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Abstract

Multi-view data from the same source often exhibit correlation. This is mirrored in
correlation between the latent spaces of separate variational autoencoders (VAEs)
trained on each data-view. A multi-view VAE approach is proposed that incorpo-
rates a joint prior with a non-zero correlation structure between the latent spaces of
the VAEs. By enforcing such correlation structure, more strongly correlated latent
spaces are uncovered. Using conditional distributions to move between these latent
spaces, missing views can be imputed and used for downstream analysis. Learning
this correlation structure involves maintaining validity of the prior distribution, as
well as a successful parameterization that allows end-to-end learning.

1 Introduction

Data from multiple sources describing the same subjects arises in a wealth of settings. This can be
clinical information of patients alongside genetic information and scan data. Datasets consisting of
multiple views are referred to as multi-view or multi-modal data. There are instances where not all
views are always available for every realisation. For example, a patient may miss an appointment
or machinery may falter, resulting in no reading for a specific view. Missing data results in smaller
usable datasets and reduced statistical power with many methods only applicable to full datasets
[1] and can result in reduced performance in downstream analysis [2]. This manuscript presents a
multi-view imputation approach, where its aim is to impute the realisations of a missing view by
incorporating the information learnt from the other view.

The proposed multi-view imputation method, named Joint Prior Variational Autoencoder (JPVAE), is
based on variational autoencoders (VAEs) [3], with the views connected solely through a joint prior
on the VAEs’ latent embeddings. Standard autoencoders seek to encode a latent representation of
data, and from this encoding reconstruct the original data via a decoder. Multi-view approaches allow
the latent representation of a missing view to be obtained, from which the reconstruction can be used
as an imputation of the missing view. Several multi-view imputation approaches exist in the literature
based on autoencoders [4]. However, as variational autoencoders learn a continuous embedding,
they provide better interpolation of the latent space than standard autoencoders, making them a
more suitable approach for an imputation method. The proposed joint prior in JPVAE incorporates a
non-zero correlation structure that is found to increase the observed correlation between views in the
latent spaces. This allows for successful movement between latent spaces, improving the ability to
impute missing views.
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Various approaches have been proposed extending VAEs to the multi view case, including those by
[5–8], with missing data imputation included as a feature of these methods. Most recently, proposed
methods differ via their method of approximating a joint posterior. Daunhawer et al. [9] discuss
the undesirable upper bound these methods put on a lower limit of the log-likelihood used as the
objective function in VAEs. In contrast to existing approaches, which largely assume some joint
posterior and/or shared latent space, our work has the novelty that is based on a joint prior between
the latent variables. To the best of our knowledge, this is the first attempt made to correlate the latent
spaces of VAEs natively through a joint prior.

JPVAE is most similar in structure to the private version of Deep Variational Canonical Correlation
Analysis (VCCA-private), a multi-view VAE approach by Wang et al. [10]. However their model
contains both private and shared variables in the latent space and doesn’t have a suitable approach for
imputing missing views. JPVAE can also be seen as an application of the ideas from self-supervised
learning techniques such as Barlow Twins [11], where the embeddings from noisy versions of the
same input are driven to be highly correlated via a loss function.

Figure 1 illustrates an application of the proposed approach JPVAE, on imputing view 2 of the data
that corresponds to the bottom half of MNIST digits using the top half of the digits data (view 1).
Through the proposed approach, reconstructions of missing views can be obtained. This is achieved
through the conditional distribution between the two latent variables, as illustrated in Figure 2. By
incorporating a joint prior with a non-zero cross-correlation structure, we observe better quality
results in imputing view 2. Further realisations of image imputation, including imputation of view 1
from view 2, can be found in Appendix A.5.

(a) No correlation learnt, but estimated em-
pirically after training

(b) Correlation learnt natively

Figure 1: Imputation of the bottom half of MNIST digits (view 2 of the data) using the top half of the
image (view 1) on a JPVAE model trained with (a) independent priors (completely separate VAEs)
and (b) a joint prior with learnt correlation structure between latent spaces. The cross entropy loss
between true bottom half of image and imputation is 109.1 in (a) and 93.04 in (b). A classifier trained
on the concatenation of the reconstruction of view 1 and imputation of view 2 achieves average testing
accuracy of 79.92% (1.0) in (a) and 87.45% (0.27) in (b). See Appendix A.5 for further details.

