
Under review as a conference paper at ICLR 2023

DENOISING DIFFERENTIAL PRIVACY IN
SPLIT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential Privacy (DP) is applied in split learning to address privacy concerns
about data leakage. Previous work combines split neural network (SplitNN) train-
ing with DP by adding noise to the intermediate results during the forward pass.
Unfortunately, DP noise injection significantly degrades the training accuracy of
SplitNN. This paper focuses on improving the training accuracy of DP-protected
SplitNNs without sacrificing the privacy guarantee. We propose two denoising
techniques, namely scaling and random masking. Our theoretical investigation
shows that both of our techniques achieve accurate estimation of the intermedi-
ate variables during the forward pass of SplitNN training. Our experiments with
real networks demonstrate that our denoising approach allows SplitNN training
that can tolerate high levels of DP noise while achieving almost the same accu-
racy as the non-private (i.e., non-DP protected) baseline. Interestingly, we show
that after applying our techniques, the resultant network is more resilient against
a state-of-the-art attack, compared to the plain DP-protected baseline.

1 INTRODUCTION

Privacy concerns in many application domains, such as finance, healthcare and on-line commerce,
constraint the sharing of raw data that are necessary to train accurate deep neural networks (DNNs).
Split learning (Gupta & Raskar, 2018; Vepakomma et al., 2018a) has recently emerged as a solution
that allows different parties to learn a model collaboratively, without explicitly sharing raw input
data. Typically, in two-party split learning the DNN model is divided between the data owner, a.k.a.
the client, and the label owner, a.k.a. the server, as shown in Figure 1 (a). During training, in the
forward pass the client forwards the intermediate results (IRs) (i.e., the parameters of the last layer
in the client’s part of the DNN) to the server. The server completes the forward pass and during the
back-propagation it returns the gradients of the IRs to the client. Consequently, the client can train
the joint model without revealing the private training data to the server.

Unfortunately, only sharing the IRs does not necessarily protect the private raw data. The shared
IRs contain considerable latent information about the private data and can be used to stage pow-
erful attacks, such as model inversion attack (He et al., 2019a; Zhang et al., 2020; Erdogan et al.,
2021), label inference attack (Erdogan et al., 2021; Kariyappa & Qureshi, 2021; Li et al., 2021)
and hijacking attack (Pasquini et al., 2021). Several works (Titcombe et al., 2021; Abuadbba et al.,
2020; Mireshghallah et al., 2020; Wang et al., 2018) attempt to mitigate that risk through differ-
ential privacy (DP), which adds a certain amount of noise to the IRs before sharing with the other
party. However, one of the fundamental issues of DP is the trade-off between its utility and privacy
guarantee. While high levels of noise are favorable in terms of a strong privacy guarantee, the noise
inevitably impacts the quality of the model (Abuadbba et al., 2020; Wang et al., 2020a; 2021); see
Figures 1 (b) and (c) for an example. Thus, a fundamental question is: Can we improve the training
accuracy of split learning under noise injection, without affecting the privacy guarantee of DP?

We answer the above question affirmatively by applying a post-processing denoising layer on top of
noise-injected IRs in the split learning process. Our intuition is that the injected noise introduces an
error during the forward pass, which is dominated by variance when the noise level is high. As long
as we can reduce the variance by denoising techniques, the training quality should be improved.
Such a post-processing layer will not impose any degradation on the privacy guarantee as long as it
does not interact with the original private data (Dwork et al., 2014).

1

Under review as a conference paper at ICLR 2023

𝑋𝑝𝑟𝑖𝑣

𝑋𝑟𝑒𝑐

Attacker

Client

Server

Labels

DP

𝑋𝑝𝑟𝑖𝑣

𝜎 = 0.1
𝑋𝑟𝑒𝑐

𝜎 = 0.5

𝜎 = 1.0

𝜎 = 2.0

(a) (b) (c)

Figure 1: The trade-off between the security and utility in differentially private split learning. (a) Schematic
representation of DP-SplitNN training, where DP is used to prevent private data leakage. (b) Best accuracy
obtained in training a split CNN model on MNIST at different noise level (σ). (c) Training data reconstruction
by hijacking attack when using DP with different noise level (σ).

Our main contributions are: (i) We propose two denoising techniques (i.e. scaling and masking)
as post-processing layers on DP, to improve the training accuracy and stability of DP-SplitNN;
see Section 3. (ii) Our theoretical investigation on a classification task in Section 3.2 shows that
denoising can reduce the error caused by noise injection during the forward pass. (iii) We validate
our claims through extensive numerical experiments on synthetic and real data (i.e., 4 DNN models
on 4 different datasets) in Section 4. Moreover, (iv) we find that our masking technique, in addition
to denoising, also enhances the resilience of split learning against the state-of-the-art hijacking attack
(Pasquini et al., 2021); refer to Section 4.3.

