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Abstract

Existing research predominantly focuses on001
developing powerful large language models002
(LLMs) for mathematical reasoning within003
monolingual languages, with few explorations004
in preserving efficacy in a multilingual con-005
text. To bridge this gap, this paper pioneers006
exploring and training powerful Multilingual007
Math Reasoning (xMR) LLMs. Firstly, by uti-008
lizing translation, we construct the first mul-009
tilingual math reasoning instruction dataset,010
MGSM8KInstruct, encompassing ten distinct011
languages, thus addressing the issue of train-012
ing data scarcity in xMR tasks. Based on the013
collected dataset, we propose different train-014
ing strategies to build powerful xMR LLMs,015
named MathOctopus, notably outperform con-016
ventional open-source LLMs and exhibit su-017
periority over ChatGPT in few-shot scenar-018
ios. Notably, MathOctopus-13B reaches 47.6%019
accuracy which exceeds ChatGPT 46.3% on020
MGSM testset. Beyond remarkable results,021
we unearth several pivotal observations and in-022
sights from extensive experiments: (1) When023
extending the rejection sampling strategy to024
the multilingual context, it proves effective025
for model performances, albeit limited. (2)026
Employing parallel corpora for math Super-027
vised Fine-Tuning (SFT) across multiple lan-028
guages not only significantly enhances model029
performance multilingually but also elevates030
their monolingual performance. This indi-031
cates that crafting multilingual corpora can032
be regarded as a vital strategy for enhancing033
model performance in a specific language, es-034
pecially in mathematical reasoning tasks. For035
instance, MathOctopus-7B improves its coun-036
terparts that trained on English from 42.2% to037
50.8% on GSM8K testset.038

1 Introduction039

Large language models (LLMs) (Brown et al.,040

2020; Hu et al., 2021; Zeng et al., 2022; OpenAI,041

2023; Scao et al., 2022) such as Bloom (Scao et al.,042

2022) and GPT4 (OpenAI, 2023) have exhibited 043

remarkable performances across a wide array of 044

downstream tasks. Notwithstanding these signifi- 045

cant advancements, even the most extensive LLMs 046

are confronted with challenges when faced with 047

mathematical reasoning tasks that necessitate mul- 048

tiple reasoning steps (Gao et al., 2023). 049

Many recent works focus on using different 050

prompting methods like chain-of-thought (CoT) 051

to solve mathematical problems based on close- 052

sourced LLMs such as ChatGPT and GPT-4. Sig- 053

nificantly, LLaMA-Family models (Touvron et al., 054

2023a,c) have ignited an open-source movement 055

and rapidly reduced the disparity with these closed- 056

source LLMs. Following the line, Yuan et al. 057

(2023a) apply rejection sampling fine-tuning (RFT) 058

for math reasoning LLMs. WizardMath (Luo 059

et al., 2023) advance mathematical reasoning in 060

LLMs through Reinforcement Learning from Evol- 061

Instruct (RLEIF). However, current efforts are pri- 062

marily focusing on improving the performance of 063

LLMs in English. Although, Shi et al. (2022) 064

propose MGSM testset to explore multilingual 065

math reasoning through in-context learning, train- 066

ing a powerful multilingual mathematical reason- 067

ing LLM remains under-explored. 068

To this end, this paper empirically investigates 069

and enhances the multilingual mathematical rea- 070

soning abilities of current open-source LLMs such 071

as LLaMA through supervised learning. Given 072

mathematical problems from different languages, 073

we aspire one single model to correctly answer 074

questions in the respective target language, not just 075

limited to English. However, when scaling out 076

mathematical reasoning to multiple languages, i.e., 077

the task of multilingual mathematical reasoning or 078

xMR for short, one main challenge is the training 079

data scarcity in low-resource languages, where no 080

training examples are available. To tackle this chal- 081

lenge, we begin by using ChatGPT to translate the 082

English GSM8K math training dataset into 9 vari- 083
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James decides to run 3 sprints 3 times a week. He runs 60 

meters each sprint. How many total meters does he run a 

week?

English

詹姆斯决定每周跑 3 次 3 段冲刺，每段冲刺跑 60 米。他
每周一共跑多少米？

Chinese

James beschließt, 3-mal pro Woche 3 Kurzstreckenläufe 

zu absolvieren. Pro Kurzstreckenlauf läuft er 60 Meter. 

Wie viele Meter insgesamt läuft er pro Woche?

German

French Japanese……

He sprints 3*3=<<3*3=9>>9 time. So he runs 9*60=<<9*60

=540>>540 meters.

English

Chinese

German

French Japanese……

MathOctopus

Question Answer

詹姆斯一共冲刺 3*3=<<3*3=9>>9 次。 所以他每周一共跑
9*60=<<9*60=540>>540米。

James sprintet 3*3=<<3*3=9>>9 Mal. Also läuft er 9*60=

<<9*60=540>>540 Meter.

Figure 1: Multilingual Math Instruction Tuning of MathOctopus.

ous languages. Concurrently, we employ specific084

rules to calibrate and align the translated corpora,085

ensuring the data quality.086

The resulting data are used to construct our087

multilingual math instruction training dataset:088

MGSM8KInstruct, which encompasses instruc-089

tional data within two distinct settings: Parallel-090

training and Cross-training. The Parallel-training091

setting denotes that both the mathematical queries092

and the CoT answers derive from the same lan-093

guage. Conversely, the Cross-training setting indi-094

cates that the questions are in English, while the095

corresponding answers are in other languages. The096

objective of these settings is to develop LLMs are097

capable of solving mathematical problems coher-098

ently, whether presented in English or other target099

languages, while ensuring adaptability and main-100

taining rigorous mathematical reasoning across101

multiple languages. Step further, to conduct a more102

exhaustive and comprehensive evaluation of the103

model’s multilingual mathematical capabilities, we104

additionally develop an out-of-domain xMR test-105

set: MSVAMP, incorporating 10 languages, based106

on SVAMP (Patel et al., 2021). This construction107

involves the employment of machine translation,108

further refined by meticulous manual calibration.109

We then use MGSM8KInstruct to supervise fine-110

tune (SFT) current open-source LLMs including111

LLaMA-Families ranging from 7B to 33B, as112

shown in Figure 1. Following training, the mod-113

els demonstrate exemplary abilities in xMR tasks.114

We name the resulting models as MathOctopus,115

attributing their adaptability and extensive profi-116

ciency in xMR tasks across a variety of languages.117

For example, MathOctopus -7B improves the av-118

erage performance of LLaMA2-7B on the MGSM119

dataset across ten languages from 22.6% to 40%.120

Surprisingly, compared with LLMs trained on the121

monolingual corpus, MathOctopus also shows su-122

perior performances when tested in their respective 123

training languages. For instance, MathOctopus-7B 124

elevate the accuracy of LLaMA2-7B on the En- 125

glish GSM8K from 42.3% to 50.8%. We posit that 126

this improvement is attributable to the enhanced 127

generalization capability of the model acquired dur- 128

ing multilingual training, as well as the reasoning 129

knowledge learned from other languages feeding 130

back into in English. 131

Subsequently, we delve into an exploration 132

of the influences of SFT data volumes and di- 133

verse reasoning paths on the efficacy of the SFT 134

model in multilingual context. Inspired by (Yuan 135

et al., 2023a), we apply multilingual rejection sam- 136

pling on MathOctopus to generate different cor- 137

rect reasoning paths as an augmented training cor- 138

pus. By incorporating this data into our prior 139

MGSM8KInstruct for fine-tuning LLMs, we ob- 140

serve limited enhanced multilingual mathemati- 141

cal reasoning outcomes. We term this training 142

approach Multilingual Rejection Sampling Fine- 143

tuning (xRFT). Experimentally, xRFT can further 144

elevate the LLM’s xMR outcomes, but it may po- 145

tentially compromise the model’s generalization 146

ability as the data amount increases. 147

In summary, our contributions are as follows: 148

• We construct MGSM8KInstruct, a first mul- 149

tilingual math reasoning instruction dataset. 150

Subsequently, MSVAMP, an out-of-domain 151

multilingual mathematical reasoning dataset, 152

is collected, serving as a robust test bed to 153

further assess the robustness of LLMs. 154

• Based on collected data and different training 155

strategies, we build a series of powerful LLMs 156

MathOctopus in xMR tasks. Our model not 157

only significantly improves its reasoning capa- 158

bilities in low-resource languages compared 159
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to LLaMA but also greatly enhances its per-160

