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ABSTRACT

Reasoning Large Language Models (RLLMs) excelling in complex tasks present
unique challenges for digital watermarking, as existing methods often disrupt
logical coherence or incur high computational costs. Token-based watermarking
techniques can corrupt the reasoning flow by applying pseudo-random biases, while
semantic-aware approaches improve quality but introduce significant latency or
require auxiliary models. This paper introduces ReasonMark, a novel watermark-
ing framework specifically designed for reasoning-intensive LLMs. Our approach
decouples generation into an undisturbed Thinking Phase and a watermarked An-
swering Phase. We propose a Criticality Score to identify semantically pivotal
tokens from the reasoning trace, which are distilled into a Principal Semantic
Vector (PSV). The PSV then guides a semantically-adaptive mechanism that mod-
ulates watermark strength based on token-PSV alignment, ensuring robustness
without compromising logical integrity. Extensive experiments show ReasonMark
surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing
translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points.
These advancements are achieved alongside a 0.34% higher watermark detection
AUC and stronger robustness to attacks, all with a negligible increase in latency.
This work enables the traceable and trustworthy deployment of reasoning LLMs in
real-world applications.

1 INTRODUTION

Large Language Models (LLMs) have demonstrated remarkable advancements in recent years,
achieving state-of-the-art performance across a multitude of domains including information retrieval
(Labruna et al., 2024; Zhu et al., 2023; Jin et al., 2025), medical diagnosis (Zhou et al., 2024),
financial analysis (Li et al., 2023b; Lopez-Lira et al., 2025), legal assistance (Kuk & Harasta, 2025;
Fei et al., 2023), and academic research (Liao et al., 2024; Naveed et al., 2023). More recently, a new
wave of models, exemplified by systems like ChatGPT-4o (Jaech et al., 2024) and DeepSeek-V2 (Guo
et al., 2025), have showcased superior capabilities in complex reasoning tasks such as mathematical
problem-solving, strategic planning, code generation, and scientific discovery (Guo et al., 2025; Min
et al., 2024; Wei et al., 2025; Wen et al., 2025). These reasoning-intensive LLMs often employ distinct
training paradigms and inference mechanisms, such as internal monologues or chain-of-thought
(CoT) prompting (Wei et al., 2022), which differentiate them significantly from their predecessors.

The burgeoning capabilities and widespread adoption of LLMs, particularly those adept at reasoning,
necessitate robust mechanisms for ensuring content authenticity, traceability, and intellectual property
protection. Digital watermarking (Kirchenbauer et al., 2023b) has emerged as a promising technique
to invisibly embed identifiable signals within model-generated text, thereby enabling source tracking
and mitigating misuse (Abdelnabi & Fritz, 2021; Chang et al., 2024; Hou et al., 2023). However,
existing watermarking algorithms, largely developed for general-purpose LLMs, face significant
challenges when applied to reasoning-based models. For instance, methods like KGW (Kirchenbauer
et al., 2023b), which rely on pseudo-random vocabulary partitioning, can inadvertently disrupt the
logical consistency of the model’s internal reasoning—the thinking phase—thereby compromising
the coherence and accuracy of the final answer. Other approaches that focus on preserving text quality,
such as unbiased sampling techniques (Hu et al., 2023), often do so at the cost of detection efficiency.
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Conversely, methods like EWD (Lu et al., 2024) and SWEET (Lee et al., 2023), while achieving higher
detection rates, may introduce perceptible artifacts that degrade text quality. More sophisticated
strategies like WaterMax (Giboulot & Furon, 2024), which perform multiple generation runs to
find optimally watermarked outputs, achieve a better balance but incur substantial computational
overhead and increased inference latency. This persistent trade-off among text quality, watermark
detectability, and computational efficiency has hindered the practical deployment of watermarking in
many real-world applications (Liu et al., 2024b).

To address these challenges, we introduce ReasonMark, a novel watermarking framework specifically
designed for large reasoning models, centered on the principle of Distilling the Thought, Watermarking
the Answer, as illustrated in Fig. 1. Our approach decouples the generation process into two distinct
stages: an undisturbed internal Thinking Phase, where the model performs its reasoning, and a
subsequent Answering Phase, where the final response is generated. The core innovation lies in
preserving the integrity of the thinking phase entirely. We analyze it to identify a set of Criticality
Tokens (CTs) that encapsulate the most salient semantic anchors of the reasoning process. These
tokens are then distilled into a continuous vector representation, the Principal Semantic Vector
(PSV), which serves as a dynamic semantic compass for the answering phase. The PSV guides a
semantically-adaptive watermarking mechanism, where the watermark strength applied to candidate
tokens is modulated by their alignment with the model’s established reasoning trajectory. By aligning
the watermark with the model’s own logical flow, ReasonMark can embed a robust and detectable
signal without disrupting coherence or accuracy. This effectively resolves the debilitating trade-off
between watermark strength and semantic integrity, all while avoiding the additional inference latency
common in other semantic-aware techniques. Our main contributions are threefold:

• We propose a novel two-phase watermarking framework that decouples a model’s internal
reasoning from its final answer generation. This is the first approach specifically designed to
protect the outputs of RLLMs without corrupting their logical integrity.

• We design a principled method to distill the semantic essence of the model’s reasoning pro-
cess, involving a Criticality Score to identify key tokens and their subsequent transformation
into a PSV that provides a continuous, directional guide for watermarking.

• Extensive experiments show ReasonMark surpasses baselines by reducing text PPL by 0.35,
increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67
points, while also improving detection AUC by 0.34% with negligible latency.

2 PRELIMINARY

In this section, we introduce token-based and semantic-based watermarking methods, outlining their
respective strengths and limitations. We then formalize the framework of our proposed algorithm and
define its key concepts.

Related Work. Existing LLM watermarking research is primarily divided into token-based and
semantic-based approaches. Token-based methods, such as the seminal work by Kirchenbauer et al.
(2023b), partition the vocabulary and apply a statistical bias during generation (Hu et al., 2023).
While effective for detection, their pseudo-random nature can disrupt the logical flow and semantic
consistency crucial for reasoning tasks (Yoo et al., 2024; Chang et al., 2024). Adaptive watermark
strength methods like (Wang et al., 2025b) balance the effectiveness-quality trade-off at the list level
but ignore the intra-list importance of individual tokens. Conversely, semantic-based methods operate
in the embedding space to improve text quality and robustness against paraphrasing (Ren et al., 2023;
Hou et al., 2023). However, they often introduce significant computational overhead by requiring
auxiliary models or architectural modifications (Baldassini et al., 2024), and are not specifically
tailored to preserve the step-by-step integrity of complex reasoning (Dasgupta et al., 2024). Our PSV-
guided watermarking framework bridges this gap by distilling the reasoning phase into a continuous
Principal Semantic Vector, which dynamically modulates watermark strength based on token-PSV
alignment. This approach ensures the watermark is semantically coherent, thus preserving logical
integrity—a key weakness of token-based methods—while maintaining high detection efficiency
and avoiding the extra inference costs typical of many semantic-aware techniques (Baldassini et al.,
2024). A more comprehensive review of related work is available in Appendix B.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

…
✔❌ ❌

❌ ✔

Token-based

ReasonMark

I. Input II. Thinking Phase V. Answering Phase

<think>

<\think>

III. PSV  

PCA  𝑅!

𝑅"#$

❌❌
✔

IV. Watermark

Strength based on 𝑅!

Multi sampling

Traditional

Normal Tokens Critical Tokens Disruptive Green Tokens Coherent Green Tokens
Coherent Green Tokens
Guided by Semantic Direction Red Tokens

Sampling One time
PSV 𝑅" , where 𝑅# 
Initialized with PCA Semantically aligned

Prompt

𝑅!

❌  ✔ Reject or Accept Sampling

Semantic-based

RLLM

𝐶𝑆 𝑤 = 𝐺𝐶𝐶 𝑤 + log 1 + 𝐶𝑃𝑆 𝑤

Top-K Critical Tokens

<think>

<\think>

Model LogitsSemantic Guided Strength

𝑅"

Figure 1: ReasonMark identifies top-K critical tokens during the thinking phase (II.) and uses PCA
(III.) to establish an initial Principal Semantic Vector (PSV). This semantic vector then guides the
watermarking process (IV.) by dynamically adjusting the logits to favor semantically coherent green
tokens and penalize disruptive ones.This enables the efficient generation of a semantically coherent
watermarked sequence with a high proportion of green tokens (V.) by sampling only one time.

Core Framework illustrated. Our proposed watermarking framework introduces a semantics-
aware approach that preserves logical coherence in reasoning-based language models by dynamically
aligning watermark strength with semantic relevance. Unlike conventional pseudo-random parti-
tioning methods, our approach first identifies Critical Tokens from the reasoning phase and distills
them into a continuous Principal Semantic Vector. The PSV then guides watermark embedding by
selectively boosting green-list tokens that are semantically aligned with the reasoning trajectory,
even if initially lower in probability. This resolves the fundamental trade-off between watermark
strength and semantic integrity—preventing distortion while maintaining high detectability—through
adaptive, semantically-grounded modulation.

Phase Segmentation. Let T = {t1, t2, ..., tS} denote the full sequence of S tokens generated by a
language model. We partition T into two distinct phases. The Thinking Phase: Tthink = {ti}Ni=1 =
{t1, t2, ..., tN}, comprising the model’s internal chain-of-thought or reasoning steps. The Answering
Phase: Tanswer = {ti}SN+1 = {tN+1, ..., tS}, representing the final response intended for the user.
The delineation point k is identified via a Marker-Based Separation Algorithm (Guo et al., 2025) that
detects structural delimiters (e.g., <think>, <\think>), as illustrated in Fig 1.II.