1.1 Contributions

A novel multi-view imputation approach based on variational autoencoders, named JPVAE, is
proposed that in contrast to existing work assumes a joint prior between the latent variables.1 As the
multiple views are correlated, the generated latent spaces are found also to be correlated. JPVAE

1The code for implementation of JPVAE and the numerical experiments contained in this manuscript can be
found at https://github.com/eso28599/JPVAE.
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Figure 2: Workflow to obtain reconstruction x̃1 and imputation x̃2|1 from input x1 only, on pre-
trained JPVAE network. Trapeziums represent encoders/decoders and rectangles represent vectors.
The structures for view 1 and 2 are shown in blue and orange respectively. The expectation step is
shown in red.

takes advantage of this correlation and whilst marginals for each VAE are assumed to follow a
standard normal distribution, a joint prior is assumed with a non-zero cross correlation. The imposed
correlation structure is learnt natively by forcing a stronger correlation in the latent space. Section
2 presents the proposed method and related theorems that showcase the validity of the proposed
method. As part of our work, we present and prove theorems that enable the parameterization of
differentiable positive definite matrices that allow end-to-end learning. Through our conducted
experiments presented in Section 3, learning the correlation structure leads to improved imputation
ability, lower reconstruction loss and better predictive likelihood. Imputed views from JPVAE can be
used for downstream tasks, with improved classification accuracy demonstrated. Lastly, better VAE
models are learnt with JPVAE preventing posterior collapse, a common problem observed with VAEs
[12].

1.2 Notation

Throughout this paper matrices are denoted by capital letters and column vectors are denoted by
lower case letters, both emboldened. X = {xi}ni=1 with vector xi ∈ Rc represents an entire
dataset in Rn×c, with xi an individual realisation. A diagonal matrix with vector a along the
diagonal is represented by diag(a). A block diagonal matrix with matrices Ai along the diagonal is
represented by bdiag(Ai). Vertical concatenation of column vectors a and b is denoted by (a; b)

i.e. (a; b) = (aT ; bT )T . The eigenvalues and singular values of matrix A are denoted by λi(A) and
σi(A) respectively, indexed by subscript i in order of decreasing magnitude. I denotes an identity
matrix of relevant dimension.

2 Multi-view variational autoenconder with a joint prior

This section presents the novel multi-view VAE approach JPVAE where each view has a separate
associated VAE. Before discussing the proposed approach in detail, the main concepts of VAEs are
introduced. Subsequently the single-view VAE is extended to the multi-view setting and the joint
prior is presented. The different components of JPVAE are presented including theoretical work on
matrix parameterization which enables end-to-end learning.

2.1 Variational autoencoder

A standard VAE seeks to encode data X in a probabilistic latent space and decode from this space to
reconstructed data X̃ [3]. The goal is for X̃ to be as close as possible to X . As the latent space is a
probabilistic embedding rather than one obtained by a deterministic mapping, it has the advantage that
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it can be explored fully, including the sampling of new realisations from the same distribution as X̃ .
These realisations are assumed to be taken from the same underlying distribution as X , pθ(·) = p(·|θ)
where θ is the set of parameters defining the distribution.

VAEs are a type of variational Bayesian method that seek to find a lower bound for this marginal
probability, pθ(X), through a Bayesian framework. The likelihood of x ∈ Rc given latent variable
z ∈ Rd is denoted by pθ(·|z) and the prior for the latent variables, usually taken to be a standard
normal, is denoted by pθ(z). The encoder and decoder are neural networks that seek to learn the
posterior distribution of z given x, pθ(·|x), and the likelihood of x given z respectively, given
the assumed prior over the latent space. In order to make the posterior learnable, an approximate
posterior distribution is used that usually is a multivariate normal distribution. The approximation
pθ(·|x) ≈ qϕ(·|x) is made where ϕ denotes the parameters of the probabilistic encoder, qϕ(·|x).
The encoder maps an input x to a mean vector µ(x) ∈ Rd and to the log of the vector of variances,
σ2(x) ∈ Rd. A sample is drawn from the approximate posterior distribution and this is used as an
input to the neural network which acts as the decoder, Dθ. As ϕ appears within the distribution of the
latent variables, derivatives cannot simply be taken inside the expectation term. Differentiability of the
loss function is required for the loss-driven parameter update steps and therefore a reparamaterization
trick needs to be implemented [3].

Instead of drawing z directly, ϵ ∼ N(0, I) is drawn and z = µ(x) + diag(σ2(x))ϵ is determined.
The distribution over which we take expectation is now independent of the parameters for which we
take derivatives, and derivative update steps may now be implemented. The neural network decoder
then seeks to reconstruct x from the latent variable z.

A maximum likelihood principle is then applied to the marginal likelihood of the data pθ(X) to obtain
estimates for the parameters within the encoders and decoders. As the likelihood is intractable a lower
bound on the log-likelihood, known as the Evidence Lower Bound (ELBO) is instead maximised,
given by:

L(θ, ϕ) = Ez∼qϕ(·|x) [ln(pθ(x|z))]−DKL(qϕ(·|x)||pθ(·)) (1)

where DKL(r|s) denotes the Kullback-Leibler (KL) divergence between distributions r and s [13].
Ez∼qϕ(·|x)(·) denotes the expectation with respect to the conditional distribution of z given x.
Maximising the ELBO is equivalent to finding a balance between an approximate posterior that is
close to the prior and putting weight on the latent variable space that maximises the likelihood of the
data given these same variables, ln(pθ(x|z)). Without the KL term, the delta function is returned as
the approximate posterior and the autoencoder is recovered.

