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Abstract

We tackle sequential learning under label noise in applications where a human
supervisor can be queried to relabel suspicious examples. Existing approaches
are flawed, in that they only relabel incoming examples that look “suspicious” to
the model. As a consequence, those mislabeled examples that elude (or don’t
undergo) this cleaning step end up tainting the training data and the model with no
further chance of being cleaned. We propose CINCER, a novel approach that cleans
both new and past data by identifying pairs of mutually incompatible examples.
Whenever it detects a suspicious example, CINCER identifies a counter-example
in the training set that—according to the model—is maximally incompatible with
the suspicious example, and asks the annotator to relabel either or both examples,
resolving this possible inconsistency. The counter-examples are chosen to be
maximally incompatible, so to serve as explanations of the model’s suspicion,
and highly influential, so to convey as much information as possible if relabeled.
CINCER achieves this by leveraging an efficient and robust approximation of
influence functions based on the Fisher information matrix (FIM). Our extensive
empirical evaluation shows that clarifying the reasons behind the model’s suspicions
by cleaning the counter-examples helps in acquiring substantially better data and
models, especially when paired with our FIM approximation.

1 Introduction

Label noise is a major issue in machine learning as it can lead to compromised predictive performance
and unreliable models [1, 2]. We focus on sequential learning settings in which a human supervisor,
usually a domain expert, can be asked to double-check and relabel any potentially mislabeled
example. Applications include crowd-sourced machine learning and citizen science, where trained
researchers can be asked to clean the labels provided by crowd-workers [3, 4], and interactive personal
assistants [5], where the user self-reports the initial annotations (e.g., about activities being performed)
and unreliability is due to memory bias [6], unwillingness to report [7], or conditioning [8].

This problem is often tackled by monitoring for incoming examples that are likely to be mislabeled,
aka suspicious examples, and ask the supervisor to provide clean (or at least better) annotations for
them. Existing approaches, however, focus solely on cleaning the incoming examples [9, 4, 10, 5].
This means that noisy examples that did not undergo the cleaning step (e.g., those in the initial
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Figure 1: Suspicious example and counter-examples selected using (from left to right) CINCER,
1-NN and influence functions (IF), on noisy MNIST. Left: the suspicious example is mislabeled, the
machine’s suspicion is supported by a clean counter-example. Right: the suspicious example is not
mislabeled, the machine is wrongly suspicious because the counter-example is mislabeled. CINCER’s
counter-example is contrastive and influential; 1-NN’s is not influential and IF’s is not pertinent, see
desiderata D1–D3 below.

bootstrap data set) or that managed to elude it are left untouched. This degrades the quality of the
model and prevents it from spotting future mislabeled examples that fall in regions affected by noise.

We introduce CINCER (Contrastive and InflueNt CounterExample stRategy), a new explainable
interactive label cleaning algorithm that lets the annotator observe and fix the reasons behind the
model’s suspicions. For every suspicious example that it finds, CINCER identifies a counter-example,
i.e., a training example that maximally supports the machine’s suspicion. The idea is that the
example/counter-example pair captures a potential inconsistency in the data—as viewed from the
model’s perspective—which is resolved by invoking the supervisor. More specifically, CINCER asks
the user to relabel the example, the counter-example, or both, thus improving the quality of, and
promoting consistency between, the data and the model. Two hypothetical rounds of interaction on a
noisy version of MNIST are illustrated in Figure 1.

CINCER relies on a principled definition of counter-examples derived from few explicit, intuitive
desiderata, using influence functions [11, 12]. The resulting counter-example selection problem is
solved using a simple and efficient approximation based on the Fisher information matrix [13] that
consistently outperforms more complex alternatives in our experiments.

Contributions: Summarizing, we: 1) Introduce CINCER, an explanatory interactive label cleaning
strategy that leverages example-based explanations to identify inconsistencies in the data—as per-
ceived by the model—and enable the annotator to fix them. 2) Show how to select counter-examples
that at the same time explain why the model is suspicious and that are highly informative using (an
efficient approximation of) influence functions. 3) Present an extensive empirical evaluation that
showcases the ability of CINCER of building cleaner data sets and better models.