Definition 2.1 (Semantic Guidance via Principal Semantic Vector). Given the thinking phase Tthink,
the sequence of probability distributions over the vocabulary V during thinking phase {Pi}Ni=1, and
the previously generated answer tokens {tN+1, ..., ti}, we define:

R0 = fη({ti}Ni=1, {Pi}Ni=1), δi,ti = gσ(Ri−1, ti), Ri = fµ(Ri−1, ti) (1)

Here, the initial PSVR0 captures the reasoning trajectory, while δi,ti provides watermark guidance to
token ti at step i. The PSVRi updates dynamically to reflect the evolving semantic context, ensuring
watermark strength aligns with the model’s logical flow throughout answer generation. The design of
fη (Fig. 1.II. to III.) poses the primary challenge; thus, the rest of this section details its design, while
the implementations of gσ (Fig. 1.IV.) and fµ (Fig. 1.III.) are deferred to Section 3.2.

Principle Semantic Vector Construction. The foundation for constructing PSV rests upon identi-
fying a curated set of Critical Tokens (CTs) within the thinking phase Tthink, inspired by (Liu et al.,
2025a). These CTs are hypothesized to encapsulate the most salient semantic anchors of the reasoning
process and thus provide the essential raw material for deriving the initial PSV. We then formalize the
notion that a token’s criticality is a function of both its influence on the generative trajectory and its
ability to resolve uncertainty. This principle is encapsulated in the following theorem, which defines
an optimal set of CTs.

Theorem 2.2 (Optimal Representation of Critical Tokens). The optimal set of Critical Tokens, denoted
C∗ ⊆ V , is the set that maximizes a joint measure of causal influence and competitive significance,
subject to a constraint |C| ≤ K on its size:
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C∗ = arg max
C⊆V,|C|≤K

∑
w∈C

[Dcausal(w∥θ) + ω · Ej>i [∆Si→j(w)]] (2)

where K is the maximum desired number of Critical Tokens, θ represents model parameters, and ω
balances the two measures. The Causal Divergence Dcausal(w∥θ) is:

Dcausal(w∥θ) =
N∑
i=1

λi · ∥∇θEw′∼Pi
[Sim(w,w′)]∥2 (3)

and the Competitive Entropy Reduction ∆Si→j(w) is:

∆Si→j(w) = S(Pj)− S(Pj |w ∈ Topk(Pi)) (4)

Further explaination can be seen at Appendix C. While Theorem 2.2 provides a principled foundation,
the direct computation of the causal divergence term, which requires evaluating gradients with respect
to all model parameters θ, is computationally prohibitive for large models.

3 METHODOLOGY

3.1 ALGORITHMIC REALIZATION OF PSV CONSTRUCTION fη

This construction is primarily realized through Critical Tokens (CTs). Consequently, this section
is organized into two main parts: the first details the method for identifying CTs, and the second
explains how these tokens are utilized to construct PSV, corresponding to the function fη in Eq. 1.

3.1.1 CRITICALITY SCORE

Translating Theorem 2.2 into a practical algorithm, we devise a Criticality Score for each word
w ∈ V . The proof of this translation’s validity is discussed in detail in Appendix D. This score is a
composite measure reflecting both the global causal influence and the local competitive persistence
of w.

Global Causal Contribution (GCC). This component aims to approximate Dcausal(w∥θ) (Eq. equa-
tion 3) by quantifying a word w’s capacity to indirectly shape the reasoning trajectory through
sustained high probability in causally interconnected steps. The GCC is formulated as:

GCC(w) =
N∑
i=1

Pi(w) · λi ·
M∑

j=i+1

αi→j · Pj(w)

 (5)

The weight λi = JS(Pi∥Pi−1) captures the magnitude of change in the models predictive distribution
from step i − 1 to i. A large JS divergence signals a critical juncture in the reasoning process,
amplifying the contribution of words prominent at such points. The term αi→j =

Sim(Pi,Pj)∑N
k′=1 Sim(Pi,Pk′)

represents the normalized semantic influence of the distributional state at step i on that of step j. Here,
Sim(Pi, Pj) =

Pi·Pj

∥Pi∥∥Pj∥ is the cosine similarity between the vector representations of probability
distributions Pi and Pj . This factor ensures that the influence of early critical steps is appropriately
propagated and weighted in assessing a words contribution to later stages of reasoning.

Competitive Persistence Scoring (CPS). This component approximates Ej>i[∆Si→j(w)] (from
Eq. equation 4) by rewarding words that not only feature prominently in competitive generation
contexts but also maintain this prominence over subsequent steps. The CPS for a word w is calculated
as:

CPS(w) =
N∑
i=1

S(ti)−1 · (1−∆i(w)) ·
M∑

j=i+1

I(w ∈ topk(Pj))

 (6)

The term S(ti)
−1 = (− logPi(ti))

−1 inversely weights the contribution by the surprisal of the token
ti actually generated at step i. This rewards contexts where the model makes a high-confidence
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choice, suggesting that such choices are more deliberate and impactful. The core of this reward lies
in ∆i(w), which measures the competitive pressure surrounding w at step i:

∆i(w) =


|Li(w)−maxv ̸=w Li(v)|, if w = ti (i.e., w was selected)
|Li(w)− Li(ti)|, if w ∈ topk(Li) and w ̸= ti (i.e., w was a close competitor)
1, otherwise (not competitive)

(7)
When w is the selected token ti, ∆i(w) is its logit margin over the strongest competitor. If w was a
top-k candidate but not selected, ∆i(w) is its logit difference from the winner ti. A smaller ∆i(w)
indicates more intense competition. The reward thus assigns higher rewards to tokens that emerge
from, or are central to, highly contested selection points.∑M

j=i+1 I(w ∈ topk(Pj)))counts the number of times w appears among the top-k probability
candidates in the M − i steps immediately following step i. This serves as empirical validation of
ws enduring relevance and high-frequency consideration throughout the local reasoning window,
reinforcing its status as a critical element.

Consolidated Criticality Score (CS). The final score synergistically combines these two aspects
to provide a holistic measure of a token’s importance.

CS(w) = GCC(w) · log(1 + CPS(w)) (8)

The set of Critical Tokens C′, is then formed by selecting the K tokens with the highest CS values,
as Fig 1.II illustrated, providing the semantic anchors for the next stage of our methodology. The
case study in Appendix I examines the distribution of normalized CS for CTs on different datasets,
revealing their correspondence with the input and output of the model.

3.1.2 FROM CRITICAL TOKENS TO PRINCIPAL SEMANTIC VECTOR

While the discrete set C′ identifies key semantic anchors, it falls short of capturing the holistic,
relational logic inherent in complex reasoning. To overcome this limitation, we transform this
discrete set of tokens into a continuous vector representation, the PSV, that encapsulates the dominant
semantic direction of the entire thinking phase.

Let E(·) be the model’s token embedding function. We first construct an embedding matrix H ∈
RK×d by stacking the embeddings of the K identified Critical Tokens from C′, where d is the
embedding dimension.

H = [E(w1), E(w2), ..., E(wK)]T , ∀wi ∈ C′ (9)

We then apply Principal Component Analysis (PCA) to H . The first principal component v1,
represents the direction of maximum variance within the embeddings of the most critical tokens. This
direction captures their most significant shared semantic properties and reflects the primary axis of
the model’s reasoning. We define the initial PSVR0 as this first principal component:

R0 = v1 = PCA1(H) (10)

This initial PSV R0, described in Definition 2.1 and Fig. 1.III, acts as a global semantic compass,
providing a stable, overarching directional guide for the subsequent answering phase.

3.2 SEMANTICALLY-ADAPTIVE WATERMARK EMBEDDING gσ AND fµ

Our framework departs from conventional methods that employ a fixed watermark strength (Kirchen-
bauer et al., 2023b), inspired by Wang et al. (2025b). Instead, we introduce a semantically-adaptive
mechanism where the watermark’s intensity is dynamically modulated based on the alignment of
candidate tokens with the current PSV. This allows for a strong watermark signature on semantically
coherent tokens while minimizing interference with the model’s natural generation process.

Dynamic Watermark Strength. At each generation step i in the answer phase, we partition the
vocabulary V into a green list Vg and a red list Vr based on a standard cryptographic hash of the
previous token, following Kirchenbauer et al. (2023b). However, instead of applying a fixed bonus δ
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Table 1: Experimental results on C4, WMT16-DE-EN, AIME, and GSM8K datasets for Qwen3-32B
and Deepseek-R1 32B models. We report Perplexity (PPL)(↓) for text quality, BLEU and mACC(↑),
short for math ACC, for task performance, and AUC (↑) for watermark detection. The best result
among watermarking methods for each metric is in bold.

