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Abstract

Existing test-time adaptation (TTA) methods primarily focus on scenarios involving
domain shifts in a single modality. However, they often prove ineffective when
multiple modalities simultaneously undergo domain shifts, as they struggle to
identify and utilize reliable samples within testing batches amid severe prediction
bias. To address this problem, we propose Partition-Then-Adapt (PTA), a novel
approach combating prediction bias for TTA with multi-modal domain shifts. PTA
comprises two key components: Partition and Debiased Reweighting (PDR) and
multi-modal Attention-Guided Alignment (AGA). Specifically, PDR evaluates each
sample’s predicted label frequency relative to the batch average, partitioning the
batch into potential reliable and unreliable subsets. It then reweights each sample by
jointly assessing its bias and confidence levels through a quantile-based approach.
By applying weighted entropy loss, PTA simultaneously promotes learning from
reliable subsets and discourages reliance on unreliable ones. Moreover, AGA
regularizes PDR to focus on semantically meaningful multi-modal cues. Extensive
experiments validate the effectiveness of PTA, surpassing state-of-the-art method
by 6.1% on Kinetics50-MC and 5.8% on VGGSound-MC, respectively. Code of
this paper is available at https://github.com/MPI-Lab/PTA.

1 Introduction

Pre-trained models tend to encounter performance degradation when deployed due to source-target
domain shifts. To mitigate this, TTA updates model parameters during inference using online data,
making it essential for applications like visual understanding [31, 30] and embodied intelligence [6,
18]. Recent studies have expanded TTA to multi-modal scenarios (MM-TTA), such as multi-modal
action recognition and event classification [43, 50, 9]. However, they primarily focus on single-modal
domain shifts in multi-modal tasks, where only one modality undergoes a shift while others remain
unaffected. In the real world, multi-modal domain shifts are more commonly encountered. For
instance, variations in lighting and background noise can degrade the performance of cameras and
acoustic sensors used in autonomous driving systems [43, 40]. In this paper, we investigate the
challenging problem of simultaneous domain shifts across multiple modalities in MM-TTA scenarios.

Existing MM-TTA methods typically address single-modal domain shifts in multi-modal tasks, but
they fall short in handling multi-modal domain shifts. This is mainly due to difficulties in identifying
and effectively leveraging reliable samples. From Fig. 1 (a), we observe that as more modalities
become contaminated, the pre-trained model gradually loses reliability in multi-modal fusion, causing
fused representations of different classes to overlap. Consequently, as shown in Fig. 1 (b), this results
in biased predictions. In the context of TTA, updating the pre-trained model with biased predictions
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Figure 1: (a) t-SNE [35] visualizations of fused representations under clean, single-modal, and multi-
modal domain shifts. (b) Proportions of predicted labels under the same domain shift conditions as (a).
(c) Comparison of true positive rates for test data grouped by normalized entropy bins (interval: 0.1) .
All experiments are conducted on the Kinetics50-C(MC) [43] with the pre-trained CAV-MAE [43]
model. The audio and video noise types are “Crowd” and “Gaussian Noise”, respectively.

rapidly accumulates errors, leading to collapsed trivial solutions [26], i.e., limiting predictions to
a narrow subset of classes. One popular way to mitigate this is to perform model adaptation using
only high-confidence samples [43, 50, 9]. However, this strategy frequently struggles to adapt to
multi-modal domain shifts. As illustrated in Fig. 1 (c), we observe a notable drop in the true positive
rate for high-confidence samples, indicating that many of the selected “reliable” samples are actually
false positives. In this case, updating the pre-trained model with these “reliable” samples amplifies the
risk of error accumulation. Therefore, relying exclusively on prediction confidence fails to provide a
reliable basis for sample selection and reweighting during TTA under multi-modal domain shifts.

To address the above challenges, we propose a Partition-Then-Adapt (PTA) method, which discovers
and leverages reliable samples for TTA in the presence of multi-modal domain shifts. PTA consists
of two key components, i.e., Partition and Debiased Reweighting (PDR) and multi-modal Attention-
Guided Alignment (AGA). Specifically, given test samples under multi-modal domain shifts, PTA first
quantifies the prediction bias level for each sample. This bias is calculated based on how frequently
the sample’s predicted label appears relative to the average frequency of predicted labels within the
batch. Samples with lower prediction bias are identified as potentially reliable, while those with
higher bias are deemed potentially unreliable. It then employs a quantile-based reweighting scheme
in the multi-modal adaptation that jointly assesses prediction bias and confidence levels, assigning
positive and negative weighting factors for reliable and unreliable samples. By separately applying
weighted entropy minimization and maximization to each group, it simultaneously promotes learning
from reliable samples and discourages reliance on unreliable ones. Since the entropy maximization for
unreliable samples may drive the attention map toward an undesired uniform distribution, potentially
causing the model to attend to non-discriminative or noisy signals, we further introduce a multi-modal
attention-guided alignment (AGA) method to mitigate this risk. Specifically, AGA uses the attention
map distributions of reliable samples to guide the update of those from unreliable samples through
a maximum mean discrepancy-based regularization. It ensures the attention maps distribution of
unreliable samples remains aligned with the semantically meaningful cues from reliable samples,
rather than being misled by undesired uniform distributions. The contributions of this work can be
summarized as follows:
(1) We show that solely believing in prediction confidence may induce error accumulation under

multi-modal domain shifts in TTA.
(2) We propose a novel PTA method, which consists of Partition and Debiased Reweighting (PDR)

and multi-modal Attention-Guided Alignment (AGA). PDR offers a reliable sample selection
and reweighting scheme that combats prediction bias for MM-TTA. AGA further regularizes
PDR to focus on semantically meaningful multi-modal cues.
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(3) PTA consistently outperforms all state-of-the-art methods on multi-modal tasks, with pronounced
advantages under multi-modal domain shifts.

2 Related Work

Test-Time Adaptation. TTA [37, 19] aims to adapt a pre-trained model to the target domain using
online data without ground-truth labels. Traditional works typically address four core challenges of
TTA, i.e., noisy pseudo-labels [3, 24], biased entropy [25, 16, 13, 38, 41], catastrophic forgetting [40],
and miscalibrated batch normalization statistics [45]. To mitigate noisy pseudo-labels and biased
entropy, existing methods employ sample selection/reweighting [25, 26, 16], pseudo-label refine-
ment [3], and robust prototypes learning [5, 48, 39]. For catastrophic forgetting, memory banks [40],
Fisher regularization [25, 33], and teacher-student frameworks [40, 5, 22, 34, 28] are commonly
adopted to achieve prediction consistency. Meanwhile, miscalibrated statistics are typically corrected
via source-target normalization statistics mixup [45, 7, 49]. Although effective in single-modal set-
tings, their direct application to multi-modal scenarios often yields suboptimal results, as real-world
multi-modal domain shifts involve more complex noise patterns [9].
Multi-Modal Test-Time Adaptation. Different from traditional TTA studies, which primarily handle
single-modal data, MM-TTA addresses the challenge of domain shifts in multi-modal data. Pioneer
works [29, 2, 1] attribute the challenges to intra- and cross-modal error accumulation, and conduct
similar operations with traditional single-modal TTA methods, such as pseudo-labeling [37, 20] and
teacher-student guidance [40, 5]. A recent work [43] advocates that the key of MM-TTA is mitigating
increasing information discrepancies, i.e., reliability bias, and proposes reliable fusion and robust
adaptation as a solution. Its followers introduce attention bootstrapping [50], mutual information
sharing [9] to further boost the performance. However, they focus on addressing single-modal domain
shifts, where only one modality undergoes domain shift while others remain intact. In this paper, we
demonstrate the robustness of our method on both single-modal and more practical and challenging
multi-modal domain shifts.

3 Method

3.1 Problem Formulation

We define the problem using the example of video and audio co-classification for clarity. Consider
a multi-modal pre-trained modelMΘ = (ϕv, ϕa,F), where ϕv and ϕa are the encoders for video
modality v and audio modality a, respectively, and the block F is the fusion component with
a prediction head. Let the output logits be p(X ) = MΘ(X ) for online mini-batch X , where
X = {xi}ni=1 = {(xv

1, x
a
1), (x

v
2, x

a
2), · · · , (xv

n, x
a
n)}. For sample x ∈ X , the prediction can be

computed by ŷ(x) = argmax(softmax(p(x))). During MM-TTA, the model updates the tunable
parameters Θ̃ ⊆ Θ with self-supervised loss functions, e.g., entropy loss.