formance in English.161

• We explore the relationship between model162

performance and data volume, as well as the163

impact of different training strategies. One of164

the most surprising observation is that mul-165

tilingual SFT could be regarded as a crucial166

strategy for enhancing mathematical reason-167

ing proficiency in LLMs.168

2 Methodology169

In this section, we aim to illustrate our method in170

detail. We first review the problem formulation of171

multilingual mathematical reasoning. Then we de-172

scribe the collection process of MGSM8KInstruct173

and MSVAMP datasets. Subsequently, we present174

our proposed MathOctopus and multilingual rejec-175

tion sampling methods, sequentially.176

2.1 Problem Formulation177

Commonly, the mathematical reasoning problem-178

solving task can be defined as D = {Qi, Oi, Ai},179

where Qi is the target math question, O =180

{O1, O2, ..., Ok} are answer options if Qi is a K-181

way multiple choice problem, Ai is the correspond-182

ing ground-truth answer. Given Qi as inputs, LLMs183

can directly output answers or a sequence of tokens184

as intermediate reasoning steps Ri via CoT. Then185

we can obtain the answer in Ri through regular186

expression matching.187

In this work, we extend mathematical reason-188

ing tasks from monolingual to multilingual con-189

texts: Den to Den...Dzh. We aspire to enable only190

one model to successfully solve mathematical prob-191

lems presented in various languages. That is, given192

Qi(zh,es,...) in a target language like Chinese, Span-193

ish and etc, the model can furnish correct CoT194

responses Ri(zh,es,...) in a specific language, even195

when the problems are solely presented in English.196

2.2 MGSM8KInstruct197

Source Data Prior to going further, the main198

concern in xMR is data scarcity of the multilin-199

gual training corpus. We employ GSM8K (Cobbe200

et al., 2021), an English dataset comprised of mid-201

dle grade-school mathematical problems annotated202

by humans, as our fundamental data source. Ac-203

cording to the officially provided solutions, each204

problem in GSM8K necessitates a resolution pro-205

cess involving between two to eight steps.206

Target Languages As for target languages in 207

translation, we choose a set of ten languages that 208

are typologically varied from English (En), cov- 209

ering different language families. Similar with 210

(Shi et al., 2022), the ensemble of languages in- 211

corporated in this study comprises Bengali (Bn), 212

Chinese (Zh), French (Fr), German (De), Japanese 213

(Ja), Russian (Ru), Spanish (Es), Swahili (Sw), and 214

Thai (Th). This diverse conglomerate facilitates 215

an exhaustive exploration into the model’s adapt- 216

ability and proficiency amidst divergent linguistic 217

architectures and typologies. 218

Translation Process Given the reliability and ap- 219

plicability of ChatGPT for translation tasks, we 220

utilize ChatGPT to translate 7473 problems and 221

CoT responses from the English GSM8K training 222

set and their corresponding CoT answers into the 223

target languages. To ensure the quality and consis- 224

tency of the translations, we adopt the following 225

strategies within the translation prompts: 226

1. Maintain consistent translations for names of 227

people and places within the sentences. 228

2. Preserve the mathematical formulas during 229

translation. 230

3. All numbers must be represented using Arabic 231

numerals to facilitate cross-lingual prediction. 232

4. To pursue more accurate translations, we pro- 233

vide two translation examples in the prompts 234

for each language. 235

Verify Strategy Upon inspection of our ran- 236

domly sampled translations, we find that ChatGPT 237

generally maintains semantic accuracy in transla- 238

tions; however, discrepancies in formula transla- 239

tions may arise. Thus, to uphold consistency and 240

accuracy across multiple languages, we addition- 241

ally extract all formulas present in the translated 242

answers. If all formulas are calculated correctly 243

and are consistent with those in English, we deem 244

the translation to be accurate and error-free. Note 245

that if errors persist across 5 consecutive transla- 246

tions, we discard that particular case. 247

This approach ensures a coherent and accurate 248

translation process, allowing for comprehensive 249

evaluation and application in xMR tasks while 250

maintaining linguistic and mathematical integrity. 251

Upon acquiring the translated data, by pairing it 252

with the alpaca-format prompts, we are able to for- 253

mulate our final training dataset MGSM8KInstruct, 254
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Dataset En Sw Zh Bn De Es Fr Ja Ru Th Overall

MGSM8KInstruct 7473 7472 7466 6539 7466 7470 7469 7471 7361 7473 73.6k
MSVAMP 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10k

Table 1: Data statistics of our MGSM8KInstruct and MSVAMP.

Times En Sw Zh Bn De Es Fr Ja Ru Th

10 1.5 2.1 1.6 1.2 1.6 1.4 1.2 0.8 1.3 1.4
30 2.5 3.5 2.7 1.9 2.6 2.3 2.0 1.3 2.2 2.3
50 3.8 5.2 4.0 2.9 3.9 3.5 3.0 1.9 3.3 3.4

Table 2: Distinct reasoning paths of each language with
different sampling times.