With this VAE formulation the KL term often becomes very small or ‘vanishes’ leading to the
posterior equalling the prior (posterior collapse). This is referred to as KL vanishing and leads to
a decoder that is largely independent of the latent variables. See [14] for further discussion of this
problem. To combat this, we implement KL annealing – a procedure where a weight β is introduced
on the KL term and gradually increased, typically from 0, as learning occurs [15]. The objective
function becomes:

Lβ(θ, ϕ) = Ez∼qϕ(·|x) [ln(pθ(x|z))]− βDKL(qϕ(·|x)||pθ(·)). (2)

It is now assumed two data views with shared row dimension are present and represented by
X = {X1,X2} with Xi ∈ RN×ci . For brevity, the sample subscript is dropped and xi ∈ Rci

refers to an individual realisation from view i. Here N is the number of rows in both views and
ci is the number of columns in view i = 1, 2. This shared row dimension implies the views are
paired, with row j representing the same individual/sample in both views. This allows for meaningful
correlation in the latent space. The notation introduced in this section for single view VAEs is used
in the following sections where multi-view VAEs are presented. Subscripts are used to denote the
relevant views e.g. the encoder and decoder in view i are represented by Eiϕi and Diθi respectively.

2.2 Joint prior variational autoencoder

As the different views in a multi-view dataset are from a common source, correlation exists between
the views. This translates to correlation between the latent spaces of each view from independently
trained VAEs. JPVAE takes advantage of this correlation, enforcing the relationship between the
two views via a joint prior on the latent variables, as illustrated in Figure 3. Enforcing the proposed
correlation structure between the latent spaces ensures we can move from the original space where
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Figure 3: Workflow to obtain reconstructions x̃1 and x̃2 from realisations x1 and x2 using a learnt
JPVAE structure. Trapeziums present the encoders and decoders of the two views. Vectors are
presented by the rectangles. The structures for view 1 and 2 are shown in blue and orange respectively.
The prior on the latent variables is shown in red.

data are highly correlated in a non-linear fashion, to a space where the correlation is linear, and
back to the reconstructed space that has a non-linear correlation. The marginal prior on the latent
variables corresponding to each view is a standard normal, as with the traditional VAE. However, a
cross-covariance matrix C is assumed between the latent variables z1 and z2. Having separate VAE
structures for each view assumes conditional independence in both directions: (a) given the data the
latent variables are independent, and (b) given the latent variables the data are independent. This
allows the unique features of each view to be encoded and decoded.

As the latent spaces are linearly correlated, it is possible to move between them via the conditional
distribution, as illustrated in Figure 2. This allows for imputation of missing views, obtaining a
reconstruction of x2 solely from realisation x1 (and vice versa). If a joint prior is not assumed,
separate VAEs are trained on each view and there is no correlation enforced between latent spaces.
Whilst some correlation exists between the latent spaces, it is not as strong, and therefore may not
produce as accurate reproductions, as illustrated in the numerical experiments of Section 3.

2.3 Objective function

By assuming that latent variables for each view are independent given the data, the approximated
posterior distributed can be expressed as:

qϕ(z|x) = q(ϕ1,ϕ2)((z1, z2)|(x1,x2)) = qϕ1
(z1|x1)qϕ2

(z2|x2). (3)

The individual approximate posteriors qϕi
(·|xi) are multivariate Gaussians with mean and covari-

ance matrix determined by the output of Eiϕi
. For input xi, these are µi(xi) and diag(σ2

i (xi))
respectively. As the posteriors are assumed to be independent, the joint distribution is multivariate
Gaussian with mean (µ1(x1);µ2(x2)). The covariance matrix is represented by bdiag(Σi(xi)) with
Σi(xi) = diag(σ2

i (xi)). Similarly, by assuming the data is independent given the latent variables,
the likelihood function can be expressed as:

pθ(x|z) = p(θ1,θ2)((x1,x2)|(z1, z2)) = pθ1(x1|z1)pθ2(x2|z2). (4)

This is equivalent to having separate encoders and decoders for each view but with a joint prior.
Assuming independence means the expectation term in the ELBO can be separated into terms
corresponding to the separate views:

Ez∼qϕ(·|x) [lnpθ(x|z)] = Ez1∼qϕ1
(·|x1) [lnpθ1(x1|z1)] + Ez2∼qϕ2

(·|x2) [lnpθ2(x2|z2)] .
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The objective function therefore becomes:

Lβ(θ1, ϕ1, θ2, ϕ2) =Ez1∼qϕ1
(·|x) [lnpθ1(x1|z1)] + Ez1∼qϕ2

(·|x) [lnpθ2(x2|z2)] (5)

− βDKL(qϕ1(·|x1)qϕ2(·|x2) ∥ pθ(·)).