Previous MM-TTA methods [43, 50] focus on single-modal domain shifts, where only one modality
is corrupted, which may deviate from real-world scenarios. In this paper, we focus on multi-modal
domain shifts in MM-TTA, and propose a novel Partition-Then-Adapt (PTA) method. As shown in
Fig. 2, PTA consists of Partition and Debiased Reweighting (PDR) and multi-modal Attention-Guided
Alignment (AGA). PDR identifies reliable and unreliable candidates and reweights their contributions,
and AGA regularizes PDR to focus on semantically meaningful multi-modal cues.

3.2 Partition and Debiased Reweighting

Sample reweighting is a widely adopted strategy in traditional TTA, designed to balance the influence
of reliable and unreliable samples. Building on this approach, previous MM-TTA methods select and
reweight samples simply guided by low entropy [25, 43, 9] or high softmax confidence [50]. They
perform well when only one modality undergoes domain shift among multiple modalities, allowing
the pre-trained model to leverage reliable, unaffected modalities to preserve prior knowledge [43, 9],
thereby maintaining the reliability of selected samples.

However, as we demonstrate in the experimentation section (Tables 1-3 and 6-7), the effectiveness of
existing reweighting strategies becomes less effective under multi-modal domain shifts compared to
single-modal domain shifts. In such scenarios, corrupted modalities compromise the reliability of
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Figure 2: Overview of PTA. PTA first partitions the online data into two subsets, and jointly evaluates
sample importance considering their prediction bias and confidence levels. It then adapts the pre-
trained model by weighted entropy minimization and multi-modal attention-guided alignment.

prior knowledge, degrade fused representations, and constrain predictions to a narrow set of classes.
Unlike single-modal settings, noise in a single modality can propagate through the fusion process,
disrupting the entire multi-modal system [9]. As more modalities are affected, the collapse of prior
knowledge leads to a sharp decline in the true positive rate of confident predictions and a more
pronounced increase in false positives. Consequently, confidence or entropy becomes an unreliable
indicator for identifying and reweighting samples under multi-modal domain shifts. In such cases,
adapting the model further increase the risk of prediction bias. To address this challenge, we design
a Partion and Debiased Reweighting (PDR) strategy that effectively combats prediction bias under
multi-modal domain shifts.

PTA first identifies reliable and unreliable samples, and respectively promote and restrain their
contributions for better adaptation. Given a batch of multi-modal samples X , with corresponding
predicted categories Ŷ . For x ∈ X , the frequency of its predicted label can be expressed as
Z(x) = Eŷi∈Ŷ1(ŷi = ŷ). Here, 1(·) is the indicator function that equals 1 when the condition is
true. For samples in the mini-batch X , we define their bias level of prediction as:

Z(X ) = Z̄ − Z(X ) =
{
Z̄ − Z(x1), Z̄ − Z(x2), . . . , Z̄ − Z(xn)

}
, (1)

where Z̄ = Ex∈XZ(x) is the mean frequency of the predicted labels, therefore representing the
average bias level of all samples in the batch. Let the prediction confidence of X be denoted as
K(X ) = max(softmax(p(X ))). Based on Eq. (1), we partition X into two subsets: X+ for less
biased predictions (Z ≥ 0) and X− for more biased predictions (Z < 0), yielding corresponding
pairs of bias levels and confidences: (Z+,K+) and (Z−,K−). Building upon this partitioning, we
introduce a novel approach that leverages the sample-wise bias levels for achieving more reliable
reweighting adaptation.

To identify the reliability of test samples, we reweight those in X+ using their corresponding bias
and confidence levels, Z+ and K+, via a quantile-based importance weighting scheme: Q(Z+) and
Q(K+), where Q(·) denotes the quantile ranking operation inspired by [15, 32]. Specifically, we
first sort all elements in Z and K, then compute each element’s quantile by averaging the positions
of its first and last occurrences in the sorted sequence, normalized by the total number of elements.
The details can be found in Algorithm 1. This quantile-based operation on Z+ and K+ serves to
normalize sample influence and suppress outliers by mapping raw scores to a relative scale. By jointly
ranking bias and confidence, it highlights samples that are both confident and less biased, enabling
more reliable and robust adaptation. For a test sample x ∈ X , the reweighting indicator function can
be formulated as,

I(x) =

{
Q(Z+(x)) ·Q(K+(x)), if x ∈ X+,

−s, if x ∈ X−.
(2)

The reliable samples in X+ are those with less prediction bias and high confidence, and the unreliable
ones in X− are those with large prediction bias. We set the weight of X− to −s (s >= 0), to reject
samples with obviously biased predictions during entropy minimization. Therefore, the weighted
entropy loss can be formulated as,

H(X ) = −I(X ) ·
∑

p(X ) logp(X ). (3)
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Algorithm 1 Quantile Ranking

1: Input: Sequence T
2: Output: Quantile sequence Q
3: Tsorted ← sort(T ), Q← [ ]
4: for each t ∈ T do
5: Find first index j where Tsorted[j] = t
6: Find last index k where Tsorted[k] = t
7: Compute Qt ← j+k

2|T |
8: Append Qt to Q
9: end for

10: Return Q

Algorithm 2 PTA

1: Input: Trained modelMΘ, Data batch X
2: Calculate the prediction logits: p(X ) =
MΘ(X )

3: Reweighting each element in X using
Eq. (1), Eq. (2), and Algorithm 1

4: Calculate the weighted entropy loss using
Eq. (3)

5: Calculate the MMD-based loss via Eq. (4)
6: Calculate the overall loss using Eq. (5)
7: Update the tunable parameters Θ̃ ofMθ

In summary, PTA takes both bias and confidence levels into account. Consequently, in the presence
of numerous false positives, the high bias levels help reduce the corresponding weights, thereby
mitigating error propagation during MM-TTA.

3.3 Multi-modal Attention-Guided Alignment

In Eq. (3), we introduce an entropy-based objective that assigns positive weights to reliable samples
X+ and negative weights to unreliable ones X−, aiming to minimize the entropy of X+ while
maximizing that of X−. X+ has robust prior knowledge compared to that of X−, and we will verify
in Section 4.3. This mechanism, however, introduces a potential risks. In multi-modal learning,
attention-based fusion [36, 23], especially self- and cross-modal attention, is widely used to integrate
information from different modalities. Under the entropy maximization objective, the attention map
A− associated with X− may converge toward a uniform distribution during adaptation. This can
cause the model to attend to non-discriminative or noisy signals, which in turn interferes with the
reliability and effectiveness of A+ in the fusion process. To mitigate this issue, based on the partition
above, we propose a multi-modal Attention-Guided Alignment (AGA), which ensures that attention
remains aligned with semantically meaningful multi-modal cues. We explicitly enforces the model to
learn semantically meaningful multi-modal cues and push it as a guide for model adaptation via AGA.
Specifically, we model the distribution of A+ and A− by mapping them into a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) with Gaussian kernel g, and compute the regularization
based on maximum mean discrepancy [42] (MMD) as follows:

R(A+,A−) = Em,m′∼A+ [g(m,m′)] + En,n′∼A− [g(n, n′)]− 2 · Em∼A+,n∼A− [g(m,n)], (4)

where (m,m′) are the positive pair drawn from A+, and (n, n′) are the negative pair drawn from
A−. The first two terms of Eq. (4) encourage similarity among positives (negatives), promoting
consistency within each respective group. And the third term regularizes the model by guiding A−

with A+. Specifically, it aligns the distributions of A− with those of A+. As a result, to minimize
Eq. (4), the model has to focus on the semantically meaningful multi-modal cues from A+, while
suppressing the knowledge from A−.

