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Abstract

As machine learning increasingly relies on large, opaque foundation models power-
ing generative and agentic AI, deploying these systems in safety-critical contexts
demands rigorous generalization guarantees beyond training data. PAC-Bayes the-
ory provides principled certificates linking training performance to generalization
risk, yet existing approaches remain impractical: simple theoretical priors yield
vacuous bounds, while data-dependent priors require costly second-stage training
or introduce bias. To bridge this critical gap, we propose a localized PAC-Bayes
prior—a structured, computationally efficient prior softly concentrated around
parameters favored during standard training. By integrating this localized prior di-
rectly into the standard training objective, we deliver practically tight generalization
certificates with minimal workflow disruption. Under standard neural tangent ker-
nel assumptions, our bound shrinks as networks widen and datasets grow, becoming
negligible in realistic regimes. Empirically, we demonstrate tight generalization
certificates on tasks ranging from image classification (MNIST, CIFAR, ImageNet)
and NLP fine-tuning (GLUE) to semantic segmentation (Cityscapes), typically
within three percentage points of test error at ImageNet scale. Additionally, our ap-
proach provides rigorous guarantees for individual predictions, selective rejection
of uncertain predictions, adversarial robustness, and accurate calibration—directly
addressing key requirements for trustworthy AI deployment.

1 Introduction

Large-scale neural networks now read chest X-rays, flag fraudulent transactions, steer driver-
assistance systems, and complete sentences for hundreds of millions of users. A single held-out
accuracy number no longer suffices for regulators and practitioners deploying these models in safety-
critical contexts. Aviation (EU’s AI Roadmap 2.0), medical (U.S. FDA’s 2025 draft guidance), and
automotive (ISO PAS 8800:2024) standards all explicitly require rigorous learning-assurance argu-
ments that bound the model’s post-deployment error rate. Industry responses—such as robustness
checks provided by major tool builders and responsible AI practices promoted by leading compa-
nies—address only local or point-wise guarantees, leaving open the distribution-level risk question
central to real-world safety and trustworthiness.

Probably Approximately Correct (PAC) learning theory quantifies generalization rigorously, yet
classical PAC complexity measures (VC dimension, Rademacher complexity) yield overly con-
servative bounds for modern, heavily over-parameterized networks. PAC-Bayes, introduced by
McAllester [1, 2] and further developed by Langford [3, 4] and Catoni [5, 6], sharpens this anal-
ysis by comparing the learned parameter distribution ρ with a reference distribution π. The gap
between training and test loss reduces to an information term KL(ρ∥π). However, naive PAC-Bayes
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priors produce vacuous bounds on large-scale architectures: the resulting KL divergence can reach
thousands of nats, rendering the method practically unusable.

We address this fundamental limitation by employing a localized prior, an approach inspired by
Catoni’s original work [6] and subsequent extensions [7, 8]. Specifically, our localized prior is
defined as πloc(θ) ∝ π(θ) exp[−ξλrS(θ)], with 0 < ξ < 1. Here, π(θ) is the original data-
independent prior, rS(θ) is the empirical loss, and the parameters λ, ξ control the strength of the
shift toward promising parameters. This prior closely mirrors the ideal Gibbs posterior distribution
ρ(θ) ∝ π(θ) exp[−λrS(θ)], which emerges naturally as the limit case when ξ = 1. Thus, the factor
ξ < 1 introduces controlled softening, preventing overfitting by keeping the prior more dispersed than
the fully empirical Gibbs posterior. Optimizing ξ and λ as part of standard SGD seamlessly integrates
PAC-Bayes regularization into training, yielding tight and practically meaningful generalization
bounds for modern neural networks.

Empirically, our localized PAC-Bayes bound integrates seamlessly into standard training by directly
replacing traditional loss objectives with PAC-Bayes-based counterparts. On benchmarks ranging
from classical image classification (MNIST, CIFAR-10/100, ImageNet) to modern tasks such as
Cityscapes semantic segmentation and GLUE NLP fine-tuning, our method consistently provides
rigorous, tight, and meaningful certificates. The certification overhead is minimal, comparable to
adding just one training epoch, while offering reliable individual-level guarantees, selective prediction
strategies, and robust adversarial input detection.

Theoretically, we confirm that our bound converges favorably with increasing data and network size,
establishing clear relationships between localization parameters, network width, and sample size.
Informally stated, under standard scaling conditions, the KL term shrinks linearly in network width
and inversely with the sample size, vanishing entirely in infinite-width limits (Theorem 3.2).

In summary, we (i) introduce a localized, trajectory-aware PAC-Bayes bound, transforming PAC-
Bayes from theoretical curiosity to practical diagnostic, (ii) demonstrate straightforward, effective
integration into real-world deep-learning pipelines, and (iii) validate our approach across diverse
vision, language, and control tasks, aligning closely with emerging regulatory requirements.

2 PAC-Bayes Preliminaries and Notation

Machine-learning papers typically report empirical training loss, yet practical deployment demands
guarantees on unseen data. The difference between these defines a deviation event. Formally, given a
dataset S = {(xi, yi)}Ni=1 drawn from an unknown distribution D, a predictor parameterized by θ, and
a per-example loss ℓ(θ;xi, yi) ∈ [0, 1], we denote the empirical loss by rS(θ) =

1
N

∑
i ℓ(θ;xi, yi)

and the population (true) loss by R(θ) = E(x,y)∼D[ℓ(θ;x, y)]. Our central question: how improbable
is the event R(θ)− rS(θ)≫ 0?

The simplest way to bound such deviations uses Markov’s inequality, controlling the tail of a
nonnegative random variable X via its expectation: P[X > kEX] ≤ 1/k. To sharpen control,
we transform deviations through a monotone mapping—specifically, exponentiation—to amplify
large deviations. Explicitly, we rewrite the deviation probability using exponentiation and then apply
Markov:

P[rS(θ)−R(θ) > ε] = P[eλN(rS(θ)−R(θ)) > eλNε] ≤ e−λNε E[eλN(rS(θ)−R(θ))].

Union bounds and classical complexity measures (e.g., VC-dimension, Rademacher complexity [9])
extend these guarantees from single predictors to finite hypothesis sets. However, classical PAC
bounds falter when faced with large, complex hypothesis spaces—such as deep neural networks,
explicitly parameterized by many-layered compositions of affine transformations and nonlinear
activations. Classical PAC bounds require clipping or softening losses to lie within [0, 1], yet even
after we clipped/softened and scaled the cross entropy loss to be within [0, 1] to satisfy these artificial
constraints, traditional combinational or covering-number arguments rapidly explode due to the
massive complexity inherent in deep architectures.

PAC-Bayes circumvents these issues by considering distributions over predictors rather than finite
sets. The central technical tool is the Donsker-Varadhan variational identity, which provides a sharp
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variational bound on exponential moments under a reference distribution π:

logEπ

[
ef(θ)

]
= sup

ρ
{Eρ[f(θ)]−KL(ρ∥π)} .

Choosing f(θ) = λ(rS(θ)−R(θ)), and applying Jensen’s inequality to push expectation inside, the
exponential tail bound above becomes:

PS (Eρ [rS(θ)−R(θ)] > ε) = PS

(
eλEρ[rS(θ)−R(θ)] > eλε

)
≤ e−λNεES

[
eλEρ[rS(θ)−R(θ)]

]
(Jensen)
≤ e−λεES,ρ

[
eλ(rS(θ)−R(θ))

] (DV)
≤ e−λε exp

(
supρ {Eρ[λ(rS(θ)−R(θ))]−KL(ρ|π)}

)
.

Setting this probability equal to δ, we finally obtain the simplified PAC-Bayes inequality [10, 6],
explicitly linking good generalization to small divergence of the posterior ρ from a fixed prior π: with
high probability 1− δ,

Eρ[R(θ)] ≤ Eρ[rS(θ)] +
KL(ρ∥π) + log(1/δ)

λ
. (1)

Original PAC-Bayes results [1, 3] instead chose f(θ) = kl(rS(θ)|R(θ)) to directly bound KL-
divergences between empirical and population risks, but evaluating such KL divergences is challeng-
ing. Thus, the linearized Hoeffding-based form above is preferred in practice.

Still, PAC-Bayes bounds remain challenging for deep networks, since naïve priors (like isotropic
Gaussians) differ substantially from actual SGD-trained parameters, inflating the KL term dramatically
and producing trivial guarantees. Recent efforts include complex data-dependent priors—weight
compression [11], variational priors learned through auxiliary optimization [8], and differential-
privacy priors [12]—each effective but computationally expensive.

A simple way to view Catoni’s localization [6] is as the PAC-Bayes analogue of classical capacity-
near-the-data ideas: SVM margin/SRM reasoning [9], local Rademacher complexities that shrink
around empirical minimizers [13, 14], and variance-aware (empirical-Bernstein) concentration [15].
In PAC-Bayes, we implement this by exponential tilting π∗(θ) ∝ π(θ) exp [−ξλrS(θ)]: this is the
same mechanism as Gibbs/exponential weights in aggregation [16] and is handled analytically via
the Donsker–Varadhan change of measure, which turns the tilt into a transparent compensation term
log π [exp (−ξλrS)] added to the usual KL(ρ∥π). The temperature ξ ∈ (0, 1) softly interpolates
between the base prior (ξ → 0) and the empirical Gibbs posterior (ξ → 1), and the bound tracks
this interpolation with only a mild (1 − ξ)−1 factor. This perspective both connects localization
to standard non-PAC-Bayes tools and reassures that the “extra strength” from data dependence is
explicitly accounted for by a log-partition term rather than hidden in heuristics [17, 4, 18, 7, 8].

Insights from Neural Tangent Kernel theory [19] suggest the KL divergence of the SGD trajectory
from initialization accumulates gradually, with small incremental increases per step—implying that
total KL cost shrinks as network width grows.

A more detailed and extended review of PAC-Bayes theory and related derivations can be found in
Appendix C. In the next section, we rigorously formalize these localized PAC-Bayes ideas, developing
a practical generalization certificate validated experimentally at ImageNet scale.

3 Empirical PAC-Bayes Bound for Neural Networks

The following theorem guarantees—with high probability—a bound on a neural network’s true
(population) error based solely on the training data, sampled network parameters, and explicit
statistical penalties. Specifically, our bound decomposes into four intuitive components: (1) empirical
risk estimated via sampling from a learned posterior distribution, (2) penalties due to Monte Carlo
sampling uncertainty, (3) complexity measured as the divergence between the learned posterior and a
tilted data-dependent prior (similar to variational inference objectives), and (4) normalization terms
ensuring uniform statistical validity.

Let ρ(θ) denote a posterior distribution over neural network parameters, which we optimize directly
with respect to the empirical loss rS(θ) and, in practice, its mini-batch proxy r̂m(θ) (Component
1). To measure complexity, we use a tilted prior distribution (Component 3): πexp[−ξλrS(θ)](θ) ∝
π(θ) exp[−ξλrS(θ)], constructed by softly aligning a fixed, data-independent reference distribution
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π(θ) toward low-loss regions of parameter space, moderated by scaling parameters 0 < ξ < α < 1
and inverse-temperature parameter λ.

We estimate the empirical loss and the log-moment under the prior via independent samples θi ∼ ρ
and θ̃j ∼ π:

ρ̂[r̂m] = 1
K

∑K

i=1
r̂m(θi), ̂π [e−ξλr̂m ] = 1

M

∑M

j=1
e−ξλr̂m(θ̃j). (2)

These finite-sample estimates introduce explicit uncertainty penalties into the bound (Component 2).
The parameter ϵ ∈ (0, 1) represents our total confidence budget, split among different rare events. The
parameters α and ζ specify the granularity of our discretization, enabling optimization of parameters
ξ and λ to minimize the PAC-Bayes bound.
Theorem 3.1 (Empirical PAC-Bayes Bound). For any confidence budget ϵ ∈ (0, 1), localization
parameters 0 < ξ < α < 1, scaling parameter λ ∈ [1, 2N ], and discretization parameter ζ ∈ (ξ, 1),
let κ = g(λ/(ζN)). With probability at least 1− ϵ:

Eρ[R(θ)] ≤
(
1− ξ

α

)−1(
1− α+ξ

α−ξκ
λ
ζN

)−1 {
ρ̂ [r̂m] + 1

λ

(
KL(ρ∥π) + log ̂π [e−ξλr̂m ]

)
+ δ
}
, (3)

where δ=

√
log(6|Λ||Ξ|/ϵ)

2K +(1+ξ)

√
log(6|Λ||Ξ|/ϵ)

2m +
1
λ log

(
1+

(1−e−ξλ)
̂π[e−ξλr̂m ]

√
log(6|Λ||Ξ|/ϵ)

2M

)
+

1+ξ/α
λ log

2|Λ||Ξ|
ϵ .

Here g(x) = ex−x−1
x2 , and |Λ|, |Ξ| are the sizes of the λ - and ξ-grids. The denominator satisfies

0 < 1− α+ξ
α−ξ g(

λ
ζN ) λ

ζN ≤ 1.

Proof sketch. The proof starts from Catoni’s localized learning lemma: for any posterior ρ, tilting
a base prior π by exp (−ξλrS) yields a high-probability inequality that upper-bounds ρ[R] by a
combination of ρ [rS ], a divergence term, and a small curvature penalty coming from a Bernstein mgf
control; algebraically expanding KL (ρ∥πexp (−ξλrS)) = KL(ρ∥π) + ξλρ [rS ] + logEπ

[
e−ξλrS

]
exposes exactly the three quantities we estimate in practice (empirical risk, structural complexity,
and the localization normalizer). To make ( λ, ξ ) tunable by SGD without data-splitting, we first
uniformize over discrete grids for λ and ξ (union bound) and then relax back to continuous values
using the nearest grid points, which introduces the transparent contraction factors in the denominator
and the small grid-size logs in the numerator (this is the source of the (1− ξ/α)−1 and the g(λ/(ζN)
) term). Finally, each expectation is replaced by a Monte-Carlo proxy with a one-sided concentration
correction that preserves the direction of the bound: we use Hoeffding for ρ̂ [r̂m], and a prior-sampling
upper confidence bound for logEπ

[
e−ξλrS

]
(monotonicity of log keeps it one-sided), while mini-

batching replaces rS by r̂m with an added ( 1 + ξ ) radius. the resulting bound is tight because it
automatically adapts to concentrate around models with low training loss (localization) and adjusts to
the variance of the loss (curvature), avoiding overly conservative estimates. Moreover, it provides a
practical drop-in objective, resembling standard training with just a well-calibrated regularization
term, making it easy to optimize via standard gradient-based methods. The formal statement and
complete proof of Theorem 3.1 can be found in Appendix A.1.

Our PAC-Bayes bound explicitly avoids the vacuousness problem common in prior PAC-Bayes
analyses of deep networks and reduces generalization analysis to standard variational inference
(VI) — or, in the special case of a point posterior, maximum a posteriori (MAP) learning —
leveraging familiar optimization methods with interpretable guarantees. Specifically, the empir-

ical risk and KL complexity terms jointly form a VI objective:
λEρ[rS(θ)]+KL

(
ρ∥πexp[−ξλrS(θ)]

)
λ(1−ξ) .

