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Figure 1. 3D reconstruction under extreme illumination variation. We propose a method for 3D reconstruction from a set of images
captured under strongly varying illumination. Our method recovers high-fidelity appearance details including specular highlights that prior
state-of-the-art approaches cannot recover (top baseline: NeRF-Casting [47] with appearance embeddings, bottom baseline: NeROIC [25]).

Abstract

Reconstructing the geometry and appearance of objects001
from photographs taken in different environments is diffi-002
cult as the illumination and, therefore, the object appear-003
ance vary across captured images. This is particularly chal-004
lenging for specular objects whose appearance strongly de-005
pends on the viewing direction. Some prior approaches006
model appearance variation across images using a per-007
image embedding vector, while others use physically-based008
rendering to recover the materials and per-image illumi-009
nation. Such approaches fail at faithfully recovering view-010
dependent appearance given the significant variation in in-011
put illumination and tend to produce mostly diffuse results.012
We present an approach that reconstructs objects from im-013
ages taken under different illuminations by first relighting014
the images under a single reference illumination with a mul-015
tiview relighting diffusion model and then reconstructing016
the object’s geometry and appearance with a radiance field017
architecture that is robust to the minor remaining inconsis-018
tencies among the relit images. We validate our approach019

on synthetic and real datasets and demonstrate that it out- 020
performs existing techniques at reconstructing high-fidelity 021
appearance from images taken under extreme illumination 022
variation. Moreover, our approach is particularly effective 023
at recovering view-dependent “shiny” appearance which 024
cannot be reconstructed by prior methods. 025

1. Introduction 026

A common strategy for performing novel view synthesis is 027
to recover a 3D representation from a collection of pho- 028
tographs of a scene and then use it to render novel views 029
from unseen viewpoints. Most view synthesis approaches 030
assume that the input images are all taken under the same 031
illumination conditions, i.e., the scene’s appearance is as- 032
sumed to be static. However, this assumption is frequently 033
violated during capture: moving clouds may cause the in- 034
tensity of the sun to vary, artificial light sources may turn on 035
or off, and even the shadows cast by the photographer may 036
interfere with the scene. This issue becomes even more se- 037
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vere when dealing with unstructured photograph collections038
such as those scraped from the Internet, where an object039
may be imaged in environments with extremely different il-040
lumination conditions, such as the case shown in Figure 1.041

One strategy for addressing illumination variation is to042
use a view synthesis model capable of representing appear-043
ance changes across captured images. A simple and popular044
approach is to parameterize the view-dependent radiance of045
the scene as a function of a per-image “latent code” [9, 34].046
Such an approach is effective for modeling changes (i.e. the047
“base” color and texture of the object). However, the addi-048
tional expressivity comes at a cost because it tends to “ex-049
plain away” all view-dependent appearances (not just those050
due to variable illumination). For non-diffuse (shiny) ob-051
jects, we find that methods using per-image latent code of-052
ten produce unrealistic, mostly-diffuse reconstructions.053

Other physics-based approaches explicitly recover the054
spatially-varying material properties of the scene in addi-055
tion to a per-image representation of illumination [10, 25].056
While inverse rendering provides a more physically mean-057
ingful image formation model than a view-dependent latent058
encoding, it suffers from the same ambiguities: appearance059
variation can be attributed to either a change in lighting or a060
change in viewing direction, and these models often mix up061
the two.062

Recent works [24, 58] attempt to circumvent these am-063
biguities by training image diffusion models that relight an064
individual image to appear as if it were lit by a specified065
illumination condition. Though diffusion models can lever-066
age strong priors on natural image appearance to assist in067
material/lighting disambiguation, single-image relighting is068
fundamentally ill-posed. As such, independently applying069
these models to relight multiple images to a single reference070
illumination often yields samples corresponding to com-071
pletely different, mutually-incompatible explanations of ob-072
ject materials.073