C4 WMT AIME GSM8K
Qwen3 Deepseek Qwen3 Deepseek Qwen3 Deepseek Qwen3 Deepseek

Method PPL AUC PPL AUC BLEU AUC BLEU AUC mACC AUC mACC AUC mACC AUC mACC AUC

No Watermark 10.55 - 10.82 - 7.851 - 7.622 - 70.03 - 71.52 - 94.01 - 95.21 -

KGW 12.15 98.78 12.52 98.55 7.351 82.36 7.185 81.95 69.23 98.16 70.67 98.43 92.98 94.11 94.16 94.57
UPV 11.41 97.01 11.62 97.15 7.493 82.75 7.288 82.50 63.04 86.94 64.23 87.46 92.51 81.92 93.67 82.45
Unigram 10.66 97.10 10.97 96.90 8.441 83.26 8.157 83.01 56.02 93.27 57.36 93.62 93.88 82.53 94.94 83.07
Unbiased 11.52 93.06 11.92 92.58 7.516 84.50 7.305 84.21 65.51 85.73 66.83 86.26 92.17 80.52 93.21 81.04
SynthID 12.69 87.61 13.22 87.11 6.953 78.15 6.781 77.86 52.34 83.12 53.65 83.67 90.53 74.24 91.46 74.88
SWEET 12.46 97.27 12.62 97.20 7.209 85.10 7.016 84.88 66.01 99.86 67.28 99.89 93.74 92.51 94.82 93.13
EWD 11.89 99.22 12.12 99.18 7.413 86.80 7.228 86.45 69.52 99.91 71.04 99.94 93.67 95.82 94.76 96.41
WatMe 11.27 98.53 11.67 98.60 8.038 86.93 7.893 86.55 67.03 88.11 68.46 88.53 93.82 84.25 94.87 84.74
MorphMark 11.01 94.16 11.22 94.55 9.752 76.08 9.463 75.82 68.74 88.31 70.17 88.79 93.52 76.76 94.63 77.15

SemStamp 11.42 97.85 11.73 97.65 7.912 85.20 7.682 84.80 68.90 98.95 70.31 99.15 93.05 94.80 94.28 95.38
k-SemStamp 11.22 98.10 11.51 97.90 8.123 85.50 7.886 85.15 69.15 99.25 70.55 99.35 93.25 95.10 94.45 95.65
SimMark 11.18 97.95 11.46 97.75 8.191 85.40 7.954 85.00 69.05 99.10 70.48 99.23 93.18 94.95 94.39 95.52

ReasonMark 10.31 99.31 10.54 99.52 9.916 87.25 9.653 85.10 69.86 99.95 71.34 99.98 93.96 95.94 95.14 96.56

to the logits of all green-list tokens, we compute a token-specific bonus δi,w for each candidate token
w ∈ Vg . This bonus is proportional to the token’s semantic relevance to the current PSVRi−1:

sw,i =
E(w) · Ri

∥E(w)∥∥Ri∥
, δi,w = δ0 + δλ · sw,i−1 (11)

where sw,i−1 is the cosine similarity between the embedding of token v and the PSVRi−1. δ0 is a
base watermark strength, and δλ is a scaling factor that controls the sensitivity to semantic alignment.
The logit for a green-list token w is then modified as Li(w) ← Li(w) + δi,w. This ensures that
green-list tokens that are highly aligned with the intended reasoning trajectory receive a stronger
watermark, reinforcing logical consistency. If a highly probable, contextually appropriate token falls
into the red list, the relatively lower bonuses on green-list alternatives prevent significant quality
degradation. The effect of these two parameters on model performance is analyzed in Section 4.5.

Dynamic PSV Update. The PSV is not static; it evolves with the generation of the answer to act as
a semantic compass, tracking the local semantic context. After a token ti is generated at step i, we
update the PSV using an exponential moving average:

Ri = (1− βi)Ri−1 + βiE(ti), where βi = βbase · sti,i−1 (12)

The update rate βi is itself adaptive, depending on the semantic contribution of the newly generated
token, where βbase ∈ [0, 1] is a small base learning rate, which is also analyzed in Section 4.5. This
mechanism ensures that the PSV gradually incorporates the semantic content of the unfolding answer,
allowing for smooth topical transitions while remaining anchored to the initial reasoning established
in Tthink.

Watermark Detection. A significant advantage of our approach is that the detection process
requires no modification to standard procedures in Kirchenbauer et al. (2023b). Despite the dynamic
nature of the watermark embedding, detection remains stateless and does not require access to the
PSV or the original prompt. It is performed using the same statistical z-test as in KGW by checking
for a statistically significant bias towards green-list tokens in the generated text. The performance
gain of the algorithm is attributed to its ability to identify a larger set of valid green tokens from the
candidate list at each step i, thereby reducing the number of red tokens.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Prompts. We evaluate our method on datasets spanning both text generation and
reasoning tasks. (1) Our evaluation of text generation encompasses two primary tasks. The first
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is text completion, for which we adopt the C4 dataset (Raffel et al., 2023), which is widely used
in prior watermarking studies. The first 30 tokens of each sample are taken as prompts, and the
model generates the continuation. The second is machine translation, and we use the WMT16
German–English dataset (Bojar et al., 2016), where the task is to translate German sentences into
English. (2) For reasoning, we employ the AIME (Veeraboina, 2023) and GSM8K (Cobbe et al., 2021)
mathematical benchmark, which provides standardized solutions, enabling a rigorous evaluation
of watermarking in tasks where correctness can be objectively assessed. The prompts used in our
experiments are detailed in Appendix F.1.

Models and Baselines. We conduct experiments with Qwen3-32B (Yang et al., 2025) and DeepSeek-
R1-Distill-Qwen-32B (abbreviated as DeepSeek in subsequent section) (Guo et al., 2025) models. To
ensure a comprehensive comparison, we benchmark our method against a range of representative wa-
termarking algorithms, including token-based methods KGW (Kirchenbauer et al., 2023b), UPV (Liu
et al., 2023), Unigram (Zhao et al., 2023), Unbiased (Hu et al., 2023), SWEET (Lee et al., 2023),
EWD (Lu et al., 2024), WatMe (Chen et al., 2024), and MorphMark (Wang et al., 2025b), as well
as semantic-based approaches SemStamp (Hou et al., 2023), k-SemStamp (Hou et al., 2024), and
SimMark (Dabiriaghdam & Wang, 2025). Implementations are facilitated by the MarkLLM (Pan
et al., 2024) repository. Evaluation Metrics is detailed discussed in Appendix F.2.

Hyperparameters. For methods requiring a δ parameter (e.g., KGW, Unigram), we set δ = 2 by de-
fault. And we set δ0 = 1.5, δλ = 3.0 in Eq. 11, which is analysed in Sec 4.5. For text generation tasks,
we apply repetition penalties to reduce duplicate outputs, including the no_repeat_ngram_size
constraint. For mathematical reasoning tasks, however, we refrain from imposing such penalties, as
preliminary experiments showed that these constraints significantly reduce problem-solving accuracy,
regardless of watermarking.

4.2 MAIN RESULTS

As presented in Table 1, ReasonMark demonstrates a superior balance between output quality, task
performance, and watermark detectability across all evaluated datasets and models, consistently out-
performing existing state-of-the-art methods. A comparative analysis of inference latency, averaged
over multiple executions, is detailed in Appendix G.2. The results demonstrate that our method’s
computational overhead is highly competitive. Furthermore, we provide case studies in Appendix I
and visualization of PSV and CTs in Appendix G.4, examining the identified critical tokens and the
embedded watermark to offer qualitative insights into the efficacy of our algorithm.

On text generation tasks, our method achieves the lowest perplexity (PPL) on the C4 dataset (10.31
for Qwen3-32B and 10.54 for Deepseek-R1 32B), indicating the highest text quality that is nearly on
par with non-watermarked text. For machine translation on WMT16-DE-EN, ReasonMark obtains
the highest BLEU scores among all watermarking techniques (9.916 and 9.653), showcasing its
ability to preserve translation fidelity. A more detailed breakdown of the results for various translation
metrics can be found in Appendix G.1.

Crucially, in reasoning-intensive benchmarks, our approach excels at maintaining logical integrity. On
both AIME and GSM8K, ReasonMark achieves the highest mathematical accuracy (mACC), closely
matching or even slightly exceeding the baseline performance without a watermark, while other
methods often lead to a noticeable degradation in performance. For instance, on the AIME dataset
with the Deepseek model, our method scores 71.34 in mACC, surpassing all other watermarking
techniques and nearing the 71.52 of the non-watermarked baseline.

Across all these tasks, ReasonMark consistently delivers the highest or near-highest detection rates,
with an AUC of 99.31 and 99.52 on C4, and over 99.9 on the AIME reasoning task. This empiri-
cally validates that our framework effectively resolves the trade-off between semantic integrity and
watermark robustness, preserving the performance of reasoning LLMs while embedding a strong,
detectable signal.
4.3 ATTACK ROBUSTNESS ANALYSIS

In our robustness experiments, we evaluated multiple watermarking algorithms under two attack
settings, A1 and A2 (Lau et al., 2024) on C4 dataset using Qwen3 model. Attack type A1 applies
random word-level perturbations, including insertions, deletions, and synonym substitutions, with
30 of the tokens modified. Attack type A2 consists of semantic-level transformations via translation
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Figure 2: ROC curves under different attack methods for various watermarking approaches.

and paraphrasing, which are implemented through calls to the DeepSeek-V3 API. For the translation
attack, each text is translated into Chinese and subsequently back into English.

As shown in Fig 2, ReasonMark demonstrates superior robustness against both word-level and
semantic-level attacks. Achieving a near-perfect unattacked AUC of 99.31, it maintains high de-
tectability above 93.5 under word deletion, insertion, and synonym replacement. Crucially, it shows
strong resilience to semantic attacks, retaining a high AUC of 82.58 against translation and 70.54
against paraphrasing. This resilience stems from our core principle of embedding the watermark
in alignment with the model’s reasoning, captured by the PSV. By tying the watermark to the core
semantic meaning rather than the syntactic structure, ReasonMark ensures persistence against such
modifications, validating the efficacy of our semantically-grounded approach in adversarial settings.

4.4 ABLATION STUDY

Table 2: Ablation study on the C4 dataset.

Method / Variant PPL AUC
No Watermark 10.5488 -

ReasonMark 10.3080 99.31
w/o CTs 12.8801 99.21
w/o GCC 11.1510 99.11
w/o CPS 11.0597 98.69

To validate our core components, we conducted an ab-
lation study in Table 2. We tested variants by replacing
our Critical Token (CT) selection with random sampling
(w/o CTs), and by individually removing the Global
Causal Contribution (w/o GCC) and Competitive Per-
sistence Scoring (w/o CPS) modules.

The results confirm that all components are essential.
The full ReasonMark model achieves the best perfor-
mance, with the lowest perplexity (10.3080) and a high
AUC (0.9931). The most significant performance drop
occurred in the w/o CTs variant, where PPL increased
to 12.8801. This demonstrates that our principled,
semantic-based token selection is critical for maintain-
ing text quality, as random tokens fail to provide coherent guidance for the watermark. Furthermore,
removing the GCC or CPS modules also degrades performance. The absence of GCC (w/o GCC)
primarily impacts text quality (PPL increases to 11.1510), while removing CPS (w/o CPS) leads to a
more noticeable drop in watermark detectability (AUC falls to 98.69). This shows that GCC is vital
for semantic coherence, and CPS is crucial for embedding a robust watermark. In conclusion, the
components are synergistic and indispensable for achieving the optimal balance between text quality
and detection robustness.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 HYPERPARAMETER SENSITIVITY ANALYSIS
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Figure 3: Visualization of β0 and top-k.