Its optimal posterior is exactly the Gibbs distribution given explicitly by the Donsker–Varadhan
formula: ρ(θ) ∝ π(θ) exp(−λrS(θ)). At optimality, the objective equals logZξλ−logZλ

λ(1−ξ) , where
Zβλ =

∫
π(θ) exp(−βλrS(θ)) dθ. For risks bounded in [0, 1], this quantity naturally lies in [0, 1]

(since e−(1−ξ)λ ≤ Zλ/Zξλ ≤ 1), ensuring the bound is inherently non-vacuous. In fact, even the data-
independent variational principle remains non-vacuous at optimality, though it is less optimal than the
data-dependent version: infρ

{
Eρ[rS(θ)] +

1
λKL(ρ∥π)

}
= − 1

λ logEθ∼π

[
e−λrS(θ)

]
∈ [0, 1], since

Eθ∼π

[
e−λrS(θ)

]
∈
[
e−λ, 1

]
. Its optimal distribution coincides exactly with the Gibbs posterior of

the data-dependent case (with the same inverse temperature λ ). Additional penalty terms explicitly
account for confidence and finite-sample estimation effects.
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The variance-sensitive denominator 0 < 1 − α+ξ
α−ξ g

(
λ
ζN

)
λ
ζN ≤ 1, structured as a "linear term

minus variance-driven penalty," arises naturally from the Bernstein-type inequality in our PAC-Bayes
bound. A smaller denominator indicates greater uncertainty in the empirical risk estimate, thereby
enforcing stronger regularization to avoid overly confident posterior solutions. Hyperparameters α
and ζ discretize the optimization space for λ and ξ, allowing optimization while preventing overfitting.
Because g(x) is almost linear when its argument is small, the combined term g( λ

ζN ) λ
ζN collapses to

roughly 1
2

λ
ζN whenever the denominator is kept near 1. Allowing that denominator to fall by at most

ε from one then leads to the easy rule of thumb λ
ζN ≤

2ϵ(α−ξ)
α+ξ .

The previous theorem provides a rigorous yet computationally challenging generalization guarantee.
To operationalize this result practically, we propose a computationally efficient stochastic gradient
descent (SGD) algorithm with partitioned posterior sampling, detailed in Algorithm 1. At each
iteration, the algorithm partitions the current mini-batch into K sub-batches and independently
samples network parameters for each partition. This parallelized approach yields stable Monte
Carlo estimates ofempirical posterior risk ρ̂[r̂m], the structural term KL(ρ|π), and the localization
normalizer logEπ[e

−ξλrS ] (via the one-sided prior-sampling bound used in Eq. 3), without needing
to buffer historical parameter snapshots across iterations. Consequently, this approach significantly
enhances computational stability, reduces memory overhead, and improves scalability.

The computational overhead per iteration remains modest (typically 1.1×–1.3× a standard SGD
step), scaling sub-linearly with the partition count K when shards are fused/batched across the
sample axis. Empirically, choosing a moderate partition size (e.g., K ∈ [4, 8]) provides an effective
balance between statistical accuracy and computational cost. The optimization jointly updates the
posterior parameters and key bound parameters (λ, ξ), with hyperparameters (α, ζ) controlling the
discretization granularity used in the uniformization step (cf. Eq. 3), facilitating efficient optimization.
Overall, the proposed algorithm integrates seamlessly into standard neural network training workflows,
effectively balancing theoretical rigor with practical usability and providing computationally efficient
and theoretically sound generalization guarantees.

Algorithm 1: Empirical PAC-Bayes SGD with Partitioned Posterior Sampling
Input: Data mini-batches Bt = (Xt, Yt) for t = 1:T , initial parameters (ϕ, λ, ξ), prior π,

partition/posterior-sample count K, prior MC size M , learning rate η, discretization
hyperparameters α, ζ and confidence level ϵ.

Output: Final parameters (ϕ, λ, ξ) and PAC-Bayes bound (Eq. 3).
Initialize: Posterior distribution ρϕ.
for t = 1, . . . , T do

Split mini-batch Bt into K shards of size **m = |Bt|/K** (reuse the same Bt for all
estimators this step).

/* Posterior MC on shards (vectorizable/fused across a sample axis) */

Draw θ1, . . . , θK ∼ ρϕ and evaluate shard risks to obtain ρ̂[r̂m] (Setup);
From the same {θk} and layer log-densities, compute K̂L(ρ∥π) (Setup);
/* Prior MC for the localization log-moment (no grads to ϕ) */

Draw θ̃1, . . . , θ̃M ∼ π on Bt and compute ̂π[e−ξλr̂m ] (Setup); use this value (and its
concentration radius from Eq. 3) only in the prior term and δ, with stop_gradient w.r.t. ϕ
(grads to λ, ξ allowed).

Form the per-step objective Lt as the RHS of Eq. 3 with plug-in estimators ρ̂[r̂m], K̂L(ρ∥π),
log ̂π[e−ξλr̂m ], and δ (using K,M,m,α, ζ, ϵ).

/* Update (project to feasible set to keep denominator positive) */
(ϕ, λ, ξ)← (ϕ, λ, ξ)− η∇(ϕ,λ,ξ)Lt; project (λ, ξ) onto
{ 1− ξ

α > 0, 1− α+ξ
α−ξ g(

λ
ζN ) λ

ζN > 0 }.
Notes: (i) Fuse the K posterior samples across a leading “sample” axis to keep GEMMs efficient;

(ii) use small M (e.g., 8–16) since prior MC is forward-only; (iii) typical overhead is
1.1×–1.3× a standard step when K ∈ [4, 8]; (iv) clamp log arguments as usual for numerical
safety and clip ̂π[e−ξλr̂m ] away from 0 using the same floor as in Appendix A.1.
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Given a PAC-Bayes bound on population risk Eρ[R(θ)] ≤ B̂, we can turn it into a per-prediction
guarantee using Markov’s inequality and a union bound. For any input x ∼ D, the loss of a
posterior-sampled or averaged model satisfies:

Px∼D

[
ℓ(f(x), y) > B̂/ϵ

]
≤ ϵ. (4)

This allows the user to flag or reject high-risk predictions during deployment, while guaranteeing
that such rejections are rare—assuming deployment data matches training distribution. It’s particularly
useful for adversarial filtering, data drift detection, and model monitoring, where spikes in
rejection rates indicate mismatch or failure. No retraining is required; the certificate is derived directly
from the posterior and the bound.

Machine learning practitioners often follow standard training protocols—such as regularized stochas-
tic gradient descent (SGD)—and observe consistent generalization performance across replications.
This empirical stability raises a fundamental question: how does regularization contribute to
generalization, and can we provide a formal guarantee grounded in PAC-Bayes theory? To
address this, we model neural network training as a stochastic differential equation (SDE) defined by
its initialization and SGD update schema. Since marginalizing this SDE to compute the posterior
density ρt(θ) is intractable, we approximate it by constructing an ordinary differential equation
(ODE) whose marginal distribution matches that of the SDE in expectation. This approximation is
derived by applying the Fokker-Planck equation and assuming a diagonal structure for the posterior
variance, with Hutchinson’s estimator used to approximate the trace of the Hessian. The resulting
log-posterior can be updated via a simple recurrence:

log ρt+1(θ) = log ρt(θ)− ηt ·
(
Tr(Ht) +

1
λ∥θt∥

2
)
,

where ηt is the learning rate at step t, λ is the L2 regularization coefficient, and Ht is the generalized
local curvature matrix given by: Ht = ∇2L(θt) + 1

λI .

In practice, we estimate Tr(Ht) using Hutchinson’s method with Rademacher noise: sample a
random vector v ∼ {±1}d, compute the Hessian-vector product Htv via nested autodiff, and
estimate the trace as v⊤Htv. This fast, biased update rule tracks the contraction of log-density
along the training trajectory, and when inserted into the PAC-Bayes bound (Theorem 3.1), yields
nonvacuous generalization guarantees—even without explicitly minimizing the bound.

While we showed deep networks trained with SGD can yield nonvacuous empirical PAC-Bayes
generalization guarantees, our deeper question is: can neural networks generalize in the highly
overparameterized regimes where classical complexity theory would suggest overfitting, and if so,
why and in what sense? The answer lies in the structure imposed by modern training: stochastic
optimization from random initialization induces a posterior that is not arbitrary, but aligned with
low-risk, low-complexity regions. The next result formalizes this idea. It shows that, in wide networks
trained under standard conditions, the PAC-Bayes generalization gap converges exponentially at rate
O(1/N + 1/n), where n is network width and N is training data size, and the learned distribution
remains close to a Gibbs posterior over a tractable linear approximation.

Specifically, consider a neural network of width n, trained via stochastic gradient descent (SGD) with
step size η = η0/n from a Neural Tangent Kernel-style initialization (scaled such that activations
remain stable as network width grows). To ensure controlled convergence, assume input norms are
bounded or bounded with high probability, activation functions have bounded first- and second-order
derivatives, and the initial empirical kernel is positive definite with eigenvalues uniformly bounded
away from zero and infinity. Under these mild assumptions typically met by standard deep networks,
we state informally the following PAC-Bayes generalization guarantee. A formal statement and proof
appear in the appendix.
Theorem 3.2 (PAC-Bayes Bound for Wide Networks, Informal). Under these assumptions, with
probability at least 1− ε, the expected population risk under the posterior distribution induced by
SGD satisfies:

π−λ r[R(θ)] ≤

(
λ+ κλ2

N − β
)
ρ[R̃(θ)] + CKL

n + log 2
ε

λ− β − κλ2

N

.

Here CKL/n is the oracle penalty from replacing the nonlinear network by its linearization; it scales
as O(1/n) because the per-step Gaussian KL between the two SGD increment laws is quadratic in
their O(n−1/2) lazy-training drift.
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Proof sketch. To establish a tight generalization guarantee for wide neural networks, we first ap-
proximate the complicated nonlinear training dynamics by a simpler linearized network at ini-
tialization. Under standard NTK (neural tangent kernel) conditions—bounded activations and
derivatives, stable NTK, and appropriate learning rate scaling—standard theory ensures that as
the network becomes wider (larger width n), the original nonlinear training and its linearized ap-
proximation remain very close, differing only by small O(n−1/2) amounts in their predictions
and kernels. We then model each stochastic gradient descent (SGD) update as a step drawn from
a Gaussian distribution, using known results from the neural network literature. Since the KL
divergence between two Gaussian distributions grows quadratically with the difference in their
parameters, these small O(n−1/2) differences translate into even smaller O(1/n) KL terms per
step. More precisely, if one-step SGD updates are modeled as Gaussians with mean/covariance
perturbations ∆µt,∆Σt between the nonlinear and linearized dynamics, a second-order expansion

around equality gives KLt =
1
2∆µ⊤

t Σ
−1
t ∆µt+

1
4

∥∥∥Σ−1/2
t ∆ΣtΣ

−1/2
t

∥∥∥2
F
+ o

(
∥∆µt∥2 + ∥∆Σt∥2

)
;

with ∥∆µt∥ , ∥∆Σt∥ = O
(
n−1/2

)
, this yields per-step KLt = O(1/n). Because the prediction error

shrinks quickly during training, summing these small KL terms over the entire trajectory remains
just O(1/n). Finally, by plugging this linearized approximation into our localized PAC-Bayes bound
(Theorem 3.1), we obtain a generalization guarantee that shrinks significantly as the network width
increases, providing a rigorous yet practical certificate that the trained network’s true error remains
close to its empirical training error. For full details, see Appendix A.2.

4 Experiments

In this section, we present experiments to assess the behavior of the proposed localized PAC-Bayes
method. We first examine performance on standard benchmark datasets and models commonly
studied in PAC-Bayes literature. Subsequently, we extend the evaluation to more recent tasks in
deep learning, illustrating practical integration of the PAC-Bayes approach into modern workflows.
Detailed experimental configurations and hyperparameters are provided in Appendix B.

4.1 Classic Benchmarks and Localization Behavior

We begin our empirical evaluation by demonstrating the effectiveness, interpretability, and practical
tightness of our localized PAC-Bayes bound on classic benchmarks. We explicitly compare our
localized method against both traditional data-independent and recent data-dependent PAC-Bayes
approaches, clearly differentiating between one-pass and two-pass frameworks.

Our evaluation spans widely-used datasets such as MNIST [20], CIFAR-10/100 [21], and ImageNet
[22], utilizing common network architectures including fully connected networks (FCN), LeNet-5
[23], ResNet-50 [24], Wide ResNet (WRN-28-10) [25], DenseNet-121 [26], and EfficientNet-B0
[27]. We contrast several PAC-Bayes bounds: classical data-independent bounds [17], two-pass
data-dependent bounds using weight compression [28], Fisher-information-based methods [29], and
our proposed localized PAC-Bayes method, which efficiently constructs a data-informed tilted prior.
Results are summarized in Table 1.

Table 1: Empirical evaluation of PAC-Bayes bounds across datasets and architectures. Columns
show dataset, model architecture, empirical error (Train/Test), and PAC-Bayes bounds categorized by
method type: (1) Classical (data-independent, one-pass), (2) Compression (data-dependent, two-pass),
(3) Fisher Information (data-dependent, two-pass), and (4) Localized (ours, data-dependent, one-pass).
Empirical errors based on best predictor (posterior mean or sampled).

Dataset Architecture Error (Tn/Tst) Classical Compression Fisher Info Localized (ours)
MNIST FCN 0.1% / 1.2% 5.5% 2.5% 2.1% 1.9% (0.3%)
MNIST LeNet-5 0.9% / 1.1% 4.2% 2.0% 1.7% 1.5% (0.2%)
CIFAR-10 ResNet-50 8.0% / 9.5% 45.0% 20.0% 18.5% 11.5% (1.5%)
CIFAR-10 WRN-28-10 7.0% / 8.0% 39.0% 18.0% 17.0% 9.5% (1.0%)
CIFAR-100 DenseNet-121 25.5% / 27.0% Vacuous 44.0% 44.5% 29.5% (2.0%)
CIFAR-100 EfficientNet-B0 25.5% / 26.5% Vacuous 45.0% 44.0% 27.0% (2.0%)
ImageNet ResNet-50 25.0% / 27.0% Vacuous 47.0% 46.0% 31.0% (2.5%)
ImageNet EfficientNet-B0 31.0% / 32.5% Vacuous 50.0% 48.0% 35.5% (2.5%)
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Figure 1 visualizes training dynamics for CIFAR-10 using WRN-28-10, highlighting how empirical
metrics (accuracy, loss) and PAC-Bayes bounds evolve over training epochs. The localization param-
eters (λ, ξ) exhibit intuitive convergence behavior, indicating seamless integration into conventional
SGD workflows. Specifically, λ stabilizes at an effective regularization strength, while ξ decreases
gradually to a minimal yet meaningful level.

Selecting moderate localization parameters (e.g., λ = 2500, ξ = 0.01) effectively uses information
from approximately 25 data points. This minimal yet strategic localization substantially tightens
the PAC-Bayes bound without risking overfitting, illustrating a balanced and practically beneficial
approach.

4.2 Extending PAC-Bayes to Modern Deep Learning Tasks

Having demonstrated the effectiveness of our localized PAC-Bayes bound on classical benchmarks,
we now illustrate its practical application in modern deep learning scenarios. We highlight how our
method seamlessly integrates PAC-Bayes certification into standard workflows by directly substituting
traditional training objectives (such as cross-entropy) with PAC-Bayes-based loss objectives.

We begin with the Cityscapes semantic segmentation task [30], which is vital for applications like
autonomous driving. Semantic segmentation naturally fits PAC-Bayes certification because of its
bounded per-pixel classification loss. We use a lightweight U-Net with a ResNet backbone, trained on
standard TensorFlow Datasets, and evaluate performance via Intersection-over-Union (IoU). Our PAC-
Bayes certification is seamlessly incorporated into the training process by probabilistically modeling
convolutional and fully connected layers, leaving task-specific segmentation heads deterministic.
Table 2 confirms that our method achieves tight, practical certification bounds, making it valuable for
deployment in safety-critical applications.

Concurrently, we showcase our PAC-Bayes certification on NLP fine-tuning tasks from the GLUE
benchmark [31]: MRPC (paraphrase classification), SST-2 (sentiment classification), and RTE
(textual entailment). These tasks highlight the growing reliance on fine-tuning foundation models
with limited labeled data, where conventional validation metrics fall short in providing formal safety
guarantees. We employ LoRA [32] fine-tuning on GPT-2-small, explicitly modeling low-rank adapter
parameters as Gibbs distributions via reparameterization. By directly replacing standard fine-tuning
losses with our PAC-Bayes bounds, we achieve rigorous generalization guarantees suitable for reliable
NLP deployments.

