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ABSTRACT

We present a novel approach to the problem of text style transfer. Unlike previous
approaches that use parallel or non-parallel labeled data, our technique removes
the need for labels entirely, relying instead on the implicit connection in style be-
tween adjacent sentences in unlabeled text. We show that T5 (Raffel et al., 2020),
a strong pretrained text-to-text model, can be adapted to extract a style vector from
arbitrary text and use this vector to condition the decoder to perform style transfer.
As the resulting learned style vector space encodes many facets of textual style,
we recast transfers as “targeted restyling” vector operations that adjust specific
attributes of the input text while preserving others. When trained over unlabeled
Amazon reviews data, our resulting TextSETTR model is competitive on senti-
ment transfer, even when given only four exemplars of each class. Furthermore,
we demonstrate that a single model trained on unlabeled Common Crawl data is
capable of transferring along multiple dimensions including dialect, emotiveness,
formality, politeness, and sentiment.

1 INTRODUCTION

There has been a recent surge of interest in text style transfer, with the aim of training models able to
modify specific attributes of input text (e.g., sentiment or formality) while preserving the remaining
content. For example, a sentiment transfer model might transform the input “best book ever!” into
“worst book ever!”, while a formality transfer model might change the same input into “This is the
best book I have ever read.”

Work in this area falls into three categories. Supervised approaches like Jhamtani et al. (2017)
transfer between pre-selected styles, and rely on aligned parallel training data to teach the model the
desired input/output correspondence. This method is limited by the availability of parallel corpora.
So-called “unsupervised” approaches like Li et al. (2018) and Lample et al. (2019) remove the
requirement for parallel data, but still require labeled training examples of each style, and are limited
to transfer between a pre-specified set of styles. Label-free approaches like the recent Xu et al.
(2020) remove the need for any training labels. While the most technically challenging, this offers
the potential for transferring between arbitrary styles at inference time and has significant value, as
curated datasets are not available for many style attributes.

In this work, we explore the hypothesis that large pretrained text-to-text models like T5 (Raffel
et al., 2020) already contain a strong representation of textual style, which can be extracted and
used to condition the decoder of a style transfer model through a relatively lightweight fine-tuning
procedure. To isolate style information in the absence of labels, we rely on the observation that style
is a “slow-moving” feature, which tends to be consistent over large spans of text. Specifically, given
two adjacent sentences from an unlabeled corpus, we train our model to extract a “style vector”
from the first and use that vector to perform denoising and other reconstruction tasks on the second.
This technique extends the unsupervised approach of Lample et al. (2019) to the label-free setting,
and allows us to reformulate the style transfer operation as a directional operation in style vector
space using the difference between target and source style vectors; we call this “targeted restyling”.
When combined with a novel “tunable inference” technique for controlling token add/delete rates,
this gives our final model: Text Style Extraction and Tunable Targeted Restyling (TextSETTR).

1



Under review as a conference paper at ICLR 2021

Style Target
λ × (A − B) + Inp

Tuning Ranges
Add      Delete

40-70%  25-35%

It doesn’t work
Input

Encoder

Decoder

Output
It works great

Ex Ex

Style A 
Exemplars

Ex Ex

Style B 
Exemplars

Ex

A great product.
Context

I really love it
Input

Corruption

cat really it

EncoderStyle
Extractor

Decoder

Target
I really love it

Training Inference

Tuning Ranges
Add      Delete

10-50%  10-50%

Figure 1: TextSETTR architecture for label-free style transfer. The Encoder, Decoder and Style
Extractor (Ex) are transformer stacks initialized from pretrained T5. During training, the model
reconstructs a corrupted input, conditioned on a fixed-width “style vector” extracted from the pre-
ceding sentence. At inference time, a new style vector is formed via “targeted restyling”: adding
a directional delta to the extracted style of the input text. Stochastic tuning ranges provide extra
conditioning for the decoder, and enable fine-grained control of inference.

Our main contributions are to: (1) demonstrate the viability of label-free style transfer,1 (2) use
sentence adjacency as a means for inducing text style representations, (3) reframe style transfer as
“targeted restyling” directional operations in style space, (4) introduce “tunable inference” for finer-
grained control of transfers, (5) show the effectiveness of “noisy” back-translation training, and
(6) illustrate few-shot generalization to a range of style attributes including dialect, emotiveness,
formality, politeness, and sentiment.

2 METHOD

Figure 1 illustrates our proposed TextSETTR architecture. At a high level, our approach follows
Lample et al. (2019), who train a denoising auto-encoder conditioned on a fixed-width style vector.
The key difference in our case is that the true style is unknown at training time. To overcome this,
we jointly train a “style extractor” component to induce a useful style representation (that can aid in
reconstruction) from text in the nearby context. We describe this in more detail below.

2.1 MODEL ARCHITECTURE

We conduct our experiments using a modified version of the Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020). Like T5, our model includes a transformer-based encoder and decoder. As
in T5 pretraining, the input to the encoder is a corrupted/noised version of the target, resulting in
a reconstruction task. Our goal is to design a type of corruption that results in this training task
resembling style transfer, despite the lack of labeled training data.

Our core addition to T5 is the style extractor. Based on the encoder’s architecture, this component’s
input is an uncorrupted sentence in the same style as the target; relying on our assumption that style
is a slow-moving feature, we use the sentence preceding the target (the “context”) for this.2 This
encourages extracting a style representation that is useful for repairing the corrupted input.