2 Background

We are concerned with sequential learning under label noise. In this setting, the machine receives
a sequence of examples z̃t := (xt, ỹt), for t = 1, 2, . . ., where xt ∈ Rd is an instance and ỹt ∈ [c]
is a corresponding label, with [c] := {1, . . . , c}. The label ỹt is unreliable and might differ from
the ground-truth label y∗t . The key feature of our setting is that a human supervisor can be asked
to double-check and relabel any example. The goal is to acquire a clean dataset and a high-quality
predictor while asking few relabeling queries, so to keep the cost of interaction under control.

The state-of-the-art for this setting is skeptical learning (SKL) [10, 5]. SKL is designed primarily for
smart personal assistants that must learn from unreliable users. SKL follows a standard sequential
learning loop: in each iteration, the machine receives an example and updates the model accordingly.
However, for each example that it receives, the machine compares (an estimate of) the quality of
the annotation with that of its own prediction, and if the prediction looks more reliable than the
annotation by some factor, SKL asks the user to double-check his/her example. The details depend on
the implementation: in [10] label quality is estimated using the empirical accuracy for the classifier
and the empirical probability of contradiction for the annotator, while in [5] the machine measures
the margin between the user’s and machine’s labels. Our approach follows the latter strategy.

Another very related approach is learning from weak annotators (LWA) [9, 4], which focuses on
querying domain experts rather than end-users. The most recent approach [4] jointly learns a
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prediction pipeline composed of a classifier and a noisy channel, which allows it to estimate the noise
rate directly. Moreover, the approach in [4] identifies suspicious examples that have a large impact
on the learned model. A theoretical foundation for LWA is given in [9]. LWA is however designed
for pool-based scenarios, where the training set is given rather than obtained sequentially. For this
reason, in the remainder of the paper, we will chiefly build on and compare to SKL.

Limitations of existing approaches. A major downside of SKL is that it focuses on cleaning the
incoming examples only. This means that if a mislabeled example manages to elude the cleaning step
and gets added to the training set, it is bound to stay there forever. This situation is actually quite
common during the first stage of skeptical learning, in which the model is highly uncertain and trusts
the incoming examples—even if they are mislabeled. The same issue occurs if the initial training
set used to bootstrap the classifier contains mislabeled examples. As shown by our experiments,
the accumulation of noisy data in the training set may have a detrimental effect on the model’s
performance (cf. Figure 2). In addition, it can also affect the model’s ability to identify suspicious
examples: a noisy data point can fool the classifier into trusting incoming mislabeled examples that
fall close to it, further aggravating the situation.

3 Explainable Interactive Label Cleaning with CINCER

We consider a very general class of probabilistic classifiers f : Rd → [c] of the form f(x; θ) :=
argmaxy∈[c] P (y |x; θ), where the conditional distribution P (Y |X; θ) has been fit on training
data by minimizing the cross-entropy loss `((x, y), θ) = −

∑
i∈[c] 1{i = y} logP (i |x, θ). In our

implementation, we also assume P to be a neural network with a softmax activation at the top layer,
trained using some variant of SGD and possibly early stopping.

3.1 The CINCER Algorithm

The pseudo-code of CINCER is listed in Algorithm 1. At the beginning of iteration t, the machine
has acquired a training set Dt−1 = {z1, . . . , zt−1} and trained a model with parameters θt−1 on it.
At this point, the machine receives a new, possibly mislabeled example z̃t (line 3) and has to decide
whether to trust it.

Following skeptical learning [5], CINCER does so by computing the margin µ(z̃t, θt−1), i.e., the
difference in conditional probability between the model’s prediction ŷt := argmaxy P (y |xt, θt−1)
and the annotation ỹt. More formally:

µ(z̃t, θt−1) := P (ŷt |xt, θt−1)− P (ỹt |xt, θt−1) (1)

The margin estimates the incompatibility between the model and the example: the larger the margin,
the more suspicious the example. The example z̃t is deemed compatible if the margin is below a given
threshold τ and suspicious otherwise (line 4); possible choices for τ are discussed in Section 3.5.

