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Abstract
Data-driven inverse molecular design (IMD) has
attracted significant attention in recent years. De-
spite the remarkable progress, existing IMD meth-
ods lag behind in terms of trustworthiness, as in-
dicated by their misalignment to the ground-truth
function that models the molecular dynamics.
Here, we propose TrustMol, an IMD method built
to be trustworthy by inverting a reliable molecu-
lar property predictor. TrustMol first constructs a
latent space with a novel variational autoencoder
(VAE) and trains an ensemble of property predic-
tors to learn the mapping from the latent space to
the property space. The training samples for the
ensemble are obtained from a new reacquisition
method to ensure that the samples are represen-
tative of the latent space. To generate a desired
molecule, TrustMol optimizes a latent design by
minimizing both the predictive error and the un-
certainty quantified by the ensemble. As a result,
TrustMol achieves state-of-the-art performance
in terms of IMD accuracy, and more importantly,
aligned with the ground-truth function which in-
dicates trustworthiness.

1. Introduction
Inverse molecular design (IMD) is a promising approach
to accelerate the discovery of new molecules with desired
properties. In IMD, molecules are designed to exhibit a
target property, ideally by inverting the native forward pro-
cess (NFP) (Ansari et al., 2022)—the ground-truth function
that maps a molecule to their properties. However, such an
inversion is extremely challenging. The common approach
is to approximate NFP using a data-driven surrogate model.

Data-driven surrogate-based IMD approach has become
increasingly popular, ranging from autoregressive models
(Luo et al., 2021; Luo & Ji, 2022; Gebauer et al., 2019) to
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diffusion models (Hoogeboom et al., 2022; Xu et al., 2023).
While prior works have progressively improved the state-
of-the-art IMD accuracy, they have largely overlooked an
equally critical aspect of IMD: trustworthiness.

The trustworthiness of a surrogate-based IMD method can
be defined as how well it aligns with the NFP. For surrogate-
based IMD methods that directly model the NFP (Gómez-
Bombarelli et al., 2018; Eckmann et al., 2022), this align-
ment can be quantified by calculating the distance between
surrogate-based error and the NFP-based error. For example,
a surrogate might identify a molecule as a good match with
a predicted property close to the desired property, resulting
in a low surrogate error. But when the molecule is passed
through the NFP, it proves to be a poor match (high NFP
error) or invalid. An IMD method that lacks alignment with
the NFP is not effective for discovering new molecules, as
the NFP serves as the ground-truth representation of the
molecule-to-property mapping in the real world.

In this work, we have identified two root issues to this
misalignment problem: (I1) the surrogate fails to correctly
model the forward process (e.g., the mapping from a molec-
ular design space to the property space) on the training set,
and (I2) the surrogate becomes unreliable when operating
on molecules that are completely different from the training
set, a scenario that often occurs during the inversion step.

We introduce TrustMol, a surrogate-based IMD method de-
signed for trustworthiness by addressing the two issues. To
improve forward modeling (I1), TrustMol uses a novel VAE
to build a well-structured latent space and trains a surrogate
to map latents directly to molecular properties. We also
introduce a latent-property pairs reacquisition strategy that
ensures the surrogate is trained on representative samples.
During inference, TrustMol inverts the surrogate by opti-
mizing a randomly-initialized molecular latent according to
the distance between the predicted and the target property.
To prevent the optimizer from exploring molecular latents
far from the training data (I2), we incorporate epistemic
uncertainty into the loss, guiding exploration toward regions
where the surrogate is reliable.

We evaluate TrustMol against several state-of-the-art IMD
baselines using two metrics: Mean Absolute Error (MAE)
to the target property, and NFP-surrogate misalignment,
which quantifies the gap between the property predictions

1



Trustworthy Inverse Molecular Design via Alignment with Molecular Dynamics

of the surrogate and those of the NFP. TrustMol consis-
tently outperforms the baselines across both metrics, achiev-
ing state-of-the-art performance in both single-objective
and multi-objective IMD tasks. Source code is available at
https://github.com/ktirta/TrustMol.