2.4 Joint prior

There are assumed to be ni latent variables in the VAE for view i, represented by the random vector
zi ∈ Rni . Without loss of generality it is that assumed n1 ≤ n2. The joint prior distribution of the
random vector z = (z1, z2) ∈ Rn1+n2 is assumed to be a multivariate normal with mean 0 and
covariance matrix, ΣC :

ΣC =

(
I1 CT

C I2

)
(6)

where C ∈ Rn2×n1 is the cross-covariance matrix encapsulating the relationship between the two
latent spaces. Ii is the ni × ni identity matrix. As ΣC is a covariance matrix, it needs to satisfy
two conditions: symmetry and positive semi-definiteness. With the defined structure it is clearly
symmetric and so it is sufficient to require ΣC to be a positive semi-definite matrix to ensure it is a
well-defined covariance matrix. For a covariance matrix with structure as defined in Eq. 6, it is useful
to note that ΣC is positive definite if and only if I1 − CTC (or I2 − CCT ) is positive definite
[16]. Additionally, as (a) a real symmetric matrix is positive (semi) definite if and only if all of its
eigenvalues are positive (non-negative) [17, p. 51] and (b) a matrix is invertible if and only if all of its
eigenvalues are non-zero, covariance matrix ΣC (and I1 −CTC/I2 −CCT ) is positive definite if
and only if it is invertible.

2.5 Kullback–Leibler divergence term

As discussed earlier, for calculating the ELBO for the proposed prior, the KL divergence between
qϕ1

(·|x1)qϕ2
(·|x2) and the prior on (z1, z2), pC , is required. The following general result on KL

divergence between multivariate Gaussians is applied in this setting.

Between two k-dimensional multivariate Gaussians r and s with respective means µr and µs and
respective covariance matrices Σr and Σs, the KL divergence is given by [18]:

DKL(s||r) =
1

2

[
ln

|Σr|
|Σs|

− k + (µs − µr)
T
Σ−1

r (µs − µr) + tr
{
Σ−1

r Σs

}]
. (7)

As this assumes the existence of Σ−1
r and Σ−1

s , both covariance matrices must be positive definite.

By utilising the result of Eq. 7 with the prior over z = (z1, z2) set as r = pC , and the approximate
posterior distribution as s = qϕ1(·|x1)qϕ2(·|x2), the KL term of Eq. 2 is obtained. Explicitly,
pC = N(0,ΣC) and qϕ1

(·|x1)qϕ2
(·|x2) = N((µ1(x1),µ2(x2)),Σq) with Σq = bdiag(Σi). For

the utilisation of Eq. 7, it is assumed that ΣC is positive definite and the variances of the approximate
posterior are positive.

Using the block matrix inverse result from [19, p. 18] (stated in Appendix A.1.1) the inverse of ΣC

is given by:

Σ−1
C =

(
D1 −D1C

T

−D2C D2

)
(8)

where D1 = (I1 −CTC)−1 and D2 = (I2 −CCT )−1. These inverses are guaranteed to exist,
given the assumption of positive definiteness on ΣC . Using Eq. 8 and properties of the trace, we
obtain:

tr
{
Σ−1

C Σq

}
= tr

{(
D1Σ1 −D1C

TΣ2

−D2CΣ1 D2Σ2

)}
= tr {D1Σ1}+ tr {D2Σ2} .

Additionally, as ΣC is a block matrix, |ΣC | = |I1 − CTC| = 1/|D1| = 1/|D2| [20, p. 114].
Similarly. as Σq is a diagonal matrix we have |Σq| = |Σ1||Σ2|. Writing µi = µi(xi) and noting

6



that µp = 0, we obtain:

DKL(qϕ1
(·|x1)qϕ2

(·|x2)||pC) =
1

2

[
µT

1 D1µ1 − ln |Σ1| − n1 + tr {D1Σ1}
]

(9)

+
1

2

[
µT

2 D2µ2 − ln |Σ2| − n2 + tr {D2Σ2}
]

− 1

2

[
ln |D1|+ µT

1 D1C
Tµ2 + µT

2 D2Cµ1

]
.

2.6 Matrix parameterization

The matrix C is unknown and therefore must be either chosen apriori or be optimised. In our work,
C is updated along with all other parameters at each update step, using the ELBO function as the
loss function. By doing this, two challenges were faced and addressed. Firstly, C must be updated in
such a way that ΣC is a valid covariance matrix. Secondly, a differentiable parameterization of C is
needed to allow for end-to-end learning. Conditions for validity of the update step are outlined in the
following theorems.

Theorem 2.1. ΣC defined as in Eq. 6 is positive semi-definite if and only if all singular values of C
are bounded by 1.