If z̃t is compatible, it is added to the data set as-is (line 5). Otherwise, CINCER computes a counter-
example zk ∈ Dt−1 that maximally supports the machine’s suspicion. The intuition is that the pair
(z̃t, zk) captures a potential inconsistency in the data. For instance, the counter-example might be
a correctly labeled example that is close or similar to z̃t but has a different label, or a distant noisy
outlier that fools the predictor into assigning low probability to ỹt. How to choose an effective
counter-example is a major focus of this paper and discussed in detail in Section 3.2 and following.

Next, CINCER asks the annotator to double-check the pair (z̃t, zk) and relabel the suspicious example,
the counter-example, or both, thus resolving the potential inconsistency. The data set and model are
then updated accordingly (line 9) and the loop repeats.

3.2 Counter-example Selection

Counter-examples are meant to illustrate why a particular example z̃t is deemed suspicious by the
machine in a way that makes it easy to elicit useful corrective feedback from the supervisor. We posit
that a good counter-example zk should be:

D1. Contrastive: zk should explain why z̃t is considered suspicious by the model, thus highlight-
ing a potential inconsistency in the data.
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Algorithm 1 Pseudo-code of CINCER. Inputs: initial (noisy) training set D0; threshold τ .
1: fit θ0 on D0

2: for t = 1, 2, . . . do
3: receive new example z̃t = (xt, ỹt)
4: if µ(z̃t, θt−1) < τ then
5: Dt ← Dt−1 ∪ {z̃t} . z̃t is compatible
6: else
7: find counterexample zk using Eq. 12 . z̃t is suspicious
8: present z̃t, zk to the user, receive possibly cleaned labels y′t, y

′
k

9: Dt ← (Dt−1 \ {zk}) ∪ {(xt, y′t), (xk, y′k)}
10: fit θt on Dt

D2. Influential: if zk is mislabeled, correcting it should improve the model as much as possible,
so to maximize the information gained by interacting with the annotator.

In the following, we show how, for models learned by minimizing the cross-entropy loss, one can
identify counter-examples that satisfy both desiderata.

What is a contrastive counter-example? We start by tackling the first desideratum. Let θt−1 be
the parameters of the current model. Intuitively, zk ∈ Dt−1 is a contrastive counter-example for a
suspicious example z̃t if removing it from the data set and retraining leads to a model with parameters
θ−kt−1 that assigns higher probability to the suspicious label ỹt. The most contrastive counter-example
is then the one that maximally affects the change in probability:

argmaxk∈[t−1]
{
P (ỹt |xt; θ−kt−1)− P (ỹt |xt; θt−1)

}
(2)

While intuitively appealing, optimizing Eq. 2 directly is computationally challenging as it involves
retraining the model |Dt−1| times. This is impractical for realistically sized models and data sets,
especially in our interactive scenario where a counter-example must be computed in each iteration.

Influence functions. We address this issue by leveraging influence functions (IFs), a computational
device that can be used to estimate the impact of specific training examples without retraining [11, 12].
Let θt be the empirical risk minimizer on Dt and θt(z, ε) be the minimizer obtained after adding an
example z with weight ε to Dt, namely:

θt := argminθ
1
t

∑t
k=1 `(zk, θ) θt(z, ε) := argminθ

1
t

(∑t
k=1 `(zk, θ)

)
+ ε`(z, θ) (3)

Taking a first-order Taylor expansion, the difference between θt = θt(z, 0) and θt(z, ε) can be
written as θt(z, ε) − θt(z, 0) ≈ ε ·

(
d
dεθt(z, ε)

∣∣
ε=0

)
. The derivative appearing on the right hand

side is the so-called influence function, denoted Iθt(z). It follows that the effect on θt of adding
(resp. removing) an example z to Dt can be approximated by multiplying the IF by ε = 1/t (resp.
ε = −1/t). Crucially, if the loss is strongly convex and twice differentiable, the IF can be written as:

Iθt(z) = −H(θt)
−1∇θ`(z, θt) (4)

where the curvature matrixH(θt) :=
1
t

∑t
k=1∇2

θ`(zk, θt) is positive definite and invertible. IFs were
shown to capture meaningful information even for neural networks and other non-convex models [12].