with about 73.6k samples, statistics shown in Table255

1. Translation and training prompts are displayed256

in the Appendix, Table 7 and 9.257

2.3 MathOctopus258

Training Strategies We then use multilingual259

query-response pairs in MGSM8KInstruct to super-260

vise fine-tune LLMs, resulting in MathOctopus.261

As illustrated before, let us delve into a detailed262

exposition of our diverse training strategies:263

• Parallel-training, involves filling in the input264

prompts with questions and answers in the265

same native language during training. This266

strategy is like teaching the model to commu-267

nicate clearly in one language at a time. It268

helps the model get better at answering ques-269

tions accurately within the same language,270

making it more reliable and effective.271

• Cross-training, refers to our approach during272

training where we insert English questions273

and answers in one native language into the274

input prompts. This approach is like mixing275

languages in teaching, using English ques-276

tions and native language answers. It helps277

the model understand and connect different278

languages better, making it more versatile and279

capable of handling multilingual scenarios.280

Multilingual Rejection Sampling Prior work281

(Yuan et al., 2023a) has demonstrated that LLM’s282

performance can be further enhanced by augment-283

ing data through rejection sampling (RFT). Conse-284

quently, in this paper, we explore whether the gains285

imparted by RFT persist in multilingual scenarios.286

After obtaining the preliminary SFT model, we per-287

form multiple inferences with the SFT model in the288

MGSM8KInstruct dataset, sampling more diverse289

and accurate reasoning paths from different lan-290

guages to integrate into the original dataset. More291

specifically, we first eliminate samples with incor- 292

rect final answers. Subsequently, we extract all 293

the formulas in each reasoning path and validate 294

their accuracy; if all are correct, we consider that 295

reasoning path as correct. We then follow the strate- 296

gies from (Yuan et al., 2023a) to acquire different 297

correct reasoning paths: a reasoning path is only 298

collected as augmented data if no previously col- 299

lected path contains identical formulas. 300

However, the reasoning paths sampled from one 301

single SFT model can be logically non-diverse. 302

Consequently, we anticipate further enhancing the 303

mathematical reasoning performance by leveraging 304

reasoning paths aggregated from different models 305

via multilingual rejection sampling. Considering 306

the cost of prolonged inference, we currently per- 307

form 25 inferences for each language from the ba- 308

sic MathOctopus 7B and 13B models respectively, 309

meaning we sample answers for each question in 310

every language 50 times. In our experiments, we 311

fuse all the different reasoning paths generated by 312

the two models to obtain our final xRFT augmented 313

data. We set the temperature as 0.9 and with differ- 314

ent seeds to expect the model to generate diverse 315

solutions. The table 2 displays the number of differ- 316

ent reasoning paths per question produced in each 317

language over 50 samples. 318

3 Experiments 319

In this section, we first review our in-domain eval- 320

uation dataset: MGSM, and the collection of the 321

out-of-domain testset: MSVAMP. Subsequently, 322

we introduce multiple baselines in this work. At 323

last, we present the main results and findings of our 324

experiments. We illustrate our experimental setup 325

for training and testing in Appendix B. 326

3.1 Evaluation Datasets 327

MGSM The source data of MGSM (Shi et al., 328

2022) is collected from a subset from GSM8K test- 329

set, and then native annotators translate the subset 330

in English into other 10 languages. Each language 331

branch consists of 250 test samples. 332

MSVAMP We choose SVAMP as our English 333

source data. Given that the answers in the SVAMP 334
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Models En Sw Zh Bn De Es Fr Ja Ru Th Avg.

Close-Source LLMs
ChatGPT-Zero shot 52.0 30.0 44.4 4.4 46.8 52.0 45.6 38.8 37.2 8.0 35.9
ChatGPT-En 2shot 67.2 40.0 52.8 7.6 62.0 61.2 59.2 46.8 50.4 15.6 46.3
GPT4-En 2shot 80.0 64.4 70.0 17.6 73.6 71.2 72.0 71.6 64.0 40.4 62.5

Open-Source LLMs (7B Model)
LLaMA 2 43.2 5.2 22.4 3.2 37.2 32.4 34.4 15.2 28.0 4.8 22.6
RFT 44.8 2.8 16.8 2.4 33.6 34.0 34.0 6.8 29.2 2.0 20.6
MAmmoTH 49.6 2.4 17.2 3.6 33.2 32.4 32.8 10.8 26.0 4.8 21.3
WizardMath 47.6 3.4 22.4 2.0 30.4 34.8 30.4 24.0 30.8 4.0 23.0

MathOctopusC 52.0 23.6 31.6 18.8 38.0 39.2 36.4 27.2 33.6 21.6 32.2
xRFT-MathOctopusC 51.2 24.0 33.2 18.8 36.0 41.2 37.6 29.6 36.4 25.2 33.3

MathOctopusP 52.4 39.2 38.4 28.8 44.8 42.4 43.6 36.0 39.6 34.4 40.0
xRFT-MathOctopusP 54.8 38.4 45.2 33.2 43.6 45.2 38.0 35.6 48.4 36.4 41.9

Open-Source LLMs (13B Model)
LLaMA 2 50.4 7.6 32.8 6.0 42.8 45.2 40.8 25.2 39.2 6.8 29.7
RFT 52.0 3.6 33.6 3.2 38.4 46.8 44.8 26.4 41.6 4.4 29.5
MAmmoth 56.4 1.6 31.2 3.6 45.6 50.0 39.6 19.2 36.8 5.2 28.9
WizardMATH 52.8 5.6 28.0 6.4 40.4 45.6 42.0 22.0 34.4 5.6 28.3

MathOctopusC 56.4 27.2 39.2 24.0 47.6 49.6 47.6 40.4 42.0 24.8 39.9
xRFT-MathOctopusC 53.6 28.0 45.2 21.2 48.0 46.4 46.0 35.2 45.6 28.8 39.8

MathOctopusP 53.2 42.8 48.8 35.2 44.4 48.0 48.4 43.2 47.6 46.8 45.8
xRFT-MathOctopusP 51.6 46.0 51.2 42.0 49.2 53.2 49.6 39.6 47.6 46.0 47.6

Open-Source LLMs (30-34B Model)
LLaMA 1 50.8 3.6 27.6 3.2 42.4 44.4 42.4 11.6 38.4 1.2 26.6
RFT 57.6 2.4 26.0 4.8 45.6 46.4 44.8 9.2 46.4 4.4 28.8

MathOctopusC 55.6 24.4 36.0 19.2 40.4 51.2 44.4 27.2 37.2 21.6 35.7
xRFT-MathOctopusC 53.6 27.6 34.4 19.2 47.2 47.6 44.8 30.8 38.8 22.8 36.7

MathOctopusP 56.4 46.8 52.0 35.2 47.2 53.2 48.0 39.2 45.6 41.2 46.5
xRFT-MathOctopusP 51.6 47.2 52.4 37.6 51.2 52.8 44.4 41.6 50.0 47.6 47.6

Table 3: Model Performances on MGSM testset. MathOctopusP and MathOctopusC refer to models trained on
parallel-training and cross-training, separately. We highlight the best results in each language of the same backbone.

only contain the numerical results, we focus solely335

on translating the questions. To ensure high-quality336

translations, we use Google Translate System to337

convert 1,000 samples from the SVAMP testset338

into ten languages, matching the same languages339

in our training set. To further guarantee translation340

fidelity, we back-translate the translated text into341

English, and recruit three professional annotators342

manually checking for semantic consistency.343

3.2 Baselines344

Close-Source LLMs In this paper, We con-345

sider two OpenAI’s LLMs: GPT-4 and ChatGPT346

(gpt3.5-turbo) for comparison: (1) We test Chat-347

GPT with zero-shot prompting where none exem-348

plars are given, but we add “Let’s think step by349

step.” at the end of the inputs. (2) As Shi et al.350

(2022) proves including EN-CoT examples could351

result in better performances in xMR tasks, we ad-352

ditionally test them with 2 shot EN-coT examples,353

which are shown in Appendix Table 10. 354

Open-Source LLMs For fairness, we primarily 355

compare MathOctopus with several LLaMA-based 356

models, including LLaMA base, RFT, MAm- 357

moTH and WizardMath. In this work, LLaMA 358

base denotes trained on GSM8K English corpus; 359

RFT utilizes rejection sampling on English instruc- 360

tion tuning; MAmmoTH is trained based on a va- 361

riety of math instruction datasets; WizardMath 362

is built on Reinforcement Learning from Evol- 363

Instruct (RLEIF) in math reasoning. As we only 364

consider CoT solutions in this work, we don’t use 365

the code version of these models. 366

3.3 Main Results 367

Table 3 and Table 4 show the in-domain and out-of- 368

domain test results of different open-source LLMs 369

and several close-source LLMs. We run the eval- 370

uation three times and report average results. We 371
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Models En Sw Zh Bn De Es Fr Ja Ru Th Avg.