3.4 Overall Optimization

Finally, we combine Eq. (3) and Eq. (4) with a coefficient factor λ as the overall loss function:

L(X ) = H(X ) + λ · R(A+,A−). (5)

For the clarity of our design, we summarize PTA in Algorithm 2. When the multi-modal system
receives online data X , it encodes the data of each modality as modality-specific tokens, sends
the tokens to the fusion block, and outputs the corresponding logits. We use PTA to separate X
into X+ and X− based on the distribution of predicted class, and then reweight their contribution
using a quantile-based weighting approach. Moreover, we enforce the model to learn semantically
meaningful multi-modal cues using AGA.
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Table 1: Accuracy comparison with SOTAs on Kinetics50-MC for multi-modal domain shifts (severity
level is 5 for all tables except Table 3 and 5). The best performances are highlighted.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.92 13.95 13.05 37.20 36.94 45.30 41.79 30.36 31.88 20.47 55.29 18.28 42.30 38.90 37.77 31.76

Tent [37] 6.72 7.03 6.68 27.02 29.00 38.96 34.43 17.50 22.22 8.30 53.42 9.95 36.02 28.71 29.79 23.72
ETA [25] 12.90 13.80 13.00 38.83 39.36 47.42 43.71 32.50 33.13 19.90 57.13 18.07 44.39 41.48 39.73 33.02
MMTTA [29] 8.56 9.23 8.45 32.17 34.06 42.57 40.35 24.06 28.02 11.62 55.53 12.88 40.93 35.96 35.17 27.97
ABPEM [50] 12.27 13.16 12.24 40.59 41.08 50.05 45.92 33.02 37.21 19.19 58.41 20.02 46.25 40.72 38.55 33.91
SuMi [9] 12.38 13.51 12.75 37.21 36.99 46.11 42.23 29.80 31.56 19.10 55.76 17.92 41.90 37.78 36.55 31.44
READ [43] 14.14 14.96 14.78 43.12 41.23 50.12 45.92 35.06 37.20 26.28 58.58 22.09 46.39 42.97 38.20 35.40
PTA 21.93 22.98 22.11 47.72 45.92 52.55 49.31 40.25 43.57 39.66 59.99 27.32 50.35 50.86 47.59 41.47

Table 2: Accuracy comparison with SOTAs on VGGSound-MC for multi-modal domain shifts.
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 4.67 4.77 4.65 9.27 9.04 11.75 12.83 9.03 11.78 9.10 15.82 5.97 12.82 10.03 11.87 9.56

Tent [37] 0.74 0.74 0.75 0.96 0.88 1.16 1.35 0.90 1.03 0.79 1.66 0.74 1.09 1.11 1.30 1.01
ETA [25] 6.72 6.86 6.69 13.34 14.49 17.15 18.22 13.30 16.48 13.64 23.30 7.77 19.92 15.45 18.18 14.10
MMTTA [29] 2.41 2.79 2.44 4.16 3.63 5.24 5.80 3.63 3.75 2.14 8.26 2.14 4.72 4.76 6.46 4.14
ABPEM [50] 4.59 5.75 4.47 12.62 13.70 16.49 15.62 12.72 14.62 14.25 20.05 7.62 16.51 12.12 15.38 12.43
SuMi [9] 4.68 4.76 4.60 9.24 9.22 11.47 12.35 9.10 11.40 8.69 15.16 5.97 12.55 9.88 11.12 9.34
READ [43] 7.43 7.71 7.65 13.01 13.71 15.28 14.58 12.65 13.79 12.88 16.57 9.69 15.75 13.16 13.71 12.50
PTA 10.89 10.96 10.73 18.08 18.91 21.86 21.22 19.06 21.08 20.61 25.32 13.78 22.51 18.42 20.97 18.29

4 Experiment

4.1 Experimental Setting

Datasets. To comprehensively validate MM-TTA, we conduct experiments on benchmarks featuring
both synthetic and real-world domain shifts. For synthetic shifts, we apply 15 types of corruptions [11]
to the video modality and 6 types of corruptions [43] to the audio modality of Kinetics50 [14] and
VGGSound [4], following the protocol in [43]. This results in a total of 90 combinations for each
benchmark, e.g., Kinetics50-MC and VGGSound-MC. Each corruption type is applied at 5 severity
levels. For real-world domain shifts, we choose CMU-MOSI [46], CMU-MOSEI [47], and CH-
SIMS [44] for evaluation, each comprising three modalities (e.g., text, audio, and video). See
Appendix A for more details.
Baselines. We compare our method with state-of-the-art (SOTA) methods, including TENT [37],
ETA [25], MMTTA [29], READ [43], SuMi [9], and ABPEM [50]. Details are in Appendix C.
Implementation details. For experiments on synthetic multi-modal domain shifts, we adopt the
pre-trained model from [43] based on the CAV-MAE architecture [8], following [43, 9, 50]. The
learning rate and batch size are set to 2e-4 and 32 for Kinetics-C, and 1e-4 and 64 for VGGSound-C,
respectively. For the experiments on real-world domain shifts, we provide pre-trained models for
CMU-MOSI [46], CMU-MOSEI [47], and CH-SIMS [44] following the training protocol [10]. The
learning rate and batch size are set to 1e-3 and 24. Details are in Appendix B. By default, hyper-
parameters are set as s = 0.5, λ = 1. Following [43, 50], we update query/key/value transformation
matrices of the attention layer in the fusion block. We run all experiments with 5 random seeds on
one NVIDIA 4090 GPU, and report the average accuracy.

4.2 Comparison with SOTAs

Robustness to synthetic multi-modal domain shifts. We present the results of the most challenging
task, where online data from both audio and video modalities is corrupted with the highest noise
severity (level 5), in Tables 1 and 2. Each number denotes the average performance over six audio
corruptions under a specific video corruption. As the rate of true positives experiences a significant
drop, existing methods that employ confidence [43, 50] or entropy [25, 9] as the criterion for sample
reweighting demonstrate limited improvement under multi-modal domain shifts. In comparison, PTA
outperforms all existing SOTA methods across all corruption combinations. Specifically, it achieves
a 9.71% and 8.73% performance gains compared to the pre-trained model on Kinetics50-MC and
VGGSound-MC, respectively. This demonstrates the effectiveness of PTA in jointly assesses the
contribution of each data based on their prediction confidence and bias levels, and the importance of
leveraging the semantically meaningful multi-modal cues to guide model adaptation.
Robustness to real-world multi-modal domain shifts. We summarize the empirical results on
real-world multi-modal domain shifts in Table 3, where “A→B” denotes the source domain to the
target domain. We observe that existing methods [43, 25, 50] that depend on confidence or entropy as
the criterion to select and reweight samples bring marginal improvements compared to the pre-trained
model.
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Table 3: Accuracy comparison with SOTA methods on CMU-MOSI, CMU-MOSEI, and CH-SIMS.
We denote CMU-MOSI, CMU-MOSEI, and CH-SIMS as MOSI, MOSEI, and SIMS for clarity.

MOSI→MOSEI MOSI→SIMS Avg. MOSEI→MOSI MOSEI→SIMS Avg. SIMS→MOSI SIMS→MOSEI Avg.

Source 54.42 24.80 39.61 77.00 30.05 53.53 51.86 31.42 41.64

Tent [37] 51.15 23.50 37.33 76.72 30.15 53.44 52.04 29.11 40.58
ETA [25] 55.04 25.31 37.33 77.66 31.05 54.34 52.32 32.67 42.45
MMTTA [29] 54.15 25.80 39.98 76.41 30.16 53.29 52.24 29.28 40.76
ABPEM [50] 56.72 23.80 40.30 76.83 31.25 54.04 52.10 35.86 43.98
SuMi [9] 56.37 24.40 40.39 78.11 30.62 54.37 52.53 36.36 44.45
READ [43] 55.63 24.00 39.82 76.97 29.80 53.39 52.10 35.32 43.71
PTA 57.17 25.96 41.66 78.83 31.85 55.34 52.94 38.01 45.48

Table 4: Comparisons on the key components of PTA. “Baseline + PTA−” leverages only X+.
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Baseline 9.03 9.72 9.07 32.52 34.03 43.16 40.08 24.46 27.97 12.87 55.04 13.77 40.40 34.65 34.88 28.11

+PTA- 10.77 11.69 11.16 43.74 41.80 50.04 46.94 34.18 39.11 21.04 58.42 16.95 47.61 45.76 43.14 34.82
+PTA 20.65 21.65 20.66 45.85 44.63 51.34 48.92 40.11 43.43 39.23 58.71 27.07 49.77 49.68 46.92 40.57
+PTA+AGA 21.93 22.98 22.11 47.72 45.92 52.55 49.31 40.25 43.57 39.66 59.99 27.32 50.35 50.86 47.59 41.47

FPR: 24.24 → 5.66 FPR: 24.04 → 6.74

(c)(b)(a) (d)

Figure 3: (a) Comparisons on existing sample reweighting methods. (b) The distribution of the
weighting factors computed by comparison methods. The prediction confusion matrix of the (c)
pre-trained model and (d) PDR on video corruption “Defocus” and audio corruption “Crowd”.