Identifying contrastive counter-examples with influence functions. To see the link between con-
trastive counter-examples and influence functions, notice that the second term of Eq. 2 is independent
of zk, while the first term can be conveniently approximated with IFs by applying the chain rule:

− 1

t− 1

(
d

dε
P (ỹt |xt; θt−1(zk, ε))

∣∣∣∣
ε=0

)
= − 1

t− 1

(
∇θP (ỹt |xt; θt−1)>

d

dε
θt−1(zk, ε)

∣∣∣∣
ε=0

)
(5)

= − 1

t− 1
∇θP (ỹt |xt; θt−1)>Iθt−1

(zk) (6)

The constant can be dropped during the optimization. This shows that Eq. 2 is equivalent to:

argmaxk∈[t−1] ∇θP (ỹt |xt; θt−1)>H(θt−1)
−1∇θ`(zk, θt−1) (7)
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Eq. 7 can be solved efficiently by combining two strategies [12]: i) Caching the inverse Hessian-vector
product (HVP) ∇θP (ỹt |xt; θt−1)>H(θt−1)

−1, so that evaluating the objective on each zk becomes
a simple dot product, and ii) Solving the inverse HVP with an efficient stochastic estimator like
LISSA [14]. This gives us an algorithm for computing contrastive counter-examples.

Contrastive counter-examples are highly influential. Can this algorithm be used for identifying
influential counter-examples? It turns out that, as long as the model is obtained by optimizing the
cross-entropy loss, the answer is affirmative. Indeed, note that if `(z, θ) = − logP (y |x; θ), then:

∇θP (ỹt |xt; θt−1) = P (ỹt |xt; θt−1)
∇θP (ỹt |xt; θt−1)
P (ỹt |xt; θt−1)

= (8)

= P (ỹt |xt; θt−1)∇θ logP (ỹt |xt; θt−1) = −P (ỹt |xt; θt−1)∇θ`(z̃t, θt−1) (9)

Hence, Eq. 6 can be rewritten as:

− P (ỹt |xt; θt−1)∇θ`(z̃t, θt−1)>H(θt−1)
−1∇θ`(zk, θt−1) (10)

∝ −∇θ`(z̃t, θt−1)>H(θt−1)
−1∇θ`(zk, θt−1) (11)

It follows that, under the above assumptions and as long as the model satisfies P (ỹt |xt; θt−1) > 0,
Eq. 2 is equivalent to:

argmaxk∈[t−1] −∇θ`(z̃t, θt−1)>H(θt−1)
−1∇θ`(zk, θt−1) (12)

This equation recovers exactly the definition of influential examples given in [12, Eq. 2] and shows
that, for the large family of classifiers trained by cross-entropy, highly influential counter-examples
are highly contrastive and vice versa, so that no change to the selection algorithm is necessary.

3.3 Counter-example Selection with the Fisher information matrix

Unfortunately, we found the computation of IFs to be unreliable in practice, cf. [15]. This leads to
unstable ranking of candidates and reflects on the quality of the counter-examples, as in Figure 1.
The issue is that, for non-convex classifiers trained using gradient-based methods (and possibly early
stopping), θt−1 is seldom close to a local minimum, rendering the Hessian non-positive definite. In
our setting, the situation is further complicated by the presence of noise, which dramatically skews
the curvature of the empirical risk. Remedies like fine-tuning the model with L-BFGS [12, 16],
preconditioning and weight decay [15] proved unsatisfactory in our experiments.