In this work, we first use a multiview image diffusion074
model to jointly relight all input images to match the light-075
ing of a reference image selected from the set of input im-076
ages. This produces relit images that are significantly more077
consistent than those from prior single-image relighting dif-078
fusion models. We then design a novel 3D reconstruction079
model based on NeRF [35, 47] to fit a 3D representation080
to those relit images, which enables rendering from novel081
viewpoints. Our 3D reconstruction model is designed to082
be robust to inconsistencies that may still be present in the083
output of the relit samples. Since the diffusion model has084
to implicitly estimate 3D shape to relight the input images,085
any errors in its shape estimation would translate to specular086
highlights not appearing at the correct locations. To resolve087
this, we use a per-image vector which we call “shading em-088
bedding”. This vector is used to encode per-image pertur-089
bations to the surface normal vectors used by the shading090

model of the NeRF, which allows the model to account for 091
errors in the model’s underlying estimated shape. 092

We validate the method on both synthetic (Obja- 093
verse [13]) and real (NAVI [22]) datasets. We showcase the 094
capability of reconstructing accurate geometry and accurate 095
view-dependent appearance from images captured under 096
extreme illumination variation. Extensive quantitative and 097
qualitative evaluation shows that the proposed approach sig- 098
nificantly outperforms state-of-the-art methods both quali- 099
tatively and quantitatively. 100

2. Related Work 101

3D Reconstruction and View Synthesis. Neural radi- 102
ance fields (NeRF) [35] is a successful approach for re- 103
constructing a 3D scene under a fixed illumination. Many 104
improvements to NeRF have been developed to improve 105
the modeling of effects such as refractions and reflec- 106
tions [1, 6, 28, 32, 46, 47, 50], but all of these approaches 107
also rely on static lighting. NeRF-W [34] achieved high- 108
quality 3D reconstructions from unconstrained “in the wild” 109
images taken from the internet, which tend to exhibit a va- 110
riety of inconsistencies in lighting, appearance, and geom- 111
etry. One aspect of this approach was using per-image ap- 112
pearance embeddings within the learned mapping from spa- 113
tial coordinates and viewing direction to color (but not vol- 114
umetric density). This parameterization forces optimization 115
to recover a single consistent 3D geometry model while al- 116
lowing appearance to vary across input images. This allows 117
per-image appearance variation to be explained away, but 118
also allows many view-dependent effects to be incorrectly 119
attributed to per-image variation, often resulting in diffuse 120
and erroneous reconstructions. Due to its simplicity (in 121
that it does not contain a physically-based image formation 122
model), per-image appearance embeddings are frequently 123
used in settings where lighting only varies slightly [3, 4, 45]. 124

Inverse Rendering. Decomposing an image into its con- 125
stituent physical components has been a central problem in 126
computer vision for nearly half a century [5]. Most mod- 127
ern approaches leverage the success of the computer graph- 128
ics community, which has produced accurate and efficient 129
models for the “forward” problem of rendering an image 130
from an underlying 3D model [36]. Many modern inverse 131
rendering techniques use radiance fields that, rather than 132
mapping a 3D location and viewing direction to an outgo- 133
ing color, map a 3D location to material properties and sur- 134
face normals, which are then rendered according to some 135
estimate of incident illumination [2, 7, 10, 11, 14, 23, 29– 136
31, 33, 43, 44]. Because this problem is ill-posed, these 137
techniques often critically rely on analytical priors to reg- 138
ularize the estimated scene decomposition. Although these 139
models fully decompose the scene into its components and 140
thereby enable editing and relighting, their rigidly specified 141
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rendering models tend to constrain the solution space of the142
recovered model and result in lower rendering quality than143
models designed solely for view synthesis.144

Many prior approaches to inverse rendering depend crit-145
ically on modeling illumination and material properties us-146
ing low-frequency parameterizations such as spherical har-147
monics [25], spherical Gaussians [55], or MLPs that are148
strongly biased to produce smoothly-varying outputs [57].149
All of these parametrizations necessarily limit the model’s150
ability to recover and render high-frequency (i.e., non-151
smooth) color variations caused by glossy surfaces. This152
limitation is avoided by NeRF-Casting [47], which models153
incident illumination by explicitly reflecting secondary rays154
into the volumetric representation, thereby enabling the re-155
construction of extremely specular objects. The 3D repre-156
sentation used by our model builds upon NeRF-Casting.157

Lighting Estimation. Because estimating every aspect158
of a 3D scene is a challenging task with a broad scope,159
many prior works have instead attempted to only recon-160
struct a model of illumination from input images [16, 17,161
26, 42]. Though this problem is still fundamentally under-162
constrained, it can be made tractable by learning a model163
from datasets containing light probes [27] or by relying on164
accidental light probes in the scene [51]. Modern genera-165
tive approaches in this vein have shown that diffusion mod-166
els are capable of developing an internal understanding of167
illumination [37], which is further validated by our work.168

