
How Far are LLMs from Real Search? A Comprehensive Study on
Efficiency, Completeness, and Inherent Capabilities

Anonymous ACL submission

Abstract001

Search plays a fundamental role in problem-002
solving across various domains, with most real-003
world decision-making problems being solv-004
able through systematic search. Drawing inspi-005
ration from recent discussions on search and006
learning, we systematically explore the comple-007
mentary relationship between search and Large008
Language Models (LLMs) from three perspec-009
tives. First, we analyze how learning can en-010
hance search efficiency and propose Search011
via Learning (SEAL), a framework that lever-012
ages LLMs for effective and efficient search.013
Second, we further extend SEAL to SEAL-C014
to ensure rigorous completeness during search.015
Our evaluation across three real-world plan-016
ning tasks demonstrates that SEAL achieves017
near-perfect accuracy while reducing search018
spaces by up to 99.1% compared to traditional019
approaches. Finally, we explore how far LLMs020
are from real search by investigating whether021
they can develop search capabilities indepen-022
dently. Our analysis reveals that while current023
LLMs struggle with efficient search in com-024
plex problems, incorporating systematic search025
strategies significantly enhances their problem-026
solving capabilities. These findings not only027
validate the effectiveness of our approach but028
also highlight the need for improving LLMs’029
search abilities for real-world applications.030

1 Introduction031

Search lies at the heart of problem-solving, offering032

a systematic approach to explore solution spaces033

and find optimal answers. From everyday choices034

to complex strategic planning, virtually all real-035

world decision-making processes can be formu-036

lated and solved through systematic search strate-037

gies. This insight aligns with the recent discussions038

on search and learning (Sutton, 2019; Snell et al.,039

2024), which emphasizes that the most effective040

problem-solving approaches combine systematic041

search with learning from experience.042

Traditional search methods, such as brute-force 043

searches, while theoretically complete, face chal- 044

lenges in systematically exploring large and com- 045

plex search spaces. They are designed to ensure 046

that all possible states are considered, but the vast- 047

ness of such spaces often necessitates exhaustive 048

exploration, making systematic traversal imprac- 049

tical. Moreover, these methods lack the intuitive 050

problem-solving abilities that humans naturally em- 051

ploy, such as recognizing promising solutions early 052

or quickly abandoning unproductive paths. 053

Recent advances in Large Language Models 054

(LLMs) and Large Reasoning Models (LRMs) 055

have opened new possibilities for more human- 056

like search approaches. Some recent LRMs such 057

as OpenAI o1 (OpenAI, 2024), QwQ-32B (Qwen, 058

2024b), and DeepSeek-R1 (Guo et al., 2025) have 059

demonstrated remarkable performance by incor- 060

porating LLM-guided search strategies. These 061

approaches leverage LLMs’ extensive knowledge 062

bases and reasoning capabilities to guide the search 063

process (Wei et al., 2022; Wang et al., 2023; Snell 064

et al., 2024; Yao et al., 2023a; Hao et al., 2023; 065

Wang et al., 2024a), attempting to mirror human- 066

like intuition in problem-solving. 067

Despite the great success of these LLM-based 068

simulated searches, a critical limitation remains: 069

they rely heavily on models’ intrinsic knowledge 070

rather than combining it with systematic search 071

strategies. When confronted with complex prob- 072

lems requiring multi-step reasoning or extensive 073

exploration, these models often struggle to main- 074

tain consistent performance (Wang et al., 2024b,c; 075

Snell et al., 2024). Their reasoning can become 076

unstable or incomplete, particularly when solutions 077

require carefully exploring multiple solution paths 078

or backtracking from dead ends—abilities that hu- 079

mans naturally employ in problem-solving. 080

Draw inspiration from recent discussions on 081

search and learning (Sutton, 2019; Snell et al., 082

2024), which emphasizes the great power of com- 083

1



bining search and learning over human-centric ap-084

proaches, in this paper, we systematically explore085

the integration and complementation of search and086

LLMs from three crucial perspectives: efficiency,087

completeness, and inherent search capabilities.088

Firstly, we explore how learning can benefit089

search. Specifically, we conduct a preliminary anal-090

ysis to compare existing traditional and LLM-based091

search methods on a representative task, Game of092

24, to investigate their problem-solving capabilities.093

Our experimental results reveal that the learning094

and reasoning capabilities of LLMs help solve sim-095

pler problems without extensive searching, reduc-096

ing unnecessary state exploration and prioritizing097

promising states, which significantly shrink search098

spaces. Then, building upon these insights, we099

present SEAL, a framework that integrates learn-100

ing into search algorithms to improve the search101

efficiency while maintaining completeness for en-102

hancing the problem-solving capabilities of LLMs.103

We also introduce SEAL-C, a variant that rigor-104

ously ensures search completeness while preserv-105

ing efficiency through learning-guided complete106

state decomposition and two-phase ranking.107

We evaluate SEAL and SEAL-C on three plan-108

ning tasks: Game of 24, Mini Crosswords (Yao109

et al., 2023a) and Blocksworld (Valmeekam et al.,110

2022) using five representative LLMs, GPT-111

4o (Hurst et al., 2024), GPT-4o-mini (Achiam112

et al., 2023), Qwen2.5-72B-Instruct (Qwen, 2024a),113

QwQ-32B-Preview (Qwen, 2024b) and DeepSeek-114

R1 (Guo et al., 2025). Our experimental results115

show that SEAL reaches almost perfect pass rates116

across almost all settings, while reducing search117

space by up to 99.1% compared to traditional brute-118

force searches. And SEAL-C is also proved to119

ensure rigorous completeness efficiently. These120

validate the effectiveness of SEAL in enabling com-121

plete and efficient search via learning.122

To this end, we investigate how far LLMs are123

from real search by investigating a reverse but124

natural problem: how search can benefit LLMs125

and whether LLMs can learn to search by them-126

selves. Specifically, we prompt LLMs to con-127

duct searches solely relying on intrinsic knowl-128

edge or guided by SEAL’s search strategies, re-129

spectively. Our analysis yields two significant in-130

sights. First, while search capabilities are crucial131

for LLMs’ problem-solving effectiveness, current132

LLMs/LRMs exhibit inefficient search behaviors,133

requiring extensive sampling to achieve satisfac-134

tory performance. Second, incorporating SEAL’s135

search strategies into LLM prompts demonstrably 136

enhances their problem-solving capabilities. These 137

findings not only underscore the critical role of 138

search in enhancing LLMs’ reasoning and learning 139

capabilities but also validate the effectiveness of 140

SEAL’s search strategies, motivating us to improve 141

LLMs’ self-search capabilities in the future works. 142

Our main contributions are: 143

• (Analysis) Inspired by the principles of search 144

and learning, we conduct a systematic explo- 145

ration of how learning benefits search, demon- 146

strating that LLMs can reduce unnecessary state 147

exploration and improve efficiency by prioritiz- 148

ing promising states. Additionally, we explore 149

how search benefits LLMs, revealing the impor- 150

tance of teaching LLMs to efficiently search for 151

solving complex problems. 152

• (Methodology) We propose SEAL, a framework 153

that integrates learning into search for efficiency 154

and completeness, and SEAL-C, a variant to en- 155

sure rigorous completeness. 156

• (Experiments) We evaluate SEAL and SEAL-C 157

across diverse real-world tasks, demonstrating 158

their effectiveness in achieving efficient and com- 159

plete search. We also reveal that existing LLMs 160

cannot perform efficient and effective search re- 161

garding complex tasks, which is a desired fun- 162

damental ability for LLMs to be applied to real- 163

world decision making tasks. 164

2 Related Works 165

LLM-based Search Methods. Recent advance- 166

ments in test-time compute scaling have sparked 167

growing interest in methods that enable LLMs to 168

simulate search processes and “think longer” in- 169

stead of directly generating answers in one pass. 170

Several works (Wang et al., 2023; Hao et al., 2023; 171

Feng et al., 2023; Yao et al., 2023a; Zhao et al., 172

2024; Besta et al., 2024; Wang et al., 2024a; Snell 173

et al., 2024) adopt such approaches to enhance 174

LLMs’ problem-solving capabilities. Despite their 175

innovation, these methods rely solely on LLMs’ 176

intrinsic knowledge, often leading to unstable per- 177

formance due to limitations in LLMs’ reasoning 178

capabilities. In contrast, our proposed SEAL inte- 179

grates LLMs with traditional search strategies, en- 180

suring both completeness and efficiency in solving 181

decision-making tasks. More LLM-based search 182

methods are reviewed in Appendix A.1. 183

Traditional Search Methods. Inspired by the re- 184

cent discussion about search and learning (Sutton, 185

2



2019), which underscores the enduring value of186

general-purpose strategies that scale with computa-187

tional power, we investigate how to better integrate188

search with learning to leverage the strengths of189

both paradigms. Our SEAL and SEAL-C draw in-190

spiration from traditional search while incorporat-191

ing LLM-guided reasoning to reduce search space,192

thereby significantly enhancing efficiency without193

sacrificing completeness. More details of the re-194

lated works are in Appendix A.195

3 How Learning can Benefit Search196

Search and learning represent two fundamental ap-197

proaches to problem-solving. Traditional search198

methods offer systematic exploration with guar-199

anteed completeness, while learning-based ap-200

proaches leverage pattern recognition to identify201

promising solutions quickly. In this section, we202

conduct a preliminary analysis to systematically203

explore existing search algorithms and the syner-204

gies between learning and search. Building on205

these insights, we introduce SEAL, a framework206

that integrates learning into search algorithms to re-207

duce unnecessary exploration, prioritize promising208

paths, and ultimately maintain reliable and efficient209

performance as problems grow in complexity.210

3.1 Experimental Setup211

Task Setup. To investigate the impact of learning212

on search, we use the Game of 24 as a representa-213

tive task. This task can be solved using traditional214

search algorithms and is also widely adopted for215

evaluating LLMs’ planning abilities. Details about216

the task are provided in Appendix G.1. Following217

the setting in Yao et al. (2023a), we select 100 prob-218

lems indexed as 900− 999 for our experiments.219

Baselines. For our preliminary analysis, we evalu-220

ate three LLM-based simulated search algorithms:221

MAJORITY VOTE (Wang et al., 2023), BEST-OF-222

N (Snell et al., 2024), and BEAM SEARCH (Yao223

et al., 2023a). Additionally, we include VANILLA224

COT (Chain-of-Thought) (Wei et al., 2022) as a225

reference. To evaluate search efficiency, we also226

consider two traditional brute-force search meth-227

ods, Depth-First Search (DFS) and Breadth-First228

Search (BFS), along with their pruning variants,229

DFS-PRUNE and BFS-PRUNE. These variants230

improve efficiency by avoiding exploration of pre-231

viously visited states. Finally, an EXHAUSTIVE232

SEARCH is included as a baseline for comprehen-233

sive comparison. Detailed implementation details234

for all baselines are provided in Appendix G.2. 235

Evaluation Metrics We evaluate performance us- 236

ing two primary metrics: (i) pass rates (PR) across 237

games per difficulty level, measuring solution qual- 238

ity, and (ii) search steps (SS), measuring explo- 239

ration efficiency by counting traversed states in the 240

search space S. Complete metric definitions are 241

available in Appendix G.4. 242

3.2 Analysis: How Learning can Benefit 243

Search 244

To better understand how learning can enhance 245

search, we divide the 100 problems from the Game 246

of 24 into three difficulty levels based on human 247

success rates1. Other experimental settings follow 248

those in Sec. 3.1. Our experimental results, pre- 249

sented in Fig. 1, reveal several key findings regard- 250

ing the performance of existing search methods. 251

Full analyses are in Appendix B.1. 252

Obs. 1: LLMs Perform Better for Simpler Prob- 253

lems. As in Fig. 1(a), VANILLA COT achieve pass 254

rates of 18.2%, 12.1%, and 11.7% for problems 255

with difficulty levels 1, 2, and 3, respectively. This 256

pattern suggests that LLMs excel at direct problem- 257

solving for simpler cases, indicating their potential 258

for single-step solutions rather than requiring itera- 259

tive approaches. More examples are in Fig. 5. 260

Obs. 2: Learning-Based Pruning Has Precision- 261

Coverage Trade-offs. According to Fig. 1(a) 262

and 1(b), BEAM SEARCH achieves the superior per- 263

formance in pass rate than other LLM-based search 264

methods, and significantly saves search steps than 265

DFS. To deeply analyze this observation, an exam- 266

ple of BEAM SEARCH in Fig. 6 shows that it only 267

relies on LLMs to generate a few of possible next 268

steps instead of decomposing all possible states 269

in brute-force searches in each time of generating 270

next intermediate steps. However, it is possible 271

that some valid states are overlooked during the 272

intermediate step generation, leading to failure in 273

solving tasks and reflecting a trade-off between 274

efficiency and completeness in search. 275

Obs. 3: Learning Provides Adaptive Search 276

Guidance. Fig. 7 is an example of BEAM SEARCH 277

employing an LLM verifier to assess intermedi- 278

ate states’ progress toward the goal, prioritizing 279

exploration of valid states and avoiding further ex- 280

ploration on other states. Moreover, as in Fig. 1(a), 281

the LLM-based methods using more search steps 282

generally perform better. This is because these 283

1https://www.4nums.com/game/difficulties/

3



1 2 3
Difficulty Level

0
20
40
60
80

100

Pa
ss

 R
at

e 
(%

)
Vanilla CoT
Majority
Best-of-N
Beam
Brute-force

(a) Pass Rate

1100

1500

1900

2300
Vanilla CoT
Majority
Best-of-N
Beam
Brute-force

1 2 3
Difficulty Level

0

50

100

150

Se
ar

ch
 S

te
p

(b) Search Step
Figure 1: PR (%) and SS of existing searches across
various problem difficulties using GPT-4o-mini.

methods allocate more search budget in verifying284

results via LLMs, further demonstrating LLMs’ ca-285

pability as dynamic evaluators to leverage learned286

knowledge to identify promising states and guide287

the search process.288

These findings suggest that learning can substan-289

tially improve search efficiency when properly inte-290

grated into the search process. However, they also291

highlight the need for careful mechanism design to292

balance the benefits of learning-based pruning with293

the completeness guarantees of traditional search.294

3.3 Analysis: Existing Search Algorithms295

While existing search algorithms show significant296

promise, they still encounter notable challenges.297

To better illustrate their limitations, we conduct an298

analysis following the setup in Sec.3.1 by apply-299

ing existing search algorithms to the Game of 24300

task. The results are reported in Table 1, reveal-301

ing the following insights: (i) Traditional brute-302

force algorithms achieve perfect 100% accuracy303

but require up to 3,429 search steps, demonstrat-304

ing their inefficiency in searching for answers. (ii)305

While LLM-based methods significantly reduce the306

search space (at least 92.4% fewer steps than DFS),307

their pass rates peak at only 35%, highlighting their308

instability compared to traditional searches. Full309

analyses are in Appendix B.3310

These findings underscore the necessity of a311

framework that combines the completeness of sys-312

tematic search with the efficiency of learning-based313

approaches. This motivates the development of a314

more effective search-and-learning methodology to315

address these limitations.316

3.4 SEAL: Search via Learning with LLMs317

Notations. We focus on solving planning prob-318

lem following the essence of solving real-world319

decision-making problems via search: starting320

from an initial state, envisioning possible actions,321

and systematically working toward a goal state.322

Specifically, a planning problem is formally de-323

Table 1: PR (%) and SS on the Game of 24 using
Qwen2.5-72B-Instruct. For LLM-based methods, we
additionally present the reduction ratio of SS compared
to BRUTE-FORCE (DFS).