We summarize experimental results in Table 2.

Table 2: Empirical results demonstrating that our localized PAC-Bayes bounds yield tighter, practi-
cally meaningful generalization guarantees compared to two-pass PAC-Bayes methods across diverse
tasks. Columns show task/dataset, architecture/model, empirical loss (Train/Val), and PAC-Bayes
loss bounds: Two-pass and Localized (ours, one-pass).

Task/Dataset Model Loss (Train/Val) Two-pass Localized (ours)
Cityscapes U-Net (ResNet) 0.22 / 0.25 0.30 0.27
MRPC GPT-2 + LoRA 0.15 / 0.14 0.16 0.15
SST-2 GPT-2 + LoRA 0.08 / 0.11 0.14 0.14
RTE GPT-2 + LoRA 0.22 / 0.25 0.28 0.26

We compare our localized PAC-Bayes bound against a two-pass PAC-Bayes approach that first trains
a model conventionally and then separately computes a data-dependent prior. The experimental
results summarized in Table 2 highlight our method’s advantages clearly. Our localized PAC-Bayes
bounds consistently provide tighter and practically meaningful generalization guarantees compared
to the two-pass PAC-Bayes approaches. These findings underscore our method’s ability to bridge
theoretical rigor and real-world practicality effectively.

4.3 Certifying Individual Predictions and Adversarial Robustness

Our PAC-Bayes bound allows us to set a precise risk-based threshold for individual predictions
derived directly from our certified model, utilizing Markov’s inequality and a union-bound argument
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(Eq. 4). Predictions exceeding this threshold can be reliably flagged or discarded, ensuring we retain
only trustworthy predictions while tightly controlling the rejection rate.

We empirically demonstrate this selective prediction approach by examining risk distributions for
correctly classified versus misclassified test samples. Figure 2 shows PAC-Bayes 0–1 risk distributions
for normal, out-of-distribution (OOD; primarily using ImageNet-32×32 [33, 34]), and adversarial
(PGD attack [35]) examples. Clearly, adversarially perturbed samples exhibit substantially higher
risk values compared to normal and OOD samples, highlighting our method’s practical capability to
robustly detect and reject adversarial inputs.

Additionally, we evaluate the calibration [36] of our PAC-Bayes-certified predictions (Figure 3).
Across diverse practical tasks (Cityscapes, MRPC, RTE, SST-2), our models exhibit excellent calibra-
tion, meaning that predicted uncertainties closely match observed error frequencies. This accurate
calibration underscores the reliability and interpretability of PAC-Bayes-certified predictions, ensuring
the selective rejection mechanism is both trustworthy and effective in real-world deployments.

Together, these results demonstrate the practical strength of our PAC-Bayes framework—providing
rigorous individual-level guarantees, robust detection of adversarial attacks, and well-calibrated
predictive uncertainties essential for dependable model deployment.

5 Related Work

PAC-Bayes theory provides a rigorous probabilistic framework for deriving generalization guarantees,
overcoming many limitations of classical VC-dimension and Rademacher complexity-based analyses
[17, 37]. Classical PAC-Bayes bounds often use data-independent priors, resulting in empirically
vacuous or excessively loose guarantees when applied to modern deep neural networks [37, 38, 39].
Conversely, theoretical advancements, such as localization techniques developed by Catoni [6],
provide mathematically elegant and tighter bounds, but often remain disconnected from practical
machine learning workflows.

Recent works aim to bridge this gap by introducing data-dependent priors or surrogate optimization
methods. For instance, weight-compression approaches improve tightness significantly by exploiting
sparsity or compressibility of neural networks [29, 28]. Nevertheless, these methods typically require
multiple optimization stages or additional computational overhead, limiting their practical adoption
[40, 38].

Similarly, Fisher information-based and Neural Tangent Kernel (NTK)-based PAC-Bayes methods
further tighten generalization guarantees through approximations of the local geometry of loss
landscapes [41, 19]. These methods generally rely on strong assumptions (e.g., wide-network limits
or linear approximations), thus restricting their applicability in diverse or realistic training scenarios.

Other contemporary efforts operationalize PAC-Bayes bounds within specialized contexts such
as reinforcement learning, conformal prediction, and meta-learning [42, 43, 44]. However, these
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methods often remain computationally intensive, niche-specific, or challenging to integrate directly
into conventional deep learning training loops.

Our work explicitly bridges this gap by introducing a localized PAC-Bayes bound that naturally
integrates theoretical rigor (inspired by techniques such as Catoni’s localization) into standard deep
learning workflows. This approach avoids multiple optimization passes and excessive computa-
tional costs, offering practically meaningful and empirically tight generalization guarantees directly
applicable to modern neural networks.

6 Limitations and Broader Impacts

Limitations. Our localized PAC-Bayes certification relies on Monte Carlo estimation (with repa-
rameterization) of the prior log-moment logEπ

[
e−ξλrS(θ)

]
in Theorem 3.1 and, when evaluating

the Gibbs-minimized form, to approximate structured losses as differences between log-partition
functions, i.e., 1

λ (logEπ[exp(−ξλrS(θ))] − logEπ[exp(−λrS(θ))]). While statistically consis-
tent, using finite samples may introduce a negative bias due to Jensen’s inequality, potentially
risking overfitting. Accordingly, our bound uses one-sided, high-probability upper surrogates for
logEπ

[
e−ξλrS(θ)

]
(see Eq. 3 via δ) to avoid optimistic bias, at the cost of extra conservativeness. A

more accurate but computationally intensive alternative integrates posterior expectations continuously
over inverse temperatures, i.e.,

∫ 1

ξ
Eθ∼πexp(−βλrS(θ))

[rS(θ)] dβ, by sampling from intermediate Gibbs
posteriors πexp(−βλrS). This multi-temperature estimator reduces logarithmic bias but increases
sampling cost. Thus, our chosen two-endpoint method represents a pragmatic balance between
accuracy and computational efficiency. Additionally, efficient GPU parallelization is critical; careless
implementation—such as sequential rather than batched forward passes—can significantly degrade
computational performance.

Broader Impacts. Our work improves transparency and trustworthiness of neural network pre-
dictions, particularly valuable for large foundation models and generative or agentic AI deployed
in safety-critical and regulated domains, such as healthcare and autonomous driving. Rigorous
PAC-Bayes certification enables responsible deployment, facilitating regulatory compliance and
safer adoption of advanced AI systems. However, as PAC-Bayes certificates inherently depend on
assumptions—such as representative training data and accuracy of practical approximations used in
implementation—misinterpreting these assumptions can lead to misuse and false confidence. Clear
communication about these assumptions, limitations, and proper interpretation guidelines is critical to
responsibly leverage the benefits of our approach while mitigating potential negative consequences.

7 Conclusions

We have developed a practical PAC-Bayes certification method that addresses key computational
and conceptual obstacles previously limiting PAC-Bayes applicability to modern neural networks.
Our localized prior approach enables tight certification of generalization risks at both network and
individual-prediction levels without significantly altering standard training workflows. Empirical
results demonstrate strong certification performance across image classification, NLP fine-tuning,
and semantic segmentation, closely aligning theoretical guarantees with real-world applications
and regulatory needs. This advancement transforms PAC-Bayes theory into a practical tool for
reliably certifying deep learning models, substantially improving trustworthiness and transparency in
safety-critical AI deployments.

Disclaimer

The views expressed are those of the authors and do not reflect the official guidance or position of
the United States Government, the Department of Defense or of the United States Air Force. The
content or appearance of hyperlinks does not reflect an official DoD, Air Force, Air Force Research
Laboratory position or endorsement of the external websites, or the information, products, or services
contained therein. This work was conducted in the authors’ personal capacity, on personal time, and
without the use of employer or U.S. Government resources.
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A Proofs and Formal Statements

This section gives formal statements and complete proofs of Theorems 3.1 and 3.2, with a focus on
the theory and all notation and assumptions made explicit.

A.1 Formal Statement and Proof of Theorem 3.1

Before formally stating Theorem 3.1, we briefly review the essential notation to ensure clarity and
readability. We denote by Θ a measurable parameter space. The true data-generating distribution
over the input-output pairs (x, y) is denoted by P , from which we have a training dataset S =
{(xi, yi)}Ni=1, drawn independently and identically from P .

Given parameters θ ∈ Θ, we consider a bounded loss function ℓ(θ;x, y), satisfying 0 ≤ ℓ(θ;x, y) ≤ 1
for all θ, x, y. We define the population risk R(θ) = E(x,y)∼P [ℓ(θ;x, y)], and the empirical risk
rS(θ) =

1
N

∑N
i=1 ℓ(θ;xi, yi).

We consider distributions over the parameter space Θ, with the prior distribution denoted by π(θ),
and the posterior distribution denoted by ρ(θ). The Kullback–Leibler (KL) divergence between these
two distributions is given by KL(ρ, π) =

∫
Θ
ρ(θ) log ρ(θ)

π(θ) dθ.

To refine generalization guarantees practically, we introduce the concept of a localized prior, defined
as a data-dependent prior distribution: πexp[−ξλrS(θ)](θ) ∝ π(θ) exp[−ξλrS(θ)]. Here, the parame-
ters λ > 0 and 0 < ξ < 1 control the concentration of this prior around empirically promising param-
eter regions. We utilize a Bernstein-type concentration inequality, which controls the bound using
second-order and bounded higher-order moments via the auxiliary function g(x) = (ex − x− 1)/x2.

We introduce two discretization parameters, α ∈ (ξ, 1) and ζ ∈ (ξ, 1), to define auxiliary grids that
evenly distribute the allowed error probability (uniformization): Ξ = {αk : 1 ≤ k ≤ ⌊logα−1(N)⌋},
Λ = {2Nζk : 0 ≤ k ≤ ⌊logζ−1(2N)⌋}. We then slightly relax this discretization, allowing direct
continuous optimization of λ and ξ via gradient-based methods.

We define the empirical posterior risk estimate ρ̂ [rS ] as the Monte Carlo estimate of the empirical
risk under the posterior ρ, using K i.i.d. parameter samples θi ∼ ρ :

ρ̂[rS ] =
1
K

∑K

i=1
rS(θi). (2’)

We estimate the log-partition term logEπ

[
e−ξλrS(θ)

]
with M i.i.d. samples θ̃j ∼ π :

̂π [e−ξλrS ] = 1
M

∑M

j=1
e−ξλrS(θ̃j). (2”)

In practice, we approximate the full-dataset risk rS(θ) by the mini-batch risk r̂m(θ), the average loss
on a mini-batch of size m (drawn without replacement or as an i.i.d. approximation), and we use the
corresponding substitutions ρ̂ [r̂m] and ̂π [e−ξλr̂m ] in the estimators above.

The following theorem bounds the neural network’s true risk explicitly in terms of empirical risk and
complexity estimates defined above.

Theorem 3.1 (Empirical PAC-Bayes Bound). Let κ = g(λ/(ζN)), under the previously defined
conditions on localization parameters ξ, α, ζ , the confidence parameter ϵ ∈ (0, 1), and regularization

parameter λ ∈ [1, 2N ], with the denominator satisfying 0 < 1− α+ξ
α−ξ g

(
λ
ζN

)
λ
ζN ≤ 1, the following

bound on the expected population risk under the posterior distribution ρ(θ) holds with probability at
least 1− ϵ:

Eρ[R(θ)] ≤
(
1− ξ

α

)−1(
1− α+ξ

α−ξκ
λ
ζN

)−1 {
ρ̂ [r̂m] + 1

λ

(
KL(ρ∥π) + log ̂π [e−ξλr̂m ]

)
+ δ
}
, (3)

where δ=

√
log(6|Λ||Ξ|/ϵ)

2K +(1+ξ)

√
log(6|Λ||Ξ|/ϵ)

2m +
1
λ log

(
1+

(1−e−ξλ)
̂π[e−ξλr̂m ]

√
log(6|Λ||Ξ|/ϵ)

2M

)
+

1+ξ/α
λ log

2|Λ||Ξ|
ϵ .

This theorem links training performance, sampling estimates, and statistical penalties to give a
practical generalization guarantee. The proof follows four steps: (i) restating and proving Catoni’s
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learning lemma, (ii) introducing a localized prior, (iii) uniformizing λ, ξ for optimization, and (iv)
deriving practical estimators via importance sampling.

We begin by restating Catoni’s learning lemma (Lemma A.1), foundational to constructing the
localized PAC-Bayes bound (Theorem 3.1). This lemma introduces a confidence function η(θ) that
quantifies our certainty regarding the parameter θ in minimizing the true risk, effectively localizing
the small-event probability budget towards more promising parameters. It states that, with high
probability over the training sample, no posterior distribution ρ can significantly deviate from its
empirical risk Eρ[r(θ)] beyond a confidence interval determined by the complexity term KL(ρ∥π)
and the expected confidence Eρ[η(θ)].
Lemma A.1 (Catoni, 2007[5]). For any positive real parameter λ > 0, any measurable function
η : Θ→ R, and any prior probability distribution π on Θ, we have:

P

{
sup
ρ

λEρ[R(θ)]− λEρ[rS(θ)]−Eρ[η(θ)]−KL(ρ∥π) ≥ 0

}
(5)

≤ Eθ∼π

[
exp

(
λ2

N g
(
λ
N

)
R(θ)(1−R(θ))− η(θ)

)]
.

Similarly,

P

{
sup
ρ

λEρ[rS(θ)]− λEρ[R(θ)]−Eρ[η(θ)]−KL(ρ∥π) ≥ 0

}
(6)

≤ Eθ∼π

[
exp

(
λ2

N g
(
λ
N

)
R(θ)(1−R(θ))− η(θ)

)]
.

Proof of Lemma A.1. We begin with the following identity based on the Donsker–Varadhan varia-
tional representation of the KL divergence:
supρ λEρ[R(θ)− rS(θ)]−Eρ[η(θ)]−KL(ρ∥π) = log {Eθ∼π [exp (λ[R(θ)− rS(θ)]− η(θ))]} .

Taking probability explicitly with respect to the random draw of the training set S, we have:

PS

{
sup
ρ

λEρ[R(θ)− rS(θ)]−Eρ[η(θ)]−KL(ρ∥π) ≥ 0

}
=PS {Eθ∼π [exp (λ[R(θ)− rS(θ)]− η(θ))] ≥ 1}
≤ES [Eθ∼π [exp (λ[R(θ)− rS(θ)]− η(θ))]]

=Eθ∼π [ES [exp (λ[R(θ)− rS(θ)]− η(θ))]]

≤Eθ∼π

[
exp

(
λ2

N g
(
λ
N

)
R(θ)(1−R(θ))− η(θ)

)]
.

The first inequality follows from Markov’s inequality applied to the random variable
Eθ∼π [exp (λ[R(θ)− rS(θ)]− η(θ))]. The subsequent equality follows by Fubini’s theorem applied
to the positive function (θ, S) 7→ exp (λ[R(θ)− rS(θ)]− η(θ)). The final inequality results from
Bernstein’s inequality applied to the random variables ℓ (θ;xi, yi), where g(x) = (ex − x− 1) /x2

is a standard auxiliary function arising from Bernstein’s inequality. This function explicitly pro-
vides refined control over the tail behavior through second-order moments and higher-order moment
bounds.

For the reverse inequality, we similarly start from the Donsker–Varadhan variational representation
of the KL divergence:
sup
ρ

λEρ[rS(θ)−R(θ)]−Eρ[η(θ)]−KL(ρ∥π) = log {Eθ∼π [exp (λ[rS(θ)−R(θ)]− η(θ))]} .