Close-Source LLMs
ChatGPT-Zero shot 76.1 63.2 72.4 3.1 66.7 69.5 71.9 63.3 62.3 24.4 57.3
ChatGPT-En 2 shot 81.2 68.4 78.4 14.4 73.9 74.6 78.2 74.0 70.9 46.0 66.0
GPT4-En 2shot 80.1 75.7 78.9 31.2 78.1 81.5 83.9 74.8 77.9 68.1 73.0

Open-Source LLMs (7B Model)
LLaMA 2-LoRA 27.6 4.0 12.0 2.0 10.4 18.4 16.8 7.6 11.2 3.2 11.3
LLaMA 2 38.8 17.2 35.2 11.5 39.0 39.2 39.1 31.6 39.1 18.2 30.9
RFT 42.7 14.9 34.9 7.7 40.8 42.5 41.5 33.9 39.5 16.9 31.5
MAmmoTH 45.1 4.2 26.8 4.3 39.6 42.9 39.9 26.7 33.7 6.3 27.0
WizardMath 48.5 10.3 36.3 16.1 39.2 44.8 37.7 37.9 37.4 17.0 32.5

MathOctopusC 49.2 36.6 43.6 30.2 48.6 46.8 46.4 42.5 46.7 34.0 42.5
xRFT-MathOctopusC 49.9 37.7 43.3 32.9 46.5 47.6 47.3 42.7 46.6 36.2 43.1

MathOctopusP -LoRA 30.4 15.2 23.6 10.4 22.8 24.8 26.4 18.0 22.0 14.8 20.8
MathOctopusP 46.5 40.1 42.5 29.1 43.5 45.4 46.0 42.5 45.4 35.7 41.7
xRFT-MathOctopusP 46.8 42.3 43.2 32.8 43.1 44.5 45.3 43.2 42.1 40.5 42.4

Open-Source LLMs (13B Model)
LLaMA 2 50.9 19.8 43.3 13.9 46.2 46.1 47.8 41.8 47.8 23.4 38.1
RFT 47.1 19.4 42.3 12.2 45.1 45.6 45.2 42.4 46.5 24.8 37.1
MAmmoth 53.4 12.9 47.7 5.0 52.3 53.9 53.8 42.2 50.7 13.7 38.6
WizardMATH 56.3 12.5 37.0 13.7 48.7 50.4 49.4 29.5 43.8 16.3 35.8

MathOctopusC 56.6 40.4 49.0 30.3 50.9 54.2 54.7 46.3 52.4 35.7 47.1
xRFT-MathOctopusC 52.9 41.9 49.2 34.1 50.5 52.8 51.5 45.8 50.2 35.7 46.5

MathOctopusP 50.7 43.4 42.6 31.8 48.4 49.4 50.6 41.1 46.9 39.3 44.4
xRFT-MathOctopusP 44.6 43.4 46.4 34.2 47.7 48.2 49.9 43.1 48.2 39.5 44.5

Open-Source LLMs (30-34B Model)
LLaMA 1 49.0 9.3 37.5 3.7 44.1 45.6 44.3 27.0 43.1 8.4 31.2
RFT 46.8 11.5 36.6 6.0 46.1 46.8 46.7 31.1 44.9 9.9 32.6

MathOctopusC 51.5 42.1 46.2 23.2 50.5 52.1 52.9 42.2 50.5 33.4 44.5
xRFT-MathOctopusC 48.1 42.8 43.6 23.3 48.7 50.0 48.9 43.4 44.6 35.5 42.9

MathOctopusP 56.4 46.8 52.0 35.2 47.2 53.2 48.0 39.2 45.6 41.2 46.5
xRFT-MathOctopusP 48.0 42.3 46.1 36.2 47.5 48.5 48.3 45.8 47.2 41.2 45.1

Table 4: Model Performances on MSVAMP testset. MathOctopusP and MathOctopusC refer to models trained on
parallel-training and cross-training, separately.

can draw the key observations and insights from372

the tables:373

Cross-Test

Models MGSM8K MSVAMP

MathOctopusP -7B 44.4 47.8
MathOctopusC-7B 47.0 54.2

MathOctopusP -13B 47.8 45.2
MathOctopusC-13B 54.2 51.5

MathOctopusP -33B 46.5 46.6
MathOctopusC-33B 53.3 49.4

Table 5: Average performances of MathOctopusC and
MathOctopusP under the Cross-Test settings.

LLMs struggle in xMR tasks, especially in low-374

resource languages. From the tables, current375

open-source LLMs still suffer in xMR in terms of376

in-domain and out-of-domain testing. For instance,377

LLMs with 7B-level only achieve about 20%-23%378

accuracy in MGSM. Another conspicuous observa- 379

tion is the stark performance contrast of existing 380

models when dealing with high-resource versus 381

low-resource languages. This discrepancy can be 382

largely attributed to the diminutive representation 383

of low-resource languages in their foundational cor- 384

pus. In contrast, our model adeptly rectifies this 385

shortcoming, as evidenced by its enhanced perfor- 386

mance in languages like Thai and Swahili. 387

Performance Superiority of MathOctopus. The 388

proposed MathOctopus, whether in cross-training 389

or parallel-training, both significantly outperforms 390

other open-source LLMs by a large margin. For 391

instance, when operating at the 7B-level, our 392

model can boost the LLaMA model’s efficacy 393

from a mere 22.6% to a commendable 41.9% 394

on MGSM. Furthermore, this superiority still 395

remains as the model size escalates. Surpris- 396
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ingly, MathOctopusP -13B even surpasses Chat-397

GPT on MGSM. Another interesting finding is that398

MathOctopusP performs better in the in-domain399

test while MathOctopusC shows better general-400

ization ability in the out-of-domain test, proving401

their unique advantages, separately.402

Models GSM8K SVAMP

LLaMA 2-7B 42.4 38.3
MathOctopusP -7B 49.3 46.8
MathOctopusC-7B 50.8 49.3

LLaMA 2-13B 51.0 50.9
MathOctopusP -13B 55.5 52.1
MathOctopusC-13B 56.6 56.6

LLaMA 1-33B 50.0 49.0
MathOctopusP -33B 56.0 52.5
MathOctopusC-33B 53.7 51.5

Table 6: Model performances on English datasets.

Marginal Impact of xRFT. The xRFT’s con-403

tribution to model enhancement appears to be404

somewhat circumscribed. Its potency wanes,405

particularly in out-of-domain test scenarios. In406

tests within MGSM, the xRFT’s contribution to407

MathOctopusP hovers around a modest 1%-2%408

average uplift. However, this figure dips below 1%409

in MSVAMP testset. More intriguingly, the aug-410

mentative effect of xRFT on MathOctopusC seems411

even more subdued, with potential performance412

deterioration observable on the MGSM.413

3.3.1 Training-Testing Consistencies414

As shown in the tables, equally significant is the415

discernible performance disparity between models416

employing MathOctopusC versus MathOctopusP ,417

when subjected to the same quantum of training418

data: MathOctopusP leads to better in-domain test419

performances compared with MathOctopusC . A420

deeper delve into this phenomenon revealed an in-421

congruity between the training and testing environ-422

ments. Specifically, in the MGSM and MSVAMP423

testsets, the data adheres to a parallel structure,424

where both the query and its corresponding re-425

sponse are couched in an identical language—a426

configuration we term parallel-test. This is consis-427

tent with the parallel-training settings.428

However, in our fine-grained experiments,429

as presented in Table 5 when the testing en-430

vironment mimics the cross-training format,431

dubbed cross-test, MathOctopusC demonstrate432

a superior performance trajectory compared to433

MathOctopusP when model sizes scale from 7B to434

33B. This underlines the pivotal importance of en-435

suring a harmonious alignment between training436

Es Zh Th
Languages

30

32

34

36

38

40

42

44

Re
su

lt
s

42.4

38.4

34.4

37.6

35.2

32.4

Models
MathOctopusP

Es-LLaMA
Zh-LLaMA
Th-LLaMA

Figure 2: Performances of 7B-models on three lan-
guages subset from MGSM.