This is because their selected “reliable” samples contain a plenty of false positives, which negates
the potential improvement. In comparison, PTA outperforms all SOTA methods, and improve the
pre-trained model by 2.56% on average. These improvements are mainly attributed to the effective
handling of sample reliability under multi-modal domain shifts. These results demonstrate the rational
design and effectiveness of PTA.

4.3 Ablation Study

All experiments in this subsection are performed on Kinetics50-MC (severity level 5).

Contribution of each component. To analyze the importance of each component, we evaluate the
baseline with the proposed partition and debiased Reweighting (PDR) and multi-modal attention-
guided alignment (AGA) in Table 4. The baseline is Tent [37], modified to update the same tunable
parameters as ours. The results indicate that PDR is an effective sample reweighting solution under
multi-modal domain shifts, indicating that the joint assessment of prediction bias and confidence levels
are important. The combination of baseline and PDR results in further improvements, supporting
the rationale that simultaneously promoting the knowledge in reliable samples and restraining the
error propagation of unreliable ones effectively aids model adaptation. Moreover, the integration
with AGA consistently improves the performance, demonstrating that guiding the optimization of
A− with the semantically meaningful multi-modal cues from A+ is effective.

Comparison with sample reweighting methods. To verify the effectiveness of PDR, we compare it
with SOTA sample reweighting methods in MM-TTA, including low entropy (LE) [43] and single-
modal assistance (UA) [9] with entropy-based reweighing (EW) [9, 25] and robust adaptation
(RA) [43]. The results are summarized in Fig. 3 (a). We observe that sample reweighting-based
methods outperform those relying solely on sample selection (i.e., “LE”), indicating that they partially
mitigate the prediction bias issue. Unlike previous methods that follow single-modal TTA methods [9]
and rely solely on confidence or entropy as smaple selection and reweighting signal, PDR introduces a
comprehensive measurement. Empirical evidence supports that PDR is effective in combats prediction
bias under multi-modal domain shifts, as it simultaneously leverages the respective strengths of both
reliable and unreliable samples.
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(a) (b)
Figure 4: (a) Comparisons on variants of AGA. “none” denotes the performance with the absence of
AGA. (b) The distribution of attention maps for four blocks on clean, A+, and A−, respectively.

(a) (b) (c) (d) (e)

Figure 5: Comparisons on (a) s, (b) λ, (c) Θ̃, and (d) learning rate. (e) Analysis on Z̄.

Analysis of PDR. We further conduct a deeper analysis of PDR by visualizing the distribution of
weighting factors for three SOTA methods in Fig. 3 (b), and providing the prediction confusion matrix
for both the pre-trained model and PDR in Fig. 3 (c). As shown in Fig. 3 (b), “UA + EW” assigns
high weights to the selected candidates, regardless of whether they are false positives or not. This
increases the risk of error accumulation. As we demonstrate in Fig. 1 (c), the rates of true positives
in predictions run low under multi-modal domain shifts, and the increasing false positives may
counteract the positive contribution. “LE + EW” and “LE + RA” mitigate this issue by conservatively
assigning lower weighting factors for each sample. However, this brings limited performance gains
as shown in Fig. 3 (a). In contrast to these methods, PDR explicitly assigns negative weights to
potential false positives, while also promoting the importance of potential true positives based on a
joint assessment of prediction bias and confidence levels. This guarantees a significant improvement
compared to previous methods.
As illustrated in Fig. 3 (c), the pre-trained model experience severe prediction bias dealing multi-
modal domain shits. This bias can be substantially alleviated by equipping the pre-trained model with
PDR, which is proven by Fig. 3 (d). Specifically, the false positive rates for the top two biased classes
are 24.24 and 24.04, respectively, whereas PDR reduces them to 5.66 and 6.74. This confirms that
the design of PDR mitigating false positives is effective.
We also compare our choice of Z̄ with static values in Fig. 5 (e). We note that static values are not
ideal, as overly large or small values can introduce noise. The results demonstrate Z̄ is appropriate
for representing the average bias level within the batch.

Analysis of AGA. To investigate the mechanism of AGA, we compare the performance for different
attention blocks and their combinations in Fig. 4 (a), and provide the distribution of attention maps
for each block computed by clean, A+, and A−. The attention map (denoted as “all”) can be divided
into self-attention blocks (denoted as “aa” and “av”) and cross-attention blocks (denoted as “av” and
“vv”). From Fig. 4 (a), we observe that the performance gain achieved by applying AGA on different
attention blocks or their combination varies. In specific, “aa” and “va” achieve the best results for
single attention block, while “vv” and “av” achieve modest improvement. As evidenced in Fig. 4 (b),
the attention maps “aa” and “va” in A+ have distributions closer to the clean versions, whereas “vv”
and “av” show distributions farther from them. This explains the necessity of guiding the optimization
of A− with the semantically meaningful multi-modal cues in A+. In practice, one can effectively
choose the attention blocks with semantically meaningful multi-modal cues by analyzing the variance
of each block since the optimal ones are less sensitive to multi-modal domain shifts.

Analysis of hyper-parameters. We summarize the ablation for hyper-parameters, including s in
Eq. (2), λ in Eq. (5), the learning rate, and the tunable parameters Θ̃, in Fig. 5 (a)-(d), respectively. We

8



Table 5: Accuracy comparison with SOTA methods on Kinetics-MC for multi-modal domain shifts.
“A(X)-V(Y)” (X,Y ∈ {1, 2, 3, 4, 5}) denotes the noise severity level of audio and video modalities.

A(1)-V(1) A(2)-V(2) A(3)-V(3) A(4)-V(4) A(3)-V(5) A(5)-V(3) A(4)-V(5) A(5)-V(4) ③ ④

Source 61.97 54.84 48.76 40.32 33.16 47.98 32.56 39.60 47.59 48.12

Tent [37] 59.77 49.00 41.12 32.51 23.66 41.84 23.53 32.44 41.05 40.51
ETA [25] 64.37 57.32 51.29 42.13 34.85 49.87 34.09 41.12 49.69 50.02
MMTTA [29] 61.75 53.28 46.07 36.92 28.77 46.26 28.40 36.49 45.14 45.49
ABPEM [50] 66.35 60.21 54.85 46.14 38.86 53.20 38.34 45.13 53.32 53.46
SuMi [9] 62.84 55.16 48.94 40.69 32.04 47.64 31.57 38.88 47.88 48.12
READ [43] 66.57 61.17 55.51 45.12 40.80 53.87 39.82 46.34 53.64 53.88
PTA 66.88 61.72 57.07 49.83 43.75 55.39 42.71 48.84 55.30 55.56

Table 6: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted video.
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 48.84 49.36 48.92 67.47 61.38 70.83 66.19 61.18 61.26 45.35 76.04 51.64 65.99 68.55 65.71 60.58

Tent [37] 48.57 49.08 48.85 67.60 62.18 71.96 67.62 63.23 61.46 23.31 75.88 50.15 68.83 69.83 66.59 59.68
ETA [25] 49.43 50.16 49.73 67.71 64.18 71.60 67.96 63.46 63.14 49.72 76.13 52.05 68.48 69.62 67.22 62.04
MMTTA [29] 48.60 49.38 48.86 67.86 61.70 71.41 66.39 62.86 62.32 36.58 75.95 51.43 68.08 70.05 66.86 60.56
ABPEM [50] 50.25 51.32 50.59 67.64 65.37 71.96 68.10 63.93 65.52 60.99 76.08 52.33 68.98 69.30 67.75 63.34
SuMi [9] 49.23 49.59 49.52 67.50 62.15 71.08 66.76 61.65 61.58 46.39 76.07 51.64 66.96 68.36 66.64 61.01
READ [43] 51.91 52.28 51.77 67.95 65.82 71.63 69.08 64.81 65.89 61.67 76.37 54.21 69.36 70.03 68.46 64.08
PTA 52.93 53.00 52.48 68.51 66.87 72.36 69.11 64.86 67.11 64.14 75.92 55.05 69.15 70.23 68.41 64.68

Table 7: Comparison on Kinetics50-C with corrupted audio.

Gauss. Traff. Crowd. Rain Thund. Wind Avg.

