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Abstract

Recent work has shown the importance of reliability, where models are assessed
under stress conditions pervasive in real-world deployment. We examine reliability
tasks in the setting of semantic segmentation, a dense output problem that has
typically only been evaluated using in-distribution predictive performance—for
example, the mean intersection over union score on the Cityscapes validation
set. To reduce the gap toward reliable deployment in the real world, we compile
a benchmark involving existing (and newly constructed) distribution shifts and
metrics. We evaluate natural baselines to determine how well segmentation models
can simultaneously make robust predictions across multiple types of distribution
shift, detect out-of-distribution inputs, and make calibrated predictions. We find
that Gaussian process and BatchEnsemble last-layers work well out-of-the-box,
improving existing state-of-the-art across tasks. There also remain open challenges
in measuring out-of-distribution detection for segmentation.1

1 Introduction

We consider a model to be “reliable” if it can perform well over a large collection of decision making
scenarios [1, 13, 16]. To test the reliability of deep learning models, our field has and continues to
establish several benchmarks along multiple directions: (i) new datasets that can capture different
types of distribution shifts, changes in the data which were not included as examples in the training
set; (ii) new methods, to reduce the noise introduced by the different distribution shift; and (iii) new
evaluation scores or metrics, to evaluate the confidence in the prediction and robustness of a model.
However, pushing along multiple directions has led to a fragmentation of the literature, where it is
unclear how a method developed to improve model performance under a specific type of distribution
shift, fares when another distribution shift or task is present.

Recently Tran et al. [16] developed a stress-test suite to evaluate the uncertainty, robustness, and
adaptation abilities of models for a wide variety of datasets and tasks. Tran et al. [16] showed that
last layer replacements for dense layers were able to provide consistent performance improvements
over deterministic linear layers. While Tran et al. [16] focused on classification tasks for vision and
language models, we find that such a fragmentation also exists for semantic segmentation tasks.

Contributions We provide a benchmark for reliable semantic segmentation. The benchmark
includes two in-distribution datasets (Cityscapes and ADE20k), over three types of distribution shift
(covariate shift, open set shift, and natural shift), and three tasks (predictive performance, out-of-
distribution detection, calibration). Our results show that a minimal substitution of the last layer
in a deterministic model for a GP or BatchEnsemble layer, produces results more reliable across
distributions shifts and the tasks. Our framework is open source, implemented in JAX, and can be
easily extended to include additional models and tasks.

1The code is available at https://github.com/google/uncertainty-baselines.

Workshop on Distribution Shifts, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/google/uncertainty-baselines


Figure 1: Predictions from a segmenter-deterministic (top) and a segmenter-GP model (bottom).
From left to right: input image with OOD object, OOD mask, model predictions, OOD feature map.
The fourth panel shows us that all the logits are not all proportionally scaled equally as the OOD
features are more clearly defined to the GP model compared to the deterministic model.

2 Methods

Following the setup of Tran et al. [16, Fig. 4], we start with a Vision Transformer (ViT) model
pretrained on Imagenet21k and finetuned on Imagenet2012 [14]. Given an image, x ∈ RH×W×C , a
ViT encoder maps the input x to the patch encodings, the positional encondings and class tokens.
When a ViT is trained for image classification, the class tokens are mapped to different classes via
a dense layer. Strudel et al. [15] proposed a segmentation model based on a ViT backbone, where
the patch and positional encodings are mapped to the pixel classes via linear decoding consisting
of a dense layer and upsampling. A Segmenter L/16 model is shown to achieve state of the art
performance for semantic segmentation tasks such as Cityscapes and ADE20k.

Reliability methods We evaluate reliability methods from Plex [16], which has been shown to
work well for image classification. Namely, we replace the linear decoder in Segmenter for one of the
following decoders (see Fig. 1 for an illustrative example of how these improve model reliability):

• BatchEnsemble [17] decoder: a BatchEnsemble layer substitutes a single decoder or head for
“multiple heads", where these heads have a shared structure and can be factorized into vectors.
In turn, these vectors enable learning efficient ensembles, while still providing multiple diverse
predictions that are averaged for an ensemble prediction.