Taking probability explicitly with respect to the dataset S, we have:

PS

{
sup
ρ

λEρ[rS(θ)−R(θ)]−Eρ[η(θ)]−KL(ρ∥π) ≥ 0

}
=PS {Eθ∼π [exp (λ[rS(θ)−R(θ)]− η(θ))] ≥ 1}
≤ES [Eθ∼π [exp (λ[rS(θ)−R(θ)]− η(θ))]]

=Eθ∼π [ES [exp (λ[rS(θ)−R(θ)]− η(θ))]]

≤Eθ∼π

[
exp

(
λ2

N g
(
λ
N

)
R(θ)(1−R(θ))− η(θ)

)]
.
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We proceed to construct a PAC-Bayes bound with localized prior from Catoni’s learning lemma A.1,
following Catoni’s idea of localization.

Proof of Theorem 3.1.

Localizing the Prior Using Population Risk Information. We begin by explicitly choosing a
confidence function η(θ) as if we already had knowledge of the true risk R(θ):

η(θ) =
λ2

N
κR(θ)− log πexp(−βR(•))(θ) + log(ϵ−1), where κ = g

(
λ
N

)
.

The first term encodes our confidence from Bernstein’s inequality that empirical risk closely approxi-
mates the population risk, simplifying the variance term R(θ)[1 − R(θ)] to R(θ) for convenience.
The second term, − log πexp(−βR(θ))(θ) = βR(θ) + log π[exp(−βR(θ))], differentially penalizes
parameter regions based on their proximity to empirical optima: parameters far from the optimum
incur a looser penalty, while those near the optimum experience tighter localization. The final term
provides uniform confidence control. We define κ = g

(
λ
N

)
for notational simplicity.

Substitute η(θ) into Eq. 5 in Lemma A.1, then relax the Bernstein bound λ2

N g
(
λ
N

)
R(θ)[1−R(θ)]

in the exponent by λ2

N g
(
λ
N

)
R(θ) on the right-hand side. This relaxation effectively simplifies the

expression involving η(θ), leaving only the term ϵ explicitly on the right-hand side, thus yielding

PS

{
sup
ρ

[(
λ−β−κ λ2

N

)
Eρ[R(θ)]−λEρ[r(θ)]−KL(ρ∥π)−log{π[exp(−β R(θ))]}

]
≥ log

(
ϵ−1
)}
≤ ϵ,

i.e., with probability at least 1− ϵ, the following bound holds for all posterior distributions ρ:

Eρ[R(θ)] ≤ (λ− β − κλ2

N )−1
{
λEρ[r(θ)] + KL(ρ∥π) + log{π[exp(−βR(θ))]}+ log( 1ϵ )

}
. (7)

Bounding the Log-Partition Function via Empirical Risk. The log-partition term
log{π[exp(−β R(θ))]} in the above PAC-Bayes inequality cannot be optimized directly since it
involves the unknown population risk R(θ). To resolve this, we aim to replace it with a bound in-
volving the known empirical risk rS(θ). To achieve this, we start by applying the Donsker-Varadhan
variational formula to explicitly express the term in question as an expectation under the Gibbs
posterior πexp(−βR(θ)):

log{π[exp(−β R(θ))]} = −βEπexp(−βR(θ))
[R(θ)]−KL

(
πexp(−βR(θ))∥π

)
.

The unknown expectation term Eπexp(−βR(θ))
[R(θ)] can be bounded in terms of the empirical risk

using the inequality from Eq. 5 of Lemma A.1. With probability at least 1−ϵ, we have: −Eρ[R(θ)] ≤
λEρ[rS(θ)]+log(1/ϵ)

λ+κ λ2

N

, ∀ρ. Applying this inequality specifically to the Gibbs posterior πexp(−βR(θ)),

we obtain the following bound with probability at least 1− ϵ:

−βEπexp(−βR(θ))
[R(θ)] ≤ βEπexp(−βR(θ))

[
− λ

λ+ κ λ2

N

rS(θ) +
1

λ+ κ λ2

N

log
1

ϵ

]
.

Substituting this result back into the expression for the log-partition function yields, with probability
at least 1− ϵ:

log{π[exp(−β R(θ))]} = −βEπexp(−βR(θ))
[R(θ)]−KL

(
πexp(−βR(θ))∥π

)
(8)

≤βEπexp(−βR(θ))

[
− λ

λ+ κ λ2

N

rS(θ) +
1

λ+ κ λ2

N

log
1

ϵ

]
−KL

(
πexp(−βR(θ))∥π

)

≤ sup
ρ

{
β

1 + κ λ
N

(
−Eρ[rS(θ)] +

log(1/ϵ)

λ

)
−KL(ρ∥π)

}

= log

{
π

[
exp

(
− β

1 + κ λ
N

rS(θ)

)]}
+

β

λ+ κ λ2

N

log
1

ϵ
.
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Here, the second inequality follows directly from the definition of supremum by allowing the posterior
distribution to vary freely. The final equality is obtained by re-applying the Donsker–Varadhan
formula, now transforming the supremum back into a simpler log-partition function explicitly
involving the empirical risk rS(θ).

Applying a union bound to the earlier localized PAC-Bayes bound (Eq. 7) — specifically, using the
deviation bound (Eq. 8) to control the log-partition term involving the unknown population risk —
and introducing the substitution ξ = β

λ(1+κ λ
N )

, we obtain:

PS

{
sup
ρ

[(
(1− ξ)λ− (1 + ξ)κ

λ2

N

)
Eρ[R(θ)]− λEρ[rS(θ)]−KL(ρ∥π)− logEπ

[
exp(−ξλrS(θ))

]]
≥

(1 + ξ) log
(
2ϵ−1

)}
≤ ϵ.

Equivalently, with probability at least 1− ϵ, the following PAC-Bayes bound holds for all posterior
distributions ρ:

Eρ[R(θ)] ≤
λEρ[rS(θ)] + KL(ρ∥π) + log {Eπ [exp (−ξλrS(θ))]}+ (1 + ξ) log(2ϵ )

(1− ξ)λ− (1 + ξ)κλ2

N

.

Simplifying with a Localized Prior. Next, we use the following identity involving KL divergences:

KL(ρ∥π) + logEπ[exp(−ξλrS(θ))] = KL
(
ρ∥πexp(−ξλrS)

)
− ξλEρ[rS(θ)],

where the distribution πexp(−ξλrS(θ))(θ) ∝ π(θ) exp(−ξλrS(θ)) is a localized, data-dependent prior.

With this simplification, we obtain the following explicit PAC-Bayes bound: with probability at least
1− ϵ, for all posterior distributions ρ,

Eρ[R(θ)] ≤
(1− ξ)λEρ[rS(θ)] + KL

(
ρ∥πexp(−ξλrS)

)
+ (1 + ξ) log 2

ϵ

(1− ξ)λ− (1 + ξ)κλ2

N

. (9)

The identity relating the KL divergences can be explicitly verified through the following derivation:

KL(ρ∥π) = Eρ

[
log

ρ(θ)

π(θ)

]
= Eρ

[
log

ρ(θ)/πexp(−ξλrS)(θ)

π(θ)/πexp(−ξλrS)(θ)

]
= Eρ

[
log

ρ(θ)

πexp(−ξλrS)(θ)

]
+Eρ

[
log

π(θ) exp(−ξλrS(θ))/Eπ[exp(−ξλrS(θ))]
π(θ)

]
= KL

(
ρ∥πexp(−ξλrS)

)
+Eρ

[
log

exp(−ξλrS(θ))
Eπ[exp(−ξλrS(θ))]

]
= KL

(
ρ∥πexp(−ξλrS)

)
− ξλEρ[rS(θ)]− logEπ[exp(−ξλrS(θ))].

Uniformizing the Bound for Continuous Optimization. To practically optimize the parameters λ
and ξ using stochastic gradient descent (SGD), we first apply a union bound across discrete parameter
grids. Specifically, we discretize the parameters onto finite sets, defining grids: Λ = {2Nζk : 0 ≤
k ≤ ⌊logζ−1(2N)⌋} for λ with 0 < ζ < 1, and Ξ = {αk : 1 ≤ k ≤ ⌊logα−1(N)⌋} for ξ with
0 < α < 1. We then evenly distribute the allowable failure probability ϵ across all grid points,
ensuring with probability at least 1− ϵ that the PAC-Bayes bound simultaneously holds for every
discrete combination of λ′ ∈ Λ and ξ′ ∈ Ξ satisfying the condition (1− ξ′)− (1 + ξ′)κλ′

N > 0:

Eρ[R(θ)] ≤
λ′Eρ[rS ] + KL (ρ∥π) + logEπ

[
e−ξ′λ′rS

]
+ (1 + ξ′) log 2|Λ∥|Ξ|

ϵ

(1− ξ′)λ′ − (1 + ξ′)κλ′2

N

.

The factor |Λ||Ξ| explicitly accounts for the union bound over the discrete grids of λ′ and ξ′. We
used the identity KL

(
ρ
∥∥πexp(−ξλrS)

)
= KL (ρ, π) + ξλEρ [rS ] + logEπ

[
e−ξλrS

]
.

Next, we relax these discrete conditions to continuous parameters λ ∈ [1, 2N ] and ξ ∈ [0, 1) by
selecting their nearest grid points λ′ ∈ Λ and ξ′ ∈ Ξ such that λ ≤ λ′ ≤ λ

ζ and ξ ≤ ξ′ ≤ ξ
α .
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Thus, we obtain a continuous optimization-friendly PAC-Bayes bound: With probability at least
1 − ϵ, for all continuous parameters λ ∈ [1, 2N ] and ξ ∈ [0, 1) satisfying the relaxed condition

(1− ξ)λ− (1 + ξ
α )κ

(λ
ζ )2

N > 0, we have:

Eρ[R(θ)] ≤
Eρ[rS(θ)] +

1
λ

(
KL (ρ∥π) + logEπ

[
e−ξ′λ′rS

])
+ 1+ξ/α

λ log 2|Λ∥|Ξ|
ϵ

( 1
1−ξ/α )(1−

α+ξ
α−ξκ

λ
ζN )

. (10)

This relaxation is crucial since it permits direct optimization of λ and ξ via gradient-based methods
like SGD, making the bound highly practical for numerical implementations.

Estimation of expectations with respect to ρ and π, and empirical risk by mini-batch. The
ρ-/π-dependent parts of the numerator is (1 + ξ)Eρ[rS ] +

1
λ

(
KL (ρ, π) + logEπ

[
e−ξλrS

])
. We

approximate each expectation using Monte Carlo sampling and concentration inequalities.

For the posterior expectation term Eρ [rS ], we draw K independent samples θi from the posterior ρ,
and estimate the empirical risk as the simple average ρ̂ [rS ] =

1
K

∑K
i=1 rS (θi). Using Hoeffding’s

inequality (since each loss is bounded in [0,1]), we have, with probability at least 1− ϵρ :

Eρ [rS ] ≤ ρ̂ [rS ] +

√
log(1/ϵρ)

2K .

Similarly, to estimate the localization term logEπ

[
e−ξλrS

]
, we draw M independent samples θ̃j

from the prior π, and compute the empirical average ̂π [e−ξλrS ] = 1
M

∑M
j=1 e

−ξλrS(θ̃j). Using
Hoeffding’s inequality again (since the function e−ξλrS(θ) is always between e−ξλ and 1 ), we have

with probability at least 1−ϵπ , we have Eπ

[
e−ξλrS

]
≤ ̂π[e−ξλrS ]+

(
1− e−ξλ

)√ log(1/ϵπ)
2M . Taking

logs (monotone), we obtain the one-sided upper bound:

logEπ

[
e−ξλrS

]
≤ log

(
̂π[e−ξλrS ] +

(
1− e−ξλ

)√ log(1/ϵπ)
2M

)
= log ̂π [e−ξλrS ] + log

(
1 +

(1−e−ξλ)
π[e−ξλrS ]

√
log(1/ϵπ)

2M

)
.

Next we replace the full-dataset risk rS(θ) by mini-batch confidence bounds that preserve the required
one-sidedness. Let r̂m(θ) be the average loss ℓ ∈ [0, 1] on a mini-batch of size m drawn without
replacement. to upper-bound ρ-expectation, we use Hoeffding to get, w.p. at least 1− ϵr,

rS(θ) ≤ r̂m(θ) +

√
log(1/ϵr)

2m .

To upper-bound Eπ

[
e−ξλrS(θ)

]
, we note that e−ξλr is decreasing in r and a lower bound on rS(θ)

gives an upper bound on exp (−ξλrS(θ)) ∈ [0, 1] with probability at least 1− ϵr:

rS(θ) ≥ r̂m(θ)−
√

log(1/ϵr)
2m ⇒ exp (−ξλrS(θ)) ≤ exp

(
−ξλ

(
r̂m(θ)−

√
log(1/ϵr)

2m

))
.

Split the failure probabilities so that the final event has probability ≥ 1− ϵ, we allocate

ϵρ = ϵπ = ϵr = ϵ
6 , to the three estimation events (posterior MC, prior MC, mini-batch ×2),

and ϵgrid = ϵ
3 to all earlier failure probabilities in Eq. 10. Let the λ-grid have size |Λ| and the ξ-grid

have size |Ξ|. To make each estimation event hold simultaneously for all grid pairs (λ, ξ), we apply a
union bound over the grid and replace every tail probability ϵ• inside the one-sided Hoeffding bounds
by ϵ•/ (|Λ||Ξ|). This is equivalent to replacing each log (1/ϵ•) appearing in the MC/ mini-batch
radii by log ((|Λ||Ξ|) /ϵ•). With our allocation ϵρ = ϵπ = ϵr = ϵ/6, all three radii pick up the
common factor log (6|Λ||Ξ|/ϵ).

Concretely, using the same mini-batch of size m for all samples in a step and writing ρ̂ [r̂m] =
1
K

∑K
i=1 r̂m (θi) and ̂π [e−ξλrS ] = 1

M

∑M
j=1 e

−ξλr̂m(θ̃j), the three estimation penalties combine to√
log(6|Λ||Ξ|/ϵ)

2K +

√
log(6|Λ||Ξ|/ϵ)

2m + ξ

√
log(6|Λ||Ξ|/ϵ)

2m + 1
λ log

(
1 +

(1−e−ξλ)
̂π[e−ξλr̂m ]

√
log(6|Λ||Ξ|/ϵ)

2M

)
.
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We also need the uniformization penalty that does not come from MC. This is the standard term that
ensures the localized Catoni inequality holds simultaneously over the (λ, ξ)-grid itself (independently
of the MC estimation). Allocating ϵgrid = ϵ/3 and union-bounding over the grid yields an additive
contribution of 1+ξ/α

λ log 6|Λ||Ξ|
ϵ .

Apply a union bound across the ρ −MC, the π −MC, the mini-batch confidence intervals, and
the localized Catoni inequality across grids (λ, ξ), we achieve a fully implementable empirical
PAC-Bayes generalization bound, w.p. ≥ 1− ϵ:

Eρ[R(θ)] ≤
(
1− ξ

α

)−1 (
1− α+ξ

α−ξκ
λ
ζN

)−1 {
ρ̂ [r̂m] + 1

λ

(
KL(ρ, π) + log ̂π [e−ξλr̂m ]

)
+ δ
}
,

where δ=

√
log(6|Λ||Ξ|/ϵ)

2K +(1+ξ)

√
log(6|Λ||Ξ|/ϵ)

2m +
1
λ log

(
1+

(1−e−ξλ)
̂π[e−ξλr̂m ]

√
log(6|Λ||Ξ|/ϵ)

2M

)
+

1+ξ/α
λ log

2|Λ||Ξ|
ϵ .

We have presented a PAC-Bayes generalization bound suitable for practical optimization. Beginning
with Catoni’s general PAC-Bayes lemma, we incorporated a localized, data-dependent prior to
sharpen the bound, replaced unknown population risks with empirical approximations, and applied
uniform discretization over hyperparameters to enable direct optimization via stochastic gradient
descent. Finally, we introduced Monte Carlo and importance sampling methods for numerical
estimation, providing an explicit, implementable approach for evaluating and enhancing neural
network generalization performance within the PAC-Bayes framework.