Generative Relighting. Diffusion-based generative mod-169
els have recently been used for relighting individual im-170
ages [52] and, closer to our approach, for 3D relight-171
ing [24, 38, 58]. This process circumvents the need to de-172
compose the scene into physically-meaningful components173
and instead relies on a diffusion model to re-synthesize an174
input image as if it were illuminated by some reference illu-175
mination. Unlike our method, these approaches require the176
set of input images to have constant illumination, which is177
used in the first step to recover the 3D geometry of the ob-178
ject before relighting it. IllumiNeRF [58] samples a diffu-179
sion model multiple times to generate a collection of plau-180
sible results, while Neural Gaffer [24] iteratively refines a181
set of relit images alongside a NeRF. Crucially, both mod-182
els independently relight each input image given a reference183
illumination, which can lead to inconsistent relit images.184
Concurrent to our work, RelitLRM [56] uses a large recon-185
struction model to jointly reconstruct and relight an object186
from multiple images, but it also assumes that the input im-187
ages are consistently lit. Additionally, all of these methods188
require a reference environment map as input, while we ad-189
dress a more general problem where we only have access to190
images. Our model works by relighting a set of differently-191
lit input images simultaneously to match the appearance of192
one of the input images, and it does not require any addi-193
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Figure 2. Method overview. We first apply a relighting diffusion
model that converts N images I1, ..., IN with known camera poses
π1, ..., πN , captured under extremely different illuminations, to a
set of images with the same poses, but rendered under the illumi-
nation of the reference image I1 (highlighted in orange). We then
optimize a neural radiance field to obtain a consistent 3D repre-
sentation with a novel per-image shading embedding, which can
be used to render new views of the scene from unobserved poses.

tional information, including constantly-lit input images or 194
a reference environment map. We show that our approach 195
not only yields significantly more consistent 3D reconstruc- 196
tions than prior work, but is also more practically applicable 197
to a broader variety of inputs and capture settings. 198

3. Method 199

We aim to recover a 3D model from an collection of (posed) 200
images of an object, where each image is illuminated by 201
arbitrarily-varying lights. We use a two-step solution: in 202
Section 3.1 we describe a relighting diffusion model that 203
“harmonizes” the input images by making their illumina- 204
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tion constant, and in Section 3.2, we describe a NeRF-based205
approach to convert the relit images produced by that diffu-206
sion model into a consistent 3D model. Our full pipeline is207
illustrated in Figure 2.208

3.1. Relighting model209

Our relighting model takes a set of N input images210
I1, ..., IN of an object from multiple known camera poses211
π1, ..., πN , each of which is assumed to have been taken212
under a different illumination (see Figure 2, leftmost pane).213
The relighting model’s aim is to generate a set of images of214
the same object from the same viewpoints, relit under the215
illumination from a designated reference image in the input216
set, which we arbitrarily select as the first image, I1.217

We build our relighting model using image diffusion,218
which can leverage strong natural image priors from large219
amounts of data. While recent works have used image dif-220
fusion models to relight individual input images based on221
a reference environment map [24, 52, 58], we argue that it222
is essential to relight the entire set of input images jointly.223
As demonstrated by the success of photometric stereo [19],224
leveraging multiple observations of the same material under225
varying lights reduces the inherent ambiguity between ma-226
terial properties and illumination, and it provides a strong227
cue for estimating shape. Using this same insight in the con-228
text of modern diffusion models leads to significantly more229
consistent relit images, as each sample from our model rep-230
resents a unified interpretation of the object’s material. Con-231
sequently, our method does not require ad-hoc solutions232
to address the issue of extremely inconsistent relit images,233
such as the use of appearance embeddings [58] or refine-234
ment of the relit images during reconstruction [24].235

Our model’s architecture follows prior work on view236
synthesis that extends image generative models to the mul-237
tiview or video case [8, 15, 21] — we will analogously238
extend a single-image relighting model to multiple views,239
each with a distinct light.240