• Gaussian Process (GP) [11] decoder: a Gaussian Process prior is placed on top of the hidden
representations of the ViT backbone. In turn, this prior induces a posterior predictive distribution
over the data likelihood. As computing the GP posterior distribution is intractable and expensive,
[11] approximates the posterior using a Laplace approximation to the random feature expansion of
the GP, resulting in an approximate posterior that can be learned in closed form.

• Heteroscedastic [6] decoder: a Gaussian distribution is assigned to the model logits, where the
noise term is modeled as independent but not identically distributed for each logit. Adding this
noise term supports data with variable noise. The intractable posterior is approximated using Monte
Carlo sampling. We note that [12] is a special case of this work.

We train the Segmenter models following [15]. For Cityscapes, we train a Segmenter L/16 model for
100 epochs with a learning rate of 1e-4 with adam following a polynomial learning rate schedule. For
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ADE20k, we train a Segmenter L/16 model for 100 epochs with a learning rate of 3e-5 with Adam
following a polynomial learning rate schedule.

Datasets We train Segmenter models with deterministic or Plex layers on two standard scene
parsing datasets as in-distribution. The Cityscapes dataset [7] contains street scenes from 50 different
cities, and includes 2900 train images for 19 classes, and 500 images for the validation set. The image
dimensions are 1024x2048. The ADE20K dataset [18] contains 20,210 images for 150 classes for
the training set, and 500 images for the validation set. The image dimensions are 640x640. These
datasets allow us to evaluate the changes in performance, across different conditons: in a low data
regime, as Cityscapes has much fewer classes than ADE20k, for different granularity level, i.e. image
resolution, and for different number of classes.

Distribution shifts We examine distribution shifts pervasive in the real world: changes in the input
environment (covariate shift) and changes in the label classes (open set recognition). Table 1 provides
a summary. To simulate environment changes, we apply the synthetic corruptions in [8] to the
Cityscapes and ADE20K datasets such as Gaussian noise and under varying intensities. To simulate
changes in the label classes, we employ the Fishyscapes dataset [3], constructed by adding Pascal
VOC objects to different scenes in Cityscapes. For ADE20k, we construct an ADE20k-InD dataset
by dropping a subset of the classes (three classes including chair, sofa and couch) in the original
ADE20k dataset from the training set. We drop this classes by masking out the pixels corresponding
to these classes. The ADE20k-Open dataset corresponds to the validation set in ADE20k where there
are only two classes, class 0 being all the pixels which correspond to a class included in ADE20k-InD
and class 1 being all the pixels which correspond to three objects of chair, sofa, and couch.

Evaluation Metrics For in-distribution predictive performance, we evaluate Segmenter on the
validation set of Cityscapes and ADE20k using the mean intersection over union (MeanIOU) score,
which captures the overlap between the true segmentation map and the predicted segmentation
map [4]. We also evaluate the MeanIOU under covariate shift. While covariate shift changes the
appearance of the input, the labels do not change, and we can directly compare the InD MeanIOU
and the OOD MeanIOU. For calibration performance, we employ the calibration AUC-ROC which
measures the ranking performance of the uncertainty score; and unlike the Expected Calibration Error
(ECE), it is not sensitive to class imbalance.

For open set recognition, we use 1−msp, where the msp is the maximum softmax probability, as
the OOD score [9, 4, 3]. In semantic segmentation, the goal of open set recognition is to identify
pixels in the image which do not correspond to a class in the training set. The model produces a score
per pixel between 0 to 1. Given the score, an OOD binary mask is created by setting a threshold λ at
which a pixel is considered InD vs OOD. Because the binary masks depends on the threshold λ, we
evaluate across thresholds using the area under the receiver operator characteristic curve (AUC-ROC),
and the precision recall curve (AUC-PR).

Table 1: Segmentation benchmark for robustness evaluation.

InD dataset Covariate shift Open set recognition

Cityscapes Cityscapes-C Fishyscapes
ADE20k ADE20k-C ADE20k-Open

3 Results

We report the performance of Segmenter with the deterministic and Plex layers for Cityscapes in
Table 2 and for ADE20K in Table 3. The Plex models perform comparably well or outperform the
deterministic models both in-distribution and out of distribution. In particular, the GP layer has
benefits over other models when the environment changes (covariate shift) and when there is an
anomalous object (open set) in the low data regime; while the BatchEnsemble and Heteroskedastic
layers can give us gains even as the number of classes is large (>150).