and testing data formats for optimizing LLMs’ 437

multilingual reasoning capability. 438

3.3.2 Multilingual SFT can generally benefit 439

Monolingual SFT 440

One of the most exciting observations in 441

our experiments is that MathOctopus could 442

significantly improve the performances in 443

English. Table 6 presents the corresponding 444

results of LLaMA and MathOctopus on English 445

GSM8K and SVAMP testsets. First and foremost, 446

both MathOctopusP and MathOctopusC have 447

substantially enhanced the performance of 448

LLaMA2 across the two datasets. Secondly, 449

MathOctopusC emerges as the superior performer 450

(e.g., 50.8% vs. 49.3%, 49.3% vs. 46.8% with 451

7B-level). We surmise that this can be attributed 452

to the cross-training paradigm, where during 453

training, the model predominantly encounters data 454

with English prompts requiring reasoning in other 455

languages. This exposure, intensifies the model’s 456

proficiency in English comprehension, providing it 457

with a distinctive edge. 458

More broadly, does this situation persist in other 459

languages as well? To explore this, we randomly se- 460

lect training sets for three languages from the train- 461

ing dataset: Spanish and Chinese, as well as the 462

low-resource language Thai, and used their respec- 463

tive corpora to train three models, which we named 464

Es-LLaMA, Zh-LLaMA, and Th-LLaMA, respec- 465

tively. Figure 2 separately illustrates the test results 466

of several models in their respective training lan- 467

guages. We observe that our model still surpasses 468

the results of the monolingual SFT models in their 469

native training languages. This suggests that, at 470

least in the task of math reasoning, multilingual 471

SFT can be considered a superior training strat- 472

egy to monolingual SFT, effortlessly elevating 473

the model’s performance in its native language. 474
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(a) Models Performances on MGSM (b) Models Performances on MSVAMP

Figure 3: Model performances of MathOctopus with different xRFT data volume.

4 Discussion475

In this section, we aim to delve deeper through a se-476

ries of meticulous experiments designed to address477

the following inquiries:478

• Q1: The impact of xRFT: especially the im-479

plications of varying xRFT data quantities on480

the efficacy of the model?481

• Q2: When solely utilizing corpus of specific482

languages from MGSM8KInstruct for model483

training, can we still witness an enhancement484

in other unseen languages? (See Answer in485

Appendix C)486

• Q3: Variations of the training strategy: Step487

further, instead of strictly restricting the ques-488

tions to English, we can propose forming pair-489

ings from the available corpus of 10 languages490

in MGSM8KInstruct, thus allowing both the491

questions and answers to span diverse combi-492

nations. How does the model fare under such493

conditions? (See Answer in Appendix C)494

4.1 RQ1: Influence of xRFT Data Volume495

In this component, we probe the impact of vary-496

ing data quantities introduced by different xRFTs497

on model performance. Figures 3 (a) and (b) re-498

spectively illustrate the performances of models499

across two datasets under xRFT with sampling500

counts k set to {10, 30, 50}. From the visuals,501

it’s discernible that for MathOctopusP , employ-502

ing larger training corpus generally augments per-503

formance in most cases, a trend particularly pro-504

nounced in the MGSM dataset. However, these505

gains remain modest, especially when the back-506

bone model becomes more performant. In con-507

trast, MathOctopusC demonstrates only marginal508

improvements attributable to xRFT, and intrigu-509

ingly, its efficacy on the MSVAMP dataset seems510

to wane as the k value escalates.511

This suggests that while xRFT introduces var- 512

ious reasoning paths, its contribution to tasks 513

like multilingual math reasoning remains cir- 514

cumscribed. A plausible rationale is that during 515

the multilingual SFT phase, distinct linguistic ver- 516

sions of the same solution might already be con- 517

strued as diverse reasoning paths. Hence, multi- 518

lingual SFT can essentially be viewed as a vari- 519

ant of the monolingual SFT’s RFT. Building upon 520

the foundation of multilingual SFT, supplementary 521

benefits conferred by xRFT appear to be minuscule 522

and might even usher in model overfitting. 523

5 Conclusion 524

In this paper, we pioneer to explore training mul- 525

tilingual mathematical LLMs. To address the data 526

scarcity in low-resource languages, We first col- 527

lect the first multilingual math reasoning instruc- 528

tion dataset, named MGSM8KInstruct, consisting 529

of ten various languages. The models, trained 530

on the MGSM8KInstruct with different training 531

strategies, named MathOctopus, show superior per- 532

formances compared to other open-source LLMs. 533

We prove that MathOctopus with parallel-training 534

could achieve better in-domain test results while 535

MathOctopus with cross-training present better ro- 536

bustness in our collected out-of-domain testset, 537

MSVAMP. We investigate the influences of the 538

multilingual rejection sampling strategy, observ- 539

ing it contributes marginal impact to xMR tasks. 540

Based on our extensive and fine-grained experi- 541

ments, we also draw several key conclusions, where 542

the most exciting one is that creating aligned bilin- 543

gual question-answer corpora can be regarded as 544

an important way to improve model performance in 545

its native language, especially in tasks that require 546

mathematical reasoning. Within the picture of our 547

future work, we will explore more methodologies 548

and diverse parallel corpus in training xMR LLMs 549

which may involve the RLHF and DPO. 550
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Limitations551

In this work, we still leave several parts to under-552

explore, which may also contribute to building ef-553

fective xMR LLMs:554

• Developing MathOctopus based on larger size555

LLMs, including LLaMA 2-70B and LLaMA-556

Coders, which is a future work in our follow-557

ing experiments.558

• Currently, we only apply xRFT to 7B and 13B559

models due to the high cost of inferencing. We560

also will conduct xRFT to more performant561

models, further investigating its efficiency.562

• We are still not very clear whether including563

more languages in MGSM8KInstruct could564

benefit current models, which will discussed565

in our next version.566

References567

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,568
Amanda Askell, Jackson Kernion, Andy Jones, Anna569
Chen, Anna Goldie, Azalia Mirhoseini, Cameron570
McKinnon, Carol Chen, Catherine Olsson, Christo-571
pher Olah, Danny Hernandez, Dawn Drain, Deep572
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,573
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua574
Landau, Kamal Ndousse, Kamile Lukosuite, Liane575
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas576
Schiefer, Noemi Mercado, Nova DasSarma, Robert577
Lasenby, Robin Larson, Sam Ringer, Scott John-578
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,579
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-580
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-581
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,582
Nicholas Joseph, Sam McCandlish, Tom Brown, and583
Jared Kaplan. 2022. Constitutional ai: Harmlessness584
from ai feedback.585

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie586
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind587
Neelakantan, Pranav Shyam, Girish Sastry, Amanda588
Askell, Sandhini Agarwal, Ariel Herbert-Voss,589
Gretchen Krueger, Tom Henighan, Rewon Child,590
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,591
Clemens Winter, Christopher Hesse, Mark Chen, Eric592
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,593
Jack Clark, Christopher Berner, Sam McCandlish,594
Alec Radford, Ilya Sutskever, and Dario Amodei.595
2020. Language models are few-shot learners. CoRR,596
abs/2005.14165.597

Nuo Chen, Linjun Shou, Tengtao Song, Ming Gong,598
Jian Pei, Jianhui Chang, Daxin Jiang, and Jia Li.599
2023a. Structural contrastive pretraining for cross-600
lingual comprehension. In Findings of the Associa-601
tion for Computational Linguistics: ACL 2023, pages602