We construct our relighting diffusion model as a mul-241
tiview latent model that denoises a set of N latent codes242
z1, ..., zN , one for each input image. Unlike generative243
models that synthesize images from only random noise, the244
observed images I1, ..., IN contain a significant amount of245
valuable information about geometry and illumination. As246
such, when denoising the ith latent code, zi, the denoising247
network should use the geometry encoded in image Ii as248
well as the lighting of the reference image I1. To accom-249
plish this, we pass the “clean” latent corresponding to the250
ith image Ii and an encoding of its pose πi into the net-251
work that denoises the ith latent zi. To jointly reason about252
the reference lighting, we use 3D self-attention blocks [15]253
for the latent codes, and we use cross-attention in between254
them and the camera poses. This structure allows the ge-255
ometry and camera pose of the ith image and the lighting of256

the reference image to be directly observed by the network 257
denoising the ith latent zi. 258

Because our input is an unordered set of images, we fol- 259
low CAT3D’s approach [15] of replacing temporal embed- 260
dings with camera poses which we encode as raymaps [41, 261
49]. To inform the network which image should be used 262
as the reference, we concatenate the reference image with 263
a “reference map” consisting of a single-channel image of 264
ones, and we concatenate all other images with a single- 265
channel image of zeros. See the supplement for a full de- 266
scription of this process. Results from this relighting model 267
component are shown in Figure 3. 268

3.2. 3D Reconstruction 269

Applying the relighting model from Section 3.1 to the in- 270
put images yields a set of “harmonized” input images that 271
appear to have been lit under a single consistent illumina- 272
tion. With these images we can recover a 3D model without 273
solving the difficult problem of handling variable illumina- 274
tion within a 3D reconstruction pipeline. We build our re- 275
construction model on NeRF-Casting [47], a view synthe- 276
sis technique that achieves state-of-the-art results for recon- 277
structing highly specular objects under constant illumina- 278
tion. 279

Although the relit images produced by our relighting 280
diffusion model appear largely consistent when visually 281
inspecting individual images, they still exhibit slight in- 282
consistencies. As we will demonstrate, if the outputs 283
of our diffusion model are used to naı̈vely train a NeRF 284
that is not robust to this subtle variation (such as the 285
common appearance-embedding based approach of NeRF- 286
W [34]), these inconsistencies may be absorbed into the 287
view-dependent parameterization of the NeRF, which re- 288
sults in novel view synthesis results with highly unrealistic 289
and distracting “flickering” temporal artifacts as the cam- 290
era moves. We must, therefore, be careful to parameterize 291
appearance such that optimization is robust to this variation 292
— resolving these inconsistencies is a primary goal of 3D 293
reconstruction. 294

We address this problem by observing that the subtle 295
inter-image errors made by the diffusion model are usually 296
due to the specular highlights being slightly “warped” rel- 297
ative to the ground truth. This suggests that the diffusion 298
model has small errors in its implicit estimate of the surface 299
normals of the object, which causes the specular reflections 300
to be tilted in slightly incorrect directions. We therefore re- 301
solve this by using a per-image “shading embedding”: an 302
embedding vector vi is used to warp the normal vectors of 303
the corresponding ith training image, and those warped nor- 304
mal vectors are provided as input to the network that models 305
the shading (and therefore, appearance) of the image. More 306
concretely, the normals of the ith image at a 3D coordinate 307
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(a) Input Image to be Relit (b) Reference Image (c) IllumiNeRF [58] (d) Our Output (e) Ground Truth

Figure 3. A comparison of our multiview relighting with prior work on single-image relighting. Our method first relights a set of
inconsistently-lit images (one of which is shown in (a)) to match the illumination of a selected reference image (b) in that set. Single-image
relighting techniques such as IllumiNeRF [58] (c) struggle to disambiguate geometry, lighting, and materials, leading to an inaccurate
relighting. In contrast, our model jointly relights a set of inconsistently-lit frames, which reduces ambiguities and results in a significantly
more accurate result (d) when compared with the ground truth (e).

x are computed as:308

ni(x) = normalize(MLP(f(x),vi)) , (1)309

where MLP(·) is a multi-layer perceptron with 3 layers310
each with 128 hidden units, f(x) is a spatially-varying fea-311
ture parameterizing the normals (identical to the one used312
by NeRF-Casting), and the normalize(·) operator turns the313
output of the MLP to a unit-length vector.314