The only architectural difference between the encoder and style extractor is that we mean-pool the
style extractor’s hidden state sequence into a single fixed-width vector (the “style vector”); in our
experiments, the dimensionality of this vector and the encoder hidden states is 1024. To incorporate
the style vector into the rest of the model, we simply add it to each of the final encoder hidden states.

1Our work is concurrent with Xu et al. (2020), who offer a substantially different approach to label-free
style transfer, as discussed in Sections 3 and 5.

2This approach is similar to the use of adjacent sentences for weak supervision in Devlin et al. (2019) and
Zhang et al. (2020).
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We initialize the weights of our model with those of a pretrained T5 model. We initialize both the
style extractor and encoder from the pretrained encoder, but the weights are not tied during training.

2.2 CORRUPTION STRATEGIES

We experiment with combinations of three different reconstruction tasks, each contributing a loss
term. All three share the same overall structure, where a sentence si in the dataset is corrupted by
some function f to produce s̃i = f(si). The cross-entropy loss is calculated using the uncorrupted
sentence si as the target, the corrupted sentence s̃i as the input, and the uncorrupted preceding
sentence si−1 as the context. The three choices of f are Noise (N), Back-Translation (BT), and
Noisy Back-Translation (NBT), described below.

Noise (N) This function corrupts the input by (i) dropping, (ii) replacing, and/or (iii) shuffling tokens,
in that order. For each example we sample a separate noise probability p for each sub-type of noise
from a uniform distribution in the range 20–60%. We do this because the model should be able to
“undo” varying degrees of noise, as some types of style transfer may require changing only a few
tokens, while others may require larger rewrites.

For drop noise, we drop each token in si with independent probability p. For replace noise, let sik
be the k-th token within si. For each si, a random other example sj is chosen, and then each token
sik is replaced by sjk with probability p . If sj has fewer than k tokens, then the replacement does
not occur. For shuffle noise, each token in si is chosen with probability p, and then all chosen tokens
are randomly shuffled to the position of another chosen token, leaving non-chosen tokens in place.

The use of drop and shuffle noise results in a loss term similar to the denoising loss used by Lample
et al. (2019). Their motivation for this loss was to encourage language modeling. As we fine-tune
an already-strong T5 language model in our experiments, our motivation is rather to introduce a
conditional element to the language model, in the form of the extracted style vector input.

Back-Translation (BT) This corruption function, used by Lample et al. (2019), runs the current
version of the model in inference mode to transfer si into a different style, giving the corrupted s̃i. In
prior work using labels, specifying a different target style was straightforward. In our case, because
we do not have access to labels, we simply sample a random sentence sj to use as the context. To
increase diversity of the generated examples, we decode with sampling instead of greedy decoding.

Because s̃i is produced by a strong language model, BT should result in training examples where
both the input and output are coherent sentences, matching our intended inference setting. By con-
trast, the text produced by “Noise” corruption does not resemble test-time inputs.

Noisy Back-Translation (NBT) This novel corruption function is a composition of the previous two.
Noise is first applied to si as described above, and the result is used as the input (with randomly-
sampled sj as the context) to the model in inference mode to produce s̃i via sampling, as in BT.

Once the model has learned to undo random noise from the associated loss term, NBT should pro-
duce training examples where some of the tokens are preserved from si while others were generated
by the model itself under the influence of the “incorrect” context sj . This is similar to BT, but we
hypothesize that it may be better suited to style transfer. BT was originally used for machine transla-
tion (Sennrich et al., 2016), a setting where most or all input tokens need to be changed. In contrast,
style transfer within a single language usually requires only changing a subset of input tokens; the
training examples resulting from the NBT procedure should have this property. We believe that this
will encourage the model to identify which tokens in the input do not match the target style indicated
by si−1 and change them, which is exactly what we want a style transfer model to do. This is con-
ceptually similar to the work of Clark et al. (2020), who pretrain language models to discriminate
which input tokens were originally present and which were altered by a simpler language model.

Final Loss The final loss term used for training is the sum of the above loss terms, each calculated
from the same input si. However, not every model we experiment with includes all three losses.

2.3 INFERENCE PROCEDURE

Tunable Add/Delete Rates In preliminary experiments, we observed a recurring problem that the
model would often change either far too little (failing to achieve the target style), or far too much
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(failing to preserve the input content). To address this problem, we introduce a “tunable inference”
mechanism to constrain how much content should be added and deleted at inference time.

For every input/output pair during training, we calculate the proportions of tokens that were added
and deleted. The “add rate” is the proportion of output tokens absent from the input, and the “delete
rate” is the proportion of input tokens absent from the output.3 Rather than provide these rates
directly to the decoder, we provide ranges, covering but not necessarily centered around the true
rates. Specifically, we sample each range width uniformly from [0,1], and uniformly sample the
“alignment” of the true rate within the range. The final ranges are clipped to [0,1], and passed to the
decoder as four values: [min add rate, max add rate, min del rate, max del rate].4 This approach
provides more flexibility at inference time, so we can enforce tight or loose constraints on each rate.

Targeted Restyling While previous work on style transfer has largely assumed a fixed set of discrete
styles, our method can extract a “ready-made” style vector from any sentence. We expect this learned
representation to capture a rich summary of the sentence, covering many attributes. For example, a
given style vector might encode that a sentence is informal, humorous, in British English, and so on.