2 RELATED WORK

Differentially private federated learning (DP-FL). In horizontal FL (HFL), applying DP follows
the same procedure as the centralized DP-SGD algorithm because the main privacy concern lies in
the gradients/model updates during the communication. E.g., McMahan et al. (2017) has shown that
directly integrating FedAvg with DP-SGD can protect user-level privacy for large language modeling
tasks. Furthermore, many research (Hu et al., 2021; Liu et al., 2020; Agarwal et al., 2018; Kerk-
ouche et al., 2021) propose combining DP with gradient compression techniques to further enhance
the privacy guarantee as well as improve the communication efficiency. However, few attempts have
been conducted to integrate DP with vertical FL (VFL) because VFL needs to transmit the interme-
diate results (IRs) instead of the gradients/model updates. Existing frameworks (Wang et al., 2020b;
Chen et al., 2020) propose to add noise on participants’ IRs to realize DP. Unfortunately, VFL (Chen
et al., 2020) only demonstrates the impact of DP on the training accuracy when the noise scale is
relatively low for some applications. The other framework, called HDP-VFL (Wang et al., 2020b),
targeting linear model collaborative learning, proposes to directly perform sensitivity analysis on the
IRs, which is not applicable for general DNN models.

Differentially private split learning (DP-SplitNN). Due to the vulnerability of SplitNN against
model inversion attacks, Titcombe et al. (2021) proposed to apply DP on IRs during the inference
time to prevent data reconstruction by the attacker. Shredder, proposed by Mireshghallah et al.
(2020), adaptively generates a noise mask to minimize mutual information between input and inter-
mediate data. However, these two methods only introduce noise injection during the inference time;
thus, the privacy of training data is not preserved. Abuadbba et al. (2020) successfully applies noise
to the IRs during the training to defend against model inversion attack on one-dimensional ECG
data. It turns out that the noise has dramatically impacted the model’s accuracy. Unlike previous
works that only focus on the attack defense efficacy, we target to improve the training accuracy with
a significant DP noise level.

Gaussian noise injections (GNIs) are a family of regularization methods for DNN training through
adding random Gaussian noise on the activations or weights during the forward pass. It is similar
to DP-SplitNN except for the following two differences: (i) There is no requirement of bounded
sensitivity in injection objects. (ii) The noise scale is usually set small enough to avoid negative
impacts on training accuracy. The explicit regularization effects of GNIs are well investigated in

2

Under review as a conference paper at ICLR 2023

(Camuto et al., 2020; Li & Liu, 2020; Lim et al., 2021), demonstrating better generalization for
trained models over unseen data. In addition, GNIs can be used to improve the robustness of DNNs
against adversarial attacks or data perturbations (Lim et al., 2021; He et al., 2019b). However, a
recent study, Camuto et al. (2021) found that GNIs can also introduce some implicit bias on gradient
updates, which inevitably degrades the overall training accuracy.

DP denoising. The denoising concept for DP has been well adopted in the field of statistical
estimation (Hay et al., 2009; Nikolov et al., 2013; Bernstein et al., 2017), where they exploit
some prior knowledge to design data release mechanism with better DP utility. Recently, Balle
& Wang (2018) proposed an optimal denoising technique for Gaussian DP mechanism, where given
y ∼ N

(
f(x), σ2I

)
and their target is to find a postprocessing function g such that g(y) is closer to

f(x) than y. This is different from denoising in DP-SplitNN as there are subsequent layers on top of
the Gaussian mechanism in the training process, and we aim at denoising the output of each layer.
Nasr & Shokri (2020) has also investigated using scaling as a denoising technique to improve the
DP utility for DP-SGD. However, the authors scale up/down the noisy gradients based on the ”use-
fulness” of gradients while we utilize scaling to minimize the estimation error of the noisy neural
network outputs. Wang et al. (2020a) showed that adding Laplacian smoothing on Gaussian noise
injected gradients can improve the utility of DP-SGD. To the best of our knowledge, we are the first
to propose denoising techniques on the Gaussian noise injected intermediate results to improve the
training accuracy of SplitNN.

3 THEORETICAL GUARANTEE

Notations. By [n] we denote the set of n natural numbers {1, 2, · · · , n}. By xi, we denote the ith

component of vector x, while Aij denote the (i, j)th component of a matrix, A. We use ∥x∥2 and
∥A∥F to denote the ℓ2 and the Frobenius norms of a vector x and a matrix A, respectively.

Problem setup. Let D be the training dataset with n elements, {(xi, y
⋆
i)}ni=1, drawn i.i.d. from

some distribution, P (X ,Y), where xi ∈ Rd is the input feature vector, and y⋆i is the corresponding
ground-truth label. We examine the performance of a machine learning algorithm, A, with respect
to a data distribution, P (X ,Y), and denote hD := A(D). We consider a split neural network clas-
sifying m classes. The network is divided among the client and the server, where the server network
consists of fully connected (FC) layers and the output loss function. In general, there could be
multiple FC layers, however, we only consider one FC layer as it is commonly adopted in practice
and easy to analyze. Let X ∈ Rn be the input vector from the client-side split layer (i.e. IRs), and
M ∈ Rm×n be the trained weight matrix of the FC layer on the server side, which is independent of
the input vector X during the loss calculation in the forward pass. At each iteration during training,
the original split network processes a minibatch of training samples to calculate the loss and, during
back-propagation, updates the weight. We follow this formalization in our theoretical analysis.