2042–2057, Toronto, Canada. Association for Com- 603
putational Linguistics. 604

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 605
Denny Zhou. 2023b. Teaching large language mod- 606
els to self-debug. arXiv preprint arXiv:2304.05128. 607

Hyung Won Chung, Le Hou, Shayne Longpre, Bar- 608
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi 609
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 610
2022. Scaling instruction-finetuned language models. 611
arXiv preprint arXiv:2210.11416. 612

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 613
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 614
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 615
Nakano, Christopher Hesse, and John Schulman. 616
2021. Training verifiers to solve math word prob- 617
lems. CoRR, abs/2110.14168. 618

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, 619
Shizhe Diao, Jipeng Zhang, Kashun Shum, and Tong 620
Zhang. 2023. Raft: Reward ranked finetuning for 621
generative foundation model alignment. 622

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 623
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 624
ham Neubig. 2023. Pal: Program-aided language 625
models. In International Conference on Machine 626
Learning, pages 10764–10799. PMLR. 627

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 628
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 629
and Weizhu Chen. 2021. Lora: Low-rank adap- 630
tation of large language models. arXiv preprint 631
arXiv:2106.09685. 632

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, 633
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. 634
Large language models can self-improve. 635

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. 636
Mathprompter: Mathematical reasoning using large 637
language models. In ACL (industry), pages 37–42. 638
Association for Computational Linguistics. 639

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab- 640
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh 641
Hajishirzi. 2020. Unifiedqa: Crossing format bound- 642
aries with a single QA system. In Findings of the 643
Association for Computational Linguistics: EMNLP 644
2020, Online Event, 16-20 November 2020, volume 645
EMNLP 2020 of Findings of ACL, pages 1896–1907. 646
Association for Computational Linguistics. 647

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, 648
Jian-Guang Lou, and Weizhu Chen. 2023. Making 649
language models better reasoners with step-aware 650
verifier. In Proceedings of the 61st Annual Meet- 651
ing of the Association for Computational Linguistics 652
(Volume 1: Long Papers), pages 5315–5333. 653

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, 654
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V 655
Le, Barret Zoph, Jason Wei, et al. 2023. The flan 656
collection: Designing data and methods for effective 657
instruction tuning. arXiv preprint arXiv:2301.13688. 658

9

http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://doi.org/10.18653/v1/2023.findings-acl.128
https://doi.org/10.18653/v1/2023.findings-acl.128
https://doi.org/10.18653/v1/2023.findings-acl.128
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2210.11610
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171


Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-659
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei660
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-661
ardmath: Empowering mathematical reasoning for662
large language models via reinforced evol-instruct.663
arXiv preprint arXiv:2308.09583.664

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex665
Polozov, Christopher Meek, Dragomir Radev, and666
Jianfeng Gao. 2023. Learning math reasoning from667
self-sampled correct and partially-correct solutions.668
In The Eleventh International Conference on Learn-669
ing Representations.670

OpenAI. 2023. Gpt-4 technical report.671

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.672
2021. Are NLP models really able to solve simple673
math word problems? In Proceedings of the 2021674
Conference of the North American Chapter of the675
Association for Computational Linguistics: Human676
Language Technologies, pages 2080–2094, Online.677
Association for Computational Linguistics.678

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.679
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine680
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,681
M Saiful Bari, Canwen Xu, Urmish Thakker,682
Shanya Sharma Sharma, Eliza Szczechla, Taewoon683
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti684
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han685
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,686
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-687
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-688
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan689
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,690
Thomas Wolf, and Alexander M. Rush. 2022. Multi-691
task prompted training enables zero-shot task gener-692
alization. In The Tenth International Conference on693
Learning Representations, ICLR 2022, Virtual Event,694
April 25-29, 2022. OpenReview.net.695

Teven Le Scao, Angela Fan, Christopher Akiki, El-696
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A Related Works800