Source 73.88 65.38 67.87 69.99 68.39 70.39 69.32

Tent [37] 74.08 68.60 70.08 70.67 67.00 71.31 70.29
ETA [25] 74.12 67.95 69.79 70.90 70.38 70.91 70.68
MMTTA [29] 74.36 67.31 69.53 70.91 68.77 70.95 70.31
ABPEM [50] 74.12 69.20 69.84 70.68 72.32 70.40 71.09
SuMi [9] 73.87 66.19 68.28 70.38 70.58 70.00 69.88
READ [43] 74.12 69.30 70.02 70.57 72.64 70.85 71.25
PTA 73.52 70.00 70.40 70.31 73.36 70.79 71.40 Figure 6: Efficiency comparisons.

denote the query/key/value transformation matrices of the attention layer and the Layer Normalization
(LayerNorm) module in the pre-trained model as WQKV and WLN , respectively. Fig. 5 (a)-(d)
demonstrate the robustness of our method to hyper-parameters.

4.4 Further Analysis

Exploration on changing environment. Considering that the noise severity levels of each modality
may fluctuate in dynamic environments, we further categorize multi-modal domain shifts into four
distinct cases (See Appendix G): ① video and audio noise levels change synchronously; ② video noise
level is constant, audio noise varies independently; ③ video noise level varies randomly, audio noise
level matches it synchronously; ④ both video and audio noise levels vary randomly and independently.
The results are summarized in Table 5. We observe that the performance of the pre-trained model
(“Source”) varies substantially across ①-④, highlighting the importance of assessing the impact
of varying noise severity levels in each modality. Specifically, for ①-④, PTA achieves the highest
performance, with average improvements of 7.4%, 9.3%, 7.7%, and 7.4% over the pre-trained model,
respectively. These empirical results demonstrate the effectiveness and robustness of our method in
dynamic environments, delivering the best performance under changing environment.

Comparison on single-modal domain shifts. We evaluate the performance of comparison methods
under single-modal domain shifts, with the results for corrupted video and audio presented in Tables 6
and 7, respectively. Our method improves performance by 4.1% and 1.1% on corrupted video and
audio modalities, respectively, over the pre-trained model. This demonstrate PTA’s robustness to both
single- and multi-modal domain shifts, whereas existing methods often fail on the latter case.

Efficiency comparisons. Following [43, 50], we report the number of samples processed per second
(samples/sec) and the total count of trainable parameters, i.e., in millions (M), to enable efficiency
comparisons in Fig. 6. In summary, our method exhibits similar efficiency compared to SOTA
methods.
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5 Conclusions

In this paper, we investigate a practical challenge: multi-modal domain shifts for TTA. We reveal that
existing single-modal methods struggle to identify and utilize reliable samples within a batch amid
severe prediction bias. To address this challenge, we propose Partition-Then-Adapt (PTA), which
comprises Partition and Debiased Reweighting (PDR) and multi-modal Attention-Guided Alignment
(AGA). PDR partitions online data into potential reliable and unreliable subsets based on prediction
bias, assessed via the uniformity of their predicted label distribution. It then employs a quantile-based
reweighting strategy that adjusts sample contributions in entropy optimization by jointly considering
prediction bias and confidence levels. AGA further regularizes PDR to focus on semantically
meaningful multi-modal cues by aligning the attention map distributions of unreliable subsets with
those of reliable ones through maximum mean discrepancy regularization. Extensive experiments
demonstrate the effectiveness of PTA, addressing both single- and challenging multi-modal domain
shifts for TTA in multi-modal tasks.
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Appendix
This appendix provides additional results, figures, and graphs to better illustrate our method. Specifi-
cally, we provide detailed information on the benchmark, the pre-trained model, and the implemen-
tation in Sections A, B, and C, respectively. Additionally, Section D presents further experimental
results, including detailed main experiment and comparisons under continual settings. Section E
explores different design variants of our method. Section F provides the theoretical analysis of PDR.
We also include illustrations of changing environments with varying severity levels, attention maps,
and confusion matrices to facilitate intuitive understanding in G. Finally, we discuss the limitations
and broader impacts of our work in Sections H and I, respectively.

A Benchmark Details

We construct two benchmarks based on Kinetics50 [14] and VGGSound [4], to evaluate the perfor-
mance of SOTA methods under synthetic multi-modal domain shifts during test-time adaptation.
The examples are shown in Figure 7. Moreover, we test the comparison methods for real-world
multi-modal domain shifts on CMU-MOSI [46], CMU-MOSEI [47], and CH-SIMS [44].

Gaussian Noise

Clean

Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Transform Pixelate JPEG Compression

Clean

Gaussian NoiseCrowd Thunder

Rain Traffic Wind

Figure 7: Examples for corrupted video and audio data.

Kinetics. The Kinetics dataset is a comprehensive and high-quality benchmark designed for recog-
nizing human actions in videos. It contains approximately 500,000 video clips that span 600 distinct
action classes, with each class having at least 600 clips. Each video clip is around 10 seconds long
and is associated with a single action label. The videos were sourced from YouTube. In line with the
previous works [43, 9, 50], we focus on a subset of the Kinetics dataset, which includes 50 action
classes, comprising 2,466 test pairs.
VGGSound. The VGGSound dataset is a large-scale audio-visual correspondence benchmark con-
sisting of short audio clips extracted from videos uploaded to YouTube. All videos are captured
“in the wild”, ensuring that there is a clear correspondence between the audio and visual content,
meaning that the sound source is visually identifiable. Each video in this benchmark has a fixed
duration of 10 seconds. Following privious work [43, 9, 50], we obtain 14,046 testing visual-audio
pairs.
Kinetics50-MC and VGGSound-MC. Following [43, 9, 50], we introduce 15 types of synthetic
noise [11], including “Gaussian Noise”, “Shot Noise”, “Impulse Noise”, “Defocus Blur”, “Glass
Blur”, “Motion Blur”, “Zoom Blur”, “Snow”, “Frost”, “Fog”, “Brightness”, “Contrast”, “Elastic
Transform”, “Pixelate”, and “JPEG Compression”, to corrupt the video modality data. For the audio
modality data, we introduce 1 type of synthetic noise and 5 types of real-world noise, comprising
“Gaussian Noise”, “Paris Traffic Noise”, “Crowd Noise”, “Rainy Noise”, “Thunder Noise” and
“Windy Noise”. Each corruption type is applied at five levels of severity. In this way, a total of 90
types of corruption combinations are prepared for Kinetics50-MC and VGGSound-MC.
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CMU-MOSI. CMU-MOSI [46] benchmark is a widely used benchmark for multimodal sentiment
analysis, comprising 2,199 short video clips from YouTube. Each clip includes aligned text (tran-
scripts), audio, and facial visual data, annotated with sentiment intensity (ranging from -3 to +3) and
binary labels.
CMU-MOSEI. CMU-MOSEI [47] benchmark is a large-scale benchmark for multimodal sentiment
and emotion analysis, containing 23,454 video clips from YouTube. Each clip includes synchronized
text, audio, and visual modalities, annotated with sentiment scores (ranging from -3 to +3) and six
discrete emotions (happiness, sadness, anger, fear, disgust, surprise).
CH-SIMS. CH-SIMS [44] is a multimodal sentiment analysis dataset for mandarin, featuring 2,281
video clips from Chinese TV shows and vlogs. It provides text, audio, and visual data, annotated
with both continuous sentiment scores (ranging from -1 to +1) and binary labels.
For sentiment recognition, as three datasets has different emotion labels, we categorize continuous
sentiment scores into three classes: scores less than 0 as “Negative” scores equal to 0 as “Neutral”,
and scores greater than 0 as “Positive”. In this way, we are able to test the model, which is pre-trained
on the source domain, on the target domain. We adopt the pre-processed data of CMU-MOSI,
CMU-MOSEI, and CH-SIMS provided by [10].

B Pre-trained Model Details

For the experiments on synthetic multi-modal domain shifts, we use the pre-trained CAV-MAE model
provided by [43], consistent with previous works [9, 50]. Specifically, the model is pre-trained on
the respective training sets of Kinetics and VGGSound, respectively. In other words, Kinetics50 and
VGGSound serve as the source domains, while Kinetics50-C and VGGSound-C represent the target
domains.

For the experiments on real-world multi-modal domain shifts, we train three models separately for
the CMU-MOSI [46], CMU-MOSEI [47], and CH-SIMS [44] benchmarks. An Adam optimizer with
a learning rate of 1e-4 is adopted. The batch size is set to 24, and each model is trained for 30 epochs.
We use the validation set of each dataset to select the best pre-trained model.

