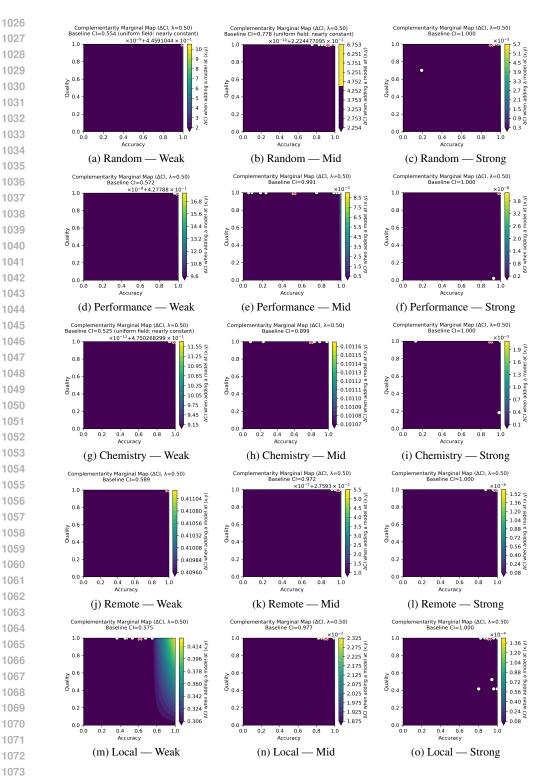


Figure 5: LLM chemistry maps (marginal complementarity, $\Delta {\rm CI}$, trade-off parameter $\lambda=0.5$) for **Automated Program Repair** (high complexity, N=10). Rows correspond to strategies (Random, Performance, Remote, Local); the Chemistry row is included for comparison. Columns show **Weak**, **Mid**, and **Strong** ensembles. Bright regions are nearly absent across all ensembles, indicating saturation ($\Delta {\rm CI} \approx 0$) where added models are redundant, chemistry emergence is negligible, and performance plateaus. Occasional uniform panels with vanishing $\Delta {\rm CI}$ variation are likewise interpreted as saturated.