β0 and Top-k Parameter Analysis. To understand the
impact of key hyperparameters on our method’s perfor-
mance, we conduct a sensitivity analysis for the PSV up-
date rate β0 and the top-k sampling value. Figure 3 illus-
trates how text quality, measured by perplexity, varies with
these parameters. The analysis reveals that ReasonMark
is robust, showing stable performance across a wide range
of values for both hyperparameters.

For the PSV update rate β0, perplexity follows a U-shaped
curve, starting at 11.1 for a value of 10−3, reaching its
minimum of approximately 10.3 around 0.1, and then
increasing again. Similarly, the top-k parameter shows
that perplexity is highest at a small k of 3, drops to its lowest point around k=10, and then gradually
rises as k increases to 100. Notably, the perplexity of ReasonMark consistently remains well below
the KGW baseline across all tested settings, underscoring a persistent advantage in text quality.
Critically, the results highlight that with careful tuning, our method’s performance can even surpass
the non-watermarked baseline. The optimal configuration, with a β0 value in the range of 0.01 to 0.1
and a top-k value between 10 and 50, yields a perplexity score that is superior to that of the original,
non-watermarked text. This demonstrates that ReasonMark not only embeds a robust watermark but
can also enhance text fluency.
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Figure 4: Visualization of δ0 and δλ.

δ0 and δλ Interaction Analysis. To maintain the overall
watermark strength approximately consistent with other
methods in our hyperparameter settings, specifically δ = 2,
as outlined in Section 2, and considering the formulation
in Eq. 7, we set δ0 within a range of 1 to 2. This ensures
that the overall watermark strength does not deviate sig-
nificantly from the baseline methods. Thus, we primarily
focus on adjusting the parameter δλ, varying it from 1 to
5. Figure 4 provides a segmented surface visualization
that reveals the complex interaction patterns between these
critical hyperparameters. The results from the figure indi-
cate that variations in δ0 have a more substantial impact on
the AUC, while variations in δλ exert a greater influence
on the PPL. This observation aligns with our algorithmic
design: δ0 ensures a fundamental watermark strength, whereas δλ dynamically adjusts the intensity to
assign higher watermark strength to semantically critical tokens, thereby achieving the dual objectives
of effective watermark detection and high text quality. Furthermore, although parameter adjustments
lead to performance variations, the overall efficacy remains within a stable range, demonstrating the
robustness of the ReasonMark algorithm.

5 CONCLUSION

In this work, we introduced the ReasonMark, the first watermarking framework specifically designed
to protect the outputs of reasoning-based Large Language Models. By distinguishing between the
model’s internal thinking process and the final answer generation, our method effectively preserves the
integrity of the model’s reasoning capabilities a critical vulnerability of conventional watermarking
techniques. The core innovations of our approach, including the identification of Critical Tokens
through a principled Criticality Score and their distillation into a continuous Principal Semantic
Vector (PSV), allow for a semantically-aware embedding process. This ensures that the watermark
aligns with the model’s own logical trajectory, resolving the persistent trade-off between watermark
detectability, text quality, and inference cost. Our experiments confirm that the ReasonMark
maintains high-quality, logically coherent outputs and robust watermark detection with minimal
inference latency. This work represents a significant step towards enabling safe, traceable, and
accountable deployment of advanced reasoning LLMs in real-world applications. Usage of LLMs
when drafting the manuscript is detailed in Appendix A.
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A USE OF LLMS

The Large Language Model (LLM) was utilized to assist in the language editing and polishing of
this manuscript. Specifically, its application was confined to correcting grammatical errors, refining
sentence structure, and enhancing the overall readability of the text. The LLM was not used for
any part of the scientific process, including the generation of hypotheses, data analysis, or the
interpretation of results. The intellectual content of this paper is entirely the product of the authors,
who have reviewed all revisions and take complete responsibility for the work presented.

B DETAILED RELATED WORK

The field of digital watermarking for Large Language Models (LLMs) has rapidly expanded to
address the growing need for content authenticity and intellectual property protection (Liu et al.,
2024b; Liang et al., 2024). Existing methods can be broadly categorized into three main paradigms:
vocabulary partitioning-based, semantic-aware, and those specifically targeting the unique challenges
of reasoning-based models.

B.1 VOCABULARY PARTITIONING-BASED WATERMARKING

The foundational approach in LLM watermarking involves partitioning the model’s vocabulary into a
green list and a red list based on a cryptographic hash of the preceding tokens. During generation,
a positive bias is added to the logits of green-list tokens, embedding a detectable statistical signal
into the output text. The seminal work by Kirchenbauer et al. (2023b) established this paradigm,
demonstrating its effectiveness for generating detectable signals even in short text spans.

Numerous variants have since been proposed to improve upon this core idea. Some methods focus
on preserving the original output distribution to enhance text quality, employing techniques like
reweighting (Hu et al., 2023), permutation-based schemes (Wu et al., 2023), or sampling-acceptance
protocols (Mao et al., 2024). While adaptive watermarking methods like MorphMark (Wang et al.,
2025b) balance the trade-off between watermark effectiveness and text quality across the red-green
list partition, they do not modulate the watermark strength in proportion to the varying importance of
individual tokens within the green list itself. Others selectively apply watermarking to high-entropy
tokens, particularly in specialized domains like code generation (Lee et al., 2023). Researchers have
also extended this framework to encode multi-bit messages using probability-balanced partitioning
(Wang et al., NA) or error-correction codes (Qu et al., 2025).

Despite their widespread adoption, vocabulary partitioning methods share a fundamental limitation:
their reliance on pseudo-random token selection can inadvertently disrupt the logical flow and
semantic consistency of the generated text (Yoo et al., 2024; Chang et al., 2024). This drawback
is particularly pronounced in reasoning-intensive models, where even minor perturbations to the
chain-of-thought can corrupt the entire reasoning process and lead to an incorrect final answer
(Kirchenbauer et al., 2023b).

B.2 SEMANTIC-AWARE AND CONTEXT-GUIDED WATERMARKING

To mitigate the quality degradation issues of vocabulary partitioning, a second wave of research has
focused on developing semantic-aware and context-guided watermarking techniques. These methods
move beyond statistical manipulation of token frequencies and instead operate in the semantic space
to embed watermarks in a more natural and robust manner.

One line of work leverages the semantic embedding space directly. For instance, SemaMark (Ren
et al., 2023) discretizes the embedding space and uses contrastive learning, while SEMSTAMP (Hou
et al., 2023) employs locality-sensitive hashing for semantic partitioning. Other approaches utilize
an auxiliary model to guide the watermarking process, such as generating watermark logits from
semantic embeddings (Liu et al., 2024a), measuring token distribution entropy to decide when to
apply the watermark (Liu & Bu, 2024), or generating dynamic, context-aware instructions for the
LLM to follow (Dasgupta et al., 2024). Post-hoc methods that do not require access to model internals
have also been explored; POSTMARK (Chang et al., 2024) instructs an LLM to insert specific words
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to embed a signal, while In-Context Watermarking (ICW) (Liu et al., 2025b) achieves embedding
solely through prompt engineering.

While these methods often yield higher text quality and improved robustness against paraphrasing
attacks (Rastogi & Pruthi, 2024), they typically introduce significant trade-offs. Many require training
auxiliary models or modifying the model architecture (Baldassini et al., 2024), incurring substantial
computational overhead and complexity. Furthermore, most of these approaches are designed for
general text generation and are not specifically tailored to preserve the delicate, step-by-step logical
integrity required by reasoning-intensive tasks.

B.3 WATERMARKING FOR REASONING LLMS

The emergence of powerful reasoning LLMs, such as DeepSeek-R1 (Guo et al., 2025) and Skywork
R1V2 (Wei et al., 2025), has introduced a new frontier for watermarking. These models often employ
a distinct two-phase generation process, producing an internal thinking phase (e.g., chain-of-thought)
before delivering the final answer. As noted, applying conventional watermarks uniformly across
both phases can severely degrade reasoning performance.

A nascent body of work has begun to address this specific challenge. These pioneering approaches
recognize the importance of the thinking phase and attempt to leverage it for more intelligent
watermark embedding. For example, some methods extract semantic patterns or critical tokens from
the reasoning steps to guide the watermarking process in the subsequent answer phase (Yoo et al.,
2024; Janas et al., 2025; Wang et al., 2025a). This strategy aims to align the watermark with the
model’s established logical trajectory, thereby preserving coherence.

Our work builds upon this insight but introduces a key innovation. Whereas prior methods rely on
discrete semantic anchors, we propose distilling the collective essence of the reasoning phase into
a continuous Principal Semantic Vector (PSV). This vector serves as a dynamic semantic compass
that guides a semantically-adaptive embedding mechanism in the answer phase. By modulating
the watermark strength based on each token’s alignment with the overall reasoning trajectory, our
framework achieves a superior balance of text quality, logical consistency, and watermark detectability
without incurring additional inference latency.

C THEOREM FURTHER EXPLAINED

Theorem 2.2 provides a principled basis for identifying tokens that are not merely frequent but are
integral to the structure and direction of the models thought process. It posits that the optimal set of
Critical Tokens, C∗, is found by maximizing the objective function in Eq. 2. This function combines
two key aspects: the causal influence of a token and its role in reducing predictive uncertainty,
balanced by a coefficient ω. The maximization is constrained by K, the maximum allowable number
of critical tokens, and depends on model parameters θ.