2. TrustMol
Given a desired property p, one way to implement the
surrogate-based IMD approach involves using a property
predictor surrogate Φ to optimize a randomly-initialized
molecular design x,:

x∗ = argmin
x

|p− Φ(x)|. (1)

This approach is straightforward and has been used in multi-
ple works (Gómez-Bombarelli et al., 2018; Eckmann et al.,
2022). Unfortunately, its results are often misaligned with
the NFP, i.e., molecules obtained are often deemed as poor
matches by the NFP. From the forward modeling perspec-
tive, the mapping of molecular structures to their corre-
sponding properties is inherently high-frequency, where
small changes in structures can lead to significant changes
in properties. This presents a challenge for neural networks,
which tend to struggle to model high-frequency functions
(Xu et al., 2019; Rahaman et al., 2019) (I1). Furthermore,
not all molecular designs are valid; many molecular con-
figurations are unstable and therefore invalid. From the
inversion perspective, the optimization in equation (1) is
unconstrained and can result in a molecular design that
differ significantly from molecules in the training set. In
this extrapolation regime, the surrogate prediction becomes
unreliable (I2).

To address these challenges, we introduce three novel com-
ponents: SGP-VAE (I1), latent-property pair reacquisition
(I1), and uncertainty-aware molecular latent optimization
(I2), described in detail in the following subsections.

2.1. Molecular Latent Optimization with SGP-VAE

We propose to perform the optimization in a well-structured
latent space (Figure 1a (right) and 1b) to tackle the high-
frequency and discontinuous nature of the molecule space.
The latent space is learned by TrustMol through a VAE
(Kingma & Welling, 2013) that is trained to reconstruct
molecular representations from latent vectors. Our novel
SELFIES-Graph-Property (SGP) VAE incorporates three
sources of information, molecular strings, molecular 3D
structures, and molecular properties information. Using
SELFIES (Krenn et al., 2020) as the primary representation
ensures that any latent vector can be decoded into a valid
molecule. However, similarities between molecular strings
are not highly correlated to similar properties. Therefore,
we augment the VAE training with two auxiliary tasks: pre-

dicting properties directly from the latent vectors and recon-
structing 3D molecular graphs. Learning latent-to-property
predictions can organize the latent space with respect to
property values (Gómez-Bombarelli et al., 2018), while 3D
structural information is a useful indicator of similarity in
property space (Martin et al., 2002). With the three training
objectives, our SGP-VAE can learn a latent space in which
similar latents are more likely to correspond to molecules
with similar properties. As a result of the smoother mapping,
the quality of the forward modeling is improved.

2.2. Latent-Property Pairs Reacquisition

Learning the mapping from latent space to property space is
challenging and often results in poor prediction performance
(Eckmann et al., 2022). This phenomenon arises from how
the latent-to-property surrogate is trained. Given a VAE
encoder Ψenc that has been pretrained on a dataset D =
{(mi, p

gt
i )} where mi is the i-th molecule and pgt

i is its
corresponding property, the common approach to train a
latent-to-property surrogate Φ parameterized by ϕ is,

Z = {Ψenc(mi)} = {zi}, (2)

ϕ∗ = argmin
ϕ

|pgt
i − Φ(zi)|, (3)

where i = 1, ..., |D|, ϕ∗ is the optimal parameter of Φ and
zi is the latent representation of mi. A limitation to this
approach is that there are molecules in D that cannot be well-
represented by the latent vectors. Encoding such molecules
with Ψenc will produce valid latent vectors, but decoding
them back with the decoder Ψdec will result in incorrect
molecules due to non-zero VAE reconstruction errors. Train-
ing Φ to predict the properties of the latents of these prob-
lematic molecules would result in an unreliable surrogate.

Here, we propose a latent-property pairs reacquisition
method to collect representative training samples for the
surrogate. Utilizing Ψdec alongside a conformer generator h
(RDKit, (RDKit, 