C Implementation Details

TENT. For TENT [37], we use the Adam optimizer with a learning rate of 1e-4 on Kinetics-C and
VGGSound-C. We set the tunable parameters as those in LayerNorm Module. The implementation
follows the official code2.
ETA. For ETA [25], we use the Adam optimizer with a learning rate of 1e-4 on Kinetics-C and
VGGSound-C. We set the tunable parameters as those in LayerNorm module. Moreover, we set the
exponential moving average factor, the cosine similarity threshold, and the entropy threshold to 0.9,
0.05, and 0.4× ln(C), respectively. Here, C is the number of classes. The implementation follows
the official code3.
MMTTA. For MMTTA [29], We use the Adam optimizer with a learning rate of 1e-4 on Kinetics-C
and VGGSound-C. We set the tunable parameters as those in LayerNorm module. Moreover, we set
the exponential moving average factor for the teacher model as 0.995. The implementation follows
the official code4.
READ. For READ [43], we use the Adam optimizer with a learning rate of 1e-4 on Kinetics-C and
VGGSound-C. The tunable parameters are set to the query/key/value transformation matrices of the
attention layer in the fusion block. The implementation follows the official code5.
SuMi. For SuMi [9], we use the Adam optimizer with a learning rate of 1e-4 and 1e-5 on Kinetics-C
and VGGSound-C, respectively. The tunable parameters are set to the query/key/value transformation
matrices of the attention layer in the fusion block. The implementation follows the official code6.
ABPEM. For ABPEM [9], we use the Adam optimizer with a learning rate of 1e-4 on Kinetics-C
and VGGSound-C. The tunable parameters are set to the query/key/value transformation matrices of

2https://github.com/DequanWang/tent
3https://github.com/mr-eggplant/EATA
4https://www.nec labs.com/~mas/MM-TTA
5https://github.com/XLearning-SCU/2024-ICLR-READ
6https://github.com/zrguo/SuMi
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the attention layer in the fusion block. We re-implement ABPEM based on their original paper since
the code is not public available.

D More Experimental Results

Main experiment details. We report the detailed results of comparison methods on total 90 corrup-
tion combinations, and summarize the results in Table 10. In summary, our method achieves the best
results across all corruption combinations, significantly outperforms the SOTA methods.
Comparison on continual settings. Continual test-time adaptation [40] (CTTA) introduce a chal-
lenging setting, where a pre-trained model operates in non-stationary and continuously changing
environments, with the target domain distribution changing over time. All previous methods do not
consider this setting; instead, they focus on a fully test-time adaptation (FTTA) [37] scenario, where
the pre-trained model can restore its parameters when distribution shift changes. We test our method
and SOTAs on the CTTA setting with multi-modal domain shifts, and report their performance
in Table 8. We observe that most methods fail to handle CTTA, mostly because the accumulated
errors render catastrophic forgetting [40]. In comparison, ETA [25] and PTA still outperform the
pre-trained model with different adaptation strategies. Specifically, ETA [25] limits the data used in
loss computation to a very small subset, which means the pre-trained model could be unchanged when
the online data contains extensive noise. On the other hand, PTA effectively handles sample reliability,
preventing error accumulation, and eventually outperforms the pre-trained model by 11.9%.
Comparison on different batch sizes. In real-world scenarios, online data is often insufficient, and
at times, only a limited amount is available, posing significant challenges for effective model adapta-
tion. Previous research also indicates that batch size is a key factor influencing overall performance
during TTA [26]. Therefore, we validate our method with different batch sizes, and summarize the
performance in Fig. 8. To adapt to extremely small batch sizes, we set a memory queue to store
history predictions to compute Eq. (1) and Eq. (2). In other words, Z and K are transformed from an
online manner to an offline manner in this case. From Fig. 8, we observe that most methods fail to
handle small batch sizes, because their weighting factors become severely unreliable. On the contrary,
our method shows robustness to small batch sizes, consistently outperforms the pre-trained model
(“Source”) by 7.2% on average.
Comparison on CIFAR-10/100-C and ImageNet-C. We run experiments on single-modal datasets,
such as CIFAR-10/100-C [12] and ImageNet-C [12] using CNN-based backbones. We report the
average accuracy over 15 types of corruptions for these benchmarks in Table 13. We observe that our
method outperforms READ on single-modal datasets and matches specialized single-modal methods
(surpassing on ImageNet-C). Crucially, it excels over all SOTAs in challenging multi-modal domain
shifts.
Comparison on multi-modal domain shifts using CLIP. We also run experiments on CLIP (ViT-
B-16) [27]. To simulate multi-modal domain shifts, we use ImageNet-C [12] for the image branch
and apply Gaussian Noise to the text branch. The results are presented in Table 14. These results
indicate that our method outperforms others in the majority of cases by a substantial margin, thereby
confirming its effectiveness on vision-language models.

Table 8: Accuracy comparison with SOTA methods on Kinetics50-MC with corrupted video and
audio modalities (severity level 5) in continual settings.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 9.46 10.60 9.58 29.08 32.72 37.35 37.53 25.40 27.58 18.53 52.61 13.35 40.14 32.78 33.62 27.36

Tent [37] 6.72 2.21 1.97 1.99 1.97 1.97 1.97 1.97 2.07 1.97 1.97 1.97 1.97 1.97 2.07 2.32
ETA [25] 12.90 13.29 12.43 36.39 42.10 51.07 49.60 36.51 40.57 36.74 57.25 26.86 54.89 47.88 44.73 37.55
SAR [26] 12.18 6.34 5.56 5.34 6.17 4.05 3.44 3.16 3.08 2.76 2.55 2.23 1.96 1.96 1.96 4.18
READ [43] 14.14 24.33 23.83 37.86 35.27 33.95 29.64 19.69 21.33 19.45 34.30 12.49 24.79 21.99 19.65 24.85
SuMi [9] 12.38 6.63 2.67 3.62 3.37 2.93 2.83 2.51 2.48 2.15 2.67 2.08 2.77 2.20 2.47 3.58
ABPEM [50] 12.27 12.65 12.71 29.51 29.00 33.82 32.47 25.57 28.82 26.04 36.70 17.78 33.72 32.07 30.16 26.22
PTA 20.55 26.38 27.72 47.78 45.20 52.63 48.22 38.16 42.38 32.12 53.38 25.41 44.70 44.48 39.48 39.24
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Figure 8: Performance comparisons on different batch sizes.

Table 9: Accuracy comparison with the original and variants (denoted as *) of PDR on Kinetics50-C
with corrupted video and audio modalities (severity level 5).

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.92 13.95 13.05 37.20 36.94 45.30 41.79 30.36 31.88 20.47 55.29 18.28 42.30 38.90 37.77 31.76

PDR*+AGA 21.78 23.18 22.35 46.35 45.37 51.07 48.57 39.08 42.93 38.90 59.02 27.36 49.17 49.63 46.31 40.74
PDR+AGA 21.93 22.98 22.11 47.72 45.92 52.55 49.31 40.25 43.57 39.66 59.99 27.32 50.35 50.86 47.59 41.47

Table 10: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted video and audio
modalities (severity level 5). “Audio-c” denotes the corruption type of audio modality. The best
performances are highlighted.