Causal Divergence (Dcausal(w∥θ)). This term, formally defined in Eq. 3, quantifies the potential
global influence of a word w on the reasoning path. Sim(w,w′) measures semantic similarity between
w and a word w′ sampled from Pi. The factor λi = JS(Pi∥Pi−1) is the Jensen-Shannon divergence,
weighting steps with significant distributional shifts more heavily. A word w is considered causally
critical if infinitesimal perturbations related to its semantic embedding (reflected by a large gradient
norm of the expected similarity with respect to model parameters θ) would lead to substantial
deviations in the overall reasoning trajectory. This term captures the sensitivity of the models
reasoning process to the semantic concept embodied by w.

Expected Competitive Entropy Reduction (Ej>i[∆Si→j(w)]). This term measures the extent to
which the competitive emergence (or potential emergence) of word w at step i reduces uncertainty
in subsequent reasoning steps j. The entropy reduction ∆Si→j(w) is given by Eq. 4, where S(Pj)
is the Shannon entropy of the distribution Pj , and S(Pj |w ∈ Topk(Pi)) is the conditional Shannon
entropy of Pj given that w was among the top-k probability candidates in the distribution Pi. If
the (potential) selection of w at step i leads to a more predictable (lower entropy) state at step j,
it signifies ws role in shaping the reasoning path. The expectation Ej>i averages this effect over
subsequent steps. The subsequent algorithmic development aims to operationalize these concepts.
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D MATHEMATICAL DERIVATIONS AND ELUCIDATIONS

This appendix provides supplementary details, derivations, and interpretations for the core mathemat-
ical constructs presented in Section 3, aiming to offer a more comprehensive understanding of the
theoretical underpinnings of our proposed framework.

D.1 ELABORATION ON THE GLOBAL CAUSAL CONTRIBUTION (GCC)

The Global Causal Contribution (GCC), as formulated in Eq. 5, serves as a tractable heuristic to
approximate the Causal Divergence term Dcausal(w|θ) introduced in Theorem 2.2 (specifically, Eq. 3).
This section further elucidates the conceptual steps and approximations involved in bridging the
theoretical Dcausal(w|θ) to the operational GCC score.

Recall the formal definition of Causal Divergence from Eq. 3:

Dcausal(w|θ) =
N∑
i=1

λi · ∥∇θEw′∼Pi
[Sim(w,w′)]∥2 (13)

where λi = JS(Pi|Pi−1) weights the importance of step i by the magnitude of distributional change
occurring at that step.

Expanding the Gradient of Expectation. As noted in Section 3, the score function estimator
(also known as the REINFORCE trick or log-derivative trick) allows rewriting the gradient of the
expectation term. Applying∇θEx∼pθ

[f(x)] = Ex∼pθ
[f(x) · ∇θ log pθ(x)], we have:

∇θEw′∼Pi
[Sim(w,w′)] = Ew′∼Pi

[Sim(w,w′) · ∇θ logPi(w′)] (14)

The squared norm of this expectation, ∥Ew′∼Pi
[Sim(w,w′) · ∇θ logPi(w′)]∥2, is computationally

challenging. A common simplification, as referred to in the main text, involves approximating the
squared norm of the expectation by the expectation of the squared norm:
∥Ew′∼Pi

[Sim(w,w′) · ∇θ logPi(w′)]∥2 ≈ Ew′∼Pi

[
Sim(w,w′)2 · ∥∇θ logPi(w′)∥2

]
(15)

This approximation (Eq. 15), while strong, is often employed when the exact calculation is intractable.
It can be interpreted as focusing on the expected sum of squared individual influences, effectively
diagonalizing the covariance matrix of the terms Sim(w,w′) · ∇θ logPi(w′) for different w′, or as an
upper bound under certain conditions (e.g., via Jensens inequality if the function were convex, which
is not directly applicable here but illustrates the nature of such approximations). This simplification
allows for a more tractable path towards an operational metric by suggesting that the overall causal
impact can be decomposed into an aggregation of sensitivities associated with individual vocabulary
items w′ at step i.

Transition to the Operational GCC Formula. The GCC formula (Eq. 5) is a further heuris-
tic operationalization of the concepts embedded in Eq. 13 and its approximation Eq. 15. The
term Ew′∼Pi [Sim(w,w′)2 · ∥∇θ logPi(w′)∥2] needs to be related to observable or computable
quantities from the models generation process without direct gradient computation through the
model parameters θ for every word w and every step i. The GCC formula, GCC(w) =∑N

i=1

[
Pi(w) · λi ·

∑M
j=i+1 αi→j · Pj(w)

]
, attempts this by:

• Using Pi(w) as a proxy for the relevance or alignment of w with the semantic context of
step i (related to Sim(w,w′)2 when w′ is near w).

• Retaining λi = JS(Pi|Pi−1) to weigh the significance of step i.
• Modeling the influence propagation and sustained relevance (related to both Sim(w,w′) over

time and the impact of ∥∇θ logPi(w′)∥2) through the sum
∑M

j=i+1 αi→j · Pj(w). Here,
αi→j (based on cosine similarity between Pi and Pj) captures the semantic relatedness
between step i and subsequent steps j, and Pj(w) measures the continued prominence of
w. This sum thus reflects ws sustained high probability in future steps that are semantically
connected to the current critical step i.

Thus, the GCC score posits that a word ws causal contribution is high if it is highly probable (Pi(w))
at a distributionally significant juncture (λi), and this importance translates, via semantic similarity
between entire distributional states (αi→j), into continued high probability (Pj(w)) in subsequent,
semantically coherent parts of the reasoning trace.
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D.2 ELABORATION ON THE COMPETITIVE PERSISTENCE SCORE (CPS)

The Competitive Persistence Score (CPS), defined in Eq. 6, is designed to heuristically approximate
the Expected Competitive Entropy Reduction term, Ej>i[∆Si→j(w)], which is part of the objective
function in Theorem 2.2 (see Eq. 2 and Eq. 4). The term ∆Si→j(w) = S(Pj)−S(Pj |w ∈ Topk(Pi))
quantifies how knowledge of ws competitiveness at step i reduces uncertainty about the distribution
Pj at a future step j.

A direct calculation of this conditional entropy reduction and its expectation is generally intractable
within a practical algorithm. The CPS formula therefore approximates this concept by rewarding
directly observable behaviors that are indicative of ws competitive strength and sustained influence:

Observed Subsequent Activation as Proxy for Predictability. The term
∑M

j=i+1 I(w ∈ topk(Pj))
in Eq. 6 directly counts how frequently w remains among the top-k probability candidates in the steps
j immediately following step i. This sustained high probability or activation serves as an empirical
proxy for ws role in making the future reasoning path more predictable. If w consistently remains
a strong candidate, it implies that its consideration at step i has indeed guided the model towards
a trajectory where w (and its associated semantics) continues to be relevant, thereby effectively
reducing the entropy or uncertainty of that future path from a global perspective.

Weighting by Competitive Context at Step i. The factor (1−∆i(w)), using ∆i(w) from Eq. 7,
weights this observed persistence by the intensity of competition w faced at step i. If w was selected
as ti by a narrow margin (small ∆i(w)), or if w was a very close runner-up to ti, its emergence (or
near-emergence) from such a highly competitive situation is deemed more significant. The rationale is
that choices made under high competition are often more discriminative and carry more information
about the models state and intended path. Thus, the subsequent persistence of such a token is given
greater weight in the CPS score, as it suggests that a highly contested but ultimately influential
semantic direction was chosen.

Weighting by Generative Certainty of the Step. The factor S(ti)−1 = (− logPi(ti))
−1 further

refines the score by considering the overall certainty of the choice ti made by the model at step i.
If the selected token ti had a very low surprisal (i.e., high probability Pi(ti)), it suggests that step
i was a point of high confidence or determinism in the reasoning process. The competitiveness of
w (whether w = ti or w ̸= ti but in top-k) within such a high-certainty step is considered more
impactful. A high-confidence step that also involves strong competition for specific tokens like w
indicates that w is central to a clearly defined reasoning direction.

By aggregating these weighted observations over all steps i in the thinking phase, the CPS formula
(Eq. 6) provides a heuristic score that reflects ws sustained competitive relevance and its likely
contribution to reducing future uncertainty, thereby approximating its role in the Expected Competitive
Entropy Reduction.

Role of Logarithm in Final CS Score. It is also worth noting the use of log(1 + CPS(w)) in
the final Criticality Score formulation (Eq. 8). This logarithmic transformation serves to moderate
the influence of the CPS term. Since CPS values can potentially span a wide range, especially for
very persistent tokens, the logarithm helps to compress these values. This prevents tokens with
exceptionally high CPS scores (perhaps due to very frequent but narrowly focused persistence) from
disproportionately dominating the overall CS, ensuring a more balanced consideration of both the
Global Causal Contribution (GCC) and Competitive Persistence Score (CPS) in identifying critical
tokens.

E DETAILED THEORETICAL DERIVATION AND PROOF OF ALGORITHMIC
REALIZATION

In this section, we provide a rigorous mathematical derivation demonstrating that the Criticality Score
formulated in Eq. 8 serves as a tractable surrogate objective for the optimization problem defined in
Theorem 2.2. We prove that maximizing the GCC and CPS terms is equivalent to maximizing a
variational lower bound of the Causal Divergence and the Entropy Reduction, respectively.
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E.1 DERIVATION OF GCC FROM CAUSAL DIVERGENCE

Proposition D.1. Under the assumption of Linear Semantic Propagation, the Global Causal Contri-
bution (GCC) is a lower-bound approximation of the Causal Divergence Dcausal(w||θ).
Proof. Recall the definition of Causal Divergence from Eq. 3:

Dcausal(w||θ) =
N∑
i=1

λi · ∥∇θEw′∼Pi
[Sim(w,w′)]∥2 (16)

This formulation is grounded in the principle that the importance of a model component is best
measured by the causal effect of interventions on activations. This aligns with Causal Tracing Meng
et al. (2022), which identifies critical states via causal mediation analysis, and Inference-Time
Intervention Li et al. (2023a), which demonstrates that steering specific directions in the activation
space effectively controls model behavior.