Method PR (%) SS

EXHAUSTIVE SEARCH 100 12,928

BRUTE-FORCE (DFS) 100 1,623
BRUTE-FORCE (BFS) 100 3,429
BRUTE-FORCE (DFS-PRUNE) 100 1,385
BRUTE-FORCE (BFS-PRUNE) 100 1,306

VANILLA COT 17 1 (↓ 99.9%)
MAJORITY VOTE 23 10 (↓ 99.3%)
BEST-OF-N 27 20 (↓ 98.7%)
BEAM SEARCH 35 124 (↓ 92.4%)

fined as a tuple P = ⟨S, sinit, sgoal,A, f⟩. Here, 324

S represents a finite and discrete set of states de- 325

scribing the world (i.e., state space). sinit, sgoal ∈ S 326

denote the initial and goal world states, respec- 327

tively. A = {a1, a2, . . . , } represents the set of 328

possible actions, and f(s, ai) = s′ is a transition 329

function mapping a state and action to a resulting 330

state. A solution to problem P is a sequence of 331

actions ⟨a1, a2, . . .⟩ that transforms sinit into sgoal. 332

Building upon the above insights, we introduce 333

SEAL, a framework that systematically integrates 334

learning capabilities into search processes to em- 335

ulate human problem-solving strategies. The goal 336

of SEAL is on enhancing this natural problem- 337

solving process by combining the systematic nature 338

of search with the learning capabilities of LLMs. 339

SEAL consists of four components to enhance dif- 340

ferent aspects of search processes through learning: 341

Direct Solution Generation. Motivated by the 342

insight from Obs. 1 that learning excels at solving 343

simpler problems directly, we begin each step by 344

attempting a direct solution, akin to how humans 345

first try to solve problems in one step: 346

rcur = M(psolve(s
cur)) (1) 347

where M represents the backbone LLM and psolve 348

denotes the solution generation prompt. A verifier 349

f validates the generated solution. More details of 350

psolve are in Appendix D.1. This mechanism lever- 351

ages LLMs’ strength in handling simpler cases, 352

potentially bypassing the need for extensive search 353

when direct solutions are viable. Note that, how- 354

ever, the verifier f may not always be available 355

in certain scenarios. To ensure the applicability of 356

SEAL in such cases, we provide further discussions 357

in Appendix I.2. 358

State Decomposition. For more complex problems 359

that cannot be solved directly, we decompose the 360

4



current state scur into subproblems, mirroring how361

humans break down challenging tasks:362

Snext = D(scur), (2)363

where D is the decomposition function generat-364

ing substates Snext = {snext1 , snext2 , . . .}. While365

LLMs can suggest promising decompositions (Yao366

et al., 2023a), Obs. 2 reveals the risk of overlook-367

ing valid paths. Thus, we maintain the ability to368

systematically enumerate substates when needed,369

balancing between efficient exploration of valid370

paths and thorough coverage of the state space S.371

State Validity Checking. During search, it is in-372

evitable that we may explore some invalid states, es-373

pecially if we decompose into all possible substates.374

Exploring and expanding these invalid substates too375

much will significantly increase the search space.376

Thus, inspired from Obs. 3, we leverage LLMs377

to assess the potential of substates toward goals,378

similar to how humans quickly judge if it is worthy379

to continue exploration:380

cnext = M(pc(S
next)), (3)381

where pc prompts the LLM M to evaluate state va-382

lidity. Additional examples pc are in Appendix D.2.383

In this paper, we opt for binary decisions (cik) about384

whether to continue exploration on the substates385

Snext, ensuring efficient pruning on invaid states386

while maintaining search on valid states.387

Learning-guided Ranking After validating sub-388

states, we prioritize paths similar to how humans389

naturally focus their attention on the most promis-390

ing approaches. Leveraging Obs. 3, we employ391

LLMs to compute a priority score of each state:392

v(scur) = M(pv(s
cur)) (4)393

where v(scur) denotes the LLM-estimated value394

using prompt pv, indicating how likely the current395

state leads to the goal state sgoal. States with higher396

scores are prioritized in the exploration queue,397

enabling efficient traversal of promising solution398

paths. Details of pv are in Appendix D.3.399

Overall Alogirhtm Combining these components400

together into search, we implement the framework401

of SEAL, which is shown in Fig. 2. The full algo-402

rithm is in Appendix C. Our search strategy focuses403

on exploring promising paths deeply before con-404

sidering alternatives, similar to how humans natu-405

rally approach problem-solving. This design allows406

SEAL to scale to complex problems effectively407

and efficiently through its combination of learning-408

guided intuition and systematic exploration.409

Search

❌ ❌

12

(1) (2) (3)

LLMLLM
LLM

Init/Intermediate state Goal state Invalid State 

Figure 2: SEAL intergrating learning into search with
LLMs: (1) Direct solution generation, (2) State validity
checking, (3) Learning-guided state ranking.

4 Toward Complete Search via Learning 410

While SEAL effectively balances efficiency and 411

effectiveness, our observation indicates potential 412

compromises in solution accuracy. In high-stakes 413

domains such as autonomous driving (Mao et al., 414

2023) and pandemic response planning (Du et al., 415

2024), ensuring completeness is fundamental to 416

search algorithms, as overlooking any viable solu- 417

tion can have severe consequences. This motivates 418

us to develop a search framework that rigorously 419

ensures completeness. Next, we formalize search 420

completeness and introduce SEAL-C, an enhanced 421

variant of SEAL that integrates efficient learning- 422

guided exploration with formal guarantees of com- 423

pleteness. 424

4.1 Formalizing Search Completeness 425

We begin by formalizing search completeness–the 426

guarantee of finding a solution when one exists: 427

Definition 4.1 (Search Completeness). A search 428

algorithm is complete if and only if for any initial 429

state sinit ∈ S and goal state sgoal, whenever there 430

exists a valid solution path P = (s0, ..., sn) where 431

sn ∈ sgoal, the algorithm is guaranteed to find it. 432

4.2 SEAL-C: Achieving Search Completeness 433

Building on this definition, we first analyze po- 434

tential completeness compromises in SEAL, then 435

present SEAL-C’s mechanisms for ensuring rigor- 436

ous completeness. The full algorithm of SEAL-C 437

is shown in Alg. 2. 438

How Can Completeness Be Compromised? Ac- 439

cording to Sec.3.4, SEAL uses LLMs for state de- 440

composition and validity checking, inspired by Obs. 441

2 and 3. However, our analysis in Sec.3.2 reveals 442

that they may inadvertently ignore valid states dur- 443

ing decomposition or prematurely terminate explo- 444

ration of valid paths, compromising completeness. 445

Learning-Guided Complete State Decomposi- 446

tion. To ensure completeness while maintaining ef- 447

ficiency, SEAL-C employs a learning-guided com- 448

5



plete state decomposition strategy by combining449

learning-based prioritization with a fallback mech-450

anism for exhaustive state expansion:451

Snext = M
(
pd(s

cur)
)
||
(
D(scur) \M(pd(s

cur))
)

(5)452

where || denotes ordered concatenation, ensuring453

LLM-generated states M(pd(s)) are explored first.454

D(s) is the complete state decomposition function455

from Eq. (2). This approach prioritizes exploration456

of likely valid states while ensuring no potential457

solution is overlooked, guaranteeing completeness458

while benefiting from learning-guided efficiency.459

Two-phase Ranking. To further improve effi-460

ciency, SEAL-C introduces a two-phase ranking461

strategy for Snext. Instead of ranking all states at462

once, it first ranks and explores the LLM-generated463

states M(pd(s
cur)), which are more likely to reach464

sgoal. Only when no solution is found does the al-465

gorithm proceed to rank and explore the remaining466

states from D(scur), which significantly reduces467

the search space by avoiding unnecessary ranking468

of supplementary states.469

5 Can LLMs Learn to Search by470

Themselves?471

Having integrated learning to enhance search, a472

reverse but natural question emerges: Can LLMs473

execute search autonomously to improve the rea-474

soning capabilities? Recent advances in scaling475

test-time computation suggest that systematic ex-476

ploration could enhance LLMs’ problem-solving477

abilities. While models like QwQ-32B (Qwen,478

2024b) show promising reasoning capabilities, they479

struggle with focused problem-solving, often pro-480

ducing unfocused, recursive outputs. This moti-481

vates us to explore how search benefits LLMs and482

whether LLMs possess the potential for self search.483

To systematically investigate LLMs’ self-search484

capabilities, we consider two types of prompts:485

high-level self-search, which relies solely on486

LLMs’ internal knowledge, and low-level self-487

search, which explicitly encodes SEAL’s search488

strategies into the prompts. Further details and illus-489

trative examples are in Appendix E, with additional490

discussions and analyses provided in Sec. 6.4.491

6 Experiments492

In this section, we conduct experiments to answer493

the following research questions: (RQ1) How ef-494

fectively and efficiently does SEAL solve tasks495

compared to existing search methods? (RQ2) How496

efficient is SEAL when conducting a rigorously 497

complete search? (RQ3) Do LLMs inherently pos- 498

sess the capability for self-search? 499

6.1 Experiment Settings 500

Tasks. To evaluate the effectiveness of SEAL, 501

in addition to the Game of 24 used in 502

Sec. 3.1, we select two widely adopted plan- 503

ning tasks for evaluating LLMs’ planning abil- 504

ities: Mini Crosswords (Yao et al., 2023a) and 505

Blocksworld (Valmeekam et al., 2022). Further de- 506

tails on these tasks are provided in Appendix G.1. 507

Baselines. Following the settings in Sec. 3.1, 508

we consider four LLM-based searches, VANILLA 509

COT, MAJORITY VOTE, BEST-OF-N, and BEAM 510

SEARCH, and three traditional searches, DFS, BFS 511

and EXHAUSTIVE SEARCH. We also involve a 512

baseline BEAM SEARCH+RV that adds a rule- 513

based verifier to the beam search method. Details 514

on the baselines are provided in Appendix G.2. 515

Models. Our experiments use both closed- 516

source models (GPT-4o-mini, GPT-4o (Hurst et al., 517

2024)) and open-source models (Qwen2.5-72B- 518

Instruct (Qwen, 2024a), QwQ-32B-Preview (Qwen, 519

2024b), DeepSeek-R1 (Guo et al., 2025)). Note 520

that GPT-4o-mini is a small language model (SLM), 521

and QwQ-32B-Preview and DeepSeek-R1 are the 522

state-of-the-art LRMs. Model and implementation 523

details are in Appendix G.3 and G.5. 524

Evaluation Metrics. We follow Sec. 3.1 to use 525

two metrics: (i) pass rates (PR) and (ii) search 526

steps (SS). More details are in Appendix G.4. 527

6.2 RQ1: Effectiveness and Efficiency 528

Evaluations 529

We conduct experiments on the three tasks us- 530

ing three different LLM backbones: GPT-4o-mini, 531

GPT-4o, and Qwen2.5-72B-Instruct. Detailed task 532

setups are in Appendix H. The results are reported 533

in Table 2. The key observations are: (i) SEAL 534

significantly reduces search steps compared to 535

brute-force searches. Specifically, it reduces search 536

steps by up to 99.1% compared to DFS and still 537

achieves state-of-the-art search steps compared to 538

other LLM-based methods. This validates SEAL’s 539

efficiency in navigating the search space. (ii) SEAL 540

achieves a near-perfect pass rate across all settings, 541

outperforming other LLM-based methods. BEAM 542

SEARCH+RV achieves better pass rates than BEAM 543

SEARCH, indicating that integrating rule-based ver- 544

ifiers into LLM-based methods enhances their re- 545

liability in problem-solving. However, it still falls 546

6



Table 2: Results of different search methods across three tasks. Specifically, the results of LLM-based search
baselines are reported as the average values across three LLMs. "TL" indicates that the number is too large. We also
highlight the SS results of SEAL that are comparable to state-of-the-art performance (marked in green ).

Search Method Game of 24 Mini Crosswords Blocksworld

PR (%) Avg. SS PR (%) Avg. SS PR (%) Avg. SS

Traditional Search

EXHAUSTIVE SEARCH 100 12,928 100 TL 100 TL
BRUTE-FORCE (DFS) 100 1,623 100 4,128.9 100 18,531.9
BRUTE-FORCE (BFS) 100 3,429 100 TL 100 96,759.4

LLM-based Search

VANILLA COT 14.3 1 (↓ 99.9%) 1.7 1 (↓ 99.9%) 17.5 1 (↓ 99.9%)
MAJORITY VOTE 20.3 10 (↓ 99.3%) 3.4 10 (↓ 99.7%) 47.4 10 (↓ 99.9%)
BEST-OF-N 22.6 20 (↓ 98.7%) 2.5 20 (↓ 99.5%) 30.0 20 (↓ 99.8%)
BEAM SEARCH 54.0 94.8 (↓ 94.1%) 45.0 26.1 (↓ 99.4%) 0 64.4 (↓ 99.6%)
BEAM SEARCH+RV 79.0 98.8 (↓ 93.9%) 90.0 30.9 (↓ 99.2%) 0 94.8 (↓ 99.6%)
SEAL

– GPT-4O-MINI 100 40 (↓ 97.5%) 100 75.8 (↓ 98.2%) 100 160.6 (↓ 99.1%)
– GPT-4O 99 65.6 (↓ 96.0%) 100 45.0 (↓ 98.9%) 100 80.8 (↓ 99.5%)
– QWEN2.5-72B-INSTRUCT 100 84.9 (↓ 94.8%) 100 98.3 (↓ 98.9%) 100 68.7 (↓ 99.6%)

behind SEAL, confirming that current LLM-based547

methods do not fully conduct real search. This fur-548

ther highlights the superior search effectiveness of549

SEAL. Full search results and the discussion of550

SEAL with various verifiers are in Appendix I.551

6.3 RQ2: Impact of Problem Difficulty on552

Search Completeness553

We evaluate SEAL-C’s performance across prob-554

lem difficulties in three tasks. For Game of555

24, we use three difficulty levels (Sec. 3.2); for556

Blocksworld, difficulty scales with minimum re-557

quired action steps (2–12). Other settings fol-558

low Sec. 6.1. The results using GPT-4o-mini in559

the two tasks are reported in Fig. 3, which show560

that: (i) SEAL-C achieves 100% pass rates across561

all difficulty levels, outperforming baseline meth-562

ods whose performance degrades progressively,563

confirming its completeness. (ii) As the diffi-564

culty increases, SEAL-C’s search steps increase565

slightly but remain significantly lower than brute-566

force baselines. This efficiency is attributed to567

SEAL-C’s learning-guided complete state decom-568

position and two-phase ranking, which prioritize569

promising states and effectively reduce the search570

space. Mini Crosswords results are in Appendix J.571

6.4 RQ3: Potential of LLMs in Self-Search572

We conduct an initial exploration to study whether573

LLMs can learn to self-search for problem-solving574

by testing two self-search prompts in Sec. 5 and575

VANILLA COT in GPT-4o and two state-of-the-576

art open-sourced LRMs, QwQ-32B-Preview and577

DeepSeek-R1 to demonstrate the importance of578

search in solving tasks. Especially, we use the 579

chat mode of DeepSeek-R1 and sample 20 prob- 580

lems. Since they are LRMs that are capable of 581

searching, the results of SELF-SEARCH (HIGH) 582

in the two LRMs can be directly obtained from 583

using VANILLA COT in this model. The compari- 584

son results in Table 3 show: (i) Standard prompt- 585

ing (VANILLA COT) in GPT-4o achieves the low- 586

est performance, indicating LLMs cannot conduct 587

searches and require conduct searches for com- 588

plex problem-solving. (ii) Two LRMs achieve the 589

best performance across all settings. Specifically, 590

DeepSeek-R1, when using SELF-SEARCH (HIGH), 591

achieves an impressive pass rate of 85%. From 592

our observations, these LRMs perform search by 593

iteratively sampling and evaluating different an- 594

swers until a correct solution is found. This under- 595

scores the importance of search in enhancing LLM 596

problem-solving capabilities while also revealing 597

the inefficiency of current search mechanisms, mo- 598

tivating the need for more efficient strategies. More 599

details of the problem-solving processes of the two 600

LRMs are in Appendix K. (iii) Both self-search ap- 601

proaches significantly improve performance, with 602

low-level self-search achieving up to a 95% pass 603

rate. This demonstrates that LLMs have the poten- 604

tial of effectively utilizing explicit search strategies 605

for improving problem-solving. (iv) Low-level self- 606

search, which incorporates SEAL’s strategies, con- 607

sistently outperforms high-level self-search across 608

both models. This validates the effectiveness of 609

SEAL’s search and suggests that better search guid- 610

ance enhances LLM reasoning. 611

7



1 2 3
Difficulty Level

0

20

40

60

80

100
Pa

ss
 R

at
e 

(%
)

Vanilla CoT
Majority
Best-of-N
Beam
SeaL-C

(a) Game of 24 - PR

1 2 3
Difficulty Level

0

20

40

60

80

100

Se
ar

ch
 S

te
p Vanilla CoT

Majority
Best-of-N
Beam
SeaL-C

(b) Game of 24 - SS

2 4 6 8 10 12
Step

0

20

40

60

80

100

Pa
ss

 R
at

e 
(%

)

Vanilla CoT
Majority
Best-of-N
Beam
SeaL-C

(c) Blocksworld - PR

2 4 6 8 10 12
Step

1

10

100

1000

Se
ar

ch
 S

te
p

Vanilla CoT
Majority
Best-of-N
Beam
SeaL-C

(d) Blocksworld - SS
Figure 3: Impact of problem difficulty on search completeness in Game of 24 and Blocksworld with GPT-4o-Mini.

Table 3: PR(%) of search strategies for GPT-4o, QwQ-
32B-Preview and DeepSeek-R1 on the Game of 24.

Model Method PR(%)

GPT-4o
VANILLA COT 13
SELF-SEARCH (HIGH) 24
SELF-SEARCH (LOW) 31

QwQ-32B-Preview SELF-SEARCH (HIGH) 62
SELF-SEARCH (LOW) 70

DeepSeek-R1 (20) SELF-SEARCH (HIGH) 85
SELF-SEARCH (LOW) 95

These findings highlight both the importance of612

search in enhancing LLM capabilities and the ef-613

fectiveness of SEAL’s search strategies, motivating614

us to explore how to further develop LLMs’ self-615

search capabilities and optimize search strategies,616

which will be our future works.617

6.5 Ablation Studies618

Inspired by Snell et al. (2024), we conduct abla-619

tion studies to understand the impact of search620

budgets on SEAL’s performance. Instead of ter-621

minating the search upon finding the final state,622

we introduced a pre-defined search step budget,623

where SEAL terminates early if the budget is624

reached. We vary the search step budgets as625

{10, 20, 30, 50, 100, 150, 200}, and compare var-626

ious search methods using GPT-4o-mini in Game627

of 24. The comparison results are reported in628

Fig. 4. Our analysis reveals three key findings:629

(i) SEAL consistently outperforms other methods630

across all search budgets, demonstrating its effec-631

tiveness in accurately solving problems even under632

constrained search budgets. (ii) Pass rates for all633

search methods generally improve as the search634

budget increases, aligning with expectations that635

scaling test-time computation enhances search per-636

formance. (iii) When the search budget is small637

(less than 50 steps), BEAM SEARCH performs638

poorly, achieving a 0% pass rate. This is due to its639

sequential evaluation of substates, which consumes640

substantial search budgets on generating and as-641

sessing intermediate substates. In contrast, SEAL642

focuses on diving directly toward the goal state, sig-643

10 20 30 50 100 150 200
Search Step

0

20

40

60

80

100

Pa
ss

 R
at

e 
(%

) Majority
Best-of-N
Beam
SeaL

Figure 4: Impact of SS in SEAL using GPT-4o-mini.

nificantly reducing the search space and validating 644

its efficiency in navigating complex search prob- 645

lems. Additional results from the ablation studies 646

evaluating the impact of SEAL’s components can 647

be found in Appendix L. 648

7 Conclusion and Future Work 649

In this paper, inspired by the principles of search 650

and learning (Sutton, 2019; Snell et al., 2024), we 651

systematically investigate the integration of learn- 652

ing into search. We first explore how learning ben- 653

efits the search process via LLMs, demonstrating 654

that LLMs improve search efficiency by reducing 655

search space. Then, building on these insights, we 656

introduce a novel framework, SEAL, and its variant 657

SEAL-C, designed to combine the reasoning capa- 658

bilities of LLMs with search strategies to achieve 659

efficient and accurate problem-solving. Extensive 660

experiments conducted on three real-world plan- 661

ning tasks demonstrate that SEAL achieves near- 662

perfect pass rates across various settings while sig- 663

nificantly reducing search spaces, showcasing the 664

effectiveness and efficiency of SEAL. Furthermore, 665

we also explore how search can benefit LLMs, eval- 666

uating whether LLMs can develop self-search ca- 667

pabilities. We show that search significantly en- 668

hances their reasoning and learning performance. 669

These findings highlight the bidirectional synergy 670

between search and learning, emphasizing the po- 671

tential of integrating search into LLMs. 672

Our research paves the way for further explo- 673

ration into the convergence of search and learning. 674

Future work will focus on investigating how LLMs 675

can better conduct self-searches, further unlocking 676

their potential for complex problem-solving. 677

8



8 Limitations678

One potential limitation of this work is the neces-679

sity of encoding our search strategies into prompts680

to enable LLMs to perform self-search. In the fu-681

ture, it is worth exploring how to allow LLMs to682

autonomously conduct self-search during reason-683

ing without explicit supervision within the prompts.684

Additionally, our work primarily focuses on LLMs;685

an important direction for future investigation is686

to assess the applicability of our search strategy to687

multi-modal LLMs.688

9 Impact Statements689

This paper introduces SEAL and SEAL-C, frame-690

works designed to enhance search processes by in-691

tegrating the reasoning capabilities of LLMs with692

structured search strategies. The potential societal693

impacts of this research are broad but largely align694

with the established consequences of improving695

computational problem-solving techniques. En-696

hanced search efficiency and the ability to leverage697

LLMs for self-search could benefit applications698

in diverse fields such as healthcare, logistics, ed-699

ucation, and robotics, where intelligent decision-700

making is crucial. However, as with all advance-701

ments in AI, there are ethical considerations. For702

example, the misuse of improved search strategies703

in domains such as automated surveillance or ad-704

versarial systems could lead to privacy or security705

concerns. We encourage researchers and practition-706

ers to apply this work responsibly and ensure it707

aligns with ethical guidelines. We see no imme-708

diate risks or unintended negative consequences709

specific to this work that require urgent attention.710

This paper primarily contributes to foundational711

research in search and learning integration. Future712

exploration of self-search capabilities in LLMs will713

include careful assessment of ethical implications714

to ensure responsible development and deployment715

of these technologies.716

References717

Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi718
Sun, Meliha Yetisgen, Fei Xia, and Thomas Lin.719
2024. Medec: A benchmark for medical error detec-720
tion and correction in clinical notes. arXiv preprint721
arXiv:2412.19260.722

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama723
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,724
Diogo Almeida, Janko Altenschmidt, Sam Altman,725

Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 726
arXiv preprint arXiv:2303.08774. 727

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger- 728
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz 729
Lehmann, Michał Podstawski, Hubert Niewiadomski, 730
Piotr Nyczyk, and Torsten Hoefler. 2024. Graph of 731
Thoughts: Solving Elaborate Problems with Large 732
Language Models. Proceedings of the AAAI Confer- 733
ence on Artificial Intelligence, 38(16):17682–17690. 734

Daniel Cao, Michael Katz, Harsha Kokel, Kavitha Srini- 735
vas, and Shirin Sohrabi. 2024. Automating thought 736
of search: A journey towards soundness and com- 737
pleteness. arXiv preprint arXiv:2408.11326. 738

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 739
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 740
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 741
Nakano, et al. 2021. Training verifiers to solve math 742
word problems. arXiv preprint arXiv:2110.14168. 743

Yves Crama, Antoon WJ Kolen, and EJ Pesch. 2005. 744
Local search in combinatorial optimization. Artificial 745
Neural Networks: An Introduction to ANN Theory 746
and Practice, pages 157–174. 747

Hongru Du, Jianan Zhao, Yang Zhao, Shaochong 748
Xu, Xihong Lin, Yiran Chen, Lauren M Gard- 749
ner, and Hao Frank Yang. 2024. Advancing real- 750
time pandemic forecasting using large language 751
models: A covid-19 case study. arXiv preprint 752
arXiv:2404.06962. 753

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, 754
Weinan Zhang, and Jun Wang. 2023. Alphazero-like 755
tree-search can guide large language model decoding 756
and training. In NeurIPS 2023 Foundation Models 757
for Decision Making Workshop. 758

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 759
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 760
ham Neubig. 2023. Pal: Program-aided language 761
models. In International Conference on Machine 762
Learning, pages 10764–10799. PMLR. 763

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 764
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 765
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 766
centivizing reasoning capability in llms via reinforce- 767
ment learning. arXiv preprint arXiv:2501.12948. 768

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen 769
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea- 770
soning with language model is planning with world 771
model. In Proceedings of the 2023 Conference on 772
Empirical Methods in Natural Language Processing, 773
pages 8154–8173. 774

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. 775
A formal basis for the heuristic determination of min- 776
imum cost paths. IEEE transactions on Systems Sci- 777
ence and Cybernetics, 4(2):100–107. 778

Richard Howey and Derek Long. 2003. The automatic 779
validation tool for pddl2. 780

9

https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=PJfc4x2jXY
https://openreview.net/forum?id=PJfc4x2jXY
https://openreview.net/forum?id=PJfc4x2jXY
https://openreview.net/forum?id=PJfc4x2jXY
https://openreview.net/forum?id=PJfc4x2jXY


Aaron Hurst, Adam Lerer, Adam P Goucher, Adam781
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-782
trow, Akila Welihinda, Alan Hayes, Alec Radford,783
et al. 2024. Gpt-4o system card. arXiv preprint784
arXiv:2410.21276.785

Ana Jojic, Zhen Wang, and Nebojsa Jojic. 2023. Gpt is786
becoming a turing machine: Here are some ways to787
program it. arXiv preprint arXiv:2303.14310.788

Michael Katz, Harsha Kokel, Kavitha Srinivas, and789
Shirin Sohrabi. 2024. Planning with language mod-790
els through the lens of efficiency. NeurIPS.791

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri792
Edwards, Bowen Baker, Teddy Lee, Jan Leike,793
John Schulman, Ilya Sutskever, and Karl Cobbe.794
2023. Let’s verify step by step. arXiv preprint795
arXiv:2305.20050.796

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,797
Shiqi Zhang, Joydeep Biswas, and Peter Stone.798
2023. Llm+ p: Empowering large language mod-799
els with optimal planning proficiency. arXiv preprint800
arXiv:2304.11477.801

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,802
Delip Rao, Eric Wong, Marianna Apidianaki, and803
Chris Callison-Burch. 2023. Faithful chain-of-804
thought reasoning. In IJCNLP-AACL, pages 305–805
329.806

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and807
Yue Wang. 2023. Gpt-driver: Learning to drive with808
gpt. arXiv preprint arXiv:2310.01415.809

OpenAI. 2024. Openai o1 system card.810

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-811
riz Borges, Antoine Bosselut, Robert West, and Boi812
Faltings. 2023. Refiner: Reasoning feedback on in-813
termediate representations. In EACL 2024, Malta.814

Qwen. 2024a. Qwen2.5: A party of foundation models.815

Qwen. 2024b. Qwq: Reflect deeply on the boundaries816
of the unknown.817

Noah Shinn, Federico Cassano, Ashwin Gopinath,818
Karthik Narasimhan, and Shunyu Yao. 2024. Re-819
flexion: Language agents with verbal reinforcement820
learning. Advances in Neural Information Process-821
ing Systems, 36.822

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B823
Tenenbaum, Leslie Kaelbling, and Michael Katz.824
2024. Generalized planning in pddl domains with825
pretrained large language models. In Proceedings826
of the AAAI Conference on Artificial Intelligence,827
volume 38, pages 20256–20264.828

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-829
mar. 2024. Scaling llm test-time compute optimally830
can be more effective than scaling model parameters.831
arXiv preprint arXiv:2408.03314.832

Richard Sutton. 2019. The bitter lesson. Blog post. 833
Accessed: Augsust 2024. 834

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran- 835
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell, 836
Geoffrey Irving, and Irina Higgins. 2022. Solv- 837
ing math word problems with process-and outcome- 838
based feedback. arXiv preprint arXiv:2211.14275. 839

Karthik Valmeekam, Matthew Marquez, Sarath Sreed- 840
haran, and Subbarao Kambhampati. 2023. On the 841
planning abilities of large language models-a criti- 842
cal investigation. Advances in Neural Information 843
Processing Systems, 36:75993–76005. 844

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, 845
and Subbarao Kambhampati. 2022. Large language 846
models still can’t plan (a benchmark for llms on plan- 847
ning and reasoning about change). In NeurIPS 2022 848
Foundation Models for Decision Making Workshop. 849

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian 850
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a. 851
Litesearch: Efficacious tree search for llm. arXiv 852
preprint arXiv:2407.00320. 853

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, 854
Jujie He, Shuicheng Yan, and Bo An. 2024b. Q*: 855
Improving multi-step reasoning for llms with deliber- 856
ative planning. arXiv preprint arXiv:2406.14283. 857

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 858
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 859
and Denny Zhou. 2023. Self-consistency improves 860
chain of thought reasoning in language models. In 861
The Eleventh International Conference on Learning 862
Representations. 863

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, 864
Le Hou, Hongkun Yu, and Jingbo Shang. 2024c. 865
Multi-step problem solving through a verifier: An 866
empirical analysis on model-induced process super- 867
vision. arXiv preprint arXiv:2402.02658. 868

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 869
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 870
et al. 2022. Chain-of-thought prompting elicits rea- 871
soning in large language models. Advances in neural 872
information processing systems, 35:24824–24837. 873

Sean Welleck, Ximing Lu, Peter West, Faeze Brah- 874
man, Tianxiao Shen, Daniel Khashabi, and Yejin 875
Choi. 2023. Generating sequences by learning to 876
self-correct. In The Eleventh International Confer- 877
ence on Learning Representations. 878

Hengjia Xiao and Peng Wang. 2023. Llm a*: Human 879
in the loop large language models enabled a* search 880
for robotics. arXiv preprint arXiv:2312.01797. 881

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 882
Thomas L. Griffiths, Yuan Cao, and Karthik 883
Narasimhan. 2023a. Tree of Thoughts: Deliber- 884
ate problem solving with large language models. 885
Preprint, arXiv:2305.10601. 886

10

https://cdn.openai.com/o1-system-card.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601


Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak887
Shafran, Karthik R Narasimhan, and Yuan Cao.888
2023b. React: Synergizing reasoning and acting889
in language models. In ICLR.890

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large891
language models as commonsense knowledge for892
large-scale task planning. Advances in Neural Infor-893
mation Processing Systems, 36.894

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,895
Nathan Scales, Xuezhi Wang, Dale Schuurmans,896
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.897
Chi. 2023. Least-to-most prompting enables com-898
plex reasoning in large language models. In The899
Eleventh International Conference on Learning Rep-900
resentations.901

11



Appendix Overview902

• Appendix A: Related Work.903

• Appendix B: More details of Preliminary Analy-904

sis.905

• Appendix C: Algorithm.906

• Appendix D: Additional Details of SEAL and907

SEAL-C.908

• Appendix E: Additional Details of Self-Search.909

• Appendix F: Code.910

• Appendix G: Experimental Settings.911

• Appendix H: Full Analysis of RQ1: Effective-912

ness and Efficiency Evaluations.913

• Appendix I: Additional Experimental Results of914

SEAL.915

• Appendix J: Additional Experimental Results of916

SEAL-C.917

• Appendix K: Additional Details of Problem-918

solving Processes of LRMs.919

• Appendix L: Additional Experimental Results920

of Ablation Studies.921

A Full Details of Related Works922

A.1 LLM-based Search Methods923

Recent advancements in test-time compute scaling924

have sparked growing interest in methods that en-925

able LLMs to simulate search processes and “think926

longer” instead of directly generating answers in927

one pass. Several works (Wang et al., 2023; Hao928

et al., 2023; Feng et al., 2023; Yao et al., 2023a;929

Zhao et al., 2024; Besta et al., 2024; Wang et al.,930

2024a; Snell et al., 2024) adopt such approaches to931

enhance LLMs’ problem-solving capabilities. Self-932

Consistency (Wang et al., 2023) employs major-933

ity voting over multiple sampled reasoning chains,934

based on the intuition that the solutions for com-935

plex problems are rarely unique. Similarly, Best-936

of-N (Snell et al., 2024) samples multiple outputs937

and selects the highest-scoring solution using a938

learned verifier or reward model (Cobbe et al.,939

2021; Lightman et al., 2023). RAP (Hao et al.,940

2023) uses LLMs as heuristic policy functions to941

guide Monte Carlo Tree Search (MCTS), treating942

LLMs as world models for state exploration. Tree943

of Thoughts (ToT) (Yao et al., 2023a) simulates a 944

search tree with LLM-guided node expansion and 945

pruning, while Graph of Thoughts (GoT) (Besta 946

et al., 2024) generalizes this approach by modeling 947

the search space as a graph. Despite their innova- 948

tion, these methods rely solely on LLMs’ intrinsic 949

knowledge, often leading to unstable performance 950

due to limitations in LLMs’ reasoning capabilities. 951

In contrast, our proposed SEAL integrates LLMs 952

with traditional search strategies, ensuring both 953

completeness and efficiency in solving decision- 954

making tasks. 955

A.2 Traditional Search Methods 956

Traditional search methods have been extensively 957

utilized in tasks such as combinatorial optimiza- 958

tion (Crama et al., 2005) and pathfinding (Hart 959

et al., 1968). Among these, brute-force search is 960

regarded as a general yet powerful approach (Sut- 961

ton, 2019), offering guaranteed solutions through 962

exhaustive exploration of the search space. How- 963

ever, this method also suffers from the large search 964

space in complex problems. Inspired by the re- 965

cent discussion about search and learning (Sutton, 966

2019), which underscores the enduring value of 967

general-purpose strategies that scale with computa- 968

tional power, we investigate how to better integrate 969

search with learning to leverage the strengths of 970

both paradigms. Our SEAL and SEAL-C draw in- 971

spiration from traditional search while incorporat- 972

ing LLM-guided reasoning to reduce search space, 973

thereby significantly enhancing efficiency without 974

sacrificing completeness. 975

A.3 LLMs for Planning and Decision-Making 976

Planning and decision-making involve devising 977

strategic action sequences to achieve predefined 978

goals from given initial states. While classical plan- 979

ning problems rely on algorithms such as brute- 980

force search and A* (Hart et al., 1968) for optimal 981

plan generation, recent advancements demonstrate 982

that LLMs can leverage their extensive common- 983

sense knowledge for planning (Valmeekam et al., 984

2023; Xiao and Wang, 2023; Yao et al., 2023b). 985

For example, LLM A* (Xiao and Wang, 2023) inte- 986

grates LLMs into the A* algorithm by using them 987

to generate intermediate waypoints, improving ef- 988

ficiency in robotics and navigation tasks. Other 989

works (Lyu et al., 2023; Jojic et al., 2023; Liu 990

et al., 2023; Katz et al., 2024; Cao et al., 2024) 991

exploit LLMs’ programming abilities for planning 992

tasks. For instance, LLM+P (Liu et al., 2023) trans- 993

12



lates task instructions into Planning Domain Def-994

inition Language (PDDL) and solves them using995

classical algorithms like A*. Thoughts of Search996

(ToS) (Katz et al., 2024) uses LLMs to generate997

planning code with human feedback, while Au-998

toToS (Cao et al., 2024) automates this loop by999

enabling LLMs to validate and revise their own1000

code.1001

A.4 Reasoning with LLMs1002

Chain-of-Thoughts (CoT) (Wei et al., 2022) was1003

the first major breakthrough revealing that LLMs1004

can formulate multi-step reasoning processes by1005

using explicit prompts like “Let’s think step by1006

step.” Follow-up works (Wang et al., 2023; Yao1007

et al., 2023b; Zhou et al., 2023; Welleck et al.,1008

2023; Shinn et al., 2024; Paul et al., 2023) further1009

build on this paradigm. ReAct (Yao et al., 2023b)1010

integrates reasoning with planning, interleaving rea-1011

soning steps with dynamic interactions. PAL (Gao1012

et al., 2023) enhances CoT by leveraging LLMs’1013

programming abilities, guiding them to generate1014

executable code during reasoning. Several recent1015

approaches (Welleck et al., 2023; Shinn et al., 2024;1016

Paul et al., 2023) introduce self-evaluation capa-1017

bilities, enabling LLMs to provide feedback on1018

their intermediate reasoning steps. In this work, we1019

systematically study how LLMs’ reasoning capa-1020

bilities can complement traditional search methods,1021

enabling accurate and efficient problem-solving1022

through our proposed SEAL framework.1023

B More details of Preliminary Analysis1024

B.1 Full Analysis: How Learning can Benefit1025

Search1026

The analysis in Sec.3.3 highlights the limitations of1027

existing search methods and underscores the need1028

for a more effective search-and-learning frame-1029

work. To better understand how learning can en-1030

hance search, we divide the 100 problems from1031

the Game of 24 into three difficulty levels based1032

on human success rates2. Other experimental set-1033

tings follow those in Sec. 3.1. Our experimental1034

results, presented in Fig. 1, reveal several key find-1035

ings regarding the performance of existing search1036

methods. Overall, we observe that (i) the pass rates1037

of LLM-based methods decrease as difficulty in-1038

creases, and (ii) while LLM-based searches require1039

fewer search steps, they generally achieve lower1040

pass rates compared to traditional approaches.1041

2https://www.4nums.com/game/difficulties/

Obs. 1: LLMs Perform Better for Simpler 1042

Problems.. Our analysis demonstrates that LLM- 1043

based methods achieve notably higher pass rates 1044

on less complex tasks. As illustrated in Fig. 1(a), 1045

VANILLA COT attains pass rates of 18.2%, 12.1%, 1046

and 11.7% for problems with difficulty levels 1, 1047

2, and 3, respectively. This pattern suggests that 1048

LLMs excel at direct problem-solving for simpler 1049

cases, indicating their potential for single-step so- 1050

lutions rather than requiring iterative approaches. 1051

More examples are provided in Fig. 5. 1052

Obs. 2: Learning-Based Pruning Has Precision- 1053

Coverage Trade-offs.. Among these LLM-based 1054

search methods, BEAM SEARCH achieves superior 1055

performance in pass rate. Specifically, according to 1056

Fig. 1(a), BEAM SEARCH achieves up to a 48.5% 1057

pass rate, while other LLM-based methods only 1058

achieve up to a 33% pass rate. In addition, as 1059

in Fig. 1(b), BEAM SEARCH significantly saves 1060

92.4% SS than BRUTE-FORCE (DFS). To deeply 1061

analyze this observation, we present an example of 1062

BEAM SEARCH in solving this task in Fig. 6. From 1063

this figure, we observe that in each time of generat- 1064

ing next intermediate steps, it only relies on LLMs 1065

to generate a few of possible next steps instead 1066

of decomposing all possible states in brute-force 1067

searches, which significantly reduces the search 1068

space and improves search efficiency. However, we 1069

also observe from Fig. 6 that it is possible that some 1070

valid states are overlooked during the intermediate 1071

step generation, leading to failure in solving tasks 1072

and reflecting a trade-off between efficiency and 1073

completeness in search. 1074

Obs. 3: Learning Provides Adaptive Search 1075

Guidance.. As in Fig. 1(a), compared with 1076

VANILLA COT, other LLM-based methods per- 1077

form better. Specifically, VANILLA COT only 1078

achieve up to 18.2% pass rate, while MAJORITY 1079

VOTE, BEST-OF-N and BEAM SEARCH achieve 1080

up to 29.4%, 33.3% and 48.5% prateates, respec- 1081

tively. We analyze that this performance gap is 1082

because these LLM-based methods spend more 1083

search budget in verifying results via LLMs accord- 1084

ing to Fig. 1, demonstrating LLMs’ capability as 1085

dynamic evaluators to leverage learned knowledge 1086

to identify promising states and guide the search 1087

process. Fig. 7 is an example of BEAM SEARCH 1088

leveraging this observation, where BEAM SEARCH 1089

employs an LLM verifier to assess intermediate 1090

states’ progress toward the goal, prioritizing explo- 1091

ration of valid states and avoiding further explo- 1092

ration on other states. However, we also notice that 1093

13



some valid states are overlooked mistakenly. This1094

implies that further improvements are needed to1095

ensure critical states are not omitted.1096

These findings suggest that learning can substan-1097

tially improve search efficiency when properly inte-1098

grated into the search process. However, they also1099

highlight the need for careful mechanism design to1100

balance the benefits of learning-based pruning with1101

the completeness guarantees of traditional search.1102

This motivates our development of a systematic1103

framework for learning-enhanced search.1104

B.2 Illustrative Examples1105

Fig. 5, 6, and 7 provide the illustrative examples1106

of the observations presented in Sec. 3.2. The full1107

analyses are provided in Appendix B.1. Detailed1108

explanations of these examples can be found in the1109

respective figure captions. Specifically:1110

• Fig. 5 illustrates Observation 1 in Sec. 3.2.1111

• Fig. 6 presents examples of Observation 2 in1112

Sec. 3.2.1113

• Fig. 7 demonstrates Observation 3 in Sec. 3.2.1114

B.3 Full Analysis: Existing Search Algorithms1115

As discussed in Sec. 1, while existing search al-1116

gorithms show significant promise, they still en-1117

counter notable challenges. Traditional search al-1118

gorithms, while thorough, suffer from inefficiency1119

due to exhaustive exploration of the state space S.1120

They lack the human-like ability to quickly iden-1121

tify promising paths or recognize dead ends. Con-1122

versely, LLM-based search methods, while more1123

efficient, struggle with reliability. They heavily1124

rely on LLMs’ reasoning capabilities, which can1125

be unstable or incomplete, particularly in complex1126

scenarios requiring careful exploration of multiple1127

solution paths.1128

To better illustrate these limitations, we con-1129

duct an analysis based on the experimental setup1130

in Sec.3.1, applying existing search algorithms to1131

the Game of 24 task. The results are reported1132

in Table 1, revealing the following insights: (i)1133

Traditional brute-force algorithms achieve perfect1134

100% accuracy but require up to 3,429 search steps,1135

demonstrating their inefficiency in searching for an-1136

swers. (ii) While LLM-based methods significantly1137

reduce the search space (at least 92.4% fewer steps1138

than BRUTE-FORCE (DFS)), their pass rates peak1139

at only 35%, highlighting their instability com-1140

pared to traditional searches.1141

These findings underscore the necessity of a 1142

framework that combines the completeness of sys- 1143

tematic search with the efficiency of learning-based 1144

approaches. This motivates the development of a 1145

more effective search-and-learning methodology to 1146

address these limitations. 1147

C Algorithm 1148

The algorithm of SEAL is provided in Alg. 1. This 1149

design allows SEAL to systematically integrate 1150

learning into the search process, reducing unneces- 1151

sary state exploration and improving scalability for 1152

complex problems. 1153

The algorithm of SEAL-C is provided in Alg. 2. 1154

This design removes the state validity checking to 1155

prevent it from compromising completeness. We 1156

use the learning-guided complete state decomposi- 1157

tion and two-phase ranking to improve the search 1158

efficiency. 1159

D Additional Details of SEAL and 1160

SEAL-C 1161

D.1 Prompt Templates of Direction Solution 1162

Generation 1163

We present the examples of using psolve to directly 1164

generate solution for Game of 24 and Mini Cross- 1165

words in Table 8 and Table 9. 1166

D.2 Prompt Templates of State Validity 1167

Checking 1168

We present an example of using pc to check state 1169

validity for Game of 24 in Table 10. 1170

D.3 Prompt Templates of Learning-guided 1171

Ranking 1172

We present an example of using pv to generate 1173

LLM-estimated score for the states in Game of 24 1174

in Table 11. 1175

E Additional Details of Self-Search 1176

To systematically explore the impact of search on 1177

LLMs and whether LLMs can develop search ca- 1178

pabilities on their own, we consider two types of 1179

self-search prompts: 1180

• High-level self-search: In this approach, we 1181

prompt the LLMs to solve problems through 1182

search without specifying which search method 1183

to use. This means the LLMs must rely solely 1184

on their intrinsic knowledge and reasoning capa- 1185

bilities. We compare this method with VANILLA 1186

14



Input: 4 5 6 10

Answer: (10 - 6) * 5 + 4 = 24 

Input: 4 6

Answer: 4 * 6 = 24

Input: 5 5 8 10

Answer: (10 - 5) + (5 * 5)= 24 

LLM

LLMs excel at solve simpler 
problems in one step but may 
fail when solve more difficult 
problems

Figure 5: Illustrative examples of Observation 1 in Sec. 3.2. This figure presents three examples of calculating 24
from intermediate steps in the Game of 24 task. The green answer represents a correct equation that results in 24,
whereas the red answer represents an incorrect equation that does not equal 24. We observe that LLMs perform well
in solving simple tasks in one step, such as 4× 6 = 24 and (10− 6)× 5 + 4 = 24, but struggle with more complex
tasks in a single step (e.g., the third example, where the model fails to find a solution using numbers 5, 5, 8, and 10).

Next state: 6 9

Input: 3 3 9

Next state: 3 6 Next state: 9 9 

LLM

Next state: 9 9 

Next state: 3 12

However, LLMs may 
also ignore valid 
states, causing errors.

Next state: 5 5

Input: 1 4 5

Next state: 4 4 Next state: 1 1

LLM

Next state: 4 6

LLMs can generate a 
few states that 
include the valid 
state, significantly 
reduce search space

❌

Figure 6: Illustrative examples of Observation 2 in Sec. 3.2. This figure presents two examples of using BEAM
SEARCH for state decomposition to generate the next substates in the game of 24 task. Specifically, the method
selects two numbers from the input set and applies a basic arithmetic operation (+,−,×,÷) to produce a new set of
numbers. The green next state represents an intermediate state that can lead to 24, whereas the red next state denotes
an invalid intermediate state that cannot lead to 24. The left example demonstrates that LLMs can generate a few
valid next steps (e.g., selecting 4, 6 in this case) rather than exhaustively decomposing all possible states through
brute-force search. The right example illustrates that LLMs may sometimes overlook valid states and produce only
invalid decomposed states.

COT to assess the importance of search in LLM1187

problem-solving. We show this prompt in Table1188

12.1189

• Low-level self-search: In this approach, we ex-1190

plicitly encode the search strategy of SEAL into1191

the prompt. This method allows us to explore1192

whether LLMs can perform self-search and fur-1193

ther demonstrate the effectiveness of SEAL in1194

improving LLM reasoning for problem-solving.1195

We show this prompt in Table 13.1196

F Code1197

We will release our code at: https://anonymous.1198

4open.science/r/SeaL-B5B2.1199

G Experimental Settings1200

G.1 Task setup1201

In this subsection, we introduce the three tasks1202

used in our experiments. To demonstrate the fea-1203

sibility of SEAL in various realistic applications,1204

we conduct experiments on Game of 24 (Yao et al.,1205

2023a), Mini crosswords (Yao et al., 2023a) and1206

Blocksworld (Valmeekam et al., 2022).1207

Game of 24 (Yao et al., 2023a). This task is a math- 1208

ematical reasoning challenge where the objective 1209

is to use four numbers and basic arithmetic oper- 1210

ations (+-*/) to obtain the value 24. For example, 1211

given the numbers “1 3 3 7”, a valid solution is 1212

“1 × 3 × 7 + 3 = 24”. The dataset used in this 1213

task is publicly available 3. In our experiments, we 1214

follow the setup described in (Yao et al., 2023a), 1215

selecting 100 groups of four numbers indexed from 1216

900 to 999 as the target problems. To evaluate the 1217

effectiveness of the search methods, we compute 1218

the pass rate (PR) over these 100 problems. Addi- 1219

tional details regarding the evaluation metrics are 1220

provided in Appendix G.4. 1221

Mini Crosswords (Yao et al., 2023a). This task, 1222

introduced by(Yao et al., 2023a), involves solving 1223

a 5× 5 mini crossword puzzle. Specifically, given 1224

five horizontal clues and five vertical clues, the aim 1225

is to fill a 25-letter grid. We adopt the experimental 1226

setup from (Cao et al., 2024), wherein each clue 1227

is accompanied by a fixed-length list of candidate 1228

words. The agent selects words from the list based 1229

on the textual descriptions of the clues. The list 1230

lengths range from {6, 7, 8, 9, 10, 11} words. To 1231

3https://www.4nums.com/game/difficulties/

15

https://anonymous.4open.science/r/SeaL-B5B2
https://anonymous.4open.science/r/SeaL-B5B2
https://anonymous.4open.science/r/SeaL-B5B2
https://www.4nums.com/game/difficulties/


Next state: 
4 4 5

Input: 4 5 6 10

LLM

LLMs can use their 
learning and 
reasoning capability 
to prioritize exploring 
valid states and filter 
out invalid states

Next state: 
4 5 6

Next state: 
5 6 6

Next state: 
5 10 10

Score: 0.7 Score: 0.4 Score: 0.4 Score: 0.1

❌

Next state: 
6 9 10

Input: 4 6 6 9

LLM

However, LLMs may 
mistakenly give low 
priority score to valid 
states, further leading 
to the filtering out of 
valid states

Next state: 
4 6 15

Next state: 
2 6 9

Next state: 
5 6 6

Score: 1 Score: 0.7 Score: 0.4 Score: 0.1

❌

Figure 7: Illustrative examples of Observation 3 in Sec. 3.2. This figure presents two examples of using an LLM
as a verifier to assess intermediate states’ progress toward the goal of 24 in the Game of 24 task. The green next
state represents an intermediate state that can lead to 24, whereas the red next state denotes an invalid intermediate
state that cannot lead to 24. In the left example, given the input numbers 4, 5, 6, 10, the LLM effectively assigns
high scores to valid next states (e.g., 4, 4, 5 with a score of 0.7, where 4× 5 + 4 = 24) and low scores to invalid
next states (e.g., 5, 10, 10 with a score of 0.1, which cannot achieve 24). In contrast, the right example, given
the input numbers 4, 6, 6, 9, demonstrates that LLMs may mistakenly assign high priority scores to invalid states.
For instance, 6, 9, 10 receives the highest score of 1 but cannot achieve 24. This highlights the need for further
improvements to ensure that critical states are not overlooked.

generate these word lists, we utilize GPT-4o (Hurst1232

et al., 2024) to produce candidate words that either1233

share similar meanings with or have more than1234

two matching letters in common with the ground-1235

truth words. Details regarding the prompts used1236

to generate these candidate words are provided in1237

Table 14.1238

Blocksworld (Valmeekam et al., 2022). In this1239

task, the agent must rearrange blocks into specific1240

stacked configurations. A state represents the cur-1241

rent arrangement of the blocks, while an action1242

is a command that manipulates them. Each ac-1243

tion consists of one of four verbs—STACK, UN-1244

STACK, PUT, or PICKUP—along with the corre-1245

sponding objects. The action space is defined by1246

the set of valid actions that comply with the do-1247

main constraints and depend on the current state1248

of the blocks. The agent transitions between states1249

by selecting an action and querying the LLM to1250

predict the resulting changes in the block config-1251

uration. The state is then updated by incorporat-1252

ing new conditions for the blocks and removing1253

any conditions that are no longer valid. To eval-1254

uate plan correctness, we convert both the gener-1255

ated plans and their corresponding textual problem1256

descriptions into the Planning Domain Definition1257

Language (PDDL) (Silver et al., 2024) format. We1258

then use VAL (the Automatic Validation Tool for1259

PDDL) (Howey and Long, 2003) to assess their1260

validity.1261

Note that these tasks mainly belong to the of-1262

fline planning scenario. However, we posit that our1263

method is also applicable to online planning scenar-1264

ios, where plans are dynamically updated during1265

interactions. We aim to explore the application of 1266

our approach to such tasks in future work. 1267

G.2 Baselines 1268

Traditional search methods. 1269

• BRUTE-FORCE (DFS): Depth-First Search 1270

(DFS) explores each possible solution path by 1271

diving deeply into one branch before backtrack- 1272

ing to explore others. 1273

• BRUTE-FORCE (BFS): Breadth-First Search 1274

(BFS) systematically explores all intermediate 1275

steps at a given depth before progressing to the 1276

next level, ensuring all possibilities are consid- 1277

ered at each step. 1278

• BRUTE-FORCE (DFS-PRUNE): This is a variant 1279

of DFS. Specifically, when encountering previ- 1280

ously visited states, this method skips their ex- 1281

ploration. As a result, it improves the search 1282

efficiency of BRUTE-FORCE (DFS) by reducing 1283

the search space. 1284

• BRUTE-FORCE (BFS-PRUNE): This is a vari- 1285

ant of BFS. Similar to BRUTE-FORCE (DFS- 1286

PRUNE), it also skips the exploration of previ- 1287

ously visited states, thereby reducing the search 1288

space. 1289

LLM-based search methods. 1290

• BEST-OF-N (Snell et al., 2024): In this approach, 1291

we independently sample N answers from the 1292

base LLM and select the best answer according 1293

to the Process Reward Model (PRM)’s final an- 1294

swer judgment. Especially, we follow the setting 1295

16



Algorithm 1 Algorithm of SEAL.

Input: Initial state sinit, goal state sgoal, Lan-
guage Model LLM , external verifier f .

Output: Action sequence A transforming sinit to
sgoal

function F(scur, M , f , Acur)
pcur ← P1(s

cur) // State validity check
if pcur then

return rcur

end if
rcur ← M(cur) // Direct Solution Genera-
tion
if f(rcur) then

return rcur // rcur ∈ sgoal if rcur is cor-
rectly verified by f

end if
Snext ← {snext1 , snext2 , ...}, Anc ←
{anext1 , anext2 , ...} // Decompose scur into sub-
states Snext with correcsponding actions Anc

while Snext ̸= ∅ do
S′next ← Rank(Snext)
snexti ← S′next[0] // Select most possible
state snexti from S′next

Anext = Acur + [anexti ]
rnext ← F(snexti ,M, f,Anext)
if rnext ̸= None then

return rnext

end if
Remove snexti from S

′next

end while
return None

end function
A ← []
A ← F (sinit,M, F,A)

in (Yao et al., 2023a; Hao et al., 2023; Lightman1296

et al., 2023) to use an LLM as the PRM.1297

• MAJORITY VOTE (Wang et al., 2023): This1298

method is inspired by the intuition that solutions1299

for complex problems are rarely unique. We1300

generate N = 10 outputs using the LLM and de-1301

termine the final result by selecting the majority-1302

voted answer among them. This leverages the1303

consensus across multiple outputs to improve ac-1304

curacy and robustness.1305

• BEAM SEARCH (Yao et al., 2023a): Beam search1306

optimizes the PRM by focusing on its per-step1307

predictions to identify the most promising solu-1308

tion paths. Following (Snell et al., 2024), we1309

Algorithm 2 Algorithm of SEAL-C.

Input: Initial state sinit, goal state sgoal, Lan-
guage Model LLM , external verifier f .

Output: Action sequence A transforming sinit to
sgoal

function F(scur, M , f , Acur)
rcur ← M(cur) // Direct Solution Genera-
tion
if f(rcur) then

return rcur // rcur ∈ sgoal if rcur is cor-
rectly verified by f

end if
Snext ← {snext1 , snext2 , ...}, Anc ←
{anext1 , anext2 , ...} // Learning-guided Com-
plete State Decomposition
while Snext ̸= ∅ do

S′next ← Rank(Snext) // Two phase state
ranking
snexti ← S′next[0] // Select most possible
state snexti from S′next

Anext = Acur + [anexti ]
rnext ← F(snexti ,M, f,Anext)
if rnext ̸= None then

return rnext

end if
Remove snexti from S

′next

end while
return None

end function
A ← []
A ← F (sinit,M, F,A)

implement a beam search variant based on the 1310

BFS-based Tree of Thought (ToT) framework 1311

from (Yao et al., 2023a). Specifically, we main- 1312

tain a beam width M = 5 for the three tasks. 1313

• BEAM SEARCH+RV: While standard LLM- 1314

based search methods rely solely on the LLM to 1315

obtain the final answers, which is prone to halluci- 1316

nation and scoring misalignment. Inspired by the 1317

direct solution generation of SEAL introduced 1318

in Sec. 3.4, we implement BEAM SEARCH+RV, 1319

which integrates a rule-based verifier into the 1320

final decision stage. The framework mirrors stan- 1321

dard beam search in its iterative path expansion 1322

and scoring but diverges in the terminal step: in- 1323

stead of selecting the answer with the highest 1324

PRM score, the rule-based verifier applies de- 1325

terministic constraints (e.g., task-specific logical 1326

checks) to identify admissible solutions. BEAM 1327

17



SEARCH+RV fails to solve the problem if no1328

candidate satisfies the verification rules.1329

G.3 Language Models1330

To investigate the feasibility of embodying LLMs1331

into search, we consider several close-sourced and1332

open-sourced LLMs offering state-of-the-art rea-1333

soning capabilities:1334

• GPT-4o (Hurst et al., 2024): This model is a1335

widely recognized LLM with strong general-1336

purpose reasoning capabilities, making it a stan-1337

dard LLM for evaluating search methods.1338

• GPT-4o-mini (Achiam et al., 2023): This is a1339

small version of GPT-4o, which has 8B param-1340

eters according to (Abacha et al., 2024). This1341

model is included to explore the potential of1342

using Small Language Models (SLMs) within1343

SEAL, particularly to demonstrate its applicabil-1344

ity in resource-constrained scenarios.1345

• Qwen2.5-72B-Instruct (Qwen, 2024a): This1346

is a representative state-of-the-art open-sourced1347

LLMs developed by Qwen Team. It excels1348

in tasks requiring logical deduction, problem-1349

solving, and multi-step reasoning. The model1350

has been fine-tuned to align with user instruc-1351

tions, making it versatile for various applications,1352

from natural language understanding to complex1353

decision-making tasks.1354

• QwQ-32B-Preview (Qwen, 2024b): This is1355

an experimental, state-of-the-art LRM with ex-1356

ceptional logical reasoning and mathematical1357

problem-solving skills. Our experiments reveal1358

that this model explicitly conducts search pro-1359

cesses by trying different choices. However, as1360

mentioned in (Qwen, 2024b), we also notice that1361

this model may enter circular reasoning patterns,1362

leading to lengthy responses without a conclusive1363

answer. Thus, we involve this model in our exper-1364

iments to highlight the importance of search in1365

LLM reasoning and the effectiveness of SEAL’s1366

search strategy.1367

• DeepSeek-R1 (Guo et al., 2025): The latest open-1368

source LRM, comparable to OpenAI’s o1 (Ope-1369

nAI, 2024). Similar to QwQ-32B-Preview, this1370

model demonstrates explicit search behavior in1371

generating results, further validating the rele-1372

vance of search methods in improving LLM rea-1373

soning.1374

G.4 Evaluation Metrics 1375

In this subsection, we give the details of the eval- 1376

uation metrics used in three tasks, which evaluate 1377

the performance of the search methods from the 1378

perspectives of effectiveness and efficiency. 1379

Pass Rate (PR). This metric evaluates the solution 1380

quality to evaluate the problem-solving capability 1381

of the search methods. The following is how to 1382

calculate PR in the three tasks: 1383

• Game of 24: PR is calculated as the percentage 1384

of generated equations that utilize all the given 1385

numbers exactly once and correctly evaluate to 1386

24 across the given set of problems. 1387

• Crosswords: PR is evaluated at three levels: 1388

letter-level, word-level, and game-level. Letter- 1389

level PR measures the proportion of letters in 1390

the generated solutions that match exactly with 1391

the letters in the ground-truth board. Word- 1392

level PR evaluates the percentage of words in 1393

the generated solutions that correspond exactly 1394

to the ground-truth answers. Game-level PR 1395

measures the proportion of problems that are en- 1396

tirely solved, where a problem is considered com- 1397

pletely solved only if all letters in the generated 1398

solution match the ground-truth answer precisely. 1399

• Blockswords: PR is calculated by the percent- 1400

age of problems where the generated plans suc- 1401

cessfully achieve the goal within 120% of the 1402

minimum required steps. 1403

Search Steps (SS). This metric measures the 1404

search methods by counting traversed states in the 1405

search space S. To calculate this metric for our 1406

SEAL and SEAL-C, it is further broken down into 1407

the following components: 1408

• LLM Calls, which is composed of: 1409

– Number of LLM Answerer Calls: The num- 1410

ber of steps taken to directly obtain solu- 1411

tions via LLMs. 1412

– Number of State Validity Checking Calls: 1413

This refers to the number of steps taken to 1414

verify the validity of states. While LLMs 1415

are primarily used for state validity check- 1416

ing, we also employ traditional rule-based 1417

methods in certain tasks to ensure complete- 1418

ness. 1419

– Number of State Ranking Calls: The num- 1420

ber of steps taken to rank states. 1421

18



• External Calls, which is composed of:1422

– Number of Decomposition Calls: The num-1423

ber of steps used for state decomposition.1424

– Number of External Verifier Calls: The1425

number of steps used to call the external1426

verifier for validating solutions.1427

For BEAM SEARCH and BEST-OF-N, the metric1428

can be broken down into:1429

• LLM Calls:1430

– Number of LLM Answerer Calls: The num-1431

ber of steps taken to obtain the next-level1432

intermediate steps.1433

– Number of LLM Verifier Calls: The num-1434

ber of steps where the LLM is called as an1435

external verifier for intermediate step evalu-1436

ation.1437

For MAJORITY VOITE, the metric can be bro-1438

ken down into:1439

• LLM Calls:1440

– Number of LLM Answerer Calls: The num-1441

ber of steps taken to directly obtain solu-1442

tions.1443

For the traditional brute-force search methods,1444

DFS and BFS, the metric then can be broken down1445

into:1446

• External Calls:1447

– Number of Decomposition Calls: The1448

number of steps used to perform state1449

decomposition.1450

– Number of Trasversed States: The num-1451

ber of explored states, including both in-1452

termediate and final steps.1453

– Number of External Verifier Calls: The1454

number of steps where the external ver-1455

ifier is called to evaluate the final solu-1456

tions.1457

G.5 Implementation Details1458

Following the settings in prior studies (Yao et al.,1459

2023a; Hao et al., 2023; Snell et al., 2024), we1460

set the temperature for LLMs to 0.7. To use GPT-1461

4o (Hurst et al., 2024) and GPT-4o-mini (Achiam1462

et al., 2023), we set the mode as the Chat Comple-1463

tion modes for them. For DeepSeek-R1 (Guo et al.,1464

2025), we use the Chat mode to run experiments.1465

When using BEAM SEARCH, we follow the ap- 1466

proach from (Yao et al., 2023a) and prompt the 1467

LLM three times for each intermediate step, asking 1468

whether it was “sure,” “maybe,” or “impossible” 1469

to reach 24. We then averaged these responses to 1470

evaluate the intermediate steps. 1471

For the baseline search BEST-OF-N, we use the 1472

similar setup to BEAM SEARCH. We evaluate the 1473

N solutions at the three levels mentioned above 1474

and determine the final result by averaging the re- 1475

sponses. 1476

For our SEAL and SEAL-C, when checking the 1477

validity of states, such as in the Game of 24, we 1478

prompt the LLM five times to get five binary evalu- 1479

ations (“True/False”). The final decision is based 1480

on a majority vote to determine whether we should 1481

continue exploring or not. 1482

H Full Analysis of RQ1: Effectiveness 1483

and Efficiency Evaluations 1484

To answer RQ1, we conduct experiments on the 1485

three tasks using three different LLM backbones: 1486

GPT-4o-mini, GPT-4o, and Qwen2.5-72B-Instruct. 1487

For Game of 24, we follow (Yao et al., 2023a) 1488

to select 100 problems indexed from 900 to 999. 1489

For Mini Crosswords, we randomly choose 20 1490

problems with 11 candidate words for each clue, 1491

while for Blocksworld, we randomly select 20 prob- 1492

lems with a minimum solution length of 8 steps. 1493

The results are reported in Table 2. From the ta- 1494

ble, we observe: (i) SEAL achieves a near-perfect 1495

pass rate across all settings, outperforming other 1496

LLM-based methods, which achieve pass rates 1497

of up to 54.0%, 45.0%, and 47.4% for the three 1498

tasks, respectively. This validates the effectiveness 1499

of SEAL in problem-solving. (ii) SEAL signifi- 1500

cantly reduces search steps compared to brute-force 1501

searches. Specifically, it reduces search steps by 1502

up to 99.1% compared to DFS and still achieves 1503

state-of-the-art search steps compared to other 1504

LLM-based methods. This validates SEAL’s ef- 1505

ficiency in navigating the search space. (iii) BEAM 1506

SEARCH+RV achieves better pass rates than BEAM 1507

SEARCH, indicating that integrating rule-based ver- 1508

ifiers into LLM-based methods enhances their re- 1509

liability in problem-solving. However, it still falls 1510

behind SEAL, confirming that current LLM-based 1511

methods do not fully conduct real search. This fur- 1512

ther highlights the superior search effectiveness of 1513

SEAL. Full search results and the discussion of 1514

SEAL with various verifiers are in Appendix I. 1515

19



I Additional Experimental Results of1516

SEAL1517

I.1 Full Comparison Results on Three Tasks1518

using Various LLMs1519

We present the complete results of the compared1520

search methods using various LLM models for the1521

Game of 24, Mini Crosswords, and Blocksworld1522

tasks in Table 4, Table 5, and Table 6, respectively.1523

The results align with the observations discussed1524

in Sec. 6.2.1525

I.2 Impact of Verifier in Search with SEAL1526

In Sec. 3.4, we introduce the direct solution gener-1527

ation component of SEAL, which leverages LLMs1528

to generate solutions and uses a verifier f to evalu-1529

ate their correctness. The verifier can take various1530

forms, such as a traditional rule-based verifier, a1531

PRM (Lightman et al., 2023), or an ORM (Uesato1532

et al., 2022). For our implementation, we opt for a1533

rule-based verifier such that we can focus on explo-1534

rating search. However, there are scenarios where1535

a verifier f may not be available. To evaluate the1536

effectiveness of SEAL under such conditions, we1537

implement a variant of SEAL that excludes both1538

the verifier and the direct solution generation com-1539

ponent. The results on the Game of 24 task using1540

GPT-4o-mini are shown in Table 7. From the ta-1541

ble, we observe that both variants of SEAL —with1542

and without a verifier—achieve high accuracy. No-1543

tably, the variant without a verifier (SEAL +NV)1544

achieves a 90% pass rate while requiring only 44.91545

search steps. This demonstrates the effectiveness1546

and flexibility of SEAL across various settings.1547

J Additional Experimental Results of1548

SEAL-C1549

In this section, we will provide the additional re-1550

sults about the impact of problem difficulty on1551

the completeness of search on Mini Crosswords1552

task using GPT-4o-mini, which is shown in Fig 8.1553

Specifically, Fig. 8 (a) - (c) present the results of1554

letter-level, word-level and game-level pass rates,1555

respectively. Fig. 8 (d) is the result of search step.1556

The results align with the observations discussed1557

in Sec. 6.3.1558

K Additional Details of Problem-solving1559

Processes of LRMs1560

In this section, we present a detailed analysis of1561

how existing Large Retrieval Models (LRMs) uti-1562

lize search strategies to solve problems, underscor- 1563

ing the critical role of search in effective problem- 1564

solving. 1565

Table 15 illustrates an example of QwQ-32B- 1566

Preview’s problem-solving process in the Game of 1567

24 task. From this table, we observe that QwQ- 1568

32B-Preview explicitly explores multiple potential 1569

answers through an iterative search process, con- 1570

tinuing until a correct solution is identified and 1571

verified. This mechanism of LRMs likely explains 1572

why LRMs exhibit superior problem-solving capa- 1573

bilities compared to general LLMs such as GPT-4o, 1574

further emphasizing the importance of search in 1575

leveraging LLMs for complex problem-solving. 1576

However, we also note a limitation in QwQ-32B- 1577

Preview’s approach: its search strategy sequentially 1578

evaluates and verifies candidate solutions one by 1579

one, which may be suboptimal in terms of effi- 1580

ciency. In contrast, Tables 16,17, and18 illustrate 1581

the problem-solving process when employing our 1582

SEAL’s search strategy. From the table, we ob- 1583

serve that QwQ-32B-Preview can understand and 1584

execute our SEAL’s search strategy, allowing it 1585

to arrive at solutions more efficiently and effec- 1586

tively—without relying on exhaustive trial-and- 1587

error. This observation suggests that LRMs can 1588

significantly benefit from more advanced search 1589

methodologies, reinforcing the need to explore 1590

ways to enhance the self-search capabilities of 1591

LLMs. 1592

L Additional Experimental Results of 1593

Ablation Studies 1594

In this section, we present additional ablation stud- 1595

ies to analyze the impact of each key component 1596

of SEAL, as introduced in Sec. 3.4, and to further 1597

explore their contributions toward ensuring effec- 1598

tive and efficient search. Specifically, we evaluate 1599

several ablated variants: (i) SEAL/V: this variant 1600

removes the state validity checking and directly 1601

proceeds to rank the substates after decomposition; 1602

(ii) SEAL/D: this variant excludes the direct solu- 1603

tion generation component, relying solely on the 1604

generation of next-level intermediate steps at each 1605

stage; and (iii) SEAL/R: this variant disregards the 1606

learning-guided ranking component, exploring sub- 1607

states sequentially based on their default order. We 1608

compare SEAL against these variants on the Game 1609

of 24 using GPT-4o-mini, and the results are sum- 1610

marized in Fig. 9. From the figure, we observe the 1611

following: 1612

20



Table 4: Results of different search methods in the Game of 24 task.

Model Method PR (%) Avg. SS Avg. LLM Calls Avg. Ext. Calls

EXHAUSTIVE SEARCH 100 12,928 0 12,928
BRUTE-FORCE (DFS) 100 1,623 0 1,623
BRUTE-FORCE (BFS) 100 3,429 0 3,429

GPT-4O-MINI

VANILLA COT 13 1 1 0
MAJORITY VOTE 15 10 10 0
BEST-OF-N 17 20 20 0
BEAM SEARCH 46 77 77 0
BEAM SEARCH+RV 72 81 77 4
SEAL 100 40.5 33.4 7.1

GPT-4O

VANILLA COT 13 1 1 0
MAJORITY VOTE 23 10 10 0
BEST-OF-N 24 20 20 0
BEAM SEARCH 81 83.4 83.4 0
BEAM SEARCH+RV 95 87 83.4 3.6
SEAL 100 66.8 55.9 10.9

QWEN2.5-72B

VANILLA COT 17 1 1 0
MAJORITY VOTE 23 10 10 0
BEST-OF-N 27 20 20 0
BEAM SEARCH 35 124 124 0
BEAM SEARCH+RV 70 128.2 124 4.2
SEAL 100 84.9 68.5 16.4

6 7 8 9 10 11
Number of Words

0

20

40

60

80

100

Le
tt

er
-le

ve
l P

R
 (%

) Vanilla CoT
Majority
Best-of-N
Beam Search
SeaL-C

(a) Letter-level PR

6 7 8 9 10 11
Number of Words

0

20

40

60

80

100

W
or

d-
le

ve
l P

R
 (%

)

Vanilla CoT
Majority
Best-of-N
Beam Search
SeaL-C

(b) Word-level PR

6 7 8 9 10 11
Number of Words

0

20

40

60

80

100

G
am

e-
le

ve
l P

R
 (%

)

Vanilla CoT
Majority
Best-of-N
Beam Search
SeaL-C

(c) Game-level PR

6 7 8 9 10 11
Number of Words

0

20

40

60

80

100

Se
ar

ch
 S

te
p

Vanilla CoT
Majority
Best-of-N
Beam Search
SeaL-C

(d) SS
Figure 8: Impact of problem difficulty on the completeness of search on Game of 24 and Blocksworld tasks using
GPT-4o-mini.

PR SS0

20

40

60

80

100

120

Pa
ss

 R
at

e 
(%

)

SeaL/D
SeaL/V
SeaL/R
SeaL

0

100

200

300

400

Se
ar

ch
 S

te
ps

Figure 9: Ablation studies on Game of 24 using GPT-4o-
mini to explore the contribution of each key component
in SEAL.

• While SEAL achieves comparable pass rates to1613

SEAL/V, it requires significantly fewer search1614

steps. This improvement is attributed to the state1615

validity checking component, which leverages1616

the reasoning capabilities of LLMs to evaluate1617

state validity and determine whether further ex-1618

ploration is warranted. By filtering out invalid1619

states, the search budget is conserved, preventing1620

unnecessary exploration. These findings corrob-1621

orate our earlier analysis in Sec. 3.2.1622

• Both SEAL/D and SEAL achieve similar pass 1623

rates; however, SEAL/D requires more search 1624

steps. This discrepancy arises because the direct 1625

solution generation component in SEAL can re- 1626

solve simpler problems within intermediate sub- 1627

states in a single step, eliminating the need for 1628

further exploration. This observation aligns with 1629

our analysis in Sec. 3.2, which highlights the ca- 1630

pability of LLMs to solve simpler problems more 1631

efficiently. 1632

• The search steps for SEAL/R are higher than 1633

for SEAL, confirming the effectiveness of the 1634

learning-guided ranking component in prioritiz- 1635

ing valid states that lead to the goal state earlier. 1636

Notably, SEAL/R achieves a slightly lower yet 1637

comparable pass rate to SEAL. This reduction 1638

can be attributed to occasional misclassification 1639

of valid states as invalid due to the limitations in 1640

the reasoning capabilities of LLMs. This result 1641

underscores the necessity of incorporating the 1642

full SEAL pipeline in scenarios where a 100% 1643

21



Table 5: Results of different search methods in Mini Crosswords (11-words) task.

Model Method Letter-level PR Word-level PR Game-level PR Avg. SS Avg. LLM Call Avg. Ext. Call

EXHAUSTIVE SEARCH 100 100 100 TL 0 TL
BRUTE-FORCE (DFS) 100 100 100 4,128.9 0 4,128.9
BRUTE-FORCE (BFS) 100 100 100 TL 0 TL

GPT-4O-MINI

VANILLA COT 40.5 15.9 0 1 1 0
MAJORITY VOTE 45.0 19.0 0 10 10.0 0
BEST-OF-N 45.0 18.5 0 20.0 20.0 0
BEAM SEARCH 97.8 90.0 55.0 30.9 30.9 0
BEAM SEARCH+RV 99.2 99.0 90.0 30.9 29.1 1.8
OURS 100 100 100 75.8 10.2 65.6

GPT-4O

VANILLA COT 54.4 26.0 5.0 1 1 0
MAJORITY VOTE 61.6 31.0 5.0 10 10.0 0
BEST-OF-N 65.6 34.0 5.0 20.0 20.0 0
BEAM SEARCH 68.0 61.5 35.0 21.3 21.3 0
OURS 100 100 100 45.0 19.4 25.6

QWEN2.5-72B

VANILLA COT 58.3 25.6 0 1 1 0
MAJORITY VOTE 55.6 26.3 5.0 10 10.0 0
BEST-OF-N 60.4 28.5 5.0 20 20.0 0
BEAM SEARCH 96.8 88.5 65.0 32.0 32.0 0
OURS 100 100 100 68.1 27.0 41.1

Table 6: Results of different search methods in the Blocksworld (8-steps) task.

Model Method PR (%) Avg. SS Avg. LLM Calls Avg. Ext. Calls

EXHAUSTIVE SEARCH 100 TL 0 TL
BRUTE-FORCE (DFS) 100 18,531.9 0 18,531.9
BRUTE-FORCE (BFS) 100 96,759.4 0 96,759.4

GPT-4O-MINI

VANILLA COT 0 1 1 0
MAJORITY VOTE 35 10 10 0
BEST-OF-N 0 20 20 0
BEAM SEARCH 0 66.8 66.8 0
BEAM SEARCH+RV 0 94.8 90.8 4.0
SEAL 100 160.6 50.2 110.4

QWEN2.5-72B

VANILLA COT 35 1 1 0
MAJORITY VOTE 60 10 10 0
BEST-OF-N 60 20 20 0
BEAM SEARCH 0 68.7 68.7 0
SEAL 100 68.7 22.9 45.8

pass rate is critical, particularly in high-stakes1644

applications.1645

22



Table 7: Result of the impact of verifier in the Game of 24 task using GPT-4o-mini.

Method PR (%) Avg. SS Avg. LLM Calls Avg. Ext. Calls

VANILLA COT 0 1 1 0
MAJORITY VOTE 35 10 10 0
BEST-OF-N 0 20 20 0
BEAM SEARCH 46 77 77 0
BEAM SEARCH+RV 46 77 77 0
SEAL+NV 90 44.9 38.2 6.7
SEAL 100 40.5 33.4 7.1

Table 8: The prompt of direct solution generation for solving Game of 24

Use the given numbers and basic arithmetic operations (+, -, , /) to reach 24. Each step should only select two of the
remaining numbers to calculate a new number, aiming to reduce the total count of numbers by merging the selected
pair into their result. The steps should methodically progress towards constructing an expression that equals 24
when evaluated. Each remaining number can be only selected up to once. For example:

Input: 4 4 6 8
Steps:
step1: 4 + 8 = 12; (left: 4 6 12)
step2: 6 - 4 = 2; (left: 2 12)
step3: 2 * 12 = 24; (left: 24)
Answer: (6 - 4) * (4 + 8) = 24

[MORE FEW-SHOW EXAMPLES]
Ensure that each arithmetic operation is possible and leads to the correct remaining numbers. The final answer
should correctly reflect the steps performed to achieve 24. If an error occurs in calculation, revise the final expression
accordingly.
Given the following input, the generated output should be formatted exactly as above:
Input: [INPUT]

23



Table 9: The prompt of direct solution generation for solving Mini Crosswords

Solve 5x5 mini crosswords by selecting appropriate words from provided candidate lists. Given an input of 5
horizontal clues and 5 vertical clues, a list of words is given for each clue.
Consider intersecting constraints with other words, solve this step by step, generate thoughts about 5-letter word
from the corresponding list fits each clue, and then select the most suitable word for each clue.
Then an output of 5 rows, where each row is 5 letter separated by space.

# Few-shot example 1
Input:
h1. A lunar valley
h2. A fatty oil
h3. To entice
h4. To lower; to reduce
h5. A solitary person
v1. According to the roster
v2. Another name for Port-Francqui
v3. An illicit lover; a European lake
v4. To lisp
v5. To come in

Thoughts:
h1. A lunar valley: RILLE
h2. A fatty oil: OLEIN
h3. To entice: TEMPT
h4. To lower; to reduce: ABASE
h5. A solitary person: LONER
v1. According to the roster: ROTAL
v2. Another name for Port-Francqui: ILEBO
v3. An illicit lover; a European lake: LEMAN
v4. To lisp: LIPSE
v5. To come in: ENTER

Output:
R I L L E
O L E I N
T E M P T
A B A S E
L O N E R

Input:
INPUT

24



Table 10: The prompt of state validity checking for solving Game of 24

Your task is to analyze a mathematical game where the goal is to use basic arithmetic operations (+, -, *, /) to achieve
the target number 24. You are given several sets of numbers. For each set, determine if it is possible (likely/unlikely)
to achieve 24 using any combination of numbers and operations. For each set, each number must be used exactly
once. If one of these sets are likely to obtain 24, return the answer Yes and these sets that are likely to reach to 24.

Examples:
Example 1:
Input:
State 0: 8 3 1
State 1: 6 4
State 2: 7 7 2

State Precheck:
Answer: yes; Reason: State 1 is likely to reach 24

Example 2:
Input:
State 0: 8
State 1: 11 2.66
State 2: 7 7

State Precheck:
Answer: no;

Example 3:
Input:
State 0: 24
State 1: 12

State Precheck:
Answer: yes; Reason: State 0 and State 2 can directly reach to 24 because the single number 24 is directly equal to
24, 24 = 24.

Given the following input sets, generate the output in the exact format above:
Input:
[INPUT]

Table 11: The prompt of learning-guided state ranking for solving Game of 24

Evaluate if given numbers can reach 24, each given number must be used exactly once (sure/likely/impossible)
Current numbers: 10 14; Calculation: 10 + 14 = 24; Comment: I can obtain the 24 by using current numbers;
Conclusion: sure
Current numbers: 11 12; Calculation: 11 + 12 = 23; Calculation: 12 - 11 = 1; Calculation: 11 * 12 = 132;
Calculation: 11 / 12 = 0.91; Comment: I cannot obtain the 24 by using current numbers; Conclusion: impossible
Current numbers: 5 7 8; Calculation: 5 + 7 + 8 = 12 + 8 = 20; Calculation: (8 - 5) * 7 = 3 * 7 = 21; Comment: I
cannot obtain 24 now, but numbers are within a reasonable range; Conclusion: likely
[MORE FEW-SHOT EXAMPLES]
Given the following current number, the generated output should be formatted exactly as above: Current number:
input;

25



Table 12: The prompt of high-level self-search for solving Game of 24

You are a problem solver for the Game of 24. Given four numbers, your goal is to find a mathematical expression
that equals 24 using each number exactly once, with the allowed operations being addition (+), subtraction (-),
multiplication (*), and division (/). Follow these steps precisely:

# Game of 24 Rules
Rule 1. Each number must be used exactly once.
Rule 2. Use only basic operation (+-*/) for calculation.

# Input
You will receive four numbers. For example: "Input: 1 2 4 7"

# Instruction:
You are required to get 24 with the 4 input numbers by using the idea of search for your thoughts in the intermediate
steps.

Wrap your your final solution in a special tag <solution> like <solution> 2 + 3 * 5 + 7 = 24 </solution>. Stop when
find a correct solution.
Input: [INPUT]

Table 13: The prompt of low-level self-search for solving Game of 24

You are a problem solver for the Game of 24. Given four numbers, your goal is to find a mathematical expression
that equals 24 using each number exactly once, with the allowed operations being addition (+), subtraction (-),
multiplication (*), and division (/). Follow these steps precisely:
# Game of 24 Rules
Rule 1. Each number must be used exactly once.
Rule 2. Use only basic operation (+-*/) for calculation.
Rule 3. Not to generate code to solve the game. And not to return empty content.

# Input
You will receive four numbers. For example: "Input: 1 2 4 7"

# Instruction
You are required to get 24 with the 4 input numbers by using the idea of search to formalize your thoughts in the
intermediate steps. Specifically, the idea search is based on the following stages:
Stage 1. State Precheck. Precheck if it is possible to obtain 24 from the numbers in the current state, where each
number is used exactly once. Stop expansion in the current state if precheck fails.
Stage 2. Direct Solution Attempt. Attempt to directly find a solution using the current numbers by thinking step by
step.
Stage 3. Check the the correctness of the generated direct solution. If correct, stop early and use it as the final
solution. If not, jump to the next stage. Note that all numbers in the solution must from current state and be used
exactly once.
Stage 4. Problem decompositon. Decompose current problem into several sub-problems by using basic operation
(+-*/) to see if you can solve these subproblems to get 24. For instance. "1 2 4 7" can be decomposed into "2 4 8"
by "1 + 7" and "1 2 7" by "4 / 2", where thinking about "2 4 8" is easier than " 1 2 4 7".
Stage 5. State ranks. After getting several decomposed sub-problems, you will evaluate each substate’s potential to
reach 24. The metric is sure = 1.0, likely = 0.5, impossible = 0.1. Then give a sorted substates list, highest potential
first.

Repeat the above stages until a valid action is found. Note that you can conduct backtrace to switch to another
subproblem if current subproblem cannot achieve 24. For example, if you find that "1 2 7" cannot achieve 24 even
by further decomposition, like "2 7", "1 7" from "1 2 7" or even "14" from "2 7", you can backtrace to another
high-layer subproblems like "2 4 8" until you finally find a solution.

Wrap your your final solution in a special tag <solution> like <solution> 2 + 3 * 5 + 7 = 24 </solution>. Stop when
find a correct solution.
Input: [INPUT]

26



Table 14: The prompt of generating candidate words for clues in the Mini Crosswords task

Generate different types of 5-letter words based on a clue and meaning:

Clue: "[TEXTUAL CLUE]"
Ground truth word: [GROUND-TRUTH WORD]

Generate EXACTLY:
1. [NUMBER OF WORDS WITH SIMILAR MEAININGS] five-letter words that are semantically related to the clue’s
meaning (different from ground truth)
2. [NUMBER OF WORDS WITH SIMILAR LETTERS] five-letter words that share at least 2 letters in the same positions
as the ground truth word "[GROUND-TRUTH WORD]"

Requirements:
- Each word must be exactly 5 letters
- Do not include the ground truth word
- Related words must have meanings close to the clue
- Letter-matching words must share at least 2 letters in the same positions as the ground truth word
- Generate exactly the requested number of words

Format your response strictly as:
Related words ([NUMBER OF WORDS WITH SIMILAR MEAININGS] words):
- word1: brief explanation of relevance
- word2: brief explanation of relevance
[continue until exactly [NUMBER OF WORDS WITH SIMILAR MEAININGS] words]

Unrelated words ([NUMBER OF WORDS WITH SIMILAR LETTERS] words):
- word1
- word2
<continue until exactly [NUMBER OF WORDS WITH SIMILAR LETTERS] words>

27



Table 15: An example of the problem-solving process of using QwQ-32B-Preview for the Game of 24 task

Input:
4 5 6 10

Problem-solving process:
To solve the game of 24 with the numbers 4, 5, 6, and 10, we need to form an expression using each number exactly
once and the operations of addition (+), subtraction (-), multiplication (*), and division (/) to reach the result of 24.

Let’s explore different combinations step by step.

First, let’s consider multiplication and addition since they are likely to help us reach higher numbers.

Option 1:
Multiply 4 and 6 to get 24, but we still need to incorporate 5 and 10. However, since we have to use all numbers
exactly once, this direct multiplication alone isn’t sufficient.

Option 2:
Consider combining addition and multiplication.

Let’s try:

(5 - 4) * 10 + 6 = 1 * 10 + 6 = 10 + 6 = 16
Not 24.
[OMITTING 10 ADDITIONAL OPTIONS....]

Option 13:
Another approach:

(5 + 10) / 5 * 4 = 15 / 5 * 4 = 3 * 4 = 12

Not 24.
Option 14:
Let’s try:

(10 - 4) * 5 - 6 = 6 * 5 - 6 = 30 - 6 = 24

Yes!

So, one possible solution is:

(10 - 4) * 5 - 6 = 24

Let’s verify:

First, subtract 4 from 10: 10 - 4 = 6

Then, multiply by 5: 6 * 5 = 30

Finally, subtract 6: 30 - 6 = 24
Perfect!

28



Table 16: An example of the problem-solving process of using SELF-SEARCH (LOW) QwQ-32B-Preview for the
Game of 24 task.

Input:
3 3 7 12

Problem-solving process:
I’m going to try to solve this Game of 24 puzzle with the numbers 3, 3, 7, and 12. The goal is to use each number
exactly once with the operations of addition, subtraction, multiplication, and division to reach 24.

**Stage 1: State Precheck**

First, I need to check if it’s possible to get 24 with these numbers. All numbers are positive integers, and 24 is also a
positive integer, so it’s plausible. I should consider the range of possible values. The smallest value I can get might
be around the smallest number, which is 3, and the largest could be much higher, especially with multiplication. So,
it seems possible.

**Stage 2: Direct Solution Attempt**

Let me try to find a direct solution by trying out some combinations:

- 3 + 3 + 7 + 12 = 25 (too high)

- 12 * 2 = 24, but I don’t have a 2 directly. Maybe (7 - 3) = 4, but 12 * 4 = 48, which is too high.

- 7 * 3 = 21, then 21 + 3 = 24, but I still have 12 left to use, which is a problem because I have to use each number
exactly once.

- Wait, 21 + 3 is 24, but I have an extra 12. Maybe I can involve division or subtraction.

- What if I do 21 + (12 / 3) = 21 + 4 = 25, which is too high.

- Alternatively, 21 + 3 - 12 = 12, which is too low.

- Maybe another approach: 12 * 7 = 84, then 84 / 3 = 28, which is too high.

- 84 / 3.5, but I don’t have 3.5; I have two 3’s and a 7 and 12.

- Perhaps I can do 12 * (7 - 3) = 12 * 4 = 48, which is too high.

- Then 48 / 2, but again, I don’t have a 2.

- Wait, I have two 3’s, so maybe 3 / 3 = 1, but 48 / 1 = 48, still too high.

- Maybe another path: 7 * 12 = 84, then 84 / 3 = 28, which is still too high.

- 28 - 4 = 24, but I don’t have a 4.

- Hmm.

**Stage 3: Check Direct Solution**
From the above attempts, I haven’t found a direct solution yet. So, I need to proceed to decompose the problem.

29



Table 17: An example of the problem-solving process using SELF-SEARCH (LOW) with QwQ-32B-Preview for the
Game of 24 task (continued from Tab. 16).

Input:
3 3 7 12

Problem-solving process:
**Stage 4: Problem Decomposition**

Let me try to decompose the problem into sub-problems. I’ll pick two numbers and combine them using one of the
operations, then see if I can reach 24 with the resulting number and the remaining two numbers.

Option 1: Combine 3 and 3.

- 3 + 3 = 6

- Now, the remaining numbers are 6, 7, 12.

- Can I get 24 from 6, 7, 12?

- 6 * 7 = 42, then 42 - 12 = 30, too high.

- 6 * 12 = 72, then 72 / 7 = 10.285, not 24.

- 7 * 12 = 84, then 84 / 6 = 14, not 24.

- 12 - 6 = 6, then 6 * 7 = 42, which is too high.

- 12 + 7 = 19, then 19 * 6 = 114, too high.

- Doesn’t seem promising.

Option 2: Combine 3 and 7.

- 3 + 7 = 10

- Remaining numbers: 10, 3, 12.

- Can I get 24 from 10, 3, 12?

- 10 + 12 = 22, then 22 + 3 = 25, too high.

- 10 * 12 = 120, then 120 / 3 = 40, too high.

- 12 - 10 = 2, then 2 * 3 = 6, too low.

- 12 / 10 = 1.2, then 1.2 * 3 = 3.6, too low.

- Doesn’t seem to work.

Option 3: Combine 3 and 12.

- 3 + 12 = 15

- Remaining numbers: 15, 3, 7.

- Can I get 24 from 15, 3, 7?

- 15 + 7 = 22, then 22 + 3 = 25, too high.

- 15 * 7 = 105, then 105 / 3 = 35, too high.

30



Table 18: An example of the problem-solving process using SELF-SEARCH (LOW) with QwQ-32B-Preview for the
Game of 24 task (continued from Tab. 17).

Input:
3 3 7 12

Problem-solving process:
- 15 - 7 = 8, then 8 * 3 = 24. Wait, that’s 24!

- So, 15 - 7 = 8, then 8 * 3 = 24.

- But I need to use all numbers exactly once, so let’s see:

- Original numbers: 3, 3, 7, 12.

- Combined 3 and 12 to get 15.

- Then, 15 - 7 = 8.

- Then, 8 * 3 = 24.

- Wait, but I’ve used one 3 in the combination and another 3 separately, which is fine since there are two 3’s.

- So, this seems to work.

**Stage 5: State Ranks**

I’ve found a potential solution: (3 + 12 - 7) * 3 = 24.

Let me verify:

- 3 + 12 = 15

- 15 - 7 = 8

- 8 * 3 = 24

Yes, that’s correct.

**Final Solution**

(3 + 12− 7)× 3 = 24

31


	Introduction
	Related Works
	How Learning can Benefit Search
	Experimental Setup
	Analysis: How Learning can Benefit Search
	Analysis: Existing Search Algorithms
	SeaL: Search via Learning with LLMs

	Toward Complete Search via Learning
	Formalizing Search Completeness
	SeaL-C: Achieving Search Completeness

	Can LLMs Learn to Search by Themselves?
	Experiments
	Experiment Settings
	RQ1: Effectiveness and Efficiency Evaluations
	RQ2: Impact of Problem Difficulty on Search Completeness
	RQ3: Potential of LLMs in Self-Search
	Ablation Studies

	Conclusion and Future Work
	Limitations
	Impact Statements
	Full Details of Related Works
	LLM-based Search Methods
	Traditional Search Methods
	LLMs for Planning and Decision-Making
	Reasoning with LLMs

	More details of Preliminary Analysis
	Full Analysis: How Learning can Benefit Search
	Illustrative Examples
	Full Analysis: Existing Search Algorithms

	Algorithm
	Additional Details of SeaL and SeaL-C
	Prompt Templates of Direction Solution Generation
	Prompt Templates of State Validity Checking
	Prompt Templates of Learning-guided Ranking

	Additional Details of Self-Search
	Code
	Experimental Settings
	Task setup
	Baselines
	Language Models
	Evaluation Metrics
	Implementation Details

	Full Analysis of RQ1: Effectiveness and Efficiency Evaluations
	Additional Experimental Results of SeaL
	Full Comparison Results on Three Tasks using Various LLMs
	Impact of Verifier in Search with SeaL

	Additional Experimental Results of SeaL-C
	Additional Details of Problem-solving Processes of LRMs
	Additional Experimental Results of Ablation Studies