Audio-c:Crowd Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 9.34 9.54 9.35 31.97 35.45 41.31 38.78 28.37 29.90 19.99 54.03 16.09 41.16 36.97 38.47 29.38

Tent [37] 4.83 5.07 5.15 13.60 35.53 25.86 28.38 16.74 22.32 8.06 55.45 9.05 41.32 22.48 26.88 21.38
ETA [25] 8.86 9.13 9.18 34.53 38.02 45.25 41.52 30.75 31.63 19.49 56.50 15.65 43.53 40.01 41.16 31.01
MMTTA [29] 6.44 6.81 6.27 22.86 36.47 37.32 39.36 23.92 28.04 11.44 55.51 10.81 42.77 35.93 37.71 26.78
READ [43] 8.61 8.43 8.87 40.36 38.88 47.88 42.91 32.60 35.74 26.03 57.91 19.09 44.64 42.73 42.15 33.12
SuMi [9] 8.66 9.21 9.03 32.66 35.97 43.34 39.39 28.65 29.88 19.33 54.38 16.16 40.69 37.03 38.81 29.55
ABPEM [50] 7.20 7.10 6.68 39.98 38.95 47.70 42.93 32.60 35.74 21.58 57.65 17.87 44.57 42.72 42.08 32.36
PTA 20.02 20.74 19.75 45.90 43.50 51.16 47.13 38.98 42.03 38.59 59.32 26.29 49.13 49.57 46.39 39.90
Audio-c:Gaussian Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 17.96 19.33 18.36 47.56 40.97 54.29 48.48 32.71 35.67 21.94 60.17 24.62 43.98 48.26 44.26 37.24

Tent [37] 11.70 11.96 11.60 45.76 24.34 54.14 50.29 14.04 20.81 8.74 60.95 13.45 25.03 48.13 37.96 29.26
ETA [25] 18.17 19.61 18.74 48.34 43.45 54.70 50.64 35.12 36.42 21.90 61.29 24.74 46.12 50.93 46.26 38.43
MMTTA [29] 15.07 16.92 15.58 47.11 36.96 54.35 49.39 20.41 28.47 12.73 60.92 18.41 35.65 48.86 42.43 33.55
READ [43] 21.02 23.01 22.03 50.51 45.35 56.42 51.94 39.02 40.91 25.51 61.65 29.70 50.31 52.87 47.60 41.19
SuMi [9] 17.85 19.26 18.33 47.44 40.21 54.66 48.73 30.22 35.57 20.67 60.24 24.15 42.55 48.57 44.26 36.85
ABPEM [50] 20.80 22.59 21.92 50.64 45.07 56.25 51.70 26.15 40.52 18.00 61.65 29.52 49.19 53.23 47.54 39.65
PTA 26.33 27.76 27.23 51.87 50.07 56.94 54.10 43.80 47.52 44.22 62.31 32.33 53.79 54.86 50.25 45.56
Audio-c:Rain Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.96 14.06 13.32 40.49 38.04 48.31 40.70 29.68 32.68 19.45 54.51 14.49 43.35 39.34 38.89 32.02

Tent [37] 4.18 4.33 4.09 29.90 33.78 49.35 31.75 19.08 25.16 7.65 55.31 4.83 35.18 17.76 26.21 23.24
ETA [25] 12.81 13.96 13.40 42.21 39.80 49.80 42.50 32.13 33.57 18.48 56.54 13.52 45.31 42.36 40.75 33.14
MMTTA [29] 5.61 5.65 5.33 38.67 36.99 48.76 41.01 24.02 29.54 10.76 54.64 6.41 42.09 35.21 35.85 28.04
READ [43] 15.66 16.95 15.99 44.70 41.58 50.80 44.66 34.17 36.76 27.30 57.24 19.68 46.28 44.44 43.08 35.95
SuMi [9] 12.39 13.24 12.98 40.90 37.86 48.64 40.78 29.50 32.47 17.60 54.49 13.22 43.30 39.18 38.86 31.69
ABPEM [50] 15.25 16.52 15.80 44.46 41.39 50.37 44.49 34.10 36.62 21.30 56.95 10.97 46.16 44.79 43.06 34.82
PTA 20.26 21.23 20.08 46.56 45.48 51.60 47.91 38.33 42.28 38.26 58.21 24.87 50.04 50.11 47.24 40.16
Audio-c:Thunder Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 14.84 15.59 14.83 33.41 35.91 43.22 42.29 32.27 32.92 23.73 53.35 20.00 42.26 31.91 29.36 31.06

Tent [37] 7.26 7.80 7.20 15.21 17.68 23.52 23.82 20.73 27.46 10.95 37.03 12.00 33.89 14.16 13.18 18.13
ETA [25] 14.76 15.52 14.47 35.76 38.68 45.60 43.79 33.55 33.83 23.64 56.15 20.09 44.87 34.11 29.99 32.32
MMTTA [29] 8.71 9.31 8.72 19.86 24.28 31.79 32.55 27.35 31.44 15.33 50.27 16.17 40.79 19.58 18.17 23.62
READ [43] 13.79 12.61 16.06 43.29 42.87 51.01 47.70 37.09 40.05 32.42 59.29 23.30 47.35 32.33 13.73 34.19
SuMi [9] 13.84 14.95 13.94 33.75 37.01 45.12 43.78 31.83 32.91 22.96 55.01 19.29 41.94 25.44 21.25 30.20
ABPEM [50] 8.43 9.03 8.37 28.89 43.03 51.08 47.95 37.67 40.17 31.71 59.03 22.97 47.58 17.97 16.18 31.34
PTA 24.40 26.08 24.87 50.91 49.25 55.33 51.03 42.90 45.96 42.20 62.35 30.58 53.29 53.70 50.01 44.19
Audio-c:Traffic Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 9.46 10.60 9.58 29.08 32.72 37.35 37.53 25.40 27.58 18.53 52.61 13.35 40.14 32.78 33.62 27.36

Tent [37] 5.73 5.89 5.86 18.32 32.70 33.10 33.67 12.15 16.31 6.48 54.19 6.79 36.79 24.98 33.31 21.75
ETA [25] 9.73 10.68 9.75 30.35 35.59 40.79 39.52 28.30 29.33 17.57 54.53 13.51 41.70 35.60 36.57 28.90
MMTTA [29] 7.83 8.24 7.59 24.04 33.63 35.70 37.96 19.21 23.24 9.06 54.20 8.97 41.05 30.59 34.16 25.03
READ [43] 10.82 11.54 10.36 36.16 37.29 45.17 42.55 30.24 33.18 24.77 56.85 15.89 43.54 38.81 38.66 31.72
SuMi [9] 9.23 10.26 9.41 28.06 32.98 37.88 37.95 25.33 26.66 16.66 53.24 13.37 39.99 32.49 33.98 27.17
ABPEM [50] 8.82 9.98 8.74 35.73 37.18 45.22 42.62 30.28 33.43 11.62 56.69 14.69 43.79 38.93 38.62 30.42
PTA 18.67 19.27 18.86 44.22 42.20 49.20 46.79 37.87 41.01 35.53 58.38 23.85 46.77 47.20 44.58 38.29
Audio-c:Wind Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.96 14.57 12.87 40.71 38.57 47.34 42.93 33.71 32.50 19.18 57.05 21.12 42.90 44.16 42.03 33.51

Tent [37] 6.63 7.10 6.19 39.34 29.99 47.80 38.64 22.23 21.25 7.94 57.60 13.57 43.92 44.76 41.19 28.54
ETA [25] 13.05 13.87 12.44 41.76 40.63 48.35 44.28 35.16 34.00 18.33 57.79 20.89 44.78 45.87 43.63 34.32
MMTTA [29] 7.69 8.43 7.18 40.47 36.02 47.48 41.80 29.46 27.40 10.40 57.65 16.48 43.22 45.61 42.69 30.80
READ [43] 14.94 17.23 15.36 43.67 41.38 49.41 45.77 37.22 36.58 21.62 58.56 24.85 46.22 46.66 43.95 36.23
SuMi [9] 12.30 14.11 12.79 40.47 37.92 47.03 42.74 33.28 31.88 17.35 57.20 21.30 42.93 43.98 42.13 33.16
ABPEM [50] 13.12 13.75 11.91 43.83 40.85 49.67 45.84 37.30 36.80 10.92 58.48 24.09 46.18 46.66 43.79 34.88
PTA 21.87 22.81 21.85 46.88 45.02 51.08 48.88 39.61 2.64 39.13 59.39 25.99 49.05 49.73 47.05 40.73
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Table 11: Accuracy comparison with the original and three variants (denoted as MSE, L2, and KL) of
AGA on Kinetics50-MC with corrupted video and audio modalities (severity level 5).

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.92 13.95 13.05 37.20 36.94 45.30 41.79 30.36 31.88 20.47 55.29 18.28 42.30 38.90 37.77 31.76

MSE 20.59 21.64 20.83 45.87 44.66 51.34 48.92 40.12 43.43 39.23 58.71 27.02 49.75 49.67 46.92 40.58
L2 21.52 22.68 21.85 47.04 45.09 52.02 48.99 39.00 42.66 37.10 59.94 26.73 49.23 50.53 47.72 40.81
KL 20.59 21.60 20.85 45.95 44.61 51.33 48.90 40.07 43.39 39.23 58.74 27.18 49.75 49.68 46.90 40.58
MMD 21.93 22.98 22.11 47.72 45.92 52.55 49.31 40.25 43.57 39.66 59.99 27.32 50.35 50.86 47.59 41.47

Table 12: Accuracy comparison with the original and two variants (denoted as feature- and logits-
level) of AGA on Kinetics50-MC with corrupted video and audio modalities (severity level 5).