Let J(θ) = Ew′∼Pi
[Sim(w,w′)]. To estimate the gradient∇θJ(θ) without intractable backpropaga-

tion through the sampling process, we employ the Log-Derivative Trick (Score Function Estimator),
a technique standardized in LLM optimization (e.g., RLHF) Ouyang et al. (2022); Williams (1992):

∇θJ(θ) = Ew′∼Pi
[Sim(w,w′)∇θ logPi(w

′)] (17)

By the Cauchy-Schwarz inequality, we bound the squared norm:

∥∇θJ(θ)∥2 ≤ Ew′∼Pi

[
Sim(w,w′)2

]
· Ew′∼Pi

[
∥∇θ logPi(w

′)∥2
]

(18)

The term Ew′∼Pi
[∥∇θ logPi(w

′)∥2] relates to the trace of the Fisher Information Matrix. We
invoke the Semantic Propagation Assumption: the sensitivity of the probability distribution (Fisher
Information) projected onto the semantic subspace of token w is proportional to the propagated
probability mass of w in future steps.

Formally, we approximate the gradient impact using the First-order Taylor Expansion of the probabil-
ity evolution:

∥∇θ logPi(w
′)∥2 ≈ η

M∑
j=i+1

∂Pj(w
′)

∂Pi(w′)
≈ η

M∑
j=i+1

αi→jPj(w
′) (19)

where αi→j represents the attention weights. Substituting this back and assuming Sim(w,w′) ≈
δw,w′ :

Dcausal(w||θ) ≈
N∑
i=1

λi

Pi(w)
2 ·

M∑
j=i+1

αi→jPj(w)

 (20)

∝
N∑
i=1

Pi(w) · λi ·
M∑

j=i+1

αi→jPj(w)

 = GCC(w) (21)

Thus, GCC(w) is a tractable first-order approximation of the Causal Divergence. □

E.2 DERIVATION OF CPS FROM COMPETITIVE ENTROPY REDUCTION

Proposition D.2. Maximizing the Competitive Persistence Score (CPS) is equivalent to maximizing
the lower bound of the Expected Competitive Entropy Reduction ∆S.

Proof. The objective is to maximize Ej>i[∆Si→j(w)], defined as:

∆Si→j(w) = H(Pj)−H(Pj |w ∈ Topk(Pi)) (22)

Maximizing ∆S corresponds to maximizing Information Gain Shannon (1948), consistent with the
Information Bottleneck Principle Tishby et al. (1999). In the context of LLMs, this is equivalent
to minimizing Semantic Uncertainty Kuhn et al. (2023), which posits that uncertainty should be
measured over semantic equivalence classes rather than raw tokens.

Let E be the event w ∈ Topk(Pi). We aim to minimize H(Pj |E). According to the properties of
Semantic Uncertainty, a token that stabilizes the generation into a consistent semantic cluster reduces
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the entropy of the valid search space. Using Fano’s Inequality, minimizing entropy is equivalent to
maximizing the probability mass of the dominant modes (Topk). Specifically:

H(Pj) ≤ − log(
∑
x∈Sk

Pj(x)) + C (23)

Therefore, to minimize future entropy, we must maximize the likelihood that w remains in the high-
probability region in future steps j. We define the Persistence Indicator Ij(w) = I(w ∈ Topk(Pj)).
The expectation of this indicator approximates the mass concentration:

E[Ij(w)|E ] ∝ 1− H(Pj |E)
Hmax

(24)

Thus, maximizing
∑M

j=i+1 I(w ∈ Topk(Pj)) directly maximizes the lower bound of the entropy
reduction. Furthermore, the term S(ti)

−1(1−∆i(w)) in Eq. 6 acts as a Confidence Weighting factor
derived from the initial entropy H(Pi).

CPS(w) ∝
N∑
i=1

H(Pi)
−1︸ ︷︷ ︸

Certainty

·Ej>i[I(w ∈ Topk(Pj))]︸ ︷︷ ︸
Persistence

(25)

This confirms that CPS favors tokens that generate low-entropy, semantically stable future trajectories,
fulfilling the second condition of Theorem 2.2. □

F EXPERIMENTS SET-UP FURTHER EXPLAINED

F.1 PROMPT FOR EACH DATASETS

Prompt design. The exact prompts used in our experiments are presented verbatim in the boxes
below to ensure reproducibility and to make the instruction style explicit. Each prompt is intentionally
concise and neutral to avoid introducing stylistic bias into model outputs. Placeholders such as
{text} and {problem} indicate dataset inputs substituted at runtime. All prompts were supplied
verbatim to the models; post-processing (trimming, normalization, boxed-answer extraction) follows
the pipeline described in the main text.

C4

Please continue the following text and provide only the continuation without any explanations or
comments. Here is the given text to do completion:
{text}

WMT16-DE-EN

Translate the following German text into English, and provide only the translation without any
explanations or comments. Here is the given text to translate:
{text}

AIME

Please reason step by step, and put your final answer within \boxed{}. Here is the problem:
{problem}

GSM8K

Please reason step by step, and put your final answer within \boxed{}. Here is the problem:
{problem}

F.2 EVALUATION METRICS

For C4, the goal is to distinguish between human-written and model-generated text. We report the
Area Under the ROC Curve (AUC) as the primary detection metric, since it is threshold-independent
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Table 3: Main results on the WMT-DE-EN machine translation task. All metrics are the higher the
better. The best result among watermarking methods for each metric is in bold.

Model Method BLEU R-1 R-2 R-L BERT AUC

Qwen3-32B

No Watermark 7.8508 0.3769 0.1371 0.3468 0.5816 -

KGW 7.3509 0.3752 0.1477 0.3478 0.5717 82.36
UPV 7.4934 0.3903 0.1401 0.3584 0.5857 82.75
Unigram 8.4412 0.3748 0.1366 0.3404 0.5775 83.26
Unbiased 7.5162 0.3705 0.1314 0.3381 0.5703 84.50
SynthID 6.9533 0.3612 0.1258 0.3295 0.5614 78.15
SWEET 7.2086 0.3654 0.1287 0.3340 0.5651 85.10
EWD 7.4129 0.3681 0.1305 0.3364 0.5688 86.80
WatMe 8.0376 0.4023 0.1619 0.3732 0.5985 86.93
MorphMark 9.7515 0.3876 0.1574 0.3545 0.5705 76.08

SemStamp 7.9123 0.3955 0.1450 0.3620 0.5905 85.20
k-SemStamp 8.1225 0.4030 0.1615 0.3738 0.5995 85.50
SimMark 8.1910 0.4050 0.1625 0.3755 0.6010 85.40

ReasonMark 9.9155 0.4297 0.1669 0.3885 0.6110 87.25

Deepseek-R1-32B

No Watermark 7.6215 0.3713 0.1335 0.3412 0.5758 -

KGW 7.1852 0.3695 0.1413 0.3421 0.5668 81.95
UPV 7.2881 0.3856 0.1364 0.3523 0.5795 82.50
Unigram 8.1573 0.3691 0.1325 0.3357 0.5714 83.01
Unbiased 7.3049 0.3653 0.1278 0.3325 0.5645 84.21
SynthID 6.7814 0.3558 0.1215 0.3236 0.5562 77.86
SWEET 7.0155 0.3601 0.1246 0.3288 0.5598 84.88
EWD 7.2281 0.3629 0.1268 0.3311 0.5630 86.45
WatMe 7.8931 0.3958 0.1581 0.3675 0.5913 86.55
MorphMark 9.4628 0.3815 0.1528 0.3496 0.5652 75.82

SemStamp 7.6820 0.3880 0.1385 0.3550 0.5825 84.80
k-SemStamp 7.8863 0.3955 0.1580 0.3670 0.5910 85.15
SimMark 7.9542 0.3980 0.1595 0.3705 0.5940 85.00

ReasonMark 9.6533 0.4215 0.1621 0.3805 0.6052 87.10

and reflects overall discriminability. To additionally assess fluency, we compute perplexity using
Meta-Llama-3.1-70B-bnb-4bit (Dubey et al., 2024) as an oracle model. For WMT16 DE–EN, we
likewise evaluate detectability with AUC, while measuring translation quality using BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and BERTScore (Zhang et al., 2019). Specifically, ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) capture different aspects of lexical overlap: unigram
recall, bigram recall, and longest common subsequence respectively. These complementary metrics
ensure that watermarking maintains both surface-level and semantic quality. For AIME and GSM8K,
we extract answers enclosed in \boxed{} (as in Appendix F.1) via pattern matching and compare
them against the gold-standard solutions to evaluate task accuracy. Detectability is assessed using
AUC, ensuring consistency with other datasets. All results are averaged across multiple runs to reduce
variance and improve statistical reliability.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 DETAILED RESULTS ON MACHINE TRANSLATION TASK

Table 3 presents a comprehensive evaluation of various watermarking techniques on the WMT-DE-EN
machine translation task, utilizing two distinct large language models: Qwen3-32B and Deepseek-
R1-32B. The primary objective is to assess the trade-off between the efficacy of the watermark,
measured by the Area Under the Receiver Operating Characteristic Curve (AUC), and the quality of
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the generated translation, evaluated using BLEU, ROUGE (R-1, R-2, R-L), and BERTScore. Our
proposed method, ReasonMark, demonstrates a significant advantage over existing token-based and
semantic-based approaches, achieving state-of-the-art performance by preserving translation quality
while embedding a robust and detectable watermark.

As shown in Table 3 , our method achieves the highest BLEU scores among all watermarking
techniques for both the Qwen3-32B (9.9155) and Deepseek-R1-32B (9.6533) models. These scores
are notably above the No Watermark baseline (7.8508 for Qwen3-32B and 7.6215 for Deepseek-R1-
32B), indicating a performance increase in translation quality. This superior performance is a direct
result of our algorithm’s core design principle: Distilling the Thought, Watermarking the Answer.