The per-image surface normals defined in Equation 1 can315
slightly alter the directions in which secondary rays are re-316
flected by the model, which allows optimization to account317
for errors in the output of the relighting diffusion model.318
We prevent the normals from changing significantly be-319
tween different images by tying them to the normals corre-320
sponding to the underlying NeRF density field, as in NeRF-321
Casting [47]. See NeRF-Casting and our supplement for322
more details. As we will demonstrate later, this shading em-323
bedding yields more accurate reconstructions and render-324
ings than the standard appearance embedding approach [34]325
used in prior work for relighting [24, 58].326

4. Architecture and Training327

Training Data. The relighting model’s training dataset is328
key to its ability to generalize across different illumination329
conditions, materials, and geometries. Due to the ease of330

rendering a large set of synthetic data, we rely solely on syn- 331
thetic data for training, and we experimentally verify that 332
our method generalizes to real captured photographs. We 333
render our dataset using assets from a dataset of ∼ 300K 334
high-quality objects, similar in appearance to Objaverse but 335
with more diverse materials. We additionally augment this 336
dataset by rendering another copy after replacing all mate- 337
rials with perfect mirrors, which we found improved recon- 338
struction quality for both highly-specular objects and (per- 339
haps surprisingly) for standard mostly-diffuse objects. We 340
render the objects using about 700 environment maps taken 341
from Poly Haven [39], which we augment by randomly ro- 342
tating azimuthally. 343

Diffusion Model. We initialize our model using an im- 344
age generation latent diffusion model similar in architec- 345
ture to Stable Diffusion 1.5 [40] that had been trained on a 346
large dataset of images. The image input of our diffusion 347
model is a 512 × 512 × 3 resolution image that is encoded 348
into 64 × 64 × 8 latents. To enable classifier-free guid- 349
ance (CFG) [20], we randomly mask out the attention to the 350
reference image to force the model to do “unconditional re- 351
lighting” and relight the input views with an arbitrary light- 352
ing. For all our experiments, we use a CFG value of 3. Be- 353
cause the speed and memory requirements of training the 354
model are inversely proportional to the number of synthe- 355
sized views, we train our model in stages: We first train the 356
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model to relight 8 frames for 200K steps, then 16 frames357
for 100K steps, then 32 frames for 50K steps, and finally 64358
frames for another 50K steps. Note that our model parame-359
ters are independent of the number of input views, since the360
cross-attention operation can scale to an arbitrary number of361
images. Our model was trained on 64 5th-generation TPUs362
with a total batch size of 64, which took approximately two363
weeks. At inference, we set the number of images that our364
diffusion model simultaneously relights to N = 64365

3D Reconstruction. The optimization of each radiance366
field uses a similar number of parameters to those used in367
NeRF-Casting [47]. Optimizing a model from a set of har-368
monized images takes roughly 30 minutes on 16 NVIDIA369
A100 GPUs, and rendering a single 512× 512 image takes370
about 0.5 seconds on the same hardware. See supplement371
for details and a full description of all hyperparameters.372

5. Results373

We evaluate our method on two datasets: synthetic ob-374
jects from Objaverse [13] and real captured objects from375
NAVI [22]. The synthetic dataset comprises two compo-376
nents: 8 standard textured assets whose materials range377
from mostly-diffuse to glossy, and 12 shiny assets con-378
taining objects with perfectly-reflective materials, designed379
to highlight the challenge of recovering accurate view-380
dependent effects. We render the synthetic Objaverse381
dataset using environment maps from HDRIMaps [18].382
Each scene contains 64 training images and 36 testing im-383
ages, all with different random poses. Each training image384
was rendered with distinct illumination, and the test set was385
rendered using the illumination of the reference image from386
the training set. Please see the supplemental material for387
additional results and videos.388

5.1. Comparisons to State-of-the-Art Methods389

We compare our approach with two methods designed for390
3D reconstruction “in the wild”: NeROIC [25] and NeRF-391
Casting [47] with standard appearance embeddings for each392
image (which we call “NeRF-Casting + AE” or “NeRFCast393
+ AE” for short). We also compare our approach with the394
recent diffusion-based relighting method IllumiNeRF [58].395
IllumiNeRF requires a target environment map for relight-396
ing and we provide it with the ground truth illumination,397
which is a significant advantage over other techniques as the398
full environment map contains more information than the399
reference image. For methods with appearance embeddings400
(ours and NeRF-Casting + AE), we render novel views us-401
ing the same embedding as the reference image. Similarly,402
when rendering test images using NeROIC, we use the esti-403
mated illumination of the reference image.404