We consider the Gaussian mechanism of DP to protect the input vector X . For Laplace mechanism,
please refer to Appendix E. Let the perturbed vector, X̃ ∈ Rn follow the model: X̃ = X + ∆,
where ∆i ∼ N (0, σ), chosen from a zero mean Gaussian distribution and σ ∈ R+. Then X̃ is (ϵ, δ)

differentially private w.r.t. X for σ ≥
√

2 ln(1.25
δ)∆2(X)

ϵ , ϵ ∈ (0, 1) (Dwork et al., 2014), where
∆2(X) denotes the ℓ2-sensitivity of X . As we use tanh as the activation function in the client-side
split layer, the sensitivity of X is naturally bounded. In general, denoising in DP-SplitNN can be
formulated as follows: Let fi(X) be the output of the ith layer in the server model and fi be a
function that represents the first i layers, our goal is to find a post-processing function g, such that
fi(g(X̃)) is closer to fi(X) than fi(X̃) for all possible i. In our setup, there are two possible fi in
the forward pass: (i) f1– a linear layer, and (ii) f2– a linear layer plus a nonlinear function (Softmax
with negative log loss function). We consider one FC layer in our setup, and our primary focus is
nonlinear classification tasks, although to understand the problem better denoising the linear layer is
also important, which can be viewed as a regression task. For simplicity, we do not include iteration
counter on M,X , or X̃ . We use the following post-processing functions.

Random masking operator. Let Rp be a random matrix of 1 and 0 with identical and independently
distributed entries, (Rp)ij ∼ Bernoulli(p). Denote the support set, Ωp ⊂ [m]× [n] of Rp as Ωp :=

3

Under review as a conference paper at ICLR 2023

{(i, j)|(Rp)ij = 1}. Based on this, for a matrix, A ∈ Rm×n,

(Rp[A])ij =

{
Aij : i ∈ Ωp,
0 : otherwise.

From the definition, Rp is linear and is a projection operator, that is, R2
p = Rp.

Scaling operator. For α > 1 and a matrix, A ∈ Rm×n, denote the element-wise scaling operator,
Sα(·) : Rm×n → Rm×n, as Sα(A) = 1

αA. While the random masking, Rp is a random operator,
the scaling operator, Sα has no randomness in it.

3.1 A LINEAR LAYER

With the above setup, to explain our ideas more easily, we start with a neural network performing
simple regression. Although this is not our primary focus, we believe this section will provide a
better understanding. Because for the ℓ2-regression task, no nonlinear activation function is required,
so the problem is much simpler. That is, y := MX is the prediction of the output layer, and it
does not involve any non-linearity. Theorem 1 describes results for a fully-connected DNN with
an ℓ2-regression task. Additionally, it explains how the scaling and masking parameters, α and p,
respectively, are related to the noise scale σ, while denoising the output of a linear layer of a DNN
for a given M and X . We calculate the expected test error, E

[
∥MX −MhD(X̃)∥22

]
, where hD

is Rp and Sα, respectively, and compare against E
[
∥MX −MX̃∥22

]
, where hD = In, an identity

operator for original DP.

Theorem 1. With the notations above, (i) E
[
∥MX −MRp(X̃)∥22

]
≤ E

[
∥MX −MX̃∥22

]
if

and only if p∥M ⊙ X̄∥2F + (1− p)∥MX∥22 ≤ σ2∥M∥2F , where X̄ ∈ Rm×n is a matrix obtained
by stacking X⊤ ∈ R1×n in each row, and ⊙ denotes the elementwise product. (ii) Let α > 1.
E
[
∥MX −MSα(X̃)∥22

]
≤ E

[
∥MX −MX̃∥22

]
if and only if ∥MX∥2

2

∥M∥2
F

≤
(

α+1
α−1

)
σ2.

Remark 1. In Theorem 1, we considered the most commonly used mean square error
(MSE), E

[
∥MX −MRp(X̃)∥22

]
and E

[
∥MX −MSα(X̃)∥22

]
, respectively, to compare against

E
[
∥MX −MX̃∥22

]
. We use the MSE because it has nice mathematical properties; one can use

other loss functions. This MSE is agnostic of the nature of the loss function used in DNN training.

Remark 2. Given A, the expected MSE, E
[
∥MX −MhD(X̃)∥22

]
, in Theorem 1, for different

hD was compared against E
[
∥MX −MX̃∥22

]
. Since, the expected MSE can be decomposed into

bias and variance, by showing the relation between the expected MSEs, the bias-variance trade-off
between different processes can be explained.