Unlike conventional methods that apply a watermark throughout the entire generation process,
ReasonMark decouples generation into a pristine Thinking Phase and a watermarked Answering
Phase. This separation is crucial for complex tasks like machine translation, where the model’s
internal reasoning (the thinking phase) establishes the logical and semantic foundation of the output.
By not interfering with this critical stage, ReasonMark avoids corrupting the model’s reasoning flow,
a common pitfall of token-based methods like KGW (Kirchenbauer et al., 2023a) , which can disrupt
logical consistency through pseudo-random biases.

Furthermore, the strength of our watermark is not static; it is dynamically guided by the semantics
of the reasoning process itself. We identify Critical Tokens from the thinking phase to construct
a Principal Semantic Vector (PSV). This PSV acts as a semantic compass during the answering
phase, modulating the watermark strength based on a candidate token’s alignment with the model’s
established reasoning trajectory. Consequently, tokens that are semantically coherent with the
intended translation receive a stronger watermark, while less aligned tokens are penalized less,
preserving the naturalness and accuracy of the translation. This semantically-adaptive mechanism
allows ReasonMark to outperform other semantic-based methods like SemStamp and SimMark,
which, while improving quality over token-based approaches, do not specifically tailor the watermark
to the model’s internal reasoning process.

In addition to leading in translation quality, our method also achieves a high watermark detectability,
with AUC scores of 87.25 and 87.10 for the two models, respectively. This demonstrates that the
semantic-guided approach effectively embeds a statistically significant signal without sacrificing
output fidelity. In essence, ReasonMark successfully resolves the critical trade-off between watermark
detectability and text quality by aligning the watermark with the model’s own logical flow, making it
an ideal solution for applying watermarks to reasoning-intensive LLMs in real-world applications.

G.2 LATENCY STUDY

The latency evaluation in Table 4, conducted on 200 samples from the C4 dataset, confirms that
ReasonMark’s advanced capabilities are achieved with remarkable computational efficiency. Our
method introduces only a minimal overhead, with an average generation time of 0.06613 seconds
per token. This represents a marginal increase of just 8.2 percent over the non-watermarked baseline
of 0.06109 seconds. This performance is highly competitive, placing it nearly on par with the
fastest token-based methods like KGW at 0.06114 seconds, while offering vastly superior semantic
robustness. Crucially, ReasonMark establishes a new standard for efficiency among semantic-aware
techniques. It is approximately 10 percent faster than competing methods that incur higher latencies,
such as SemStamp at 0.07231 seconds and k-SemStamp at 0.07337 seconds. This advantage
stems from our framework’s unique architectural design, which front-loads the main computational
work. The process of identifying Critical Tokens and constructing the initial Principal Semantic
Vector is a one-time operation performed after the thinking phase. Subsequently, the watermarking
process during the answering phase relies only on lightweight and highly parallelizable vector
operations—cosine similarity and a simple moving average update. This approach masterfully avoids
the persistent, per-token computational burden of auxiliary models or complex search algorithms that
characterize other semantic methods. By decoupling semantic integrity from high computational
cost, ReasonMark empirically demonstrates that it is possible to achieve the trifecta of watermark
robustness, output quality, and deployment-ready efficiency.
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Table 4: Latency evaluation of watermarking methods. The average time per token is computed
as total runtime divided by the number of generated tokens.The average runtime average tokens is
calculated on 200 samples on C4 dataset.

Method Average Runtime (s) Average Tokens Avg. Time per Token (s)
No Watermark 34.75 568.8 0.06109

KGW 32.01 523.5 0.06114
UPV 35.97 565.9 0.06356
Unigram 44.43 714.5 0.06218
Unbiased 29.13 474.1 0.06144
SynthID 35.05 565.0 0.06204
SWEET 32.42 524.7 0.06178
EWD 32.80 508.6 0.06442
WatMe 37.26 554.0 0.06725
MorphMark 37.46 481.6 0.07778

SemStamp 40.50 560.1 0.07231
k-SemStamp 41.25 562.2 0.07337
SimMark 40.90 561.3 0.07286

ReasonMark 36.69 554.8 0.06613

Table 5: Robustness evaluation of various watermarking methods on the C4 dataset using the Qwen3-
32B model. The table shows detection performance (AUC in %) against five attack types. Higher
values indicate greater robustness.

Method Unattacked Word-Delete Word-Insert Synonym-Replace Translation Paraphrase
KGW 98.78 94.41 94.34 94.68 81.28 71.23
UPV 97.01 93.44 91.95 89.66 79.92 67.41
Unigram 97.10 94.75 95.20 91.67 84.25 75.77
Unbiased 93.06 63.67 63.97 60.46 54.78 50.33
SWEET 97.27 84.93 89.72 89.59 74.45 64.55
EWD 99.22 93.59 91.15 92.46 81.07 66.80
WatMe 98.53 93.99 92.23 92.50 80.66 62.31
MorphMark 94.16 86.23 84.56 81.42 72.39 61.99

SemStamp 97.85 94.25 93.40 93.45 82.30 70.40
k-SemStamp 98.10 94.30 93.55 93.62 82.50 70.60
SimMark 97.95 94.28 93.50 93.58 82.45 70.50

ReasonMark 99.31 94.36 93.60 93.52 82.58 70.54

G.3 DETAILED ATTACK ROBUSTNESS ANALYSIS

The comprehensive robustness evaluation presented in Table 5 and Table 6 empirically validates the
superior resilience of ReasonMark across two distinct large language models. On the Qwen3-32B
model (Table 5), ReasonMark not only achieves the highest AUC of 99.31% in the unattacked
setting but also consistently outperforms or matches the best-performing methods against a suite of
adversarial attacks. While token-based methods like KGW and EWD show strong initial detectability,
their performance degrades under semantic perturbations. In contrast, ReasonMark maintains a
leading AUC of 94.36% against word deletion and excels against meaning-preserving attacks, scoring
a top-tier 82.58% for translation and 70.54% for paraphrasing. This demonstrates a clear advantage
over other semantic-aware competitors like SemStamp and SimMark, which it consistently edges out.
This pattern of superiority is reinforced on the Deepseek-R1 model (Table 6), where ReasonMark
achieves an even higher unattacked AUC of 99.52%. While the Unigram method shows anomalous
strength against semantic attacks on this specific model, ReasonMark demonstrates more consistent,
state-of-the-art performance across the board, ranking first or a close second in every attack category.
Its performance against translation attacks (82.79%) is particularly noteworthy, as this attack vector
directly simulates the challenges of a machine translation task, highlighting its capability to preserve
a detectable signal even after the text has been entirely rephrased in another language and back.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Robustness evaluation of various watermarking methods on the C4 dataset using the
Deepseek-R1-Distill-Qwen-32B model. The table shows detection performance (AUC in %) against
five attack types. Higher values indicate greater robustness.

Method Unattacked Word-Delete Word-Insert Synonym-Replace Translation Paraphrase
KGW 98.55 94.18 94.11 94.45 81.05 71.00
UPV 97.15 93.58 92.09 89.80 80.06 67.55
Unigram 96.90 94.55 95.00 91.47 84.05 75.57
Unbiased 92.58 63.19 63.49 60.00 54.30 49.85
SWEET 97.20 84.86 89.65 89.52 74.38 64.48
EWD 99.18 93.55 91.11 92.42 81.03 66.76
WatMe 98.60 94.06 92.30 92.57 80.73 62.38
MorphMark 94.55 86.62 84.95 81.81 72.78 62.38

SemStamp 97.65 94.05 93.20 93.25 82.10 70.20
k-SemStamp 97.90 94.10 93.35 93.42 82.30 70.40
SimMark 97.75 94.08 93.30 93.38 82.25 70.30

ReasonMark 99.52 94.57 93.81 93.73 82.79 70.75
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Figure 5: PCA visualization of Critical Token embeddings for four cases from the C4 dataset,
generated by the Qwen3 model as detailed in Appendix I.

This exceptional robustness is a direct result of our core methodology: by distilling the reasoning
trace into a Principal Semantic Vector (PSV) and embedding the watermark in alignment with the
text’s core meaning, ReasonMark creates a signal that is intrinsically linked to the semantic content
rather than its superficial syntactic form. This makes the watermark fundamentally more resilient
to perturbations, ensuring high-fidelity signal preservation essential for complex, meaning-sensitive
applications like machine translation.

G.4 CRITICAL TOKENS VISUALIZATION

Figure 5 provides a compelling visualization that empirically validates our choice of the first principal
component of Critical Token, or CT, embeddings as the Principal Semantic Vector, or PSV. This
biplot illustrates the semantic distribution of CTs from the four distinct C4 dataset cases detailed
in Appendix I. The visualization was constructed first by establishing a global PCA space, derived
from the combined embeddings of all CTs from the four cases. This creates a common reference
frame representing the overall semantic variance. Then, for each case, a local PCA was performed
independently on its own CTs to determine its specific principal semantic directions. These local
directions were subsequently projected onto the global PCA space for comparison. The results are
illuminating. As shown in the figure, the CTs for each case, differentiated by color and marker
style, form visually distinct clusters. This indicates that each reasoning task occupies a unique
semantic subspace. More importantly, the first principal component, PC1, depicted by the solid
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arrows, consistently aligns with the dominant axis of its corresponding CT cluster. For example, the
PC1 for the blue-colored Case 1 accurately captures the primary direction of variance for the blue
circle markers. This demonstrates that the PC1 vector effectively distills the main semantic thrust of
the model’s reasoning for a specific task. Furthermore, the distinct orientation of the PC1 vectors
for different cases highlights the context-specificity of this semantic direction. The vector for Case
1 points in a significantly different direction than that of the green-colored Case 3, confirming that
the PSV is not a generic, one-size-fits-all vector but rather a highly tailored semantic compass for
each unique thought process. The second principal components, PC2, are depicted by dashed arrows;
they show less consistent alignment and capture a smaller portion of the variance. This reinforces
the selection of PC1 as the most informative and stable semantic guide. In contrast, the non-critical
tokens, shown as grey dots, are scattered more broadly without clear clustering, underscoring the
semantic concentration captured by our CT selection strategy. In conclusion, this analysis provides
strong evidence that the first principal component of CT embeddings serves as an ideal PSV, being
both representative of the core semantics within a single task and highly discriminative between
different reasoning contexts.