Proof. Due to previous remarks, it is equivalent to show that I1 −CTC is positive semi-definite if
and only if the singular values of C are bounded by 1. Further, this is equivalent to the showing that
eigenvalues of I1 −CTC are non-negative if and only if the eigenvalues of C are bounded by 1.

The eigenvalues of CTC are given by {σ2
k(C)}n1

k=1 [21] meaning the eigenvalues of −CTC are
given by {−σ2

k(C)}n1

k=1. Applying Weyl’s Theorem [19, p. 242] (stated in Appendix A.1.2) to
I1 −CTC implies:

λ1(I1) + λn1+1−k(−CTC) ≤ λk(I1 −CTC) ≤ λn1
(I1) + λn1+1−k(−CTC) (10)

=⇒ 1 ≤ λk(I1 −CTC)− λn1+1−k(−CTC) ≤ 1

which combined with the relations above gives λk(I1 − CTC) = 1 + λn1+1−k(−CTC) =

1− σ2
n1+1−k(C). Therefore all eigenvalues of I1 −CTC are non-negative if and only if all singular

values of C are bounded by 1.

If the inequality on σ1(C) is replaced by a strict inequality then ΣC is guaranteed to be positive
definite. This is clear as all eigenvalues of I1 − CTC are now positive which ensures positive
definiteness. This guarantees the applicability of Eq. 9. A further restriction, outlined in Theorem
2.2, can be made which enables a different parameterization of C which assumes a scaled orthogonal
relationship between the views.

Theorem 2.2. If C = αC̃ ∈ Rn2×n1 where |α| ≤ 1 and C̃ is a semi-orthogonal matrix (C̃
T
C̃ = I1)

then ΣC is positive semi-definite.

Proof. Given the assumed structure on C, we have the following:

I1 −CTC = I1 − α2C̃
T
C̃ = (1− α2)I1. (11)

As I1 is positive semi definite, if |α| ≤ 1 then, so too is I1 −CTC.

Alternatively, this could be seen as a corollary to Theorem 2.1 - due to the semi-orthogonality of
C̃, all singular values of C̃ are equal to 1 which means σi(C) = α with |α| ≤ 1. Again, if the
condition on α is replaced with a strict inequality (|α| < 1)) this guarantees applicability of Eq. 9. A
simplification of Eq. 9 assuming this orthogonality condition can be found in Appendix A.2.

To ensure applicability of Eq. 9, we can either require (a) C = αC̃ with C̃ an orthogonal matrix
and |α| < 1 or (b) σ1(C) < 1. The latter requires a matrix factorisation of C which includes
singular values. The most obvious approach is to use a singular value decomposition (SVD) of
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C i.e. C = USV T where U and V are orthogonal matrices and S is the matrix of singular
values i.e. S = diag(σk(C)). These singular values can be parameterized by σk(C) = (1 −
exp(−σk)/(1 + exp(−σk)) for σk ∈ R. To fully parameterize C with the singular value constraint,
a parameterization of orthogonal matrices U and V is needed. Similarly, a parameterization of
orthogonal C̃ is needed for option (a). The following assumes n1 = n2 = n.

As discussed by Shepard et al. [22], there are four popular parameterizations of orthogonal matrices.
All methods in their preliminary form parameterize at most a subset of the orthogonal matrices (at
maximum those with determinant +1 or -1). These parameterizations must therefore be extended to
map to the entire orthogonal matrix space. As it is the only one-to-one mapping, the rational Cayley
transform has been chosen for use within JPVAE. In its original form, the Cayley transform tells us
that for all orthogonal matrices with no eigenvalues equal to 1, there exists a unique skew-symmetric
matrix A ∈ Rm×m such that O = (I+A)(I−A)−1 [22]. To extend the parameterization to the full
space of orthogonal matrices, an extra matrix consisting of 1s and −1s along the diagonal is needed
[23, 24]. Let J = diag([1m−r;−1r]) where r = floor(m/(1 + exp(−s))) for s ∈ R. Then O =

J(I+A)(I−A)−1 is a mapping onto the space of orthogonal matrices. C̃ is therefore parameterized
in full by (n− 1)2/2 + 1 parameters: ({aij ∈ R : i < j for i, j ∈ {1, · · · , n}} , {s ∈ R}).

2.7 Imputation

Once the model has been learned on the training data, missing views can be imputed. Assume data is
available for view j, but not view i, given xj we can impute the missing value of xi. Data xj is fed
into the encoder for view j, Ejϕ, and latent variables are sampled giving zj = a. An estimate of zi

can be obtained using the conditional distribution of zi given zj . This is fed through decoder i, Diθ,
to produce an estimate of xi given xj , x̃i|j .