We take a different approach. The idea is to replace the Hessian by the Fisher information matrix
(FIM). The FIM F (θ) of a discriminative model P (Y |X, θ) and training set Dt−1 is [17, 18]:

F (θ) := 1
t−1

∑t−1
k=1 Ey∼P (Y |xk,θ)

[
∇θ logP (y |xk, θ)∇θ logP (y |xk, θ)>

]
(13)

It can be shown that, if the model approximates the data distribution, the FIM approximates the
Hessian, cf. [19, 20]. Even when this assumption does not hold, as is likely in our noisy setting,
the FIM still captures much of the curvature information encoded into the Hessian [17]. Under this
approximation, Eq. 12 can be rewritten as:

argmaxk∈[t−1] −∇θ`(z̃t, θt−1)>F (θt−1)−1∇θ`(zk, θt−1) (14)

The advantage of this formulation is twofold. First of all, this optimization problem also admits
caching the inverse FIM-vector product (FVP), which makes it viable for interactive usage. Second,
and most importantly, the FIM is positive semi-definite by construction, making the computation of
Eq.14 much more stable.

The remaining step is how to compute the inverse FVP. Naïve storage and inversion of the FIM, which
is |θ| × |θ| in size, is impractical for typical models, so the FIM is usually replaced with a simpler
matrix. Three common options are the identity matrix, the diagonal of the FIM, and a block-diagonal
approximation where interactions between parameters of different layers are set to zero [17]. Our
best results were obtained by restricting the FIM to the top layer of the network. We refer to this
approximation as “Top Fisher”. While more advanced approximations like K-FAC [17] exist, the Top
Fisher proved surprisingly effective in our experiments.
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3.4 Selecting Pertinent Counter-examples

So far, we have discussed how to select contrastive and influential counter-examples. Now we discuss
how to make the counter-examples easier to interpret for the annotator. To this end, we introduce the
additional desideratum that counter-examples should be:

D3 Pertinent: it should be clear to the user why zk is a counter-example for z̃t.

We integrate D3 into CINCER by restricting the choice of possible counter-examples. A simple
strategy, which we do employ in all of our examples and experiments, is to restrict the search to
counter-examples whose label in the training set is the same as the prediction for the suspicious
example, i.e., yk = ŷt. This way, the annotator can interpret the counter-example as being in support
of the machine’s suspicion. In other words, if the counter-example is labeled correctly, then the
machine’s suspicion is likely right and the incoming example needs cleaning. Otherwise, if the
machine is wrong and the suspicious example is not mislabeled, it is likely the counter-example –
which backs the machine’s suspicions – that needs cleaning.

Finally, one drawback of IF-selected counter-examples is that they may be perceptually different from
the suspicious example. For instance, outliers are often highly influential as they fool the machine
into mispredicting many examples, yet they have little in common with those examples [20]. This
can make it difficult for the user to understand their relationship with the suspicious examples they
are meant to explain. This is not necessarily an issue: first, a motivated supervisor is likely to correct
mislabeled counter-examples regardless of whether they resemble the suspicious example; second,
highly influential outliers are often identified (and corrected if needed) in the first iterations of CINCER
(indeed, we did not observe a significant amount of repetitions among suggested counter-examples
in our experiments). Still, CINCER can be readily adapted to acquire more perceptually similar
counter-examples. One option is to replace IFs with relative IFs [20], which trade-off influence with
locality. Alas, the resulting optimization problem does not support efficient caching of the inverse
HVP. A better alternative is to restrict the search to counter-examples zk that are similar enough to z̃t
in terms of some given perceptual distance ‖·‖P [21] by filtering the candidates using fast nearest
neighbor techniques in perceptual space. This is analogous to FastIF [22], except that the motivation
is to encourage perceptual similarity rather than purely efficiency, although the latter is a nice bonus.

3.5 Advantages and Limitations

The main benefit of CINCER is that, by asking a human annotator to correct potential inconsistencies
in the data, it acquires substantially better supervision and, in turn, better predictors. In doing so,
CINCER also encourages consistency between the data and the model. Another benefit is that, by
explaining the reasons behind the model’s skepticism, CINCER allows the supervisor to spot bugs and
justifiably build – or, perhaps more importantly, reject [23, 24] – trust into the prediction pipeline.