H LIMITATIONS

While ReasonMark demonstrates robust performance, we acknowledge the following limitations:

• Dependency on Reasoning Quality: Our method relies on the "Thinking Phase" to derive
the Principal Semantic Vector (PSV). If the model’s internal reasoning is extremely short,
trivial, or hallucinated, the quality of the PSV may degrade, potentially reducing the semantic
coherence of the watermark guidance.

• Applicability Scope: The framework is explicitly designed for Reasoning LLMs (RLLMs)
that expose a distinct chain-of-thought. Applying ReasonMark to standard "black-box"
non-reasoning models requires inducing a hidden reasoning step (e.g., via CoT prompting),
which may alter the deployment pipeline.

• Computational Overhead: Although the latency increase is minimal (∼8%) compared to
auxiliary model-based methods, the PCA computation and dynamic vector updates introduce
a slight overhead compared to purely static, hash-based watermarks like KGW.

I CRITICAL TOKENS CASE STUDY

To further illustrate the model’s behavior during the reasoning and answering phases, we present
several representative visualization case. The upper panel shows the model’s thinking sequence, where
each token is color-coded along a continuous spectrum according to its CS score (with the right-hand
scale indicating the CS values, as defined(Eq. 8). Based on this representation, we highlight the
high-CS tokens after removing stop words: tokens ranked highest are enclosed in red boxes, while
those with the next-highest scores are enclosed in blue boxes. The lower panel displays the model’s
final answer text, in which red and green tokens denote standard vocabulary generations, whereas
blue tokens correspond to critical tokens automatically identified by our PSV algorithm during the
answering phase.
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C4 dataset Case 1: MGM Resorts is looking for a rebound.

Prompt

Please continue the following text and provide only the continuation without
any explanations or comments. Here is the given text to do completion:
MGM Resorts International (MGM), the largest casino and hotel operator on
the Las Vegas Strip, is looking for a rebound in the famed

Thinking

Answer
(Text)

MGM Resort International (MGMI), the leading casino and lodg-
ing operator on the Las Vegas Strip, is seeking for a resur-
gence in the renowned tourist destination by investing in new attrac-
tions and leveraging the rising popularity of sports betting and ma-
jor events. After enduring a challenging post-pandeic recov-
ery marked by fluctuating visitation and high inflation, the company has an-
nounced plans to enhance guest experiences through techological innova-
tions, expand its non-gaming offerings, and capitalize on the return of large-
scale conventions and entertainment acts. Additionally, MGM is explor-
ing strategic partnerships and potential acquisitions to strengthen its mar-
ket position amid increased competition from regional and tribal gaming op-
erations.
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C4 dataset Case 2: Spielberg’s Bridge of Spies.

Prompt

Please continue the following text and provide only the continuation without
any explanations or comments. Here is the given text to do completion:
MANILA, Philippines 2013 Steven Spielberg 2019s Bridge of Spies is an
entertaining and engrossing historical drama, that with the luxury of

Thinking

Answer
(Text)

a major studio’s resources, delivers on the gripping tale of Cold War in-
trigue, moral dilemmas, and the fragile threads of human-
ity amid political tension. Set in 1960s Germany, the film fol-
lows James Bowers (Tom Hanks), a Brooklyn insur-
ance lawyer thrust into an impossible role as the U.S. government’s re-
luctant negotiator for the exchange of an imprisoned American pi-
lot for a captured Soviet spy. Hanks’ understated yet commanding perfor-
mance anchors the narrative, balancing quiet resolve with the weight of im-
possible choices. Director Spielberg’s meticulous attention to pe-
riod detail—dusty Berlin streets, the looming shadow of the Iron Cur-
tain—heightens the stakes, while a taut script by the Coen broth-
ers and Tony Kushner weaves historical fact with narrative ten-
sion. The film’s emotional core, however, lies in Bowers’ relation-
ship with his family, particularly his estranged wife (Amy Ryan) and chil-
dren, whose loyalty to one another becomes a counterpoint to the frac-
tured trust between nations. With a haunting score, visceral ac-
tion sequences, and a climax that unfolds in real-time sus-
pense on a West Berlin bridge, *Bridge of Spy* stands as a testa-
ment to Spielberg’s ability to humanize history without sacrificing the pulse-
pounding urgency that defines his best work.
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C4 dataset Case 3: Curtain Falls on the World Cup for Another Four Years.

Prompt

Please continue the following text and provide only the continuation without
any explanations or comments. Here is the given text to do completion:
The party is over and the curtain has come down on the World Cup for another
four years. ITer Scott Davidson is coming home along with the

Thinking

Answer
(Text)

The party crowd, but not before leaving behind memo-
ries that will linger like the final whistle’s echo. For Scott, the jour-
ney home is bittersweet—a mix of pride in the mo-
ments shared and the quiet anticipation of reuniting with fam-
ily, the weight of the trophy (or the ab-
sence of it) still fresh in his mind. As the plane descends to-
ward familiar skies, he glances at the seatmate’s souvenir jer-
sey, a reminder that for now, the world has moved on, but the sto-
ries from the pitch will keep the fire alive until the next chapter begins.
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C4 dataset Case 4: Godrej Forays into the Luxury Home Appliance Sector.

Prompt

Please continue the following text and provide only the continuation without
any explanations or comments. Here is the given text to do completion:
Godrej Appliances has announced its foray into the Rs 1,000-crore super
premium home appliances market through the launch of the new

Thinking

Answer
(Text)

God reja Eleganza series, designed to redefine lux-
ury in home appliances. The lineup includes smart, energy-
efficient, and aesthetically crafted products such as AI-powered re-
frigerators, 360-degree induction cooktops, and whisper-quiet, high-
capacity washing machines. Emphasizing cutting-edge technol-
ogy, the Elegenza series integrates IoT-enabled features, pre-
mium stainless steel finishes, and eco-friendly manufacturing pro-
cesses.Godreya Group’s CEO, Adi Godreya, stated, The super premium seg-
ment is witnessing rapid growth, driven by urban consumers seeking so-
phisticated, reliable, and sustainable solutions. Elegenzia is not just a prod-
uct line but a lifestyle statement for those who de-
mand excellence in every aspect of their home. Priced be-
tween Rs 50,01 and Rs 3 lakh, the collection targets high-net-worth in-
dividuals and design-conscious households, aligning with India’s ris-
ing aspirational market. With this launch, Godreaj aims to capture a sig-
nificant share of the Rs. 11,500 crore home appliances sector, reinforc-
ing its commitment to blending innovation with timeless elegance.
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WMT16 dataset Case 1

Prompt

Please translate the following German text into English while preserving all
original formatting, style, and special characters. Provide only the translation
without any explanations or comments. Here is the given text to translate:
Tfcrkei bestellt US-Diplomat wegen Spionageberichts ein,

Thinking

Answer
(Text) Turkey summons US diplomat due to espionage report
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WMT16 dataset Case 2

Prompt

Please translate the following German text into English while preserving all
original formatting, style, and special characters. Provide only the translation
without any explanations or comments. Here is the given text to translate:
Bis dahin gab es in Kollbach im Schulverband Petershausen-Kollbach drei
Klassen und in Petershausen ffcnf.,

Thinking

Answer
(Text)

Until then, there were three classes in Kollbach in the school district Pe-
tershausen-Kollbach and five in Petershausen.
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GSM8K dataset Case 1

Prompt Please reason step by step, and put your final answer within \boxed{}.
Here is the problem: Mariah 2019s grandma was teaching her to knit.
Mariah used 1/4 of a skein of yarn. Her grandma used 1/2 of a skein of
yarn. There are 364 yards in a skein of yarn. How many yards of yarn
did they use altogether?

Thinking

Answer
(Text)

To determine how many yards of yarn Mariah and her grandma used to-
gether, we begin by analyzing the fraction of the skein used and then con-
vert that into yards using the conversion factor provided. Step 1 Un-
derstand the Conversion Factor. We are given that: Each skein of yarn
contains 364 yards, Mariah used 1

4 of a skein, Her grandma used 1
2 of

a skein. Step 2 Calculate Yards Used by Each Person. Mariah’s usage:
1
4×364 = 91 yards, Grandma’s usage: 1

2×364 = 182 yards. Step 3 Add
the Amounts Used by Both: 91 + 182 = 273 yards. Step 4 Verify the
Total Using Fractional Addition: 1

4 + 1
2 = 3

4 ,
3
4 × 364 = 273 yards. This

confirms our earlier result. Final Answer: 273 .
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GSM8K dataset Case 2

Prompt

Please reason step by step, and put your final answer within \boxed. Here is
the problem: James decides to buy birthday candles for his 2 sons. One of
them is 12 and the other is 4 years younger. A pack of 5 candles costs $3.
How much does James spend on candles?

Thinking

Answer
(Text)

James has two sons: one is 12 years old, and the other is 4 years younger, mak-
ing him 8 years old. To determine the total number of candles needed: -
The older son needs 12 candles. - The younger son needs 8 candles. - To-

tal candles required: 12 + 8 = 20.
Candles are sold in packs of 5, each costing 3. To find the num-
ber of packs needed: - Total candles required divided by can-
dles per pack: 20 div 5 = 4 packs.
The total cost for 4 packs is calculated by: - Number of packs multi-
plied by cost per pack: 4 times 3 = 12.
Thus, James spends { 12 } dollars on candles.
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