The joint marginal of z1 and z2 is assumed to be a multivariate normal with mean [µ1;µ2] and
covariance matrix Σ. The maximum likelihood estimator for the mean and covariance are obtained
and denoted by [µ̂1; µ̂2] and Σ̂ respectively. As any subset of variables from a multivariate normal
conditioned on a known second subset of variables also follows a multivariate normal distribution,
the conditional distribution can be found explicitly. For i ̸= j, the distribution of zi given zj = a is
observed is:

zi|zj = a ∼ N
(
µ̂i + Σ̂ijΣ̂

−1

jj (a− µ̂j), Σ̂ii − Σ̂ijΣ̂
−1

jj Σ̂ji

)
(12)

where Σ̂kl ∈ Rnk×nl is the submatrix of Σ̂ corresponding to the variables associated with view k and
view l. The conditional mean E(zi|zj = a) = µ̂i + Σ̂ijΣ̂

−1

jj (a− µ̂j) is then used as an estimate of
the latent variables in latent space i and fed into Diθ to obtain x̃i|j , the imputed value of xi given xj .

3 Numerical experiments

Through a series of experiments the performance of JPVAE is explored for both imputation purposes
as well as for downstream analyses like classification. As JPVAE enables imputation of missing
views (X̃i|j), this ability is investigated alongside reconstruction of views (X̃i).

A multi-view dataset was created from the binary version of the popular MNIST dataset, which
consists of handwritten digits from 0 to 9 [25]. For each image, the top half was taken as view 1 and
the bottom half was taken as view 2. This dataset of halved images is referred to as hvdMNIST. The
hvdMNIST dataset has the desirable property of having a strong correlation between views. The
dataset contains 50, 000 training images and 10, 000 test images. Experiments are repeated with
5 different random seeds and the average and standard deviation reported. Details on the model
architecture and training details can be found in Appendices A.3 and A.4 respectively.

Two variants of JPVAE are explored, where in each one the validity of ΣC is enforced via different
ways. The first variant imposes a bound on singular values (such that σ1(C) < 1). The second
variant enforces a scaled orthogonality where CCT = CTC = α2I , with the value of α set as 0.95.
The two variants of JPVAE are compared with the C = 0 case, which corresponds to completely
disjoint VAEs for each view.

Without explicitly learning a correlation structure, correlation is present between the two generated
latent spaces. By incorporating a joint prior with a non-zero cross-correlation as presented in Eq. 6
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into the loss function, JPVAE increases the correlation between views in the latent space as shown in
Figure 4. Table 1 illustrates the improvement in the ability to reconstruct view 2 given view 1 and
vice versa when correlation structure is learnt. Enforcing the orthogonality restriction improves the
performance of JPVAE compared with simply applying the singular value bound.

Figure 4: Empirical cross-correlation between view 1 and view 2 in the latent spaces. The left plot
represents empirical cross-correlation for C = 0 and the right shows the same for C learnt with
the orthogonality restriction imposed. The Frobenius norm of these matrices are 1.703 and 3.448
respectively.

Table 1: Average reconstruction losses across the entire dataset. Best results in bold, standard
deviation in brackets.

Reconstruction Imputation

X̃1 X̃2 X̃1|2 X̃2|1

C = 0 24.64 (0.37) 25.56 (0.24) 114.1 (2.3) 127.5 (3.2)
σ1(C) < 1 24.08 (0.44) 25.02 (0.21) 106.6 (1.4) 117.4 (4.1)
CCT = CTC = α2I 23.41 (0.29) 23.98 (0.31) 97.25 (1.9) 106.6 (1.9)

The improved performance of the method is enabled by the learnt correlation that prevents posterior
collapse. Following the work by [26], the phenomenon of posterior collapse is indicated by the
percentage of active units (AU). The activity of unit u in the latent space is measured by Au =
Covx

(
Eu∼q(u|x)[u]

)
. A unit is considered active, i.e. to not have suffered from posterior collapse, if

Au ≥ 10−2. A higher percentage of AUs are preserved when C is learnt, with the best case scenario
observed with the orthogonality constraint (Table 2). Wang et al. [12] proved that posterior collapse
is equivalent to latent variable non-identifiability. This indicates that by enforcing the orthogonality
restriction, we make the latent variable space identifiable.

Table 2: The percentage (%) of active units (AU) across latent spaces (z1, z2), out of a total 40. Best
results in bold, standard deviation in brackets.

AU
C = 0 61 (1.4)
σ1(C) < 1 66 (1.4)
CCT = CTC = α2I 98.5 (2.2)

The imputed views, X̃1|2 and X̃2|1, can be used for downstream tasks. If not all views are available
for an individual, this allows techniques requiring all views to be applied. As an illustration of the
performance of the imputed data in downstream tasks, a basic multi-layer perceptron classifier was
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trained and tested on different combinations of reconstructed and imputed views. The performance
of a classifier trained on the reconstructed data indicates that when C is learnt, the relevant signal
remains present in both the reconstructed and the imputed data. The performance on imputed data is
greatly improved by learning C, and in particular by enforcing the orthogonality constraint (Table 3;
results with standard deviation can be found in Figure 9.).