Math Reasoning with LLMs A pivotal metric801

for assessing the efficacy of LLMs is their capa-802

bility in addressing intricate reasoning challenges,803

exemplified by mathematical reasoning tasks (Scao804

et al., 2022; Cobbe et al., 2021; Zhou et al., 2022;805

Weng et al., 2022; Chen et al., 2023b). Rather806

than yielding direct, definitive answers, prior re-807

search has illustrated that by employing a variety of808

prompting techniques, such as Chain-of-Thought809

(CoT) prompting (Wei et al., 2022), LLMs can be810

guided through step-by-step reasoning, resulting in811

significant improvements in performance across an812

array of diverse reasoning tasks. Imani et al. (2023)813

propose the generation of multiple algebraic expres-814

sions or Python functions to solve the same mathe-815

matical problem, aiming to explore a broader spec-816

trum of potential solutions. Additionally, Li et al.817

(2023) introduce a step-aware verifier to scrutinize818

the reasoning steps in COT, thereby enhancing the819

model’s reasoning capabilities. Another effective820

approach, Self-Consistency (Wang et al., 2022),821

combines a wider range of solutions and derives a822

final answer by aggregating them to obtain the most823

consistent response. Meanwhile, several scholarly824

works have incorporated the concept of rejection825

sampling, in conjunction with various other tech-826

niques, to curate a more diverse set of sampled827

reasoning paths for the purpose of fine-tuning data828

augmentation (Huang et al., 2022; Zelikman et al.,829

2022; Ni et al., 2023; Zhu et al., 2023; Bai et al.,830

2022; Yuan et al., 2023b; Dong et al., 2023; Tou-831

vron et al., 2023b; Song et al., 2023). Following the832

line, Yuan et al. (2023a) utilize rejection sampling833

to augment the data volume for fine-tuning math834

reasoning LLMs.835

Instruction Tuning with LLMs Instruction tun-836

ing serves as a pivotal component within the devel-837

opmental frameworks of language models, with its838

primary function being to orient LLMs towards ob-839

jectives that are more congruent with human pref-840

erences and functional applications. The academic841

discourse on instruction tuning is notably concen-842

trated on amplifying the versatile instructional ca-843

pabilities of LLMs. This discourse is particularly844

exemplified by pioneering studies such as Uni-845

fiedQA (Khashabi et al., 2020), Zero-Prompt (Xu846

et al., 2022), FLAN (Chung et al., 2022), and T0847

(Sanh et al., 2022). These studies have embarked848

on an exploration into the generalization capabili-849

ties of LLMs. Following these, FLAN-v2 (Longpre850

et al., 2023) further investigated the impact of scal- 851

ing instructional datasets on model performance. 852

Recent innovations in this domain are veering to- 853

wards employing synthetic instruction following 854

data, distilled from models like GPT-3/4 (OpenAI, 855

2023), to align open-source LLMs. Recently, sev- 856

eral works have utilized instruction tuning for train- 857

ing math LLMs. Yuan et al. (2023a) propose RFT 858

in math reasoning, and WizardMath (Luo et al., 859

2023) implements the "evol-instruct reinforcement 860

learning" methodology (RLEIF), which is directed 861

towards the refinement of prevailing math instruc- 862

tion data. However, almost all of them aim to im- 863

prove mathematical reasoning in English, leaving 864

multilingual mathematical reasoning less explored. 865

This paper aims to fill this gap by exploring effec- 866

tive methods for training robust LLMs in multilin- 867

gual mathematical reasoning. 868

B Experimental Setup 869

Training and Testing In this work, we use 870

open-source LLaMA-2 7B to 13B and LLaMA- 871

1 33B as backbone models, allowing us to build 872

MathOctopus in multiple scales. Our codes are 873

based on DeepSpeed and Huggingface Library. For 874

all models, we set the learning rate, epochs and 875

max length as 2e-5, 3 and 512. The batch sizes 876

are set to 8, 4, 2 when models scale from 7B to 877

33B. During testing, we set the maximum output 878

token as 512 with temperature as 0.0 to keep stable 879

performances. We keep the same prompt in Table 880

7 for testing MathOctopus. Please refer to Section 881

3.3 for xRFT settings. 882

C Discussion 883

C.1 RQ2: Targeted Language Training: 884

Limited Broader Linguistic Reasoning 885

Gains 886

Our exploration into model training with select 887

languages posits a notable inquiry: Can training 888

with a subset of languages enhance mathemati- 889

cal reasoning across all languages? Engaging two 890

high-resource languages, Spanish and Chinese, and 891

two low-resource languages, Thai and Swahili, for 892

mixed training sessions reveals pivotal insights. 893

Seen in Table 8, while stark performance enhance- 894

ments are witnessed in trained languages, notably 895

in low-resource ones like Thai (surging from 4% 896

to 36.8%), the model’s efficacy varies in languages 897

that are unseen in training: While there are im- 898

proved outcomes in certain languages like Japanese 899
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Input Prompts
Below is an instruction that describes a task. \n Write a response that appropriately completes the
request in { language }. Please answer in { language }.\n \n ### Instruction: \n {query}\n\n ###
Response:

Table 7: Training and testing prompts in our experiments.

Models En Sw Zh Bn De Es Fr JA Ru Th Avg.

LLaMA 2 (En) 43.2 5.2 22.4 3.2 37.2 32.4 34.4 15.2 28.0 4.8 22.6
MathOctopusP (En-Zh-Es) 44.0 3.6 34.4 3.2 33.6 41.2 36.8 25.2 30.4 4.0 25.6
MathOctopusP (En-Sw-Th) 46.0 34.4 27.6 2.4 31.2 35.2 32.4 22.4 27.2 36.8 29.6

Table 8: Model Performances on MGSM test set. MathOctopusP (En-Zh-Es) refers to we only train MathOctopusP

in three languages: English, Chinese and Spanish. Similarly, MathOctopusP (En-Sw-Th) means the MathOctopusP

trained in English, Swahili and Thai.

and French, a corresponding decline is witnessed900

in others, such as German and Russian. This phe-901

nomenon might predominantly stem from the dis-902

parities in grammatical structures across different903

languages (Chen et al., 2023a).904

C.2 RQ3: Training Variability: Beyond905

English-centric Questions906

Beyond the two training strategies explored in Sec-907

tion 3.3, we further probe alternative approaches908

to discern their influence on model performance.909

Hence, we examine two additional strategies: 1) A910

Mix-Training approach, where cross-training and911

parallel-training data are amalgamated for train-912

ing; 2) An expansive Mix-All method that not913

only extends cross-training but also randomly pairs914

two languages from the MGSM8KInstrucT, thereby915

permitting questions and answers in the training916

data to traverse various linguistic combinations,917

effectively amplifying the original training data918

volume tenfold. The resulting models obtained by919

the above strategies are called MathOctopusM and920

MathOctopusM-All, separately.921

From the right-side Figure 4, it is evident that de-922

spite these two new training strategies respectively923

doubling and amplifying training volumes tenfold924

compared to original parallel-training and cross-925

training strategies, they do not surpass the results926

of MathOctopusP . Furthermore, the outcomes927

from MathOctopusM-All slightly underperform928

MathOctopusM. Such a phenomenon may arise929

because, although “mix-all” and “mix-training” ex-930

pand the original data, the pre-existing data vol-931

ume already suffices for the model to learn align-932

ment and reasoning capabilities across different933

languages. An additional, rudimentary data expan-934

sion potentially induces overfitting, subsequently935

En Sw Zh Bn De Es Fr Ja Ru Th Avg
Test Languages
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Figure 4: Performances of MathOctopus-7B with dif-
ferent strategy on MGSM.

diminishing model performance. 936

C.3 Prompts for ChatGPT Translation 937

Table 9 shows the translation prompt when we uti- 938

lize ChatGPT to translate the data from English to 939

other languages. When applying this prompt, we 940

just need to replace the placeholder symbol lang 941

with the specific language. Here, we use the Span- 942

ish translation examples in the prompt. 943

C.4 Generated Cases by MathOctopus 944

Table 11 and Table 12 presens several generated 945

examples in various languages by LLaMA and our 946

models. 947
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Prompts: You are a professional {lang} translator and spelling corrector. Please translate the given math question and its
reasoning path into {lang}.
Below are examples:
Q: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
P: Babysitting is $12/hour = $12/60 minutes = $«12/60=0.2»0.2 per minute. Weng did babysitting for 50 minutes, so she
earned $0.2 x 50 = $«0.2*50=10»10.
T-Q: Weng gana 12 dólares la hora por cuidar niños. Ayer cuidó niños durante 50 minutos. ¿Cuánto ganó?
T-P: Cuidar niños cuesta $12/hora = $12/60 minutos = $«12/60=0.2»0.2 por minute. Weng cuidó niños durante 50 minutos,
por lo que ganó $0.2 x 50 = $«0.2*50=10»10.
Q: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as
yesterday. If she wants to read half of the remaining pages tomorrow, how many pages should she read?
P: Since today is the last day of the month, Julie would like to finish an entire book before tomorrow. She has read a total
of 12 + 24 = «12+24=36»36 pages in two days. There are 120 - 36 = «120-36=84»84 pages left to be read. Hence, Julie
should read 84/2 = «84/2=42»42 pages tomorrow.
T-Q: Julie está leyendo un libro de 120 páginas. Ayer pudo leer 12 páginas y hoy leyó el doble que ayer. Si quiere leer la
mitad de las páginas restantes mañana, ¿cuántas páginas debería leer?
T-P: Como hoy es el último día del mes, a Julie le gustaría terminar un libro completo antes de mañana. Ha leído un total
de 12 + 24 = «12+24=36»36 páginas en dos días. Quedan 120 - 36 = «120-36=84»84 páginas por leer. Por lo tanto , Julie
debería leer 84/2 = «84/2=42»42 páginas mañana.
Please Keep in mind that:
(1) keep the translations consistent for names of people and places within the sentences.
(2) Preserve the mathematical formula within the “« »” brackets when translating.
(3) You must translate the text into {lang}.
(4) You must follow the output format with: "T-Q:... T-P:..."

Table 9: Translation prompts in our experiments.

Prompts: Answer the following math probelm step by step in {lang}.
Below are examples:
Q: Julia played tag with 18 kids on Monday. She played tag with 10 kids on Tuesday. how many more kids did she play
with on Monday than on Tuesday?
A: Let’s think step by step. Julia playsed tag with 18 kids on Monday and 10 kids Tuesday, separately. So the amount of
kids that she played with on Monday than on Tuesday is 18-10=8. So the answer is 8.
Q: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf. how
many more action figures than books were on his shelf ?
A: Let’s think step by step. The amount of action figures that Jack had is 9+7=16. And Jack had 10 books. So the amount
of action figures than books on his shelf is 16-10=6. So the answer is 7.