CINCER only requires to set a single parameter, the margin threshold τ , which determines how
frequently the supervisor is invoked. The optimal value is highly application-specific, but generally
speaking, it depends on the ratio between the cost of a relabeling query and the cost of noise. If the
annotator is willing to interact (for instance, because it is paid to do so) then the threshold can be
quite generous.

4 Experiments

We empirically address the following research questions: Q1: Do counter-examples contribute to
cleaning the data? Q2: Which influence-based selection strategy identifies the most mislabeled
counter-examples? Q3: What contributes to the effectiveness of the best counter-example selection
strategy?

We implemented CINCER using Python and Tensorflow [25] on top of three classifiers and compared
different counter-example selection strategies on five data sets. The IF code is adapted from [26].
All experiments were run on a 12-core machine with 16 GiB of RAM and no GPU. The code for all
experiments is available at: https://github.com/abonte/cincer.

Data sets. We used a diverse set of classification data sets: Adult [27]: data set of 48,800 persons,
each described by 15 attributes; the goal is to discriminate customers with an income above/below
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Figure 2: CINCER using Top Fisher vs. drop CE and no CE. Left to right: results for FC on adult,
breast and 20NG, CNN on MNIST. Top row: # of cleaned examples. Bottom row: F1 score.

$50K. Breast [27]: data set of 569 patients described by 30 real-valued features. The goal is to
discriminate between benign and malignant breast cancer cases. 20NG [27]: data set of newsgroup
posts categorized in twenty topics. The documents were embedded using a pre-trained Sentence-
BERT model [28] and compressed to 100 features using PCA. MNIST [29]: handwritten digit
recognition data set from black-and-white, 28× 28 images with pixel values normalized in the [0, 1]
range. The data set consists of 60K training and 10K test examples. Fashion [30]: fashion article
classification dataset with the same structure as MNIST. For adult and breast, a random 80 : 20
training-test split is used while for MNIST, fashion and 20 NG the split provided with the data set
is used. The labels of 20% of training examples were corrupted at random. The experiments were
repeated five times, each time changing the seed used for corrupting the data. Performance was
measured in terms of F1 score on the (uncorrupted) test set. Error bars in the plots indicate the
standard error. All competitors received exactly the same examples in exactly the same order.

Models. We applied CINCER to three models: LR, a logistic regression classifier; FC, a feed-forward
neural network with two fully connected hidden layers with ReLU activations; and CNN, a feed-
forward neural network with two convolutional layers and two fully connected layers. For all models,
the hidden layers have ReLU activations and 20% dropout while the top layer has a softmax activation.
LR was applied to MNIST, FC to both the tabular data sets (namely: adult, breast, german, and
20NG) and image data sets (MNIST and fashion), and CNN to the image data sets only. Upon
receiving a new example, the classifier is retrained from scratch for 100 epochs using Adam [31] with
default parameters, with early stopping when the accuracy on the training set reaches 90% for FC
and CNN, and 70% for LR. This helps substantially to stabilize the quality of the model and speeds
up the evaluation. Before each run, the models are trained on a bootstrap training set (containing
20% mislabeled examples) of 500 examples for 20NG and 100 for all the other data sets. The margin
threshold is set to τ = 0.2. Due to space constraints, we report the results on one image data set
and three tabular data, and we focus on FC and CNN. The other results are consistent with what is
reported below; these plots are reported in the Supplementary Material.