The GP layer has slightly better performance than the deterministic layer on both datasets in-
distribution. Moreover, the GP layer has significant improvements on both covariate shift and open
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Table 2: Comparison of reliability models on Cityscapes dataset.

Model Cityscapes
Val MeanIOU (↑)

Cityscapes
Calibration AUC (↑)

Cityscapes-C
Val MeanIOU (↑)

Fishyscapes
AUC-ROC (↑)

Fishyscapes
AUC-PR (↑)

Deterministic 0.760 0.905 0.620 0.777 0.067
Batch Ensemble 0.764 0.911 0.620 0.808 0.076

GP 0.765 0.917 0.633 0.960 0.309
Heteroskedastic 0.756 0.909 0.625 0.891 0.144

Table 3: Comparison of reliability models on ADE20k dataset.

Model ADE20k-InD
Val MeanIOU (↑)

ADE20k-InD
Calibration AUC (↑)

ADE20k-InD-C
Val MeanIOU (↑)

ADE20k-OOD
AUC-ROC (↑)

ADE20k-OOD
AUC-PR (↑)

Deterministic 0.482 0.793 0.391 0.726 0.046
Batch Ensemble 0.489 0.822 0.395 0.765 0.052

GP 0.487 0.753 0.394 0.694 0.036
Heteroskedastic 0.494 0.782 0.397 0.719 0.045

set recognition, with gains up to 5%. Liu et al. [11] posits that the variance component introduced
by the GP layer induces lower confidence predictions to samples away from the training data. We
hypothesize that the gains from using a GP layer over a deterministic layer are particularly pronounced
for open set recognition for this reason.

BatchEnsemble provides gains both in-distribution and out-of-distribution. In particular, it achieves
the best performance on ADE20k. In future work we plan to examine if the gains provided by the
batch ensemble and GP layer can be compounded as suggested by [16].

The heteroscedastic layer improves the in-distribution performance of Segmenter on both Cityscapes
and ADE20k. This is congruent with Fig. 4 in [5], which showed that replacing a dense layer by a
heteroscedastic layer improved both quantitavely and qualitatively the segmentation maps provided by
a Deeplabv3+ network trained on MSCOCO. Because ADE20k has a much larger number of classes
than Cityscapes (150 and 19 respectively), we may expect a higher likelihood of label noise, and thus
more benefit using a heteroscedastic layer over a deterministic layer for ADE20k versus Cityscapes.
However, the benefits appear to be comparable for Cityscapes and ADE20k in-distribution and
out-of-distribution.

AUC-PR scores are generally low across the board. This is due to the large class imbalance between
true positives and true negatives in the open set images, i.e. only a few pixels in the image are OOD
compared to the large number of InD pixels, as noted in previous work [3, 10]. The AUC-ROC values
are also particularly pronounced for Fishyscapes, as shown in Table 2. Several works have noted that
the unseen objects in Fishyscapes [3] have different hue compared to the objects in Cityscapes [2, 8],
and thus post-processing methods can capture these changes easily. Our results show that the GP
layer can easily capture this changes without additional post-processing steps. In the full version of
the manuscript we also plan to include the Street Hazards dataset [10].

4 Conclusion

We provided a benchmark to evaluate the reliability of semantic segmentation models. We evaluated
the layers in Plex [16] and found that both the GP and BatchEnsemble layers have benefits both in-
distribution and out-of-distribution across multiple datasets and distribution shifts over deterministic
layers for semantic segmentation tasks. Through this framework, we show how Plex Layers can
be easily applied out of the box, even for semantic segmentation tasks. Across the Plex layers, we
find that an additional benefit of using the GP layer is that it requires less parameter search than the
Batch Ensemble and Heteroscedastic layers. Our results show that replacing the last dense layer of a
semantic segmentation model provides reliability gains, consistently and with minor hyperparameter
search.
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