3.2 NONLINEAR LOSS FUNCTION FOR CLASSIFICATION TASK

In general, for classification problems such as image classification by CNN, movie review prediction
by RNN, and many more, we require the softmax function for prediction and the negative log func-
tion as the loss function to train the DNN model; see their definitions in Appendix A.1. For a vector
z ∈ Rm, denote s : Rm → (0, 1)m as the softmax function, and LLL(y

⋆, s(z)) as the negative log
loss function, where y⋆ is the true label.

In what follows, we show that for both masking and scaling operators, under certain conditions on
the noise level, σ, it is possible to find parameters p and α, respectively, such that, by using any
of these operations on DP-SplitNN, we incur a lower deviation in the loss value than using the DP
alone when compared to the loss of the original SplitNN.

Masking operation. Quantifying the losses, LLL(y
⋆, s(MRp(X̃)) and LLL(y

⋆, s(MX̃)) are crit-
ical tasks as they involve randomness from the masking operator and the Gaussian noise. Addition-
ally, they are nonlinear functions, composed of softmax and logarithmic functions. Therefore, we
require several intermediate results to prove the main result in Theorem 2. We provide the proofs in
the Appendix, but stated them formally in the main body of the paper to present a sketch of proof

4

Under review as a conference paper at ICLR 2023

of our main result, Theorem 2. The following Lemma 1, is the first intermediate result and instru-
mental in proving our main result as it approximates the expected logarithmic term in the log loss.
In Lemma 1, we approximate E[log(x)] by using Taylor’s Theorem.
Lemma 1. (Khuri, 2003, p. 117) Let x be a positive random variable. Then E[log(x)] =

log[E(x)]− Var(x)
2(E(x))2 + higher order terms, where Var(x) = E(x2)− (E(x))2.

Remark 3. The underline assumption is that x should have small higher order moments, mp =
E [|x− E(x)|p], for p = 2, 3, · · · .

Note that, setting x =
∑m

i=1 e
(MRp(X̃))i in Lemma 1 is the first step to quantify the ex-

pected loss value of DP-SplitNN with random masking, E
[
LLL(y

⋆, s(MRp(X̃))
]
. Calculat-

ing E
[
LLL(y

⋆, s(MRp(X̃))
]

requires some auxiliary results on the E
[∑m

i=1 e
(MRp(X̃))i

]
and

E
[(∑m

i=1 e
(MRp(X̃))i

)2]
. The following Lemma gives the details.

Lemma 2. We have, (i) E
[∑m

i=1 e
(MRp(X̃))i

]
=
∑m

i=1

∏n
k=1

(
pemikxk+

m2
ikσ2

2 + (1− p)

)
; and

(ii) E
[(∑m

i=1 e
(MRp(X̃))i

)2]
=
∑

i,j

[∏n
k=1

(
pe(mik+mjk)xk+

(mik+mjk)2σ2

2 + (1− p)

)]
.

Remark 4. Setting p = 1, in the loss function, we find the expected loss value,
E
[
LLL(y

⋆, s(MX̃))
]

due to DP-SplitNN (without random masking). Additionally, for p = 1,

in Lemma 2, we recover E
[∑m

i=1 e
(MX̃)i

]
=
∑m

i=1

∏n
k=1(e

mikxk+
m2

ikσ2

2).

Recall, we want to show that, by using random mask over a DP-SplitNN, we incur a lower deviation
in the loss value than using the DP alone when compared to the loss of the original splitNN under
certain condition. That is,

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))|

]
≤ E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
,

for all X . We formalize this in Theorem 2. Because the original splitNN, without DP, always
produces the least loss, LLL(y

⋆, s(MX)), the expressions in absolute values above are non-positive,
and so we need only to verify that

E
[
LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))

]
≤ E

[
LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))

]
.

for all X .
Theorem 2. With the notations above, for classification problems, assume that n ≥ (MX)i for
i = 1, 2, ...,m. Then, if σ is large enough, there is some δ ∈ (0, 1) such that

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))|

]
≤ E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
,

for p ∈ (δ, 1].

We remark that n ≥ (MX)i is a technical assumption and can be easily satisfied in practice, ba-
sically requires the input dimension from the splitNN to be wide enough. We will pause here and
provide a sketch of proof of Theorem 2. By the definitions of softmax and negative log loss, we
have

LLL(y
⋆, s(MRp(X̃))) = −(MRp(X̃))i⋆ + log

(
m∑
i=1

e(MRp(X̃))i

)
, (1)

where i⋆ is the location of true label in y⋆. For fixed M and X̃ , (1) is a function of p for p ∈ (0, 1].

Denote F(p) := E
[
LLL(y

⋆, s(MRp(X̃)))
]
, and consequently, F(1) = E

[
LLL(y

⋆, s(MX̃))
]
;

1See similar expression in Teh et al. (2006) with a restrictive assumption; assumption in Lemma 1 is more
general.