4.1 Q1: Counter-examples improve the quality of the data

To evaluate the impact of cleaning the counter-examples, we compare CINCER combined with the Top
fisher approximation of the FIM, which works best in practice, against two alternatives, namely: No
CE: an implementation of skeptical learning [5] that asks the user to relabel any incoming suspicious
examples identified by the margin and presents no counter-examples. Drop CE: a variation of
CINCER that identifies counter-examples using Top Fisher but drops them from the data set if the user
considers the incoming example correctly labeled. The results are reported in Figure 2. The plots
show that CINCER cleans by far the most examples on all data sets, between 33% and 80% more than
the alternatives (top row in Figure 2). This translates into better predictive performance as measured
by F1 score (bottom row). Notice also that CINCER consistently outperforms the drop CE strategy in
terms of F1 score, suggesting that relabeling the counter-examples provides important information for
improving the model. These results validate our choice of identifying and relabeling counter-examples
for interactive label cleaning compared to focusing on suspicious incoming examples only, and allow
us to answer Q1 in the affirmative.
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Figure 3: Counter-example Pr@5 and Pr@10. Standard error information is reported. Left to right:
results for FC on adult, breast and 20NG, and CNN on MNIST.
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Figure 4: Top Fisher vs. practical Fisher vs. NN. Left to right: results for FC on adult, breast and
20NG, CNN on MNIST. Top row: # of cleaned examples. Bottom row: F1 score.

4.2 Q2: Fisher Information-based strategies identify the most mislabeled counter-examples

Next, we compare the ability of alternative approximations of IFs to discover mislabeled counter-
examples. To this end, we trained a model on a noisy bootstrap data set, selected 100 examples
from the remainder of the training set, and measured how many truly mislabeled counter-examples
are selected by alternative strategies. In particular, we computed influence using the IF LISSA
estimator of [12], the actual FIM (denoted “full Fisher” and reported for the simpler models only for
computational reasons) and its approximations using the identity matrix (aka “practical Fisher” [32]),
and Top Fisher. We computed the precision at k for k ∈ {5, 10}, i.e, the fraction of mislabeled counter-
examples within five or ten highest-scoring counter-examples retrieved by the various alternatives,
averaged over 100 iterations for five runs. The results in Figure 3 show that, in general, FIM-based
strategies outperform the LISSA estimator, with Full Fisher performing best and Top Fisher a close
second. Since the full FIM is highly impractical to store and invert, this confirms our choice of Top
Fisher as the best practical strategy.

4.3 Q3: Both influence and curvature contribute to the effectiveness of Top Fisher

Finally, we evaluate the impact of selecting counter-examples using Top Fisher on the model’s
performance, in terms of use of influence, by comparing it to an intuitive nearest neighbor alternative
(NN), and modelling of the curvature, by comparing it to the Practical Fisher. NN simply selects the
counter-example that is closest to the suspicious example. The results can be viewed in Figure 4.
Top Fisher is clearly the best strategy, both in terms of number of cleaned examples and F1 score.
NN is always worse than Top Fisher in terms of F1, even in the case of adult (first column) when it
cleans the same number of examples, confirming the importance of influence in selecting impactful
counter-examples. Practical Fisher clearly underperforms compared with Top Fisher, and it shows the
importance of having the curvature matrix. For each data set, all methods make a similar number of
queries: 58 for 20NG, 21 for breast, 31 for adult and 37 for MNIST. In general, CINCER detects around
75% of the mislabeled examples (compared to 50% of the other methods) and only about 5% of its
queries do not involve a corrupted example or counter-example. The complete values are reported
in the Supplementary Material. As a final remark, we note that CINCER cleans more suspicious
examples than counter-examples (in a roughly 2 : 1 ratio), as shown by the number of cleaned
suspicious examples vs. counter-examples reported in the Supplementary Material. Comparing this
to the curve for Drop CE shows that proper data cleaning improves the ability of the model of being
suspicious for the right reasons, as expected.
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5 Related Work

Learning under noise. Typical strategies to learning from noisy labels include discarding or down-
weighting suspicious examples and employing models robust to noise [33, 1, 34, 2], often requiring a
non-trivial noise ratio estimation step [35]. These approaches make no attempt to recover the ground-
truth label and are not ideal in interactive learning settings characterized by high noise rate/cost and
small data sets. Most works on interactive learning under noise are designed for crowd-sourcing
applications in which items are labelled by different annotators of varying quality and the goal is
to aggregate weak annotations into a high-quality consensus label [3]. Our work is strongly related
to approaches to interactive learning under label noise like skeptical learning [10, 5] and learning
from weak annotators [9, 4]. These approaches completely ignore the issue of noise in the training
set, which can be quite detrimental, as shown by our experiments. Moreover, they are completely
black-box and do not attempt to explain to the supervisor why examples are considered suspicious by
the machine, making it hard for him/her to establish or reject trust in the data and the model.