Discussion: Optimality of the Gibbs Posterior

The empirical PAC-Bayes bound (Eq. 9) at its minimal can be expressed neatly as a difference of
log-partition functions. Specifically, with probability at least 1− ϵ, we have

Eρ[R(θ)] ≤
− log π[exp(−λrS(θ))] + log π[exp(−ξλrS(θ))] + (1 + ξ) log 2

ϵ

(1− ξ)λ− (1 + ξ)κλ2

N

.

To see this optimality, recall the Donsker–Varadhan variational formula, which states that the
infimum of the objective λEρ[rS(θ)] + KL(ρ|π) over all posterior distributions ρ is precisely
− log π[exp(−λrS(θ))]. This infimum is uniquely attained by the Gibbs posterior distribution,
given explicitly by ρ∗(θ) = π(θ) exp(−λrS(θ))

Eπ [exp(−λrS(θ))] , parameterized by the inverse temperature λ. Substitut-
ing this optimal posterior ρ∗(θ) into the PAC-Bayes bound directly yields the minimal achievable
bound, characterized by the difference-of-log-partition-functions form: − log π[exp(−λrS(θ))] +
log π[exp(−ξλrS(θ))].
Discussion: Bias of the Log-Sum-Exp Estimator and Integral Form Alternative

The log-partition function log π[exp(−ξλrS(θ))] in our bound is practically esti-
mated using importance sampling with posterior samples: ̂log π[exp(−ξλrS(θ))]IS =

log
(

1
K

∑
i = 1K π(θi) exp(−ξλrS(θi))

ρ(θi)

)
. This estimator, however, is biased due to Jensen’s

inequality applied to the concave logarithm function. Specifically, since E[log(X)] ≤ log(E[X]),
taking the log after averaging inherently introduces negative bias. Thus, while consistent as K →∞,
this estimator systematically underestimates the true log-partition function for finite sample sizes.

To obtain an unbiased alternative, we utilize the fundamental theorem of calculus. Observe that:

− log π[exp(−λrS(θ))] + log π[exp(−ξλrS(θ))] =
∫ λ

ξλ

d

dβ′ [− log π(exp(−β′rS(θ)))] dβ
′.

Evaluating the derivative inside explicitly, we have:

d

dβ′ [− log π(exp(−β′rS(θ)))] = Eπexp(−β′rS)
[rS(θ)].

Thus, the integral form becomes:

− log π[exp(−λrS(θ))] + log π[exp(−ξλrS(θ))] =
∫ λ

ξλ

Eπexp(−β′rS)
[rS(θ)] dβ

′.
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Applying the substitution β′ = βλ, we simplify to:

= λ

∫ 1

ξ

Eπexp(−βλrS)
[rS(θ)] dβ.

To numerically estimate this integral form unbiasedly, we discretize the integral using a numerical
quadrature rule with points βj

J
j=1 evenly spaced in [ξ, 1]. For each βj , we draw samples θij

K
i=1

independently from the corresponding Gibbs posterior distribution πexp(−βjλrS), and then form the
Monte Carlo estimator:

̂
λ

∫ 1

ξ

Eπexp(−βλrS)
[rS(θ)] dβ =

λ(1− ξ)

J

J∑
j=1

1

K

K∑
i=1

rS(θij).

This estimator is unbiased by construction, as it directly estimates the expectation within the integral
without applying nonlinear transformations.

The log-sum-exp estimator requires only K samples from a single posterior, thus it is computationally
efficient but biased. The integral-based estimator requires sampling from J different Gibbs posteriors,
yielding a total of J×K samples, thus it is unbiased but computationally more demanding. Choosing
between the two methods involves balancing the trade-off between estimator bias and computational
resources.

Compared to the log-sum-exp estimator, the integral form estimator directly estimates expected risks
at multiple intermediate Gibbs posteriors, avoiding logarithmic bias entirely. However, it requires
drawing samples from multiple Gibbs posteriors (J×K total samples), thus increasing computational
cost significantly compared to the log-sum-exp method, which uses only K samples from a single
posterior. Choosing between the two involves a trade-off: the integral estimator is unbiased but
computationally heavier, whereas the log-sum-exp estimator is computationally efficient but biased.
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A.2 Formal Statement and Proof of Theorem 3.2

We begin by briefly summarizing notation and key assumptions required for formally stating Theorem
3.2. Consider an (L+ 1)-layer feedforward neural network f(·, θ) with parameter vector θ ∈ Θ ⊆
R|θ|. The parameter θ explicitly includes all layer-wise weights and biases, given by:

θ = {Wl,bl : 1 ≤ l ≤ L+ 1},

where each layer l is computed as

xl(xl−1, θ) = fl (Wlxl−1 + bl) , l = 1, . . . , L, with fL+1 being identity.

We have a training dataset S = {(xi, yi)}Ni=1, drawn independently and identically from the data-
generating distribution D. Inputs are collected as X = {xi}Ni=1, and outputs as Y = {yi}Ni=1.

Assume a bounded loss function ℓ(θ;x, y) ∈ [0, 1]. We define the population risk R(θ) and empirical
risk r(θ) explicitly as: R(θ) = E(x,y)∼P [ℓ(θ;x, y)] and r(θ) = 1

N

∑N
i=1 ℓ(θ;xi, yi).

Next, consider a linearized approximation of the original neural network around initialization θ0:

f lin(·, θ) = f(·, θ0) +∇θf(·, θ0)(θ − θ0).

Define an approximate loss ℓ̃(θ;x, y) based on this linearized model, with its corresponding approxi-
mate population risk R̃(θ) and approximate empirical risk r̃(θ) given explicitly by:

R̃(θ) = E(x,y)∼P [ℓ̃(θ;x, y)], r̃(θ) =
1

N

N∑
i=1

ℓ̃(θ;xi, yi).

We explicitly define the model approximation error ϵmodel(θ) as the worst-case difference between
the original loss and the approximate loss, satisfying uniformly:

|ℓ(θ;x, y)− ℓ̃(θ;x, y)| ≤ ϵmodel(θ).

This quantity measures the approximation gap induced by linearizing the neural network.

We introduce prior and posterior distributions π(θ) and ρ(θ), respectively. Gibbs-type posterior
distributions are defined explicitly as:

πexp(−λrS(θ))(θ) ∝ π(θ) exp(−λrS(θ)), πexp(−βR̃(θ))(θ) ∝ π(θ) exp(−βR̃(θ)),

for parameters λ, β > 0. The Kullback–Leibler divergence is denoted explicitly by:

KL(ρ∥π) =
∫
Θ

ρ(θ) log
ρ(θ)

π(θ)
dθ.

We explicitly assume the following standard conditions:

(A1) (Gaussian Initialization and Bounded Inputs). Each layer l ∈ {1, . . . , L+ 1} has weights
and biases initialized as independent Gaussian distributions:

Wl ∼ N
(
0,

σ2
w

nl−1
I

)
, bl ∼ N

(
0, σ2

b I
)
,

with input dimension n0, hidden layer widths nl, and inputs x0 bounded or sub-Gaussian. There
exist finite constants Cw, Cb, Cx0

> 0, such that with high probability:

∥Wl∥ ≤ Cwσw

√
nl

nl−1
,
∥bl∥√
nl
≤ Cbσb,

∥x0∥√
n0
≤ Cx0

.

(A2) (Bounded Width Ratios). Layer widths nl maintain uniformly bounded ratios; explicitly, there
exist constants cmin, cmax > 0 such that:

cmin ≤
nl

nl′
≤ cmax, ∀l, l′, thus nl = O(n) (∀l).
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(A3) (Positive Definiteness of Infinite-Width NTK). Define explicitly the empirical Neural Tangent
Kernel (NTK) at iteration t as:

Θ̂t =
1

n
∇θf(X , θt)∇θf(X , θt)⊤.

Assume the infinite-width NTK limit Θ = limn→∞ Θ̂0 is strictly positive definite, with eigenvalues
bounded away from 0 and∞. Explicitly, there exist constants 0 < λmin ≤ λmax <∞ such that:

λminIN ⪯ Θ = lim
n→∞

Θ̂0 ⪯ λmaxIN .

(A4) (Bounded Activations and Derivatives). Each layer activation function fl, l = 1, . . . , L, has
explicitly bounded magnitude and bounded first and second derivatives:

|fl(0)| <∞, ∥f ′
l∥∞ <∞, ∥f ′′

l ∥∞ <∞.

(A5) (Controlled Learning Rate). Stochastic gradient descent parameter updates are given explicitly
by: θt = θt−1 − η∇θr(θt−1), with learning rate η = η0/n, where the step-size factor η0 satisfies:

η0 ≤
2

λmin + λmax
,

strictly below the NTK stability threshold.

(A6) (Smooth, non-degenerate minibatch noise). Stochastic gradient updates can be written as

θt+1 = θt − η J(θt)
⊤g(θt) + ξt(θt), E[ξt(θt) | θt] = 0,

with conditional covariance Σt(θt) = Cov(ξt(θt) | θt). Assume: (i) Non-degeneracy: there exist
constants 0 < σmin ≤ σmax < ∞ independent of width n such that, for all t, the linearized
covariance satisfies σminI ⪯ Σlin

t ⪯ σmaxI . (ii) Lipschitz smoothness: there is LΣ < ∞ with
∥Σt(θ)− Σt(θ

′)∥op ≤ LΣ∥θ − θ′∥2 for all θ, θ′.

(If needed in practice, adding an infinitesimal isotropic jitter to updates enforces (i) without affecting
training.)

With this notation and under these assumptions, we formally state Theorem 3.2:

Theorem 3.2 (PAC-Bayes Bound for Wide Networks, Formal). Under assumptions (A1)–(A6), for
any choice of regularization parameter λ > 0, localization parameter ξ ∈ [0, 1), confidence level
ε ∈ (0, 1), and sufficiently large training size N satisfying 0 < 1− 1

1−ξ g
(
λ
N

)
λ
N ≤ 1, the following

bound on the expected population risk under the Gibbs posterior distribution πexp(−λr(θ)) induced
by stochastic gradient descent holds with probability at least 1− ε:

Eπexp(−λr)
[R(θ)] ≤

((
1 + 1

1−ξ g(
λ
N ) λ

N

)
Eρ[R̃(θ)] + 1

(1−ξ)λ

(
CKL

n + log
(
2
ϵ

)))/(
1− 1

1−ξ g(
λ
N ) λ

N

)
,

where g(x) = (exp(x)− 1− x)/x2 and CKL > 0 is a constant independent of network width n and
training size N .

We start by stating and proving the following localized oracle PAC-Bayes bounds using proxy
models. While our usage of this lemma is to show that as network width grows unbounded, a neural
network trained from random initialization with stochastic gradient descent generalizes as well as its
simpler linear approximation at initialization, these bounds extend to various deep learning scenarios
where proxy or approximate models address challenges like non-differentiable metrics, complex loss
landscapes, unlabeled data, knowledge distillation, unstable reinforcement signals, and differentiable
relaxations of hard constraints. Our theorems build on Catoni’s localization idea but incorporate
approximate losses, assuming the true loss is controlled by these approximations.
Lemma A.2 (PAC-Bayes oracle bound with approximate population risk). With previously defined
notation, for any posterior distribution ρ(θ), prior π(θ), and inverse temperature λ > 0, the expected
population risk under the Gibbs posterior πexp(−λr(θ)) satisfies the following bound with probability
at least 1− ε over the draw of the training sample S :

Eπexp(−λr(θ))
[R(θ)] ≤ (11)(

λ+ κλ2

N

)
Eρ

[
R̃(θ) + ϵmodel(θ)

]
+KL(ρ∥π) + logEπ

[
exp(−β(R̃(θ)− ϵmodel(θ)))

]
+ log 2

ε

λ− β − κλ2

N

.
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Proof of Lemma A.2. We begin by picking the same confidence function η(θ) in the proof of Theorem
3.1 as if we already knew the true risk R(θ):

η(θ) =
λ2

N
κR(θ)− log πexp(−βR(•))(θ) + log(ϵ−1), where κ = g

(
λ
N

)
.

In this function, the first term encodes our certainty that the empirical risk r(θ) is close to R(θ),
effectively absorbing the Bernstein-type bound λ2

N g
(
λ
N

)
R(θ)[1−R(θ)] on the right-hand side of

the rare event in Eq. 5 in Lemma A.1. The second term allots a portion of the confidence budget
proportionally to R(θ), controlled by a positive parameter β that dictates the “localization” strength.
If R(θ) is large—meaning θ is far from a minimizer—we can afford a looser confidence interval
because we care less about ensuring r(θ) ≈ R(θ). Conversely, if R(θ) is small, we impose a tighter
bound near the minimizer. The final term log(ε−1) provides a uniform confidence shift in the tail
event once we have accounted for the uncertainty in r(θ) and in choosing θ.

Although this choice of η(θ) presupposes knowing R(θ), we eventually eliminate that assumption by
relaxing R(θ) with r(θ) using the reverse bound from the same learning lemma.

Substitute η(θ) into Eq. 5 in Lemma A.1 yields the following bound, which holds for all posterior
distributions ρ with probability at least 1− ε:

Eρ[R(θ)] ≤ (λ− β − κλ2

N )−1
{
λEρ[r(θ)] + KL(ρ∥π) + log{π[exp(−βR(θ))]}+ log( 1ϵ )

}
. (7)

The right hand side of Eq. 7 is minimized at the Gibbs distribution πexp(−λr(θ)), in which case
infρ Eρ[λr(θ)] + KL(ρ∥π) = − supρ Eρ[−λr(θ)]−KL(ρ∥π) = logEπexp(−λr(θ))

[exp(−λr(θ))]:

ρ̂λ[R(θ)] ≤
[
λ− β − κ

λ2

N

]−1 {
λρ̂λ[r(θ)] +K(ρ̂λ, π) + log{π[exp[−βR(θ)]]}+ log

(
ϵ−1
)}

= inf
ρ

[
λ− β − κ

λ2

N

]−1 {
λρ[r(θ)] +K(ρ, π) + log{π[exp[−βR(θ)]]}+ log

(
ϵ−1
)}

≤
[
λ− β − κ

λ2

N

]−1 {
λρ[r(θ)] +K(ρ, π) + log{π[exp[−βR(θ)]]}+ log

(
ϵ−1
)}

.

To form a theoretical bound using the approximate risk R̃(θ), we need to upper-bound both Eρ[r(θ)]
and log (Eπ [exp(−βR(θ))]). By approximation, we have

log (Eπ [exp(−βR(θ))]) ≤ log
(
Eπ

[
exp

(
−β(R̃(θ)− ϵmodel(θ))

)])
.

Moreover, from Eq. 6 in Lemma A.1, with probability at least 1− ε:

λEρ[r(θ)] ≤
(
λ+ κ

λ2

N

)
Eρ[R(θ)] + log

(
1
ε

)
≤
(
λ+ κ

λ2

N

)
Eρ[R̃(θ) + ϵmodel(θ)] + log

(
1
ε

)
.

By union bound, we get Eq. 11. Further using the identity

KL(ρ∥π) + log
(
Eπ

[
exp

(
−β(R̃(θ)− ϵmodel(θ))

)])
=

KL
(
ρ∥πexp(−β(R̃(θ)−ϵmodel(θ)))

)
− βEρ[R̃(θ)− ϵmodel(θ)],

we obtain the localize oracle bound with approximate population risk: with probability at least 1− ε,(
λ− β − κ

λ2

N

)
Eπexp(−λr)

[R(θ)] ≤
(
λ+ κ

λ2

N

)
Eρ[R̃(θ) + ϵmodel(θ)]

+ KL
(
ρ∥πexp(−β(R̃(θ)−ϵmodel(θ)))

)
− βEρ[R̃(θ)− ϵmodel(θ)] + log

(
2
ε

)
.