5

Under review as a conference paper at ICLR 2023

see Remark 4. By using Lemma 1 on (1), we can approximate F(p) by

F(p) ≈ −p(MX)i + log

(
E

[
m∑
i=1

e(MRp(X̃))i

])
−

Var
(∑m

i=1 e
(MRp(X̃))i

)
2
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2 . (2)

Our goal is to show that F(p) ≤ F(1) when p ∈ (δ, 1), for some δ ≥ 0. By using Lemma
2 in (2) and differentiating with respect to p, we can show, F ′(1) ≥ 0. This would imply
that F(p) is an increasing function of p ∈ (δ, 1], for some δ ∈ (0, 1). This in turn gives us
E
[
LLL(y

⋆, s(MRp(X̃)))
]
≤ E

[
LLL(y

⋆, s(MX̃))
]
, and concludes the proof of Theorem 2; see

details in Appendix A.3.1.

Scaling operation. Similarly, by using scaling over a DP-SplitNN, under certain condition on the
noise, σ, we obtain a lower deviation in the loss than using the DP alone when compared to the loss
of the original splitNN. We quote the result in Theorem 3; see Appendix A.3.2 for sketch of proof.
Theorem 3. With the notations above, for classification problems, if
σ2 ≥ maxi,i⋆

∑n
k=1(mi⋆k−mik)xk∑n

k=1 m2
ik

, for i = 1, 2, ...,m, then there exists a δ′ ∈ (0, 1) such that

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MSα(X̃)))|

]
≤ E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
,

for α ∈ (1, 1
δ′].

For concentration of the errors in Theorem 1 and Theorem 2; see Appendix A.3.3, and to understand
how our post-processing techniques always preserves privacy bound; see Appendix B.

4 EXPERIMENTAL EVALUATION

In Section 4.1, we validate our theoretical claims through numerical simulation on synthetic data,
and in Section 4.2 we report results on DNN classification tasks.

4.1 SIMULATION

Setup. The following numerical simulations verify the results of Theorem 1 and 2. Since
X ∈ [−1, 1], output of tanh function, and M is usually randomly initialized around 0
in the actual training, in simulation, we sample the entries of X and M from a uni-
form distribution on [−1, 1]. The MSE corresponds to E

[
∥MX −MRp(X̃)∥22

]
, for linear

case and E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))|

]
, for nonlinear case, where Rp can

be replaced by Sα for scaling. Moreover, for both operators, masking and scaling, when
p = 1 and λ = 1, respectively, the MSE is E

[
∥MX −MX̃∥22

]
, for the linear case, and

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
, for the nonlinear case and considered as baseline. In

Figure 2, for each plot, we draw a line parallel to the X-axis from these baseline MSEs. The expec-
tations are calculated by taking the average on k simulation results, where k = 1000.

Scaling simulation. In Figure 2 (a), each curve corresponds to a different noise scale, σ. By
decreasing the scaling factor, λ for each σ, the MSE first decreases from the baseline to a minimum
then increases, indicating an optimal λ for each σ. The NASC condition in Theorem 1 (ii) also infers
that. For fixed M,X , this condition implies it is possible to find a smaller λ when σ is large. We
make similar observations for the nonlinear case; see Figure 2 (c).

Masking simulation. Figure 2 (b) shows that by decreasing the masking ratio, p, the MSE does
not necessarily become smaller unless σ is large enough. This verifies the claim of Theorem 1 (i).
More importantly, there is an almost linear relationship between MSE and the masking ratio as
p → 1. This coincides with the expression of MSE with masking given in (7); see Appendix. We
hypothesize that while both X,M are drawn from Uniform distribution, the coefficient of p2 might
become negligible. Hence, the coefficient of the linear term, p, which can be positive or negative

6

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d)

(e) (f)

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

Figure 2: Simulation of how scaling factor (λ = 1
α

) and masking ratio (p) influence the estimation error
(MSE) under different noise levels (σ) for linear and nonlinear cases.

Table 1: SplitNN setup and training hyper-parameters

Model Dataset Optimizer Batch size Epoch lr Split Config. (client model ∥ server model) Split Layer Size
CNN MNIST SGD 64 4 0.1 2×Conv2d - MaxPool - Dense ∥ Dense - Loss 256

ResNet20 CIFAR-10 SGD-M 128 160 0.1 Conv2d - 3×ResBlock - AvgPool ∥ Dense - Loss 256
MLP IMDB Adam 64 2 0.01 Embedding - AvgPool - Dense ∥ Dense - Loss 16

LSTM Names SGD 800 150 2 Embedding - RNN ∥ Dense - Loss 128

depending on the noise scale σ, dominates MSE. Interestingly, the MSE decreases by reducing
the noise level when σ = 0.7, implying a potential optimal denoising point given the lowest MSE.
Results from Figure 2 (d), with the nonlinear loss, reflects the result in Theorem 2—σ2 must be large
for the improvement to be possible—when σ is too small (MSE curve for σ = 0.3), the masking
does not work; the larger the σ, the more improvements one can expect by using masking. Moreover,
when σ is large enough, there exists an p ∈ (δ, 1), for some δ ≥ 0 such that masking on top of DP
incurs a lower MSE than the baseline. This indicates that an optimal denoising point is possible by
using masking in DNN training for large noise.