Synthetic Results. In Figure 4, we qualitatively compare405
our method’s novel view synthesis results with prior state-406

of-the-art approaches. Our results appear significantly more 407
accurate, and all baselines struggle to recover specular high- 408
lights. This is particularly apparent in the first and third 409
rows, demonstrating the recovery of fine details in the re- 410
flections of perfectly specular objects. The quantitative re- 411
sults in Table 1 show that our method significantly outper- 412
forms all baselines on both splits of the dataset, even when 413
we provide the IllumiNeRF [58] baseline with true environ- 414
ment maps corresponding to the reference image. 415

Table 1. Novel view relighting on Objaverse. Our approach
of relighting and robustly optimizing a radiance field outperforms
previous state-of-the-art methods in rendering novel views under
target lighting. We outperform prior work despite giving the base-
line a significant advantage by providing it the true lighting.

Standard Assets Shiny Assets

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeROIC [25] 26.13 0.935 0.088 22.14 0.880 0.113
NeRFCast [47] + AE 27.53 0.941 0.067 21.80 0.874 0.108
IllumiNeRF [58] w/ known light 29.22 0.958 0.057 23.46 0.881 0.095
Ours 31.34 0.966 0.053 26.54 0.911 0.090

Real Photographs. The top row of Figure 1 shows pho- 416
tographs we captured of a chrome-plated figurine in differ- 417
ent environments. The resulting synthesized novel views 418
show that our method can render accurate images corre- 419
sponding to the selected reference illumination. In the bot- 420
tom of Figure 1 and in Figure 5 we show reconstruction re- 421
sults on captured photographs from NAVI. The results show 422
that our method can preserve shadows and specular high- 423
lights. Since NAVI also provides multiview data for each 424
illumination, we can quantitatively evaluate the novel view 425
synthesis performance on held-out views under the same il- 426
lumination as the reference. We evaluate the method on all 427
of the 18 NAVI scenes with at least 64 frames, and we show 428
that our method also achieves the best quantitative results 429
across all prior methods, as shown in Table 2. Since NAVI 430
does not provide ground truth environment maps, we could 431
not evaluate IllumiNeRF on this dataset. 432

Table 2. Novel view relighting on real photos from NAVI. We
show that we outperform prior work on synthesizing novel views
from “in-the-wild” images.

Method PSNR↑ SSIM↑ LPIPS↓

NeRF-Casting [47] + AE 23.59 0.916 0.066
NeROIC [25] 24.01 0.918 0.079
Our Model 25.55 0.929 0.060

5.2. Ablation Studies 433

Here, we provide ablations designed to test the different 434
components of our model. 435
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(a) Reference (b) Sample Inputs (c) NeRFCast + AE (d) NeROIC (e) IllumiNeRF (f) Ours (g) Ground Truth

Figure 4. Visual comparison of novel view renderings on the Objaverse dataset. (b) We show sample input images under extreme
illumination variation. (c) Adding a per-image latent code to NeRF-Casting [47] (“NeRFCast + AE”) cannot accurately explain away
the variations, leading to erroneous reconstruction. (d) Due to the ill-posed nature of the problem, inverse rendering-based methods
such as NeROIC [25] tend to produce lower-quality renderings with mostly diffuse appearance. (e) IllumiNeRF [58] leverages diffusion
prior for single-image relighting but produces inconsistent output samples, resulting in excessive blur in rendered novel views. Note
that IllumiNeRF requires access to the target illumination’s environment map as input. We provide IllumiNeRF with the ground truth
environment map corresponding to the reference image (a), while other methods only have access to the reference image itself. (f) Our
method renders accurate appearance with specular highlights close to those in the ground truth images (g).

Number of Frames. A major benefit of our approach is436
that it jointly relights all frames. Table 3 shows our view437
synthesis results when relighting the images using different438
numbers of simultaneously-predicted frames N . Increasing439
the number of predicted frames improves 3D reconstruc-440
tion, hence our choice for predicting N = 64 images.441

Table 3. The effect of the number of frames N output simul-
taneously by our model. Increasing the number of frames si-
multaneously processed by our model improves its performance,
therefore we use N = 64.