A special case is when ϵmodel(θ) is constant. In that case:

Eπexp(−λr)
[R(θ)] ≤

(
λ− β − κ

λ2

N

)−1

·{(
λ+ κ

λ2

N

)
Eρ[R̃(θ)] + KL(ρ∥π) + log

(
Eπ

[
exp(−βR̃(θ))

])
+

(
λ+ κ

λ2

N
+ β

)
ϵmodel + log

(
2
ε

)}
.
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With Lemma A.2, we prove Theorem 3.2 in the following steps. Throughout, we apply triangle
inequalities, Cauchy–Schwarz, product–difference identities, and random matrix bounds under
assumptions (A1)–(A6).

(i) Bounding activation and its sensitivity. A forward recursion for each layer l inductively shows
that xl(θ) = O(

√
nl) and ∥xl(θ)−xl(θ̃)∥ ≤ O

(√
nl ∥θ− θ̃∥

)
. A similar backward recursion yields

δl(θ) = ∂xl
xL+1(θ) = O(1) and ∥δl(θ)− δl(θ̃)∥ = O(∥θ − θ̃∥).

(ii) Bounding Jacobian and NTK. By applying the chain rule to each activation-sensitivity product,
one obtains ∥∇θf(X , θ)∥=O(

√
n) and ∥∇θf(X , θ)−∇θf(X , θ̃)∥=O

(√
n∥θ − θ̃∥

)
. Expressing

the empirical NTK Θ̂t, the parameter iterate θt, and the risk r(θ) in terms of the same activation-
sensitivity-Jacobian expansions, and then iterating over SGD steps, shows ∥Θ̂t − Θ̂0∥=O

(
1√
n

)
,

∥θt − θ0∥=O
(

1√
n

)
, and ∥f(X , θt)− Y∥≤

(
1− η0λmin

3

)t
R0.

(iii) Comparing network vs. linearized updates. By expanding f(θt)−f lin(θt) in terms of Θ̂t−Θ̂0

and f(θt−1)−f lin(θt−1) and then telescoping, we obtain ∥f(θt)−f lin(θt)∥ = O
(

t√
n

(
1− η0λmin

3

)t)
.

A parallel argument in parameter space shows ∥θt − θlint ∥= O
(
1
n

)
.

(iv) Bounding KL divergence between original and linearized learning. Although θt is not strictly
Gaussian, each small Gaussian increment can be compared to that of θlint via the chain rule for
KL divergence. This requires bounding log-det ratios of covariance updates (through log-matrix
expansions) and bounding trace terms involving the precision matrices and the second-moment
difference. Both steps rely on the empirical NTK converging to a strictly positive-definite limit,
yielding KL(pt∥ plint ) ≤ O

(
1
n

)
.

(v) Bounding complexity in theoretical PAC-Bayes. Since the model approximation penalty
1
2∥f(θt)− f lin(θt)∥2 and the KL divergence DKL

(
ρ∥πexp(−β R̃)

)
are both O

(
1
n

)
, combining these

with the 1
N sample-size term completes the proof of rates on the order of 1

n (width) and 1
N (data).

We now formalize the five-step argument outlined above. Let θ0 denote the random initialization of
the network parameters, and let θt be the parameter iterate after t steps of stochastic gradient descent
(SGD). Define the linearized network around θ0 by

f lin(X , θ) = f (X , θ0) +∇θf (X , θ0) (θ − θ0) ,

and let θlin
t be the corresponding parameter iterate from gradient descent on f lin , with the same

initialization and step size. We will show:

∥∥θt − θlint
∥∥ = O

(
1

n

)
,
∥∥f (θt)− f lin (θt)

∥∥ = O

(
1√
n

)
, and KL

(
ρ∥πexp(−βR̃)

)
= O

(
1

n

)
and then apply the PAC-Bayes bound to conclude.

Proof. Before proving Step (i), we establish high-probability bounds on weights, biases, and inputs
implied by assumption \ textbf {(A1)}. Each weight matrix Wl and bias vector bl is drawn from a
scaled Gaussian distribution, and inputs x0 are either bounded or sub-Gaussian. Consequently, with
high probability 1 εl, we have:

∥Wl∥ ≤ Cwσw

√
nl

nl−1
, ∥bl∥ ≤ Cbσb

√
nl,

for constants Cw, Cb > 0, provided nl ≥ − log εl and nl

nl−1
is bounded. Likewise, the input norm

satisfies ∥x0∥ ≤
√
n0Cx0

, or with probability 1− ε0 in the sub-Gaussian case.

In practice, such input conditions are met through preprocessing (e.g., centering, rescaling, or
clipping). Applying a union bound across all layers, we conclude that-with probability at least
1−

∑
l εl and for sufficiently large nl-the following initialization bounds hold simultaneously:

∥Wl∥ ≤ Cwσw

√
nl

nl−1
,

1
√
nl
∥bl∥ ≤ Cbσb,

1
√
n0
∥x0∥ ≤ Cx0
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(i) Bounding activations and their sensitivities.

Starting from n0
−1/2∥x0∥ ≤ Cx0

, we can recursively bound nl+1
−1/2∥xl+1∥ ≤ Cxl+1

with
Cxl+1

= ∥f ′∥∞ (CwCxl
σw + Cbσb) + |f(0)|:

∥xl+1∥ = ∥fl+1 (Wl+1xl + bl+1) ∥ ≤ ∥f ′∥∞ · (∥Wl+1xl + bl+1∥) +
√
nl+1|f(0)|

≤∥f ′∥∞ (∥Wl+1∥ · ∥xl∥+ ∥bl+1∥) +
√
nl+1|f(0)|

≤∥f ′∥∞
(
Cwσw

√
nl+1/nl · Cxl

√
nl + Cbσb

√
nl+1

)
+
√
nl+1|f(0)|

=
√
nl+1 (∥f ′∥∞ (CwCxl

σw + Cbσb) + |f(0)|) .

Starting from n
−1/2
0 ∥x0(θ) − x0(θ̃)∥ = 0 ≤ Cdx0

∥θ − θ̃∥, we can recur-
sively bound n

−1/2
l+1 ∥xl+1(x0, θ) − xl+1(x0, θ̃)∥ ≤ Cdxl+1

∥θ − θ̃∥ with Cdxl+1
=

∥f ′∥∞
(
Cdxl

Cwσw + Cxl

√
nl/nl+1 + 1/

√
nl+1

)
:

∥xl+1(x0, θ)− xl+1(x0, θ̃)∥ = ∥f(Wl+1xl(x0, θ) + bl+1)− f(W̃l+1xl(x0, θ̃) + b̃l+1)∥

≤∥f ′∥∞ ·
∥∥∥(Wl+1 · xl(x0, θ) + bl+1)− (W̃l+1 · xl(x0, θ̃) + b̃l+1)

∥∥∥
≤∥f ′∥∞ ·

(
∥Wl+1∥ · ∥xl(x0, θ)− xl(x0, θ̃)∥+ ∥Wl+1 − W̃l+1∥ · ∥xl(x0, θ̃)∥+ ∥bl+1 − b̃l+1∥

)
≤∥f ′∥∞ ·

(
Cwσw

√
nl+1/nl · Cdxl

√
nl + Cxl

√
nl + 1

)
∥θ − θ̃∥

=
√
nl+1 ∥θ − θ̃∥ · ∥f ′∥∞

(
Cdxl

Cwσw + Cxl

√
nl/nl+1 + 1/

√
nl+1

)
.

Let δl(θ) = ∂xl
xL+1(θ), Starting from ∥δL+1∥ ≤ CδL+1

, we can recursively bound ∥δl∥ ≤ Cδl with
Cδl = Cδl+1

Cwσwnl+1/nl:

∥δl(x0, θ)∥ = ∥δl+1(x0, θ)Wl+1∥ ≤ ∥δl+1(x0, θ)∥ · ∥Wl+1∥ = Cδl+1
· Cwσw

√
nl+1

nl

=
(
Cδl+1

Cw σw

√
nl+1

nl

)
.

Starting from ∥δL+1(x0, θ) − δL+1(x0, θ̃)∥ = 0 ≤ CdδL+1
∥θ − θ̃∥, we can recursively bound

∥δl(x0, θ)− δl(x0, θ̃)∥ ≤ Cdδl∥θ − θ̃∥, where Cdδl = Cdδl+1
Cw σw

√
nl+1

nl
+ Cδl+1

:

∥δl(x0, θ)− δl(x0, θ̃)∥ = ∥δl+1(x0, θ)Wl+1 − δl+1(x0, θ̃)W̃l+1∥

≤
∥∥∥(δl+1(x0, θ)− δl+1(x0, θ̃)

)
Wl+1

∥∥∥+ ∥∥∥δl+1(x0, θ̃)
(
Wl+1 − W̃l+1

)∥∥∥
≤Cdδl+1

∥θ − θ̃∥ · Cwσw

√
nl+1

nl
+ Cδl+1

· ∥θ − θ̃∥

=∥θ − θ̃∥ ·
(
Cdδl+1

Cw σw

√
nl+1

nl
+ Cδl+1

)
.

Thus, under the same union bound of events for ∥Wl∥, n−1/2
l ∥bl∥, n−1/2

0 ∥x0∥, we have:

n
−1/2
l ∥xl∥ ≤ Cxl

, n
−1/2
l ∥xl(x0, θ)− xl(x0, θ̃)∥ ≤ Cdxl

∥θ − θ̃∥,
∥δl∥ ≤ Cδl , ∥δl(x0, θ)− δl(x0, θ̃)∥ ≤ Cdδl ∥θ − θ̃∥.

(ii) Bounding the network Jacobian and empirical NTK.
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The Jacobian of network output with respect to the parameters can be bounded by

(maxl nl)
−1/2 ∥∂θxL+1∥F ≤ CJ , where Cj = ∥f ′∥∞

√∑
l

nl−1

maxl nl
C2

δl
C2

xl−1
+

C2
δl

maxl nl
:

∥∂θxL+1∥2F
=
∑
l

∥(∂xl
xL+1) diag(f

′) (∂Wl
Wlxl−1 + bl)∥

2
F + ∥(∂xl

xL+1) diag(f
′) (∂bl

Wlxl−1 + bl)∥
2
F

≤
∑
l

∥δl∥2F ∥f
′∥2∞∥xl−1∥2F + ∥δl∥2F ∥f

′∥2∞ =
∑
l

C2
δl
· ∥f ′∥2∞ · nl−1C

2
xl−1

+ C2
δl
· ∥f ′∥2∞

=max
l

nl · ∥f ′∥2∞
∑
l

nl−1

maxl nl
C2

δl
C2

xl−1
+

C2
δl

maxl nl

The difference of the Jacobians can be bounded by (maxl nl)
−1/2 ∥∥∂θxL+1 − ∂θ̃x̃L+1

∥∥
F
≤

CdJ∥θ − θ̃∥, where CdJ =
√∑

l
nl−1

maxl nl

(
CdδlCxl−1

+ CδlCxl

)2
+ 1

maxl nl
Cdδl :∥∥∂θxL+1 − ∂θ̃x̃L+1

∥∥2
F

=
∑
l

∥∥∥(∂xl
xL+1) diag(f

′(hl)(∂Wl
hl)− (∂x̃l

x̃L+1) diag(f
′(h̃l))(∂W̃l

h̃l)
∥∥∥2
F

+
∥∥∥(∂xl

xL+1) diag(f
′(hl)(∂bl

hl)− (∂h̃l
x̃L+1) diag(f

′(h̃l)(∂b̃l
h̃l)
∥∥∥2
F

=
∑
l

∥δl(x0,θ) diag(f
′(hl))xl−1(x0,θ)−δl(x0,θ̃) diag(f

′(h̃l))xl−1(x0,θ̃)∥2
F
+∥δl(x0,θ) diag(f

′(hl))−δl(x0,θ̃) diag(f
′(h̃l))∥2

F

≤
∑
l

(∥δl(x0,θ)−δl(x0,θ̃)∥·∥f ′(hl))∥·∥xl−1(x0,θ)∥+∥δl(x0,θ̃)∥·∥f ′(hl)−f ′(h̃l)∥·∥xl−1(x0,θ)∥

+∥δl(x0,θ̃)∥·∥f ′(h̃l)∥·∥xl−1(x0,θ)−xl−1(x0,θ̃)∥)
2
+(∥δl(x0,θ)−δl(x0,θ̃)∥

F
·∥f ′(hl)∥F+∥δl(x0,θ̃)∥F ·(∥f ′(hl)∥F−∥f ′(h̃l)∥F ))

2

≤∑l(Cdδl
∥θ−θ̃∥·∥f ′∥∞·√nl−1Cxl−1

+Cδl
·∥f ′′∥∞∥θ−θ̃∥2·

√
nl−1Cxl−1

+Cδl
·∥f ′∥∞·Cxl

√
nl−1∥θ−θ̃∥)

2

+(Cdδl
∥θ−θ̃∥·∥f ′∥∞+Cδl

·∥f ′′∥∞∥θ−θ̃∥)
2

≤max
l

nl · ∥θ − θ̃∥2
∑
l

nl−1

maxl nl

(
CdδlCxl−1

+ CδlCxl

)2
+

1

maxl nl
Cdδl

Consequently, with high probability, the Frobenius norm of the network’s Jacobian (scaled by
1/
√
maxl nl ) is bounded by a constant CJ , and the difference of these scaled Jacobians is Lipschitz

in θ with Lipschitz constant CdJ . Equivalently, unscaled, both the Jacobian and the Lipschitz constant
scale on the order of

√
maxl nl, where maxl nl denotes the network’s width. Formally,

(max
l

nl)
−1/2 ∥∂θxL+1∥F ≤ CJ , (max

l
nl)

−1/2
∥∥∥∂θxL+1(x0,θ)− ∂θ̃xL+1(x0, θ̃)

∥∥∥
F
≤ CdJ∥θ − θ̃∥.

Under the mean-squared error (MSE) objective, one iteration of gradient descent updates

θt+1 = θt − η∇θf(X , θt)⊤
(
f(X , θt)− Y

)
.

Since Θ̂t =
1
n ∇θf(X , θt)∇θf(X , θt)⊤, we have

f(X , θt+1)− f(X , θt) = −η∇θf(X , θt)∇θf(θt)
⊤(f(X , θt)− Y) = −η0Θ̂t

(
f(X , θt)− Y

)
.

If Θ̂t stays close to a positive-definite limit Θ, this induces a contraction factor
∥∥I − η0Θ̂t

∥∥ ≤
1− η0 λmin

3 . Hence the residue decreases exponentially in training step

∥f(X , θt)− Y∥ ≤
(
1− η0 λmin

3

)t
∥f(X , θ0)− Y∥.

It also follows that ∥θt − θ0∥ ≤ CJ
1√
n

3
λmin
∥f(X , θ0)− Y∥ by summer over parameter steps t:

∥θt+1 − θt∥ ≤
η0
n
∥∇θf(X , θt)∥ ∥f(X , θt)− Y∥ ≤ η0CJ

1√
n

(
1− η0 λmin

3

)t
∥f(X , θ0)− Y∥.
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Throughout the training, the distance of the empirical NTK from its initialization is controlled by∥∥∥Θ̂0 − Θ̂t

∥∥∥
F
≤ 6C2

JCdJ

λmin
∥f(X , θ0)− Y∥ 1√

n
, where

∥∥∥Θ̂0 − Θ̂t

∥∥∥
F
=

1

n

∥∥∥∇θf (X , θ0)∇θf (X , θ0)⊤ −∇θf (X , θt)∇θf (X , θt)⊤
∥∥∥
F

≤ 1

n

(
∥∇θf (X , θ0)∥

∥∥∥∇θf (X , θ0)⊤ −∇θf (X , θt)⊤
∥∥∥+ ∥∇θf (X , θt)−∇θf (X , θ0)∥

∥∥∥∇θf (X , θt)T
∥∥∥)

≤ 2CJCdJ ∥θ0 − θt∥2 ≤
6C2

JCdJ

λmin
∥f(X , θ0)− Y∥

1√
n
.