Takeaway message. Figures 2 (a) and (c) indicate that regardless of the noise scale, σ, it is always
possible to find a scaling factor such that using scaling over a DP-SplitNN incurs a lower MSE than
the baseline. However, this is not always the case for the masking operator—σ must be significant for
rendering the improvement from masking. Nevertheless, in practice, we see that masking performs
better than scaling in some cases; see Section 4.2. Notably, these observations are agnostic of the
nature of the FC layer of the DNN, linear or nonlinear. For the simulation of the MSE during
backward pass, please refer to Figure 7 (e)(f) in Appendix F.

4.2 DNN EXPERIMENTS

Datasets and models. We adapt the benchmarks from the popular Pytorch DP library Opacus
2 with split learning paradigm. It contains 2 vision tasks (image classification on MNIST (LeCun
et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009)), a recommendation task (movie review pre-
diction on IMDB (Maas et al., 2011)) and a language modeling task (from Pytorch Tutorial 3).
The models also span across various architectures including convolutional neural network (CNN)
, residual network (ResNet), recurrent neural network (RNN) and multi-layer perception (MLP).
All training hyper-parameters are configured as default in order to maintain a fair comparison; see
details in Table 1.

Setup and implementation. In our experiments, the target neural network is split at the last dense
layer; see Table 1. The size of the split layer varies from 16 to 256. We use tanh activation
function to bound the client’s output in [−1, 1] so that each input data’s sensitivity is bounded. DP
is implemented by injecting Gaussian noise on the tanh layer, with noise scale, σ, the standard
deviation of Gaussian distribution. We implement both denoising techniques as a post-processing
layer on top of the DP layer. The ratio p ∈ (0, 1) describes the percentage of the elements we keep
through masking. The scaling factor λ = 1

α ∈ (0, 1) is used to scale down the tensor values. We
run experiments on a local server equipped with one NVIDIA Tesla V100 GPU. The example code
is provided in the supplemental material.

2https://github.com/pytorch/opacus
3https://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

7

Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. DP + scaling (=0.7 =0.1 =0.05)
DP + masking (=0.7 p=0.2)
DP (=0.7)
Baseline

(a) CNN - MNIST

0 20 40 60 80 100 120 140 160
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

.

DP + scaling (=0.7 =0.1)
DP + masking (=0.7 p=0.2)
DP (=0.7)
Baseline

(b) ResNet20 - CIFAR10

0 100 200 300 400 500 600 700 800
Step

0.5

0.6

0.7

0.8

Te
st

 a
cc

. DP + scaling (=0.7 =0.2)
DP + masking (=0.7 p=0.2)
DP (=0.7)
Baseline

(c) MLP - IMDB

0 20 40 60 80 100 120 140
Epoch

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

. DP + scaling (=0.7 =0.1 =1e-4)
DP + masking (=0.7 p=0.2)
DP (=0.7)
Baseline

(d) LSTM - Names
Figure 3: Test accuracy of DP-SplitNN training with and without denoising (i.e. masking or scaling) in
different training tasks. (σ: noise level, p: masking ratio, λ: scaling factor, γ: weight decay)

Denoising performance. We focus on demonstrating the effectiveness of both denoising techniques
in various SplitNN training tasks. In Figure 3, we compare baseline SplitNN, SplitNN with DP, DP-
SplitNN with the scaling or masking denoising technique. The DP noise level, σ is calibrated to
a relatively high level such that the training accuracy of the plaintext DP-SplitNN suffers from the
noise injection. Both scaling and masking are optimized by parameter tuning on λ, σ, γ; see Table
4 in Appendix F. In most cases, e.g. Figure 3 (a)(c)(d), once we inject a large noise (σ = 0.7), the
overall training convergence is severely impacted so that the test accuracy is barely increased during
the training. Such vulnerability is mainly due to two reasons: First, the dimension of the split layer is
relatively small (less than 256), which is largely shrunk compared with other layers. Usually, high-
dimensional data can better tolerate noise perturbation because it carries more information. Second,
the learning rate is fixed as default in our experiment, but DP favors smaller learning rate in DNN
training. After applying the scaling or masking layer on DP and fine-tuning some hyper-parameters,
the training convergence vastly improves. In some cases, e.g. (a)(d), the improved accuracy due to
masking is comparable with the baseline. Note that, in (a)(d), we introduce weight decay (γ) into
the optimization of the scaling technique due to its stability issue, which we will further explain.