Table 3: Results for (Y ,Z) represent classification accuracy % for model trained on the training
split of Y and tested on the test split of Z. Accuracies for (X1,X1) and (X2,X2) with standard
deviation in brackets are 93.59% (0.25) and 90.83% (0.23) respectively. Best results in bold. For
clarity, results with standard deviation reported can be found in Figure 9.

View 1 View 2

(X̃1, X̃1) (X̃1, X̃1|2) (X̃1|2, X̃1|2) (X̃2, X̃2) (X̃2, X̃2|1) (X̃2|1, X̃2|1)

C = 0 89.07 47.21 77.22 85.88 51.83 78.81
σ1(C) < 1 89.67 64.50 80.22 86.46 67.06 82.38
CCT = CTC = α2I 90.31 77.22 83.54 87.80 76.55 86.30

Not only does learning correlation structure improve the ability to impute data, the reconstruction
loss and classification accuracy for reconstructed data xi is improved compared with those scores
seen when training each view on separate VAEs (Table 1). This may be due to the increased use of
the latent space, as evidenced by the higher percentage of active units. Whilst a classifier trained
on the imputed data from C = 0 demonstrates the retention of signal, the low accuracy seen for a
classifier trained on reconstructed data and high reconstruction loss indicates that it does not retain
the specific signature of the input. For example, taking the top half of a digit ‘2’ as the input, it may
correctly reconstruct the bottom half of a realisation of the digit ‘2’ but not correctly reconstruct the
specific realisation (as seen in Figure 1a).

Using the joint prior we see that the view with stronger signal (view 1) is bolstering the classification
of the view with weaker signal (view 2). Whilst classification accuracy on x1 is higher than that
on x2, the accuracy on the imputed data X̃2|1 sees a smaller drop, and is greater than that of X̃1|2.
Notably, the accuracy on imputed data (X̃2|1, X̃2|1) is comparable to that on (X̃2, X̃2) whilst the
same for view 1 experiences a drop in performance.

4 Conclusions

A novel multi-view VAE approach has been proposed that natively strengthens the correlation between
latent spaces via a joint prior. This is the first time that a connection between multi-view VAEs
is made through a joint prior rather than a joint posterior, as has previously been implemented in
the literature. Theoretical guarantees and parameterizations are presented that allow for end-to-end
learning. By simultaneously preventing posterior collapse, JPVAE returns superior models and
demonstrates a promising ability to impute missing data suitable for downstream tasks.
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A Appendix / supplemental material

The Appendix contains additional results and figures to supplement the main body of text.

Theoretical results used within the manuscript are presented in Section A.1. This is followed by
a simplification of the KL term when orthogonality constraints are assumed which is outlined in
Section A.2. The model architecture and training details implemented in the numerical experiments
are detailed in Sections A.4 and A.3 respectively. Lastly, additional results from the conducted
numerical experiments can be found in Section A.5. All results throughout this manuscript are given
to 4 significant figures, with standard deviations reported to 2 significant figures.

A.1 Theoretical results

Theoretical results utilised within the paper are now presented.

A.1.1 Block matrix inverse

The inverse of a block matrix, which is needed in Section 2.5 to determine the inverse of ΣC in order
to derive the KL term, is now outlined.

For a matrix A with block matrix structure(
A11 A12

A21 A22

)
(13)

the following result holds [19, p. 18]:
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Lemma A.1. Assuming all relevant inverses exist, the inverse of A as defined in Eq. 13 is given by:(
(A11 −A12A

−1
22 A21)

−1 A−1
11 A12(A21A

−1
11 A12 −A22)

−1

A−1
22 A21(A12A

−1
22 A21 −A11)

−1 (A22 −A21A
−1
11 A12)

−1

)
. (14)

Applying this with Aii = Ii, A12 = CT and A21 = C gives the result in the text.

A.1.2 Weyl’s inequality

The following inequality is used within the proof of Theorem 2.1 and concerns the sequence of
eigenvalues of matrices. In contrast to the rest of the paper, the eigenvalues are indexed in non-
increasing order, not non-increasing order of magnitude. For matrix M these are denoted by
{λ̂j(M)}nj=1.

Weyl’s inequality [19, p. 242, Corrollary 4.3.15] says:

Lemma A.2. Let A,B ∈ Rn×n be symmetric matrices. The following inequality holds

λ̂j(A) + λ̂1(B) ≤ λ̂j(A+B) ≤ λ̂j(A) + λ̂n(B), j = 1, . . . , n (15)

Notice that λk(I1) = λ̂j(I1) = 1 for all j, k, and that as −CTC is negative semi-definite all
eigenvalues are non-positive. This means λ̂j(−CTC) = λn−j(−CTC). Applying this lemma with
A = −CTC and B = I1 gives Eq. 10.