Table 10: 2-shot prompts of ChatGPT and GPT-4 in our experiments.
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Generated Cases in Chinese

Query
珍妮特的鸭子每天下16颗蛋。她每天早上早餐时吃3颗，每天用4颗为自己的朋友做松饼。剩下的
鸭蛋她每天拿去农贸市场卖，每颗新鲜鸭蛋卖2美元。她每天在农贸市场赚多少钱？

LLaMA 2
珍妮特每天吃早餐3颗鸭蛋，剩下的鸭蛋用于做松饼4颗，剩下的鸭蛋卖在农贸市场2颗，珍
妮特每天在农贸市场赚2*2=«2*2=4»4美元。珍妮特每天卖4 颗鸭蛋，所以她每天在农贸市场
赚4*4=«4*4=16»16美元。✗

MathOctopus
珍妮特每天吃掉3 + 4 = «3+4=7»7颗鸭蛋。鸭子每天下16颗蛋，所以剩下16 - 7 = «16-7=9»9颗蛋。
珍妮特每天卖掉9颗蛋，每颗蛋卖2美元，所以她每天赚9 * 2 = «9*2=18»18。✓

Answer 18

Query 图卢兹的绵羊数量是查尔斯顿的两倍。查尔斯顿的绵羊数量是西雅图的4倍。如果西雅图有20只绵
羊，图卢兹、查尔斯顿和西雅图一共有多少只绵羊？

LLaMA 2
查尔斯顿有2 * 20 = «2*20=40»40只绵羊。图卢兹有40 * 2 = «40*2=80»80只绵羊。西雅图和查尔斯
顿和图卢兹一共有20 + 40 + 80 = «20+40+80=140»140只绵羊。✗

MathOctopus
查尔斯顿有4 * 20 = «4*20=80»80只绵羊。图卢兹有2 * 80 = «2*80=160»160只绵羊。总共，三个城
市有20 + 80 + 160 = «20+80+160=260»260只绵羊。✓

Answer 260

Generated Cases in Japanese

Query リチャドは15建てのマンションに住んでいる。各には8部屋あり、建物の3/4が入居されている。
建物で未入居の部屋は全部で何室あるか？

LLaMA 2
15建てのマンションに8部屋ある各は15*8=«15*8=120»120部屋になる。建物の3/4が入居されてい
るので、入居されている部屋数は120*3/4=«120*3/4=90»90部屋になる。未入居の部屋は90-8=«90-
8=82»82部屋である。✗

MathOctopus
15 建 て の マ ン シ ョ ン に8部 屋 あ る た め 、 リ チ ャ ド 住 む15 建 て マ ン シ ョ ン の 部
屋 数 は8*15=«8*15=120»120部 屋 建 物 の3/4が 入 居 さ れ て い る た め 、 未 入 居 の 部 屋
は120*1/4=«120*1/4=30»30部屋。✓

Answer 30

Query
トゥルズはチャルストンに比べ2倍の数の羊をっています。チャルストンはシアトルに比べ4倍
の数の羊をっています。シアトルがっている羊の数が20だったとしたら、トゥルズ、チャルス
トン、シアトルがっている羊の数は何でしょうか？

LLaMA 2

トゥルズはチャルストンに比べ2倍の数の羊をっているので、トゥルズがっている羊の数
は2*4=«2*4=8»8です。チャルストンはシアトルに比べ4倍の数の羊をっているので、チャルス
トンがっている羊の数は4*20=«4*20=80»80です。シアトルがっている羊の数が20だったとした
ら、トゥルズ、チャルストン、シアトルがっている羊の数は80+8+20=«80+8+20=118»118です。✗

MathOctopus

シアトルが20の羊をっているなら、チャルストンは4*20 = «4*20=80»80の羊をっています。トゥ
ルズはチャルストンの2倍の数の羊をっているので、160の羊をっています。合すると、トゥル
ズ、チャルストン、シアトルは20+80+160 = «20+80+160=260»260の羊をっています。✓

Answer 260

Table 11: Generated responses compared between LLaMA and ours within 7B-level on MGSM.
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Generated Cases in German

Query

Toula ging in die Bäckerei und kaufte verschiedene Arten von Gebäck. Sie kaufte 3 Dutzend Donuts, die
68 US-Dollar pro Dutzend kosten, 2 Dutzend Mini-Cupcakes, die 80 US-Dollar pro Dutzend kosten und 6
Dutzend Mini-Cheesecakes für 55 US-Dollar pro Dutzend. Wie hoch waren die Gesamtkosten?

LLaMA 2

3 Dutzend Donuts kosteten 3 × 68 = «3*68=204»204 US-Dollar.2 Dutzend Mini-Cupcakes kosteten 2 × 80 =
«2*80=160»160 US-Dollar.6 Dutzend Mini-Cheesecakes kosteten 6 × 55 = «6*55=330»330 US-Dollar.Die
Gesamtkosten für alle drei Arten von Gebäck waren 204 + 160 + 330 = «204+160+330=794»794 US-Dollar.
✗

MathOctopus

Toula kaufte 3 Dutzend Donuts für 68 US-Dollar pro Dutzend, also kosten sie 3 * 68 = 204 US-Dollar.Toula
kaufte 2 Dutzend Mini-Cupcakes für 80 US-Dollar pro Dutzend, also kosten sie 2 * 80 = 160 US-Dollar.Toula
kaufte 6 Dutzend Mini-Cheesecakes für 55 US-Dollar pro Dutzend, also kosten sie 6 * 55 = 330 US-Dollar.Die
Gesamtkosten betragen 204 + 160 + 330 = 694 US-Dollar. ✓

Answer 694

Generated Cases in French

Query Jacques fait des séries de 3 sprints 3 fois par semaine. Il court 60 mètres à chaque sprint. Au total, combien
de mètres court-il par semaine ?

LLaMA 2 Jacques fait 3 * 3 = «3*3=9»9 séries de sprints par semaine.Par série, il court 9 * 60 = «9*60=540»540
mètres.Par semaine, il court donc 540 * 9 = «540*9=4800»4800 mètres. ✗

MathOctopus
Jacques fait des séries de 3 sprints 3 fois par semaine.Chaque série est de 3 sprints, donc il court 3*3=«3*3=9»9
sprints par semaine.Chaque sprint est de 60 mètres, donc il court 60*9=«60*9=540»540 mètres par semaine.
✓

Answer 540

Generated Cases in Spanish

Query

Los patos de Janet ponen 16 huevos por día. Ella come tres en el desayuno todas las mañanas y usa cuatro
para hornear magdalenas para sus amigos todos los días. Vende lo que sobra en el mercado de productores
diariamente a $2 el huevo fresco de pato. ¿Cuánto gana en dólares todos los días en el mercado de productores?

LLaMA 2

Janet comienza con 16 huevos frescos por día - 3 huevos frescos que come para desayuno = «16-3=13»13
huevos frescos que no se comen.Janet usa 13 huevos frescos - 4 huevos frescos para hornear magdalenas =
«13-4=9»9 huevos frescos que no se comen.Janet vende 9 huevos frescos - 2 huevos frescos que se venden en
el mercado de productores = «9-2=7»7 huevos frescos que se venden en el mercado de productores.Janet
gana 7 huevos frescos * $2/huevo fresco = $«7*2=14»14 en el mercado de productores todos los días. ✗

MathOctopus

Janet come 3 huevos por día y usa 4 huevos por día, por lo que tiene 3 + 4 = «3+4=7»7 huevos que no
usa para nada.Los patos de Janet ponen 16 huevos por día, por lo que tiene 16 - 7 = «16-7=9»9 huevos
excedentes.Vende los 9 huevos excedentes por $2 cada uno, por lo que gana 9 * 2 = $«9*2=18»18 todos los
días en el mercado de productores.✓

Answer 18

Table 12: Generated responses compared between LLaMA and ours within 7B-level on MGSM.
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