Denoising vs. Hyper-parameter tuning. To better understand the difference between denoising and
traditional hyper-parameter tuning, we evaluate the MNIST image classification task by fine-tuning
learning rate (lr), weight decay, masking ratio and scaling factor under high-level noise injection.
We will present our main findings here. The detailed results are available in Appendix, Figure 6.

Noisy DNN training such as DP-SGD prefers smaller learning rate. We change lr from 0.1 to
0.001 and find that smaller lr indeed improves the training stability under a large noise injection
(σ = 0.7). Weight decay, as a popular regularization method in DNN training, can be used to avoid
over-fitting on noisy signals. We find that only heavy decay, e.g. γ = 0.2, 0.4, can help stabilize the
noisy training till the end. However, both of them trade the convergence rate for stability and fail
to reach the baseline accuracy after the training. Scaling can only improve the convergence at the
beginning of the training and none of them manage to maintain the convergence till the end. This
implies an inherent training stability issue with noise injection, which cannot be alleviated by pure
denoising. Therefore, we combine scaling with weight decay and find that a small weight decay
is sufficient to stabilize the training; see Figure 3a. On the contrary, the optimization of masking
does not need weight decay. It can almost achieve the baseline convergence rate once the ratio p
is optimized. Since there is a similarity between random masking and dropout, we hypothesize
that the masking technique provides a similar regularization effect as weight decay. Both denoising
techniques achieve significantly better training quality than pure hyper-parameter tuning.

8

Under review as a conference paper at ICLR 2023

!!"#$

!"%&

!"%&

!"%&

DP

DP+Masking

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 4: Private training data recovery by FSHA in split learning on 3 public datasets: (a) MNIST, (b)
Fashion-MNIST, and (c) CIFAR-10. In all cases, Xpriv: the original private data, Xrec: obtained by FSHA
without any protection of DP, XDP

rec : obtained by FSHA under the protection of DP (σ = 0.7), XDP+Masking
rec :

obtained by FSHA under the protection of Random Masking enhanced DP (σ = 0.7, p = 0.2).

4.3 ATTACK DEFENSE

Setup. We demonstrate how the random masking technique can improve data privacy in defense
against the recent feature-space hijacking attack (FSHA) (Pasquini et al., 2021) in split learning
(see details in Appendix C). We evaluate the attack performance on three public datasets: MNIST,
Fashion-MNIST (Xiao et al., 2017), and CIFAR-10. The client model configuration follows the
setting in Table 1. The noise scale, σ and masking ratio, p are set to 0.7 and 0.2, respectively.
We compare the attack performance by visualizing the recovered private data between the original
FSHA (Xrec), FSHA under the protection of the vanilla DP (XDP

rec), and FSHA under the protection
of Random Masking enhanced DP (XDP+Masking

rec). In all attack experiments, the training iteration
is set to 10K to reach an adequate reconstruction result.

Results. Figure 4 shows that the original FSHA can reconstruct the private data with very high
accuracy for MNIST and Fashion-MNIST but only keep the original images’ looking for CIFAR-
10. This is consistent with the attack performance in Pasquini et al. (2021)—attack on low-entropy
images usually requires less effort and can produce a high-quality reconstruction. Next, we apply
DP to the intermediate results and conduct data reconstruction on the perturbed data by FSHA. We
can see that for MNIST, the digit on the reconstructed image is recognizable. For more complex
images (Fashion-MNIST) and color images (CIFAR-10), although DP can hide most of the details
in the images, we can still relate the constructed image with its original one by looking at the outline
or the background color. The efficacy of DP is proportional to the noise scale; however, larger noise
would cause a fatal error in the practical application. Lastly, when we combine DP with masking,
the reconstructed images are fully damaged, and thus, the data privacy is greatly enhanced in this
attack. See Figures 8-10 in Appendix F for results with different σ, p, λ.

5 CONCLUSION AND DISCUSSION

This paper proposes scaling and masking as denoising techniques for DP-SplitNN training without
degrading the privacy guarantee. We show theoretically and empirically that denoising helps achieve
more accurate intermediate outputs in DNN training under noise injection, which significantly im-
proves the stability and accuracy of DP-SplitNN training. In addition, we show that the masking
technique can provide additional security enhancement against powerful attacks, demonstrating the
possibility of co-optimization of denoising and attack defense.

We noticed a few limitations of our work: First, there exist different split learning setups that we did
not cover in this work, e.g., labels and data could reside on the same side. Second, we only focus
on the client-side privacy; however, the server may also use DP to protect their labels during the
backward propagation. Third, although we have empirically showed that our denoising techniques
are also effective for the backward pass, the theoretical investigation remains challenging. We defer
them in our future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016a.

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016b.

Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A. Camtepe, Yansong Gao,
Hyoungshick Kim, and Surya Nepal. Can we use split learning on 1d CNN models for privacy
preserving training? In Proceedings of the 15th ACM Asia Conference on Computer and Com-
munications Security, pp. 305–318, 2020.