Standard Assets Shiny Assets

# frames N PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
1 frame 28.39 0.943 0.079 23.85 0.889 0.105
8 frames 30.43 0.956 0.067 25.62 0.901 0.095
16 frames 30.49 0.958 0.063 25.52 0.900 0.097
32 frames 30.72 0.961 0.060 26.14 0.908 0.090
64 frames (ours) 31.34 0.966 0.053 26.54 0.911 0.090

Dataset. Next, we demonstrate the importance of includ-442
ing purely-specular objects in our training data. To do this,443
we train two 16-frame versions of our model for 70K steps,444

with and without the purely specular data augmentation de- 445
scribed in Section 4. Table 4 shows that including the spec- 446
ular materials in the training set improves performance on 447
specular objects and, perhaps surprisingly, that it is also 448
beneficial for our general less-specular (but not perfectly- 449
diffuse) dataset. 450

Table 4. Training dataset ablation. We show that training on
assets with standard materials as well as objects with highly re-
flective materials improves performance for both types of assets.

Standard Assets Shiny Assets

Training data PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Standard assets 29.16 0.938 0.066 22.34 0.874 0.113
Standard + shiny assets 29.26 0.939 0.066 22.91 0.877 0.111

Shading Embeddings. Table 5 demonstrates the effect of 451
our shading embeddings on the 3D reconstruction of the 452
shiny synthetic scenes harmonized by our relighting model. 453
As explained in Section 3.2, the shading embeddings allow 454
the model to slightly shift the normal vectors used for com- 455
puting appearance separately for each image, which enables 456
absorbing small inconsistencies in the relit images. This im- 457
proves upon the same NeRF model with no per-image em- 458
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(a) Reference (b) Input Samples (c) NeRFCast + AE (d) NeROIC (e) Ours (f) Ground Truth

Figure 5. Comparison on real world photos. We use our method to reconstruct objects from in-the-wild photos taken in different
environments. Our method can render novel views under the illumination conditions of any input image we select as the reference. Unlike
prior work, our technique accurately preserves shadows (e.g. the bunny’s ear shadow in the first row) and reflections (e.g. the box’s handle
in the second row and the car’s specularities in the last row) that appear in the reference image we would like to match.

beddings (“No embeddings”). In contrast, using standard459
embeddings as in NeRF-W [34] (“Shading embeddings”)460
has an adverse effect: the per-image codes allow the model461
to encode specularities as per-image diffuse color, which462
results in unrealistic and poor reconstructions.463

Table 5. Per-image embedding ablation. We show that our shad-
ing embeddings improve performance compared to NeRF-Casting
without any per-image code and that standard appearance embed-
dings have an adverse effect on reconstruction quality.

Method PSNR↑ SSIM ↑ LPIPS↓

No embeddings 26.02 0.907 0.094
Appearance embeddings 24.38 0.896 0.096
Shading embeddings (ours) 26.54 0.911 0.090

6. Discussions and Conclusions464

Limitations. Our approach requires object masks and ac-465
curate camera poses as inputs. Camera poses, in par-466
ticular, can be challenging to compute from images of467
highly reflective objects that do not have reliable features468
for matching, but are required by most 3D reconstruc-469
tion methods. However, there has been significant recent470
progress in camera pose estimation using learning-based471
techniques [12, 48, 53, 54] which do not rely on explicit472

feature matching. We believe that leveraging strong gener- 473
ative priors for joint pose estimation and 3D reconstruction 474
is an exciting direction for future research. 475

Conclusions. In this paper, we address the challenge of 476
reconstructing 3D objects from images captured under ex- 477
treme illumination variation. Our core insight is to simulta- 478
neously relight all input images to match the illumination 479
of a chosen reference image, thereby harmonizing light- 480
ing conditions among input images. We achieve this by 481
training a diffusion-based multiview relighting model. Us- 482
ing these relit images, we apply a 3D reconstruction model 483
that is robust to residual inconsistencies, enabling accurate 484
reconstruction of the object’s shape and view-dependent 485
appearance. Our method effectively reconstructs objects 486
with complex shapes and materials from images taken un- 487
der drastically different lighting conditions. Our work high- 488
lights a promising direction for leveraging strong generative 489
priors to tackle the ill-posed problems of 3D reconstruction. 490
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