In this framework, transferring a single attribute (e.g., informal→ formal) is not as simple as just
providing a vanilla “formal” style target, as this would ignore all the other attributes that defined
the original input. Rather, we must operate in style space to construct a new target style that is
simultaneously formal, humorous, British, and so on.

Concretely, at inference time, we assume access to a small set of “exemplar” sentences (between
1 and 100) for both the source value (e.g., informal) and target value (e.g., formal) of the attribute
being modified. We infer style vectors for each exemplar using the style extractor, and take the mean
of each class, giving vectors vsrc and vtrg. Assuming the exemplar pools are relatively diverse, this
averaging should “wash out” most attributes not being targeted.

To transfer an input sentence x, we apply a targeted restyling in the appropriate direction. After
extracting the original style from the input itself, vx, we compute the target output style by moving in
the direction of the delta between the source and target attributes values, as in (1), producing the style
vector used for decoding. In practice, we find that the delta scale λ is an important hyperparameter
to tune. Generally values in the range [1.0, 10.0] work well, with the best values depending on the
attribute and the exemplars in question.

vx + λ×
(
vtrg − vsrc

)
(1)

3 EXPERIMENTS

To evaluate our approach and better understand the effects of our various design choices, we test
on label-free sentiment transfer, using the Amazon reviews dataset of Li et al. (2018). However, as
their training split doesn’t indicate which sentences were adjacent in the original reviews, we make
use of a different source of raw review text.

Training Procedure Our unlabeled training data comes from the 233.1M Amazon reviews provided
by Ni et al. (2019). Ignoring the star ratings completely, we extract adjacent lines from multi-line
reviews to use as the context and input for our training procedure, giving 23.6M examples. We also
preprocess all text to match the format of the Li et al. (2018) data, as detailed in Appendix A.4.
Initializing our model from pretrained T5 (t5.1.1.large)5, we fine-tune on these examples, optimiz-
ing the joint reconstruction loss from Section 2. Our default TextSETTR configuration is selected
based on preliminary experiments (on development data) varying the set of reconstruction tasks and
inference procedures. The model uses an equally weighted combination of the Noise (N) and Noisy
Back-Translation (NBT) tasks. For both tasks, we use drop and replace noise, but no shuffle noise.
We fine-tune for 10k steps, with a batch size of 65,536 tokens, and a fixed learning rate of 1e-3.

3This calculation ignores word order. As one example, if a token appears three times in the input and five
times in the output, two of the five occurrences are counted as “added”.

4More specifically, a vector is prepended to the sequence of encoder hidden states, holding the tuning rates
as the first four values, and zeros elsewhere.

5https://github.com/google-research/text-to-text-transfer-transformer
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Model Acc. Content
TextSETTR 73.7 34.7

N 23.4 84.4
NBT 70.0 27.8

N+BT 13.3 98.7
−replace noise 66.1 42.1
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manual exemplars 52.4 44.2
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−tunable inference 71.5 39.4
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Figure 2: Automatic evaluation metrics comparing our TextSETTR model, ablations, and previous
work. Up-and-right is better. We train for 10k steps and use add/delete:20–40% unless otherwise
specified. We recalculate metrics for previous approaches, using our BERT classifier for accuracy,
ensuring direct comparability with our models.

Model Accuracy Content
TextSETTR (0–20%) 63.4 76.9
TextSETTR (10–30%) 72.7 60.2
TextSETTR (20–40%) 83.6 39.4
TextSETTR (30–50%) 89.7 21.5
TextSETTR (40–60%) 94.3 11.3
TextSETTR (50–70%) 96.6 5.0

Lample et al. 2019 82.6 54.8
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Figure 3: Comparison with Lample et al. (2019) on the evaluation setting that includes pos→pos
and neg→neg transfers. Note, a model that simply copies its input can achieve 50% accuracy.

Evaluation Procedure Following previous work, we use automatic metrics to assess attribute con-
trol (sentiment) and content preservation on the Li et al. (2018) test data. To estimate the sentiment
of the transferred output text, we fine-tune a BERT-Large classifier (Devlin et al., 2019) on the Li
et al. (2018) train split, scoring 87.8% accuracy on the dev split. For content preservation, we follow
Sudhakar et al. (2019) and Xu et al. (2020) and report self-BLEU between the output and input text,
calculated using SacreBLEU (Post, 2018)6. Some prior work reports instead BLEU scores between
outputs and human-generated transfers from Li et al. (2018); we observe this metric to be highly
correlated with self-BLEU but report it in Appendix A.3 for completeness.

To perform transfers, we follow the procedure from Section 2.3. For our default setup, we sample
100 positive and 100 negative exemplars from Li et al. (2018) train. We also experiment with
(i) increasing to 1000 exemplars of each class, and (ii) decreasing to just four manually selected
exemplars of each class. Unless otherwise specified, we use greedy decoding, a delta scale of λ=8,
and add/delete tuning ranges of 20–40%.

Core Results Figure 2 shows our core results. Our default TextSETTR configuration (using N+NBT
training and tuning ranges 20–40%) achieves 73.7% accuracy at swapping sentiment (as judged by
the classifier), while still staying somewhat close to the original input text (self-BLEU 34.7). Due to
our tunable inference technique, we can also trade off accuracy for content preservation by adjusting
the add/delete rates, as seen in the different points along the green line. Notably, TextSETTR out-
performs the label-free CP-G and CP-B models of Xu et al. (2020). More remarkably, TextSETTR

6Version string: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.13
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Negative→ Positive Positive→ Negative
Model Sentiment Preservation Fluency Sentiment Preservation Fluency

TextSETTR 2.8 2.4 4.2 2.3 2.8 3.8
Delete&Retrieve 2.7 2.9 3.2 2.3 3.4 3.4

B-GST 2.3 2.8 3.6 2.1 3.0 3.6

Table 1: Human evaluations on sentiment, content preservation, and fluency.

outperforms several approaches that rely on training labels: CrossAligned (Shen et al., 2017) and
Delete&Retrieve (Li et al., 2018). However there is still a small gap between our label-free approach
and the best-performing labeled model, B-GST (Sudhakar et al., 2019).

In Figure 3, we compare with Lample et al. (2019) on the evaluation setting including pos→pos
and neg→neg transfers. Note, this type of evaluation doesn’t match our inference procedure, which
assumes that the input and output styles differ. Nevertheless, TextSETTR comes fairly close to the
performance of Lample et al. (2019), despite not benefiting from training labels.

Human Evals As automatic metrics are known to diverge from human judgment (Sudhakar
et al., 2019), we conduct human evaluations of the strongest models from Figure 2: TextSETTR,
Delete&Retrieve, and B-GST. We sample 200 examples per transfer direction from the Li et al.
(2018) test set, and ask three annotators to evaluate each input/output pair on three metrics: sen-
timent transfer (how well the model changed the sentiment), content preservation, and fluency, on
scales of 1–5. Table 1 shows that TextSETTR has superior fluency and performs similarly or better
on sentiment, but is worse on content preservation. These results support the view from the auto-
mated metrics that TextSETTR achieves similar quality to models that benefit from training labels.

3.1 ABLATIONS

Modifying inference procedure To better understand the value of our proposed “targeted restyling”
mechanism, we consider an alternative inference procedure whereby we ignore the style of the input
text, and simply feed the average target exemplar style vtrg as the conditioning style vector. Our
expectation is that since our learned style space covers multiple attributes, this will have the effect of
setting the target attribute (e.g. sentiment), while simultaneously overwriting all other style attributes
(e.g. formality) with unintended values determined by the average style of the target exemplars. This
is borne out in our “overwrite style” ablation, which performs significantly worse than our baseline:
accuracy drops from 54.0% to 25.3% while holding self-BLEU constant.

To assess the value of tunable add/delete rates, we also train a model (−tunable) without this feature.
While the automatic metrics are slightly above the TextSETTR line, we observe several advantages
to the tunable model. For one, we observe it significantly reduces the variance in self-BLEU across
different inputs. For example, focusing on the case of overly high self-BLEU, we find that without
tunable inference, 14.6% of dev eval outputs are identical to their inputs, whereas with tunable
inference, this goes to 0.9%. Additionally, through qualitative analysis in Section 4, we find that
tunable inference allows more flexibility for controlling different types of transfer.

Adjusting data sizes While our unlabeled training data set consists of 23.6M examples, our model
only sees 5.1M of these over its 10k steps of training. Yet this is still nearly 10× more data than the
0.6M examples in the Li et al. (2018) training set used by previous approaches. For a more direct
comparison, we experiment with a “small train set”, sampling 0.6M examples from our training set.
Remarkably, the results in Figure 2 are nearly identical to our baseline, supporting our hypothesis
that a fairly lightweight adaptation is sufficient to allow T5 to extract and transfer textual style.

To test the limits of our model’s generalization, we reduce the set of exemplars to four manually
selected examples of each class.7 In this setting, we also find reducing delta scale to λ=4 is bene-
ficial. The results, shown as “manual exemplars” in Figure 2, are still competitive, indicating that
our approach generalizes well to the few-shot inference setting. In the other direction, we find that
increasing the number of sampled exemplars from 100 to 1000 only provides small additional gains.

7five stars , amazing . / i really love this product . / works great , will buy again . / it is well made , and a
pleasure to use . // zero stars , horrible . / i really hate this product . / does not work, will not buy again . / it is
poorly made , and a pain to use .
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Before
TextSETTR train-
ing (pretrained T5
initialization)

After TextSETTR
training

Figure 4: 2D UMAP embeddings of the style vectors extracted by our TextSETTR model before
and after training, for text inputs from Amazon reviews covering three product categories and two
sentiment labels. Within each row, the same embeddings are visualized with product category labels
(left) and sentiment labels (right).

Reserved ⇒ Emotive Emotive ⇒ Reserved
I liked the movie.
⇒ I cannot even describe how amazing this movie was!!

I loved every minute of the movie!
⇒ I liked the movie.

I was impressed with the results.
⇒ I was absolutely blown away with the results!!

I was shocked by the amazing results!
⇒ I was surprised by the results.

American ⇒ British British ⇒ American
The elevator in my apartment isn’t working.
⇒ The lift in my flat isn’t working.

The lift in my flat isn’t working.
⇒ The elevator in my apartment isn’t working.

The senators will return to Washington next week.
⇒ The MPs will return to Westminster next week.

MPs will return to Westminster next week.
⇒ Representatives will return to Washington next week.

Polite ⇒ Rude Rude ⇒ Polite
Are you positive you’ve understood my point?
⇒ you’ve never understood my point!

What the hell is wrong with your attitude?
⇒ Perhaps the question is more about your attitude.

Could you ask before using my phone?
⇒ I ask you to stop using my phone!

I could care less, go find somebody else to do this crap.
⇒ I could be wrong, but I would try to find somebody

else to do this.

Formal ⇒ Informal Informal ⇒ Formal
I hereby commit to never purchase anything from this

institution in the future.
⇒ i gonna never buy anything from this place again.

best book ever!!
⇒ The book is highly recommended.

I couldn’t figure out what the author was trying to say.
⇒ i dont know what ur trying to say.

couldnt figure out what author tryna say
⇒ The reader couldn’t figure out what the author was

trying to say.

Positive ⇒ Negative Negative ⇒ Positive
I was pretty impressed with the results.
⇒ I was pretty disappointed with the results.

I was pretty disappointed with the results.
⇒ I was pretty impressed with the results.

I will definitely buy this brand again.
⇒ I will definitely not buy this brand again.

I definitely won’t buy this brand again.
⇒ I definitely won’t hesitate to buy this brand again.

Table 2: Examples of transferring along five different axes of style. The same model is used across
all examples, with no additional training. Words deleted from the input are red, and words added in
the output are blue. Within each category, a fixed tiny set of exemplars is chosen, and fixed delta
scale and tuning rates are used. The exemplars and settings are provided in Appendix A.2.
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Modifying training task Lample et al. (2019) showed promising results by combining noise (N)
with back-translation (BT). However we find this combination unstable. When training for 10k
steps, our N and N+BT models nearly always copy their input. By increasing the training steps
to 50k, we can recover reasonable performance, but the metrics still fall below the TextSETTR
line, using our novel NBT task. We also experiment with using NBT in isolation, but this again
underperforms our baseline. We expect that the denoising task helps to ensure the NBT inputs
(themselves the outputs of denoising) consist of realistic well-formed text. Finally, while Lample
et al. (2019) use drop and shuffle noise, we find that only drop and replace are valuable, while shuffle
noise can be removed without negative effect.

3.2 EMBEDDING VISUALIZATION

To demonstrate that our learned style extractor encodes multiple aspects of textual style, we compute
style vectors for 12,000 lines of text from three review categories (Fashion, Software, Pantry) from
the Ni et al. (2019) Amazon data. Within each category, we sample 2,000 positives (4 or 5 star) and
2,000 negatives (1 or 2 star), filtering examples where our BERT classifier disagrees with the label.
Figure 4 (bottom) plots a 2D UMAP dimensionality reduction (McInnes et al., 2018) of the vectors,
and shows clear separations among sentiments and product categories.8 The top row runs UMAP
with the same settings, but over style vectors from our model before training, where the style extrac-
tor is initialized from pretrained T5. The contrast is a clear indication that our training procedure is
helping to learn a representation space where sentiment and topic values are well separated.

4 QUALITATIVE ANALYSIS

One advantage of label-free style transfer is that, in theory, a single model can be used to perform
transfer along any “dimension” of style, given only a few exemplars, and without the need for addi-
tional training. In this section, we investigate the degree to which our approach achieves this goal
in practice. For this purpose, we train a single general-purpose TextSETTR model, with the same
configuration as our model from Section 3, except fine-tuned for 200k steps on English Common
Crawl data (the same “C4” data that T5 pretrained on) as opposed to Amazon reviews.

Transferable Attributes Given that our architecture limits the style representation to 1024 dimen-
sions, one may ask how the unsupervised model will make use of this capacity, and which style
attributes will be encoded in the learned space. Encouragingly, we find that our model trained on
unlabeled Common Crawl data is capable of transferring along many independent axes of style. Ta-
ble 2 shows selected successful examples of our Common Crawl model transferring emotiveness,
dialect, politeness, formality and sentiment. The same model is used in each case, with no additional
training. At inference time, a tiny set of exemplars (1–5 examples of each class) is the only labeled
data used to compute the style vector delta; these exemplars are presented in Appendix A.2.

Across each type of transfer, we see evidence of generalization beyond the specifics of the chosen
exemplars. In making text more emotive, the model uses amazing and blown away, despite these
terms not occurring in the exemplars. In making text more polite, the model inserts novel hedges like
perhaps and I could be wrong. In transferring between American and British styles, the model gen-
eralizes to unseen vocabulary items (elevator↔ lift) and draws sound analogies (senators↔MPs).

Beyond Style Transfer We observe three other noteworthy abilities of our model, which we outline
briefly here, providing further examples of each in Appendix A.1. First, if inference is tuned to add
rather than delete tokens, we find the model is capable of generating style-sensitive completions.
For instance, if we reuse the American and British exemplars used to produce the results in Table 2
but set the tuning ranges to add:40–70%, delete:0%, the model completes the input My favorite hot
drink: with either Starbucks Coffee (American) or a mug of tea (British).

In the other direction, if we tune inference for heavy deletion but apply no modification to the input
style vector, we find the model can perform coherent shortening of text while leaving most or all

8We sub-sample to 3,000 points after dimensionality reduction for clearer visualization. Note, we don’t
expect perfect separation, as inputs may be underspecified for category (“I love this product”) or for sentiment
(“I bought this last month”). Additionally, since we aim for the learned embedding space to encode many style
attributes simultaneously, we don’t expect to see crisp linear separation within each attribute.
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of the meaning intact. For instance, with add:0–5%, delete:40-90% the model shortens: “They do
this without any prior knowledge of cats, for example, that they have fur, tails, whiskers and cat-like
faces.” ⇒ “They do not know that cats have fur, tails, whiskers and cat-like faces.”.

Finally, if instead of applying a targeted style delta vector, we add a small random delta to the input
style, we find our model can output a range of largely meaning-preserving random augmentations.
For example depending on tuning ranges, the model may transfer the input What’ll the weather be
tomorrow? into outputs What’s the weather forecast for tomorrow? (add/delete: 30–50%) or What’s
the weather like for the next day? (add/delete: 50-70%). Further examples are in Appendix A.1.

5 RELATED WORK

As mentioned at the outset, recent work on text style transfer falls into three classes: supervised,
unsupervised, and label-free. Supervised style transfer has seen limited research due to the difficulty
of obtaining parallel data. Examples can be seen in Jhamtani et al. (2017) and Carlson et al. (2018).

Unsupervised Approaches The bulk of research has focused on “unsupervised” approaches, which
rely on labeled but non-parallel data. Typically, labels are assumed to be available for both source
and target styles (Dai et al., 2019; He et al., 2020; Lample et al., 2019; Li et al., 2018; Niu et al.,
2018; Prabhumoye et al., 2018; Shen et al., 2017; Sudhakar et al., 2019; Wu et al., 2019; Yang et al.,
2018). However Zhao et al. (2018) also explore the case where only the target style is labeled. The
use of labels at training time can aid modeling, but limits the applicability of these methods, as
labeled datasets are not readily available for many attributes of interest.

Our work differs from the above by removing the need for training labels, and offering a single model
that can target an unrestricted set of style attributes. Despite these differences, our work shares some
similarities with past work. For example, our encoder-decoder architecture and corruption methods
are similar to Lample et al. (2019), and we leverage a strong pretrained language model, as in
Sudhakar et al. (2019) and Wu et al. (2019).

Label-Free Approaches A label-free approach has recently been explored by Xu et al. (2020).
The authors train a variational auto-encoder on unlabeled text, where a “manipulable” portion of
the latent representation is constrained to fall on a k-dimensional simplex. To perform transfer,
they identify empirically the basis vector that most strongly corresponds to the target attribute, and
manipulate its magnitude. Compared to our approach, a key difference is that the number of latent
factors must be chosen ahead of time, and this limits the number of attributes that may be controlled.
Additionally, there is no guarantee that a single basis of the learned simplex will correspond to a
target attribute such as dialect or politeness.

Controlled Generation A separate strand of research explores “controlled generation” methods for
supplementing generative language models to allow control of specific attributes of the output text.
As with style transfer, this can be achieved either through labeled examples, as in CTRL (Keskar
et al., 2019) and PPLM (Dathathri et al., 2020), or label-free, as in CoCon (Chan et al., 2020). The
key difference between these models and style transfer models is that they aim to generate plausible
continuations following a prompt, as opposed to transferring attributes of a fully-formed input while
preserving as much content as possible. It is not clear if controlled generation models could be used
to perform style transfer, and they have not to our knowledge been evaluated in this context.

Tunable Transfer Our delta scale parameter λ is similar to the “modification weight” of Wang et al.
(2019) controlling the strength of the transfer operation applied in latent space. However our tunable
add/delete rates are novel in offering fine-grain control over the change expected in the surface form.
This degree of control enables applications such as style-sensitive completion and shortening.

6 CONCLUSION

We have presented a unique approach to label-free text style transfer that can achieve results com-
parable to systems trained with labels (an easier setting), while allowing control of how much of the
input is changed. We demonstrate with qualitative results that this approach can produce a single
system capable of performing many different types of style transfer, requiring only a handful of
exemplars at inference time.
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A APPENDIX

A.1 BEYOND STYLE TRANSFER

In this section, we provide additional examples illustrating the abilities of our TextSETTR model
trained on Common Crawl data, beyond typical style transfer.

Examples of dialect-sensitive completion are given in Table 3. In each case, the model is passed an
input of the form “My favorite X: ”. Despite the fact that TextSETTR is not trained specifically for
completions, we can use the add and delete rates to encourage the model to insert a few additional
tokens, while leaving the original prompt largely unchanged.9

The completions show a detailed knowledge of American and British culture. Furthermore, it is
remarkable that the model is able to generalize to these “deeper” cultural differences, given only the
shallow vocabulary differences presented in the limited set of exemplars in Table 7.

It is also worth highlighting that, thanks to our directional transfer procedure, these completions are
not merely “typical American” or “typical British” continuations such as we would expect from a
conditional language model trained on each sub-domain of text. Rather, since our inference proce-
dure pushes the style away from one domain and towards the other, the resulting completions are
distinctive representations of each dialect. As one example, we expect “quinoa” would not only be
a common American favorite, but also an uncommon British favorite.

American ⇒ British British ⇒ American
My favourite food: fish and chips. My favorite food: quinoa.
My favourite hot drink: a mug of tea. My favorite hot drink: Starbucks Coffee.
My favourite dessert: a scone! My favorite dessert: a brownie.
My favourite city: Cardiff. My favorite city: San Diego.
My favourite band: The Beatles. My favorite band: The Black Keys.
My favourite sports league: the English Premier League. My favorite sports league: the NFL.
My favourite newspaper: The Daily Telegraph. My favorite newspaper: The Washington Post.
My favourite museum: the British Museum. My favorite museum: The National Air and Space Museum.

Table 3: Examples of dialect-sensitive completion (λ=8, add:40–70%, delete:0%). In each case, the
input text consists of an unfinished phrase, for example: “My favorite food: ”. The three exemplars
used for each dialect are the same as those used for the transfers in Table 2, as listed in Table 7.

Examples of shortening are given in Table 4, with inputs taken from the first five sentences of the
Wikipedia article “Artificial neural network”. As successful shortening may require minor rephrases,
we set our tuning ranges to add:0–5%, delete:40–90%. Since our intention is to leave the textual
style unchanged (apart from length), we extract the target style directly from the input text, with no
delta added. In each case, the model is largely successful at identifying and removing “superfluous”
content, and finding ways of rephrasing to shorten while preserving meaning.

Examples of random augmentations are given in Table 5. In each case, we transfer the input sen-
tence “What’ll the weather be tomorrow?” to a slightly different style. Specifically, for each transfer,
we extract this sentence’s style vector and apply a small amount of noise, with each component of
the noise vector sampled from a Gaussian N (0, 0.08). Note that apart from the noise in the style
vector, the transfer process is deterministic, as we use greedy decoding.

9Note however, that in transferring from American to British, the model does prefer to change the prompt
from favorite to favourite.
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Artificial neural networks (ANN) or connectionist systems are computing systems that are inspired by, but not identical to,
biological neural networks that constitute animal brains.

⇒ Artificial neural networks (ANNs) are computing systems that are inspired by the biological neural networks that
constitute animal brains.

Such systems “learn” to perform tasks by considering examples, generally without being programmed with task-specific
rules.

⇒ Such systems learn to perform tasks by considering examples, generally without explicit rules.

For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that
have been manually labeled as “cat” or “no cat” and using the results to identify cats in other images.

⇒ For example, image recognition systems might learn to identify images that contain cats by analyzing images that have
been manually classified as “cat” or “no cat”.

They do this without any prior knowledge of cats, for example, that they have fur, tails, whiskers and cat-like faces.
⇒ They do not know that cats have fur, tails, whiskers and cat-like faces.

Instead, they automatically generate identifying characteristics from the examples that they process.
⇒ Instead, they automatically generate identifying characteristics.

Table 4: Examples of shortening (add:0–5%, delete:40-90%), using the first five sentences from the
Wikipedia article “Artificial neural network”. For each sentence, the target style is extracted directly
from the input text, and no delta is added.

The cells of Table 5 apply different tuning ranges, conditioning the model to change a little or a lot.
Within each cell, we repeatedly sample the noised style, and present the first five unique outputs.
The results indicate that many random changes in style are largely meaning preserving, especially
when a small change is requested. With larger add/delete rates, the outputs are still closely related
in meaning, despite low lexical overlap.

Add/Delete: 10–30% Add/Delete: 30–50%
What’ll the weather be like? What’s the weather like?
What’ll the weather be like tomorrow? What will the weather be like tomorrow?
What’s the weather like tomorrow? Will the weather be better tomorrow?
What’ll the weather be tomorrow? What’s the weather forecast for tomorrow?
What’s the weather supposed to be tomorrow? How will the weather be tomorrow?

Add/Delete: 50–70% Add/Delete: 70–90%
Will the weather be perfect tomorrow? How do you know what the weather will be like?
What’s the weather for tomorrow? Is it supposed to be cold tomorrow?
What’s the weather like on the course? What will the weather be like in the South?
Hopefully the weather will be better tomorrow. I’m not a fan of the weather.
What’s the weather like for the next day? What is the temperature and what is the humidity.

Table 5: Random augmentations of input text “What’ll the weather be tomorrow?”, using random
style vector deltas with components sampled from N (0, 0.08).

A.2 SETTINGS USED FOR QUALITATIVE ANALYSIS

For each of the transfer types (e.g., formal ↔ informal) in Table 2, we specify the intended target
styles to the model through a tiny set of exemplars. These exemplars are provided in Tables 6–10.
Additionally, for each transfer type, we select a delta scale λ and add/delete rates. These settings are
selected through initial experiments, and are held fixed across all examples of transfer shown.

A.3 HUMAN REFERENCE BLEU

Li et al. (2018) provide human reference transfers for their Amazon test data, and report BLEU
scores of model outputs against these targets. In principle, we believe this metric is less informative
than self-BLEU, as style transfer is a relatively open-ended task, and successful transfers may differ
significantly from the single human reference. However, for completeness, we report “reference
BLEU” of our models and those of prior work in Figure 5. We observe BLEU and self-BLEU

13



Under review as a conference paper at ICLR 2021

Reserved Exemplars Emotive Exemplars

1. That is a very pretty painting.

2. I’m excited to see the show.

3. I’m surprised they rescheduled the meeting.

4. This specimen is an example of the baroque style.

5. After the performance, we ate a meal.

1. OMG, that’s such a beautiful painting!

2. I’m sooo excited to see the show, it’s going to be stel-
lar!!

3. I absolutely can not believe that they rescheduled the
meeting!

4. This wonderful specimen is a truly spectacular exam-
ple of the baroque style.

5. After the superb performance, we ate a delicious meal.

Table 6: Emotiveness transfer exemplars. Transfer settings: λ=9, add/delete rates: 0–100%.

American Exemplars British Exemplars

1. It cost ten bucks.

2. My neighbor apologized.

3. I’m heading out to the bar with some friends.

1. It cost ten quid.

2. My neighbour apologised.

3. I’m heading out to the pub with some mates.

Table 7: Dialect transfer exemplars. Transfer settings: λ=8, add/delete rates: 10–30%.

Polite Exemplars Rude Exemplars

1. No thank you, I’d prefer not to.

2. This game could have been better designed.

3. Do you know why they might have delayed the launch?

4. Sorry, I wasn’t certain if you were joking.

1. Hell no, you can’t make me do that.

2. This game is such a piece of garbage!

3. Why in god’s name would they delay the damn launch?

4. Are you frigging kidding me?

Table 8: Politeness transfer exemplars. Transfer settings: λ=5, add/delete rates: 20–50%.

Formal Exemplars Informal Exemplars

1. This was a remarkably thought-provoking read.

2. It is certainly amongst my favorites.

3. We humbly request your presence at our gala on the
12th.

1. reading this rly makes u think

2. Its def one of my favs

3. come swing by our bbq next week if ya can make it

Table 9: Formality transfer exemplars. Transfer settings: λ=4, add/delete rates: 40–80%.

Positive Exemplars Negative Exemplars

1. Five stars, I love it. 1. Zero stars, I hate it.

Table 10: Sentiment transfer exemplars. Transfer settings: λ=3, add/delete rates: 0–100%.
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Model BLEU Self-BLEU
CrossAligned 2.0 2.9

Delete&Retrieve 29.7 56.9
B-GST 29.0 54.2
CP-G 17.0 35.5
CP-B 19.4 39.8

TextSETTR (0–20%) 39.0 73.3
TextSETTR (10–30%) 30.7 55.8
TextSETTR (20–40%) 20.0 34.7
TextSETTR (30–50%) 10.6 18.4
TextSETTR (40–60%) 5.5 9.1
TextSETTR (50–70%) 2.2 3.6 0 5 10 15 20 25 30 35 40

Reference BLEU
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Figure 5: BLEU scores between model outputs and human references provided by Li et al. (2018),
along with self-BLEU for comparison. The first group of models in the table had access to labels
at training time, while the second group did not. TextSETTR (X–Y%) refers to our model with
add/delete rate ranges set to X–Y%.

are highly correlated, and the “Accuracy vs. BLEU” plot conveys the same relationships we saw in
Figure 2. As before, all BLEU scores are calculated using SacreBLEU (Post, 2018).

A.4 AMAZON REVIEWS PREPROCESSING

We use the code in Figure 6 to process raw Amazon reviews from the Ni et al. (2019) dataset and
extract pairs of adjacent lines, preprocessed to have a similar format to Li et al. (2018) dataset. We
split reviews on newlines, and clip lines to 100 characters, always ending with a period. This gives
results similar to Li et al. (2018), where one line may contain multiple sentences, and may consists of
a “half-sentence” ending with “e.g.” or a similar non-sentence-final period. Additionally, we apply
various tokenization and normalization operations to roughly match the observed Li et al. (2018)
text.
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import re
from html.parser import HTMLParser

html_parser = HTMLParser()

def preprocess(line):
"""Simulate Li et al. preprocessing of one review line."""
# Lowercase.
line = line.lower()
# Replace apostrophes, parens and quotes with spaces.
line = re.sub("[’()\"]", " ", line)
# Replace dollar values ==> $
line = re.sub("\$[\d.]*", "$", line)
# Replace percent values ==> %
line = re.sub("[\d.]*%", "%", line)
# Replace single digits ==> num_num
line = re.sub(" \d[ ,]", " num_num ", line)
# Replace multi-digits and codes ==> num_extend
line = re.sub(" \d[ˆ ]*", " num_extend", line)
# Remove remaining numbers, including decimals.
line = re.sub("\d[\d.]*", "", line)
# Add spaces around certain punctuation marks.
line = re.sub("([.,?!:])", r" \1 ", line)
# Remove double spaces after periods before words.
return re.sub(r"\. ([a-z])", r". \1", line)

def acceptable_line(line):
"""Check if text looks like an acceptable line from Li et al."""
if not line or len(line) < 30 or len(line) >= 100:

return False
# Avoid lines with any char absent from Li et al. train.
if re.search(’[ˆ !$%+,.:;>?@\ˆ_‘a-z{|}]’, line):

return False
return True

def clip_to_last_period(line):
return line[:len(line) - line[::-1].index(’.’)]

def adjacent_lines(review):
"""Extract a list of adjacent line pairs from review text."""
review = html_parser.unescape(review)
review = review.replace(’\\"’, ’"’)
# Simulate Li et al. splitting and filtering.
if ’\n’ not in review:

return
lines = review.split(’\n’)
lines = [preprocess(clip_to_last_period(l[:100]))

for l in lines if l and "." in l[:100]]
lines = [preprocess(l) for l in lines]
lines = [l for l in lines if acceptable_line(l)]
if len(lines) < 2:

return
return list(zip(lines[:-1], lines[1:]))

Figure 6: Python code to extract adjacent lines of text from raw Amazon reviews, producing outputs
in a similar style to Li et al. (2018).

16


	Introduction
	Method
	Model Architecture
	Corruption Strategies
	Inference Procedure

	Experiments
	Ablations
	Embedding Visualization

	Qualitative Analysis
	Related Work
	Conclusion
	Appendix
	Beyond Style Transfer
	Settings used for Qualitative Analysis
	Human Reference BLEU
	Amazon Reviews Preprocessing