A.2 KL term simplification

Under the orthogonality assumption on C, the KL term derived in Eq. 9 can be simplified. Specifically,
if CCT = CTC = α2I for some α ∈ (0, 1) then D1 = D2 = γI where I = I1 = I2 and
γ = 1/(1− α2). Therefore Eq. 9 reduces to:

DKL(qϕ1
(·|x1)qϕ2

(·|x1)||pC) =
1

2

[
γµT

1 µ1 − ln |Σ1| − n+ γ tr {Σ1}
]

(16)

+
1

2

[
γµT

2 µ2 − ln |Σ2| − n+ γ tr {Σ2}
]

− 1

2

[
n ln |γ|+ 2γµT

1 Cµ2

]
.

A.3 Model architecture

All encoders and decoders for the JPVAE, as well as the neural network used for classification, consist
of two dense layers with 512 units each. The latent distribution layers consists of two 20 unit dense
layers which each parameterize the mean and the log of the variances of 20 normal random variables.
The decoders output layer parameterizes the distribution of a Bernouilli random variable for each
pixel. The classifier output layer parameterizes the categorical distribution with 10 outcomes .All
activation functions were ReLu.

A.4 Training details

The JPVAE used an Adam optimiser [27] with learning rate 0.001, trained for 30 epochs with a
batch size of 32 and used binary cross entropy as the reconstruction error. The cyclical KL annealing
schedule as introduced by [14] is implemented, with M = 30.

The classifier is trained for 50 epochs with a batch size of 32, step size of 0.01, except for on original
data where it is trained for 15 epochs to prevent overfitting. Cross entropy loss is used as the loss
function.
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A.5 Additional results

Additional results are presented in this section.

Figure 5 illustrates examples of reconstructing view 2 from view 1, with and without learning
correlation natively, for a model trained with a different random seed to that displayed in Figure 1.
Figures 6 and 7 illustrate examples of reconstructing view 1 from view 2, again with and without
learning correlation natively, for models trained with different random seeds. As in Figure 1, the
imputation of the missing view obtained when correlation of the latent spaces is learnt natively is of
higher quality than when no correlation is learnt. To quantitively evaluate this superior performance,
a simple multi-layer perceptron classifier is trained the concatenation of the reconstructed views. It is
then tested on a combination of the reconstructed and imputed views. Explicitly, for datasets where
e.g. view 2 is imputed from view 1, the classifier is trained on (the training split of) [X̃1; X̃2] and
tested on (the testing split of) [X̃1; X̃2|1]. Results of this classification task for various test datasets
are displayed in Figure 8. Results for the classification task described in the main body of the text,
and presented in Table 3, are illustrated in Figure 9 with standard deviation incorporated via error
bars.

(a) No correlation learnt, but estimated em-
pirically after training

(b) Correlation learnt natively

Figure 5: Additional realisation of an imputation of the bottom half of MNIST digits (view 2 of
the data) using the top half of the image (view 1) on a JPVAE model trained with (a) independent
priors (completely separate VAEs) and (b) a joint prior with learnt correlation structure between latent
spaces. The cross entropy loss between true bottom half of image and imputation is 111.9 in (a) and
101.5 in (b).
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(a) No correlation learnt, but estimated em-
pirically after training

(b) Correlation learnt natively

Figure 6: Imputation of the top half of MNIST digits (view 1 of the data) using the bottom half of the
image (view 2) on a JPVAE model trained with (a) independent priors (completely separate VAEs)
and (b) a joint prior with learnt correlation structure between latent spaces. The cross entropy loss
between true top half of image and imputation is 117.8 in (a) and 100.2 in (b).

(a) No correlation learnt, but estimated em-
pirically after training

(b) Correlation learnt natively

Figure 7: Additional realisation of an imputation of the top half of MNIST digits (view 1 of the
data) using the bottom half of the image (view 2) on a JPVAE model trained with (a) independent
priors (completely separate VAEs) and (b) a joint prior with learnt correlation structure between
latent spaces. The cross entropy loss between true top half of image and imputation is 114.3 in (a)
and 104.1 in (b).
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Figure 8: Results for [Y 1;Y 2] represent classification accuracy % for model trained on the training
split of [X̃1; X̃2] and tested on the test split of [Y 1;Y 2] (the column wise concatenation of Y 1

and Y 2). Accuracy for [X1;X2] with standard deviation in brackets is 98.04% (0.074). Error bars
present +/- one standard deviation.

Figure 9: Results for (Y ,Z) represent classification accuracy % for model trained on the training
split of Y and tested on the test split of Z. Accuracies for (X1,X1) and (X2,X2) with standard
deviation in brackets are 93.59% (0.25) and 90.83% (0.23) respectively. Error bars present +/- one
standard deviation.
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