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMa-
han. cpSGD: Communication-efficient and differentially-private distributed SGD. Advances in
Neural Information Processing Systems, 31, 2018.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Ana-
lytical calibration and optimal denoising. In International Conference on Machine Learning, pp.
394–403. PMLR, 2018.

Garrett Bernstein, Ryan McKenna, Tao Sun, Daniel Sheldon, Michael Hay, and Gerome Miklau.
Differentially private learning of undirected graphical models using collective graphical models.
In International Conference on Machine Learning, pp. 478–487. PMLR, 2017.

Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J. Roberts, and Chris C. Holmes.
Explicit regularisation in Gaussian noise injections. Advances in Neural Information Processing
Systems, 33:16603–16614, 2020.

Alexander Camuto, Xiaoyu Wang, Lingjiong Zhu, Chris Holmes, Mert Gurbuzbalaban, and Umut
Simsekli. Asymmetric heavy tails and implicit bias in gaussian noise injections. In International
Conference on Machine Learning, pp. 1249–1260. PMLR, 2021.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: A method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

Ege Erdogan, Alptekin Kupcu, and A Ercument Cicek. Unsplit: Data-oblivious model in-
version, model stealing, and label inference attacks against split learning. arXiv preprint
arXiv:2108.09033, 2021.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of the degree
distribution of private networks. In 2009 Ninth IEEE International Conference on Data Mining,
pp. 169–178. IEEE, 2009.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative in-
ference. In Proceedings of the 35th Annual Computer Security Applications Conference, pp.
148–162, 2019a.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Parametric noise injection: Trainable randomness
to improve deep neural network robustness against adversarial attack. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 588–597, 2019b.

Rui Hu, Yanmin Gong, and Yuanxiong Guo. Federated Learning with Sparsification-Amplified Pri-
vacy and Adaptive Optimization. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, 2021.

10

Under review as a conference paper at ICLR 2023

Sanjay Kariyappa and Moinuddin K Qureshi. Gradient inversion attack: Leaking private labels in
two-party split learning. arXiv preprint arXiv:2112.01299, 2021.

Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and Pierre Genevès. Compression boosts
differentially private federated learning. In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 304–318. IEEE, 2021.

André I Khuri. Advanced calculus with applications in statistics. John Wiley & Sons, 2003.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Yinan Li and Fang Liu. Adaptive Gaussian Noise Injection Regularization for Neural Networks. In
International Symposium on Neural Networks, pp. 176–189. Springer, 2020.

Soon Hoe Lim, N. Benjamin Erichson, Liam Hodgkinson, and Michael W. Mahoney. Noisy recur-
rent neural networks. Advances in Neural Information Processing Systems, 34, 2021.

Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. Fedsel: Federated sgd under local
differential privacy with top-k dimension selection. In International Conference on Database
Systems for Advanced Applications, pp. 485–501. Springer, 2020.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
privacy. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 3–18, 2020.

Milad Nasr and Reza Shokri. Improving deep learning with differential privacy using gradient
encoding and denoising. arXiv preprint arXiv:2007.11524, 2020.

Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the sparse
and approximate cases. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 351–360, 2013.

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference at-
tacks on split learning. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2113–2129, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Yee Teh, David Newman, and Max Welling. A collapsed variational bayesian inference algorithm
for latent dirichlet allocation. Advances in neural information processing systems, 19, 2006.

Tom Titcombe, Adam J. Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences
against model inversion attacks for split neural networks. arXiv preprint arXiv:2104.05743, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018a.

11

Under review as a conference paper at ICLR 2023

Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and Abhimanyu Dubey. No
peek: A survey of private distributed deep learning. arXiv preprint arXiv:1812.03288, 2018b.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. Reducing leakage in
distributed deep learning for sensitive health data. arXiv preprint arXiv:1812.00564, 2019.

Bao Wang, Quanquan Gu, March Boedihardjo, Lingxiao Wang, Farzin Barekat, and Stanley J. Os-
her. DP-LSSGD: A stochastic optimization method to lift the utility in privacy-preserving ERM.
In Mathematical and Scientific Machine Learning, pp. 328–351. PMLR, 2020a.

Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun Bai, and Hao Li. Hybrid differentially
private federated learning on vertically partitioned data. arXiv preprint arXiv:2009.02763, 2020b.

Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, and Philip S. Yu. Not just privacy:
Improving performance of private deep learning in mobile cloud. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2407–2416, 2018.

Wenxiao Wang, Tianhao Wang, Lun Wang, Nanqing Luo, Pan Zhou, Dawn Song, and Ruoxi Jia.
Dplis: Boosting utility of differentially private deep learning via randomized smoothing. Pro-
ceedings on Privacy Enhancing Technologies, 4:163–183, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret re-
vealer: Generative model-inversion attacks against deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 253–261, 2020.

12

	Introduction
	Related Work
	Theoretical Guarantee
	A linear layer
	Nonlinear loss function for classification task

	Experimental Evaluation
	Simulation
	DNN Experiments
	Attack defense

	Conclusion and Discussion