(iii) Comparing the network vs. linearized updates.

In what follows, we characterize the gap between the network’s prediction error
g(θt+1) = f(X , θt+1) − Y and the prediction error of its linear approximation at initialization
glin(θt+1) = f lin(X , θt+1)−Y by examining how the gap at each previous training step accumulates
throughout training. Our goal is to bound this gap in terms of the network width and the training step.

glin(θt+1)− g(θt+1)

=
[
glin(θt)− η0Θ̂0g

lin(θt)
]
−
[
g(θt)− η0Θ̂tg(θt)

]
=
(
glin(θt)− g(θt)

)
− η0Θ̂0

(
glin(θt)− g(θt)

)
+ η0

(
Θ̂0 − Θ̂t

)
g(θt)

=
(
I − η0Θ̂0

) (
glin(θt)− g(θt)

)
+ η0

(
Θ̂0 − Θ̂t

)
g(θt)

= . . .

=η0

t∑
s=1

(
I − η0Θ̂0

)t−s (
Θ̂0 − Θ̂s

)
g(θs).

It follows that the gap between the network’s prediction error (i.e., the network’s output minus the
target) and the error of its linear approximation at initialization decreases exponentially with each
training step. Moreover, this gap scales on the order of 1/

√
n, where n is the network’s width.

∥glin(θt+1)− g(θt+1)∥

≤η0
t∑

s=0

∥∥∥I − η0Θ̂0

∥∥∥t−s

·
∥∥∥Θ̂0 − Θ̂s

∥∥∥ · ∥g(θs)∥
≤η0 ·

t∑
s=1

(
1− η0λmin

3

)t−s

· 6K
3R0

λmin
n−1/2 ·

(
1− η0λmin

3

)s

R0

≤t
(
1− η0λmin

3

)t
6K3R2

0η0
λmin

n−1/2.

The gap between the network’s parameters and those of its linear approximation stems from dif-
ferences in both the prediction error and the Jacobian of the network output with respect to the
parameters. At each training step, these discrepancies accumulate across all previous iterations, as
shown by the summation of the terms involving glin(θs)− g(θs) and ∇θf(X , θs)−∇θf(X , θ0).
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θlint+1 − θt+1 =
[
θlint − η∇θf

lin(X , θt)glin(θt)
]
− [θt − η∇θf(X , θt)g(θt)]

=
(
θlint − θt

)
− η

(
∇θf

lin(X , θt)glin(θt)−∇θf(X , θt)g(θt)
)

= · · · = −η
s∑

s=0

∇θf
lin(X , θs)glin(θs)−∇θf(X , θs)g(θs)

=− η

s∑
s=0

∇θf
lin(X , θs)

(
glin(θs)− g(θs)

)
−
(
∇θf(X , θs)−∇θf

lin(X , θs)
)
g(θs)

=− η

t∑
s=0

∇θf(X , θ0)
(
glin(θs)− g(θs)

)
− (∇θf(X , θs)−∇θf(X , θ0)) g(θs)

It follows that
∥θlint+1 − θt+1∥

≤η
t∑

s=0

∥∇θf(X , θ0)∥
∥∥glin(θs)− g(θs)

∥∥+ CdJ

√
n ∥θs − θ0∥ ∥g(θs)∥

≤η0
n

t∑
s=1

CJ

√
ns

(
1− η0λmin

3

)s−1
6C2

JCdJR
2
0η0

λmin

1√
n
+ CdJ

√
n · 3CJR0

λmin

1√
n
·
(
1− η0λmin

3

)s

R0

≤
(
6C3

JCdJR
2
0η

2
0

λmin

9

η20λ
2
min

+ CdJ
3CJR0

λmin

3

η0λmin
R0

)
1

n
.

(iv) Bounding the KL divergence between original and linearized learning.

We compare the one-step update laws of the original and linearized trainings. Model a single SGD
update at time t by Gaussians pinct = N (µt +∆µt,Σt +∆Σt) for the nonlinear dynamics and
qinct = N (µt,Σt) for the linearized dynamics. Under (A1)-(A5), the NTK/lazy-training tube gives
∥J (θt)− J (θ0)∥op = O

(
n−1/2

)
,
∥∥gt − glin

t

∥∥ = O
(
n−1/2

)
, and ∥gt∥ decays geometrically. With

η = η0/n, this implies the mean-update gap ∆µt = −η
[
J (θt)

⊤
gt − J (θ0)

⊤
glin
t

]
is O(1/n)

(each bracketed term is O(1), multiplied by η = η0/n ). Assumption (A6). 2 and the O
(
n−1/2

)
parameter drift yield ∥∆Σt∥op = O

(
n−1/2

)
, and (A6). 1 lets us pre-whiten by Σ

−1/2
t to get∥∥∥Σ−1/2

t ∆ΣtΣ
−1/2
t

∥∥∥
F
= O

(
n−1/2

)
. A second-order expansion of the Gaussian KL around equality

(zero gap) then gives

KL
(
pinct ∥qinct

)
=

1

2
∆µ⊤

t Σ
−1
t ∆µt +

1

4

∥∥∥Σ−1/2
t ∆ΣtΣ

−1/2
t

∥∥∥2
F
+ o

(
∥∆µt∥2 + ∥∆Σt∥2F

)
.

With
∥∥Σ−1

t

∥∥
op bounded (A6.1), the first term is O(1/n) because ∥∆µt∥ = O(1/n), and the second

term is O(1/n) because the pre-whitened Frobenius norm is O
(
n−1/2

)
. Summing over steps

preserves the O(1/n) order thanks to the geometric decay of ∥gt∥. The key reason we obtain
O(1/n) (rather than O(1/

√
n) ) is that the KL’s leading terms are quadratic in the small O

(
n−1/2

)
normalized perturbations, so squaring them yields O(1/n). This O(1/n) trajectory-level discrepancy
is then passed, by data processing, to the posteriors inside the localized PAC-Bayes bound, which
adds only an explicit C/(λn) oracle penalty on top of the linearized risk.

(v) Applying the PAC-Bayes argument.

Let R̃(θ) be the (linearized) proxy risk. Since ∥f(θt) − f lin(θt)∥ = O(1/
√
n), the actual model

mismatch in the loss is O(1/n). Likewise, we have DKL

(
ρ∥πexp(−β R̃)

)
= O(1/n). Substituting

these terms into the standard PAC-Bayes bound gives:

Eπexp(−λr)
[R(θ)] ≤

((
1 + 1

1−ξ g(
λ
N ) λ

N

)
Eρ[R̃(θ)] + 1

(1−ξ)λ

(
CKL

n + log
(
2
ϵ

)))/(
1− 1

1−ξ g(
λ
N ) λ

N

)
,

which completes the proof of the claimed order- 1
n (width) and order- 1

N (sample size) complexity
terms under assumptions (A1)–(A6).
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B Experimental Details

We describe the standard experimental configurations used for the benchmarks and tasks presented in
Section 4. All models are trained using widely adopted protocols from their respective foundational
papers or community baselines. Training is performed on a single NVIDIA A100 GPU, with batch
sizes and runtimes selected to ensure convergence within approximately 24 hours. No data augmenta-
tion or enhancement is applied beyond basic preprocessing to ensure consistency in accounting for
dataset size when evaluating PAC-Bayes generalization bounds.

B.1 Vision Benchmarks

MNIST. We evaluate two classic architectures for MNIST digit classification: a fully connected
network (FCN) with three hidden layers of 600 ReLU units each, and LeNet-5[23], which consists
of two convolutional layers (6 and 16 filters of size 5×5), followed by two fully connected layers
with 120 and 84 units, and a 10-way softmax output. Input images are normalized to the range [0, 1],
with no data augmentation. We train each model using the Adam optimizer with initial learning rate
1× 10−3, batch size 128, and cross-entropy loss for 100 epochs. Learning rate is decayed by a factor
of 0.1 at epochs 60 and 90. No dropout, batch normalization, or regularization is applied.

CIFAR-10/100. We consider three standard architectures: ResNet-50[24], WideResNet-28-10[25],
and DenseNet-BC-100-12[26]. Input images are normalized channel-wise using CIFAR-10 statistics
(mean = [0.491, 0.482, 0.447], std = [0.247, 0.243, 0.262]). No data augmentation (e.g., crop-
ping, flipping, MixUp, CutMix) is used to maintain countable sample size for PAC-Bayes analysis.
Reference implementations for all listed CIFAR models, including ResNet, VGG, GoogLeNet, Mo-
bileNet, PreActResNet, ShuffleNet, and DenseNet, are available in the kuangliu/pytorch-cifar
repository.

The ResNet-50 used here is the CIFAR variant, where the initial 7 × 7 conv and max pooling are
replaced with a single 3× 3 conv, and the downsampling stages follow the 6n+ 2 bottleneck pattern
with increasing channel widths (16, 32, 64). We use SGD with Nesterov momentum (0.9), weight
decay 5 × 10−4, and batch size 128. The initial learning rate is 0.1, decayed by a factor of 0.2 at
epochs 60, 120, and 160. Total training lasts 200 epochs.

WRN-28-10 widens all convolutional blocks by a factor of 10 and follows the pre-activation design
(BN-ReLU-Conv). A dropout of 0.3 is applied between convolutional layers within residual blocks.
The network is trained using the same optimizer and schedule as above.

For DenseNet-BC, we follow the L = 100, k = 12 configuration. The model consists of three
dense blocks interleaved with transition layers that apply 1 × 1 convolution and 2 × 2 average
pooling. Bottleneck layers and compression (growth rate reduction) are applied as in the original
paper. Dropout of 0.2 is used throughout. Training uses SGD with momentum 0.9, batch size 128,
initial learning rate 0.1, and learning rate drops at epochs 150 and 225, for a total of 300 epochs.

ImageNet. We evaluate ResNet-50[24], DenseNet-121[26], and EfficientNet-B0[27] on ImageNet-
1k. Images are resized to 256×256 via bicubic interpolation. At training time, random crops of size
224×224 and horizontal flips are applied once per image. At test time, center crops of 224×224 are
used. Pixel values are normalized using ImageNet mean and standard deviation (mean = [0.485,
0.456, 0.406], std = [0.229, 0.224, 0.225]).

ResNet-50 follows the standard configuration with a 7× 7 initial convolution (stride 2), max pooling,
four stages of bottleneck residual blocks with channel sizes [256, 512, 1024, 2048], and global
average pooling before the classifier. DenseNet-121 consists of four dense blocks with growth rate
32, compression at transition layers, and bottleneck layers with 1× 1 convolutions. EfficientNet-B0
uses inverted bottleneck MBConv blocks with squeeze-and-excitation and compound scaling.

Models are trained for 120 epochs using SGD with momentum 0.9, initial learning rate 0.1, and
batch size 256. The learning rate decays by a factor of 10 at epochs 30, 60, and 90. No label
smoothing, RandAugment, MixUp, or repeated augmentation is used. Each model completes training
in approximately two days. Reference implementations for ResNet, DenseNet, and EfficientNet
are available in torchvision.models, keras.applications, and timm, with ImageNet training
pipelines provided in repositories such as pytorch/examples/imagenet.
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B.2 Semantic Segmentation

We evaluate semantic segmentation on the Cityscapes dataset using a standard U-Net architecture
with an ImageNet-pretrained ResNet-34 encoder. Images are resized to 256×512, center-cropped if
necessary, and normalized using Cityscapes mean and standard deviation. The model follows the
encoder-decoder pattern with skip connections between symmetric encoder and decoder blocks, each
containing two convolutional layers followed by batch normalization and ReLU activations. The
decoder upsamples spatial resolution using transposed convolutions.

Training is performed using the Adam optimizer (learning rate 1×10−4, batch size 8) for 100 epochs.
We use a pixel-wise cross-entropy loss over 19 semantic classes. No label smoothing or augmentation
is applied. All layers are probabilistic except the final segmentation head, which remains deterministic.
We evaluate performance on the validation set using mean Intersection-over-Union (mIoU). We train
using pixel-wise cross-entropy loss and evaluate using mIoU, following standard Cityscapes protocol.
Our PAC-Bayes bound formally applies to the expected cross-entropy loss, which correlates well
with mIoU in practice. Our configuration is consistent with widely used U-Net implementations such
as keras-unet-collection and segmentation_models.pytorch.

B.3 GLUE Fine-tuning with GPT-2 + LoRA

We fine-tune GPT-2-small (124M parameters) on three classification tasks from the GLUE
benchmark[31]—MRPC, SST-2, and RTE—using a parameter-efficient fine-tuning setup with LoRA
[32]. Our protocol builds on standard GPT-2 token classification with causal language modeling:
each input is serialized as a prompt (e.g., “sentence1 <sep> sentence2”) followed by a label token
(“Yes”, “No”, “Positive”, etc.), and the model is trained using next-token cross-entropy loss over
the label position. This formulation enables us to reuse standard language model heads without
modifying the decoder architecture.

We adopt the GPT-2 tokenizer with a maximum sequence length of 128 tokens and batch size 32. We
use AdamW with learning rate 2× 10−5, β1 = 0.9, β2 = 0.98, and ϵ = 10−8. Weight decay is set to
zero, and training runs for 10 epochs unless early stopping is triggered. Our setup follows the Keras
example Parameter-efficient fine-tuning of GPT-2 with LoRA https://keras.io/examples/nlp/
parameter_efficient_finetuning_of_gpt2_with_lora/ and Hugging Face’s adapter-based
fine-tuning pipelines, with GPT-2 checkpoints loaded from the Hugging Face model hub.

We inject LoRA adapters into the GPT-2 self-attention blocks, targeting the query and value projection
matrices in each transformer layer. Each LoRA module is a rank-4 adapter with scaling factor α = 32
and dropout 0.05. The base GPT-2 weights remain frozen throughout training. For classification, we
project the final token’s hidden state onto a softmax over verbalized class tokens (e.g., “Yes”, “No”),
computing loss on the generated token. This verbalizer-based approach avoids architectural changes
while preserving interpretability.

To apply our localized PAC-Bayes bound, we replace the standard loss with a variational objective
defined over the LoRA parameters. These adapters are reparameterized as Gaussian posteriors, and
the mini-batch is partitioned into K = 8 shards. For each shard, we sample LoRA weights and
compute predictions, aggregating empirical risk via importance-weighted averaging. KL divergence
is estimated from the same samples. Bound parameters λ and ξ are jointly optimized with the adapter
weights using a reparameterized sigmoid transformation. The training loop and data pipeline are
otherwise unchanged, demonstrating that our PAC-Bayes loss integrates seamlessly into standard
fine-tuning workflows.

We report training and validation losses as well as PAC-Bayes generalization bounds (Eq. 3).

B.4 PAC-Bayes Training Details

We implement our localized PAC-Bayes training procedure as a drop-in replacement for standard
training workflows. Our method defines a single-pass objective that integrates importance-weighted
empirical risk estimation with reparameterized posterior sampling and KL regularization, enabling
seamless compatibility with Keras, TensorFlow, and analogous PyTorch abstractions.

For each model, we replace standard deterministic layers with variational layers (e.g., reparameterized
dense or convolutional layers with learned Gaussian posteriors), where posterior samples are drawn
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using the reparameterization trick. At each training step, the mini-batch is split into K = 4 shards,
and K forward passes are used to approximate expectations with importance weighting. Our loss
replaces the standard cross-entropy loss with a PAC-Bayes bound involving data-dependent estimates
of empirical risk, KL divergence, and importance-weighted log-partition estimate.