Influence functions and Fisher information. It is well known that mislabeled examples tend to
exert a larger influence on the model [36, 12, 37, 20] and indeed IFs may be a valid alternative to the
margin for identifying suspicious examples. Building on the seminal work of Koh and Liang [12],
we instead leverage IFs to define and compute contrastive counter-examples that explain why the
machine is suspicious. The difference is that noisy training examples influence the model as a whole,
whereas contrastive counter-examples influence a specific suspicious example. To the best of our
knowledge, this application of IFs is entirely novel. Notice also that empirical evidence that IFs
recover noisy examples is restricted to offline learning [12, 37]. Our experiments extend this to a
less forgiving interactive setting in which only one counter-example is selected per iteration and
the model is trained on the whole training set. The idea of exploiting the FIM to approximate the
Hessian has ample support in the natural gradient descent literature [17, 18]. The FIM has been used
for computing example-based explanations by Khanna et al. [37]. However, their approach is quite
different from ours. CINCER is equivalent to maximizing the Fisher kernel [32] between the suspicious
example and the counter-example (Eq. 14) for the purpose of explaining the model’s margin, and this
formulation is explicitly derived from two simple desiderata. In contrast, Khanna et al. maximize a
function of the Fisher kernel (namely, the squared Fisher kernel between zk and z̃t divided by the
norm of zk in the RKHS). This optimization problem is not equivalent to Eq. 14 and does not admit
efficient computation by caching the inverse FIM-vector product.

Other works. CINCER draws inspiration from explanatory active learning, which integrates local [24,
38, 39, 40] or global [41] explanations into interactive learning and allows the annotator to supply
corrective feedback on the model’s explanations. These approaches differ from CINCER in that
they neither consider the issue of noise nor perform label cleaning, and indeed they explain the
model’s predictions rather than the model’s suspicion. Another notable difference is that they rely
on attribution-based explanations, whereas the backbone of CINCER is example-based explanations,
which enable users to reason about labels in terms of concrete (training) examples [42, 43]. Following
these works, saliency maps – which provide complementary information about relevant attributes –
could potentially be integrated into CINCER to provide more fine-grained explanations and control.

6 Conclusion

We introduced CINCER, an approach for handling label noise in sequential learning that asks a human
supervisor to relabel any incoming suspicious examples. Compared to previous approaches, CINCER
identifies the reasons behind the model’s skepticism and asks the supervisor to double-check them
too. This is done by computing a training example that maximally supports the machine’s suspicions.
This enables the user to correct both incoming and old examples, cleaning inconsistencies in the
data that confuse the model. Our experiments shows that, by removing inconsistencies in the data,
CINCER enables acquiring better data and models than less informed alternatives.

Our work can be improved in several ways. CINCER can be straightforwardly extended to online
active and skeptical learning, in which the label of incoming instances is acquired on the fly [44,
10]. CINCER can also be adapted to correcting multiple counter-examples as well as the reasons
behind mislabeled counter-examples using “multi-round” label cleaning and group-wise measures of
influence [45, 46, 47]. This more refined strategy is especially promising for dealing with systematic
noise, in which counter-examples are likely affected by entire groups of mislabeled examples.
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Potential negative impact. Like most interactive approaches, there is a risk that CINCER annoys the
user by asking an excessive number of questions. This is currently mitigated by querying the user
only when the model is confident enough in its own predictions (through the margin-based strategy)
and by selecting influential counter-examples that have a high chance to improve the model upon
relabeling, thus reducing the future chance of pointless queries. Moreover, the margin threshold τ
allows to modulate the amount of interaction based on the user’s commitment. Another potential
issue is that CINCER could give malicious annotators fine-grained control over the training data,
possibly leading to poisoning attacks. This is however not an issue for our target applications, like
interactive assistants, in which the user benefits from interacting with a high-quality predictor and is
therefore motivated to provide non-adversarial labels.
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