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 12.92 13.95 13.05 37.20 36.94 45.30 41.79 30.36 31.88 20.47 55.29 18.28 42.30 38.90 37.77 31.76

Feature-level 20.57 21.57 20.94 45.87 44.64 51.35 48.95 40.13 43.40 39.38 58.74 27.05 49.77 49.58 46.96 40.59
Feature-map-level 20.66 21.71 20.66 45.88 44.65 51.34 48.93 40.10 43.41 39.22 58.74 26.92 49.75 49.68 46.94 40.57
Logits-level 20.44 21.61 20.55 45.58 44.87 51.22 48.74 39.55 43.29 39.34 56.76 26.88 49.74 49.09 46.74 40.29
Attention-level 21.93 22.98 22.11 47.72 45.92 52.55 49.31 40.25 43.57 39.66 59.99 27.32 50.35 50.86 47.59 41.47

Table 13: Comparison on CIFAR10-C, CIFAR100-C, and ImageNet-C.
Method CIFAR-10-C CIFAR-100-C ImageNet-C
Source 56.5 53.6 18.0
TENT [37] 81.7 68.5 34.7
ETA [25] 81.9 68.9 39.7
READ [43] 79.0 61.5 31.3
Ours 81.3 68.8 41.3

Table 14: Accuracy comparison using CLIP.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 10.7 11.7 11.3 22.1 14.6 23.5 21.2 30.4 29.1 33.6 51.8 16.1 12.4 29.5 30.8 23.3
TENT [37] 5.5 4.4 6.7 23.8 18.5 26.4 23.4 32.0 30.2 36.1 52.9 21.6 13.2 33.6 34.7 24.2
ETA [25] 18.1 19.2 19.7 25.1 21.7 28.7 25.7 34.5 31.7 38.0 53.9 25.8 17.1 36.3 36.7 28.8
READ [43] 15.4 14.4 12.4 21.8 14.0 23.2 20.9 30.5 29.3 33.7 52.0 15.8 12.3 29.5 30.7 23.7
Ours 20.6 22.3 20.9 24.5 25.0 30.5 27.7 35.4 32.3 40.4 54.5 30.2 26.4 38.2 38.6 31.2

E More Ablation Studies

Variants on PDR. In the original design of PDR, we take both prediction bias and confidence levels
to formulate the reweighting indicator. In this subsection, we substitute softmax confidence scores of
each data with their entropy. Specifically, we compute the quantile-based importance weighting using
prediction bias and entropy levels instead of with softmax confidence scores. We show the results
in Table 9. It is shown that softmax confidence scores are more effective in handling multi-modal
domain shifts, which aligns with the findings of previous methods [50].
Variants on AGA. AGA is originally computed by MMD-based regularization on the attention maps.
In this subsection, we substitute MMD-based regularization with MSE, L2, and KL divergence,
and compare their performance in Table 11. Moreover, we change the attention maps to fusion
features, fusion feature maps, and output logits, and summarize their performance in Table 12. The
difference between fusion features and fusion feature maps lies in whether average pooling is applied.
From Table 11, we observe that both element-wise and distribution-wise alignments underperforms
MMD-based regularization, as the robust prior knowledge is not characterized by specific values
or static patterns in the attention maps, but rather by dynamically changing relationships across
modalities. From Table 12, we observe that the substitution options yield similar results, likely due to
the prior knowledge across modalities are crucial for robust adaptation, whereas regularizing features
and aligning logits appears to be ineffective.

F Theoretical Analysis

To strengthen the theoretical foundation of PDR, we provide a brief analysis of why prediction bias
arises and how our design mitigates it. Suppose the output logits are zi = [zi1, . . . , ziK ], we have
the softmax probability pik = ezik∑

j ezij
and the entropy loss Lent = − 1

N

∑N
i=1

∑K
k=1 pik log pik. We
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first derive the gradient of the softmax function with respect to the logits: ∂pij

∂zik
= pij (δjk − pik), as

well as the gradient of the entropy loss with respect to the softmax outputs: ∂Lent
∂pij

= − log pij − 1.
By applying the chain rule, we obtain the gradient of the entropy loss with respect to the logits as
follows: ∂Lent

∂zik
=

∑K
j=1

∂Lent
∂pij

· ∂pij

∂zik
=

∑K
j=1 (− log pij − 1) · pij (δjk − pik), where the Kronecker

delta: δjk = 1 if j = k, else 0.

This expression shows that entropy minimization encourages the model to produce increasingly
(over) confident (i.e., low-entropy) predictions by amplifying the largest logit and suppressing the
others, which is also discussed in previous works [26]. To address prediction bias in multi-modal
domain shifts, PDR partitions each data batch into biased and unbiased subsets using a prediction
bias indicator (Eq. (1)), which leverages batch-average prediction frequency to identify overconfident
predictions, often false positives due to entropy minimization. These biased samples are regularized
via entropy maximization (the second term in Eq. (2)), which counteracts noise propagation by
encouraging uniform probability distributions, as supported by theoretical insights from [21, 17] on
entropy regularization under noisy conditions.

Additionally, to balance bias and confidence levels and prevent issues like unreliable gradient from
low-confidence predictions [25], we propose a quantile ranking strategy (Algorithm 2). This strategy
reweights unbiased samples by assigning higher weights to confident predictions and lower weights
to uncertain ones, ensuring stable and reliable test-time adaptation. The theoretical reasonability
of this approach stems from its alignment with robust optimization principles, where reweighting
mitigates the impact of noisy outliers, as discussed in [25]. We demonstrate PDR’s consistent stability
and superior performance across challenging multi-modal domain shift scenarios, including continual
settings (Table 8) and changing environments (Section 4.4).

G Visualizations

Attention map. We visualize the attention maps of clean data, A+, and A−. It is shown that the
distributions of “audio-audio” block and “video-audio” block in A+ are closer to those in clean data
attention map compared to the distributions in A−. This demonstrates that AGA effectively focuses
on robust information dependencies while suppressing the influence of sensitive ones.

Confusion matrix. We provide more visualization for confusion matrix in Figure 10. It is demon-
strated that our method mitigates the false positive issue in the pre-trained model and generates more
true positive predictions, which explains its effectiveness.

Figure 9: Visualization on the attention maps for clean data (left), A+ (middle), and A− (right). The
values are amplified by 10, 000 times for clarity. The number upon the blocks denotes the mean and
variance. The corruption type for audio and video modalities are “Crowd” and “Defocus”.
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(a) 20.47 vs 39.66 (b) 30.36 vs 40.25 (c) 41.79 vs 49.31

Figure 10: Comparison on confusion matrix of predictions for the pre-trained model (Top) and our
method (Bottom). The corruption type for audio and video modalities are “Crowd” and “Fog” in
subfigure (a), “Crowd” and “Snow” in subfigure (b), and “Crowd” and “Zoom blur” in subfigure (c),
respectively. “X vs. Y” denotes the performance comparison between the pre-trained model and PTA.

Variant-1 Variant-2 Variant-3 Variant-4

Oneline BatchVideo/Audio Modality Test Data Stream Noise Severity Level

Figure 11: Illustration of multi-modal domain shifts with changing severity levels.

H Limitations

Test-time adaptation (TTA) focuses on the deployment phase of a pre-trained model, emphasizing the
need for efficiency. Although our method achieves similar efficiency compared to existing methods,
as demonstrated in Fig. 6, there is still room for improvement in efficiency for the sake of real-world
deployment. Due to the limitation of computational resources, we only test our method on one GPU.
However, it could be accelerated through parallel processing using multiple GPUs.

I Broader impacts

Test-time adaptation enables a model pretrained on source domain data to adapt to target domain data
in real-time. It has broad applications in dynamic scenarios such as autonomous driving. To the best
of our knowledge, our work does not have obvious negative social impacts.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly accePTAble to answer "[No] "
provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided AGAos for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect this
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of this paper in Appendix H.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We comprehensively disclose the implementation and training details of our
method for readers to reproduce the results. We will release our code on github later.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We evaluate our method on opensource datasets which are available for anyone.
We will release our code on github later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an accePTAble answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We elaborate the experimental setting and details in Sec. 4.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the implementation details in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the computer resources in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the the broader impacts of this paper in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the creators or original owners of datasets that are used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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