To control the bound’s tightness and ensure numerical stability, we jointly optimize two scalar
parameters (λ, ξ) using reparameterized sigmoid transformations. These parameters are clipped to
remain in a numerically stable range. The parameter ξ, in particular, governs the balance between
empirical fit and regularization. The bound uses a Bernstein-type inequality combined with the
Donsker–Varadhan variational form to achieve tight guarantees under approximate posterior sampling.

Posterior and prior distributions are modularized at the layer level and managed through lightweight
wrappers. The full PAC-Bayes loss, including posterior sampling and KL terms, is evaluated during
each forward pass and is fully differentiable. In frameworks like Keras, this integrates naturally
via model compilation and fitting. In PyTorch or JAX, the same logic can be incorporated directly
within the standard mini-batch training loop, without requiring two-pass estimation, KL annealing, or
external scheduling. This makes our method easily portable across ecosystems with minimal changes
to model or training code.

Our implementation avoids reliance on specialized inference libraries and instead uses lightweight
wrappers that expose posterior sampling and KL evaluation in a modular form. In PyTorch, these
components can be integrated as attributes of standard extttnn.Module classes, enabling straightfor-
ward porting of posterior logic into existing model definitions. Our approach parallels existing PEFT
(parameter-efficient fine-tuning) strategies such as LoRA or Adapter modules, in the sense that it
"injects" stochastic behavior inside existing model layers without rewriting the full training logic.
Crucially, our PAC-Bayes loss is computed inline with the model’s forward and backward passes,
without requiring separate optimization stages or KL annealing. This design allows it to be integrated
into standard training loops across architectures and frameworks.

All posterior layers are initialized with random priors and appropriate variance scaling. The PAC-
Bayes loss is fully compatible with standard Keras callbacks, model checkpointing, and TensorBoard
logging.

B.5 Certifiable Prediction

Post-training, we use the same posterior distribution to derive per-example prediction certificates. For
each test input, we compute the expected 0–1 loss under posterior sampling via importance-weighted
risk estimation. We then apply a single-sample Markov bound and a union bound across the test
set to produce a certified upper bound on the misclassification risk of each individual prediction, as
formalized in Eq. 4.

This certifiable risk enables a rejection mechanism: predictions whose estimated risk exceeds a
chosen threshold can be flagged or abstained from, ensuring reliable deployment in safety-critical
applications. Our experiments visualize the full risk distribution and demonstrate that adversarial
or misclassified samples tend to exhibit significantly higher certified risk than correctly predicted
ones. We also evaluate calibration curves and find that PAC-Bayes risk estimates align closely with
empirical misclassification rates, supporting their use for uncertainty-aware selective prediction.

B.6 Software and Reproducibility

All models are implemented in TensorFlow 2.12 with Keras 2 and HuggingFace Transformers 4.28
(for GPT-2 LoRA fine-tuning). Training is conducted in Google Colab using a single NVIDIA
A100 GPU with 40 GB of memory. To ensure feasibility under Colab constraints, all experiments
are designed to complete within a single 24-hour session. Our codebase is written in R and uses
the reticulate package to interface with Python modules. Due to compatibility requirements of
TensorFlow Probability, we restrict the software environment to Python 3.10 and TensorFlow <=2.15.
Code and configuration scripts for all experiments will be made available upon publication.
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C Concentration Inequalities and PAC-Bayes Bounds

This section presents a self-contained statement and derivation of the key inequalities underlying
PAC-Bayes bound. Our goal is to help readers unfamiliar with PAC-Bayes theory or concentration
inequalities appreciate the theoretical structure and understand how our bound emerges naturally
from classical tools.

We begin with the simplest and most foundational of these: Markov’s inequality. It formalizes the
intuitive idea that if a random variable tends to be small on average, then large values must be rare.
This simple insight is the root of a broad family of results known as concentration inequalities, which
describe how tightly a random variable tends to concentrate around its average.

Markov’s Inequality. If X ≥ 0 is a nonnegative random variable and a > 0, then:

P(X ≥ a) ≤ E[X]

a
.

Proof. Let A = {X ≥ a}. Then:

E[X] =

∫
Ω

X(ω)dP(ω) ≥
∫
A

X(ω)dP(ω) ≥
∫
A

a dP(ω) = a ·P(X ≥ a).

Dividing both sides by a gives the result. □

Markov’s inequality gives weak but general tail bounds. Its real power emerges when we apply it
to transformed variables. If large deviations of X are rare, then so are large values of eλX . This
exponential magnification enables sharper control.

Hoeffding’s Inequality. Suppose X1, . . . , Xn are independent and bounded in [0, 1], and let X̄ =
1
n

∑
Xi. Then for any ε > 0:

P(X̄ −E[X̄] ≥ ε) ≤ exp(−2nε2).

Proof. Consider X̄ = 1
n

∑
Xi. We apply Markov’s inequality to the exponential of the deviation:

P(X̄ −E[X̄] ≥ ε) = P(eλn(X̄−E[X̄]) ≥ eλnε) ≤ e−λnεE[eλn(X̄−E[X̄])].

By independence, we can factor the expectation: E[eλn(X̄−E[X̄])] =
∏n

i=1 E[eλ(Xi−E[Xi])].
Apply Hoeffding’s lemma: for any Xi ∈ [0, 1], we have E[eλ(Xi−E[Xi])] ≤ eλ

2/8, so
E[eλn(X̄−E[X̄])] ≤ enλ

2/8. Hoeffding’s lemma follows by applying a second-order Taylor expansion
to the moment-generating function of a bounded random variable and optimizing over the bound on
its range.

Combining this with the previous bound: P(X̄ −E[X̄] ≥ ε) ≤ e−λnε+nλ2/8.

Minimizing the right-hand side wrt λ gives λ = 4ε, yielding: P(X̄ −E[X̄] ≥ ε) ≤ exp(−2nε2).□
Hoeffding’s inequality provides uniform control over deviations based solely on the bounded range
of each variable—it does not consider the variance or how probability mass is distributed within
the range. In contrast, Bernstein’s inequality makes use of both the variance and a bound on the
centered deviations. This allows it to produce tighter bounds when the variance is small, particularly
in settings with heterogeneous or skewed noise.

Bernstein’s Inequality. Let σ1, . . . , σN be independent real-valued random variables, each bounded
above by b in deviation from its mean: σi − E[σi] ≤ b. Let S = 1

N

∑
σi be the normalized sum,

m = E[S] its mean, and V = 1
N

∑
E[(σi −E[σi])

2] its renormalized variance. Then, for any λ > 0
and any η > 0:

P(S −m ≥ η) ≤ exp

(
−λη + g

(
bλ

N

)
· V
N

λ2

)
, where g(x) =

ex − 1− x

x2
.

This exponential moment bound captures both the variance and the tail size of the distribution. We
use it directly in our PAC-Bayes analysis to account for heteroskedasticity and sharp transitions in
empirical risk estimates.
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Proof. Let σ1, . . . , σN be independent real-valued random variables with E[σi] = µi and σi−µi ≤ b

almost surely. Define the empirical average S = 1
N

∑N
i=1 σi, with mean m = E[S] = 1

N

∑
µi, and

define the renormalized variance V = 1
N

∑
E[(σi − µi)

2].

We begin by applying Markov’s inequality to the exponential: for any λ > 0,

P(S −m ≥ η) = P
(
eλ(S−m) ≥ eλη

)
≤ e−ληE[eλ(S−m)].

By independence, we factor the moment generating function as E[eλ(S−m)] =
∏N

i=1 E[eλ(σi−µi)/N ].
Since each σi − µi ≤ b, we apply the bound logE[etX ] ≤ g(bt) · E[X2] for X bounded by b and
g(x) = ex−1−x

x2 , to get

logE[eλ(S−m)] ≤
N∑
i=1

g

(
bλ

N

)
· 1

N2
·E[(σi − µi)

2] = g

(
bλ

N

)
· V
N
· λ2.

Putting everything together:

P(S −m ≥ η) ≤ exp

(
−λη + g

(
bλ

N

)
· V
N

λ2

)
.

This bound holds for all λ > 0; optimizing it over λ yields the standard Bernstein tail bound. □

The following Donsker-Varadhan variational formula connects the moment-generating function (i.e.,
the log of the expected exponentiated f ) to a variational optimization over distributions ρ. It is
especially powerful when f represents a deviation, such as f(θ) = λ (rS(θ)−R(θ)), which is
common in PACBayes theory.

The inequality shows that rather than analyzing Eπ

[
ef
]

directly, we can upper bound it using any
distribution ρ, at the cost of a KL divergence penalty. In PAC-Bayes, π serves as the prior and ρ as
the learned posterior, making this identity the key bridge between exponential moment bounds and
generalization guarantees.

Donsker–Varadhan Variational Formula. Let π be a probability distribution over a space Θ, and
let f : Θ→ R be measurable and integrable under π. Then:

logEπ[e
f(θ)] = sup

ρ
{Eρ[f(θ)]−KL(ρ∥π)} ,

where the supremum is taken over all probability measures ρ absolutely continuous with respect to π.

Proof. Let ρ≪ π (i.e., ρ is absolutely continuous with respect to π, meaning ρ does not assign mass
where π assigns zero), and define the Radon-Nikodym derivative dρ/dπ = h. In continuous spaces,
if π has a density p(θ) and ρ has density q(θ), then h(θ) = q(θ)

p(θ) is the pointwise ratio of densities.
We write:

Eρ[f(θ)]−KL(ρ∥π) =
∫

f(θ)h(θ)dπ(θ)−
∫

h(θ) log h(θ)dπ(θ).

Define a functional J(h) as

J(h) =

∫
fh dπ −

∫
h log h dπ,

subject to the constraint
∫
h dπ = 1, since ρ must be a probability measure.

Using calculus of variations or Lagrange multipliers to maximize J(h), the optimal h∗(θ) satisfies

f(θ)− log h∗(θ)− 1− λ = 0 ⇒ h∗(θ) =
ef(θ)

Z
, Z =

∫
ef(θ)dπ(θ).

Plugging this optimal h∗ back into the original expression gives

sup
ρ
{Eρ[f ]−KL(ρ∥π)} = log

∫
ef(θ)dπ(θ) = logEπ[e

f(θ)],

as claimed. □
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The following PAC-Bayes bound, due to Catoni [6], provides a generalization guarantee for random-
ized predictors drawn from a posterior distribution ρ, in terms of their empirical risk and divergence
from a prior π. Unlike classical uniform convergence bounds, which struggle with infinite or continu-
ous hypothesis spaces, this approach avoids union bounds altogether by reasoning about the expected
behavior under ρ, using the Donsker–Varadhan variational identity.

Catoni’s PAC-Bayes bound[6] Let π be a prior distribution over parameters θ ∈ Θ, and let ρ be any
posterior distribution. Assume that for all θ, the loss function ℓ(θ;x, y) ∈ [0, C] is bounded. Then for
any λ > 0 and δ ∈ (0, 1), with probability at least 1− δ over the draw of a dataset S = {(xi, yi)}Ni=1,
we have:

Eθ∼ρ[R(θ)] ≤ Eθ∼ρ[rS(θ)] +
λC2

8N
+

KL(ρ∥π) + log(1/δ)

λ
.

Proof. Fix any θ ∈ Θ. By Hoeffding’s inequality applied to ℓi(θ) ∈ [0, C], we have for any t > 0:
ES

[
et·N(R(θ)−rS(θ))

]
≤ e

t2NC2

8 . Setting t = λ/N : ES

[
eλ(R(θ)−rS(θ))

]
≤ e

λ2C2

8N .

Integrate this bound over θ ∼ π: ES,θ∼π

[
eλ(R(θ)−rS(θ))

]
≤ e

λ2C2

8N . By Fubini’s theorem, we

exchange the order of integration: ES

[
Eθ∼π

[
eλ(R(θ)−rS(θ))

]]
≤ e

λ2C2

8N .

Apply the Donsker–Varadhan variational formula to the inner expectation:

ES

[
exp

(
sup
ρ
{λEρ[R(θ)− rS(θ)]−KL(ρ∥π)}

)]
≤ e

λ2C2

8N .

Apply a Chernoff bound: for any s > 0, PS

(
supρ λEρ[R− rS ]−KL(ρ∥π) > λ2C2

8N + s
)
≤ e−s.

Setting s = log(1/δ) and rearranging gives:

PS

(
∃ρ : Eρ[R(θ)] > Eρ[rS(θ)] +

λC2

8N
+

KL(ρ∥π) + log(1/δ)

λ

)
≤ δ.

Taking the complement concludes the proof. □

The following KL-risk formulation, commonly seen in the PAC-Bayes literature, is due to
McAllester [1] and Langford–Seeger [3]. It directly bounds the KL divergence between the ex-
pected empirical risk and the expected true risk. However, directly optimizing this bound with
respect to ρ is challenging in practice. We do not use this bound in our work but include it here for
completeness.

Theorem (PAC-Bayes Bound via KL of Risks).Let π be a prior distribution over predictors θ ∈ Θ,
and let ρ be any posterior. For any δ ∈ (0, 1) and integer N ≥ 2, with probability at least 1− δ over
the draw of dataset S ∼ DN , the following inequality holds:

KL (Eρ[rS(θ)] ∥ Eρ[R(θ)]) ≤
KL(ρ∥π) + log N

δ

N − 1
.

Proof. Let f(θ) = (N − 1)KL(rS(θ) ∥R(θ)), and apply the Donsker–Varadhan inequality:
Eρ[f(θ)] ≤ KL(ρ∥π) + logEπ

[
ef(θ)

]
. Taking expectation over the sample S and applying Fubini

gives: ES Eρ[f(θ)] ≤ KL(ρ∥π) + logES,θ∼π

[
ef(θ)

]
.

To control the exponential moment, define p = R(θ), q = rS(θ), and note that ê(h, S) is a
Binomial(N, p) proportion. Using an explicit bound on the moment-generating function of (N −
1)KL(q∥p) under the binomial sampling process, we can show:

ES

[
e(N−1)KL(rS(θ)∥R(θ))

]
≤ N, uniformly in θ.

Applying Markov’s inequality, with probability at least 1− δ,

logEπ

[
e(N−1)KL(rS(θ)∥R(θ))

]
≤ log N

δ .

Plugging this into the earlier bound, and dividing both sides by N − 1, we conclude:

KL (Eρ[rS(θ)] ∥Eρ[R(θ)]) ≤
KL(ρ∥π) + log N

δ

N − 1
.

□
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly and accurately reflect the theoretical and
empirical contributions demonstrated in Sections 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations, including biases from finite-sample importance sampling and
GPU implementation efficiency, are explicitly discussed in the "Limitations and Broader
Impacts" section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical assumptions are explicitly stated in the main paper, and formal
proofs appear fully in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details including datasets, model architectures, training proce-
dures, and hyperparameters are explicitly stated in Section 4 and detailed in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: An anonymized version of the code, along with detailed instructions for
reproducing the main experiments, is included in the supplementary material. The full,
non-anonymized code will be publicly released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and evaluation details including data splits, model architectures, opti-
mizers, and hyperparameters are explicitly provided in Section 4 and detailed in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We explicitly report error bars (standard deviations across multiple runs) in
tables and figures. The sources of variability (e.g., random initialization and data splits) and
calculation methods (bootstrap or multiple independent runs) are clearly described in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explicitly document the GPU types, memory usage, and approximate
runtimes for key experiments in the supplementary material to facilitate reproducibility.
Complete details will be provided openly upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive impacts (increased transparency, trustworthiness) and potential neg-
ative impacts (misuse due to misinterpretation of theoretical assumptions) are explicitly
discussed in the "Limitations and Broader Impacts" section.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release high-risk models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly cite all datasets used (MNIST, CIFAR-10/100, ImageNet, GLUE,
Cityscapes), explicitly provide their URLs, dataset versions, and fully document their
licenses in supplemental material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets, benchmarks, or assets were introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, thus no IRB approval is
required.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for editorial assistance (clarifying concepts, editing
text), and thus no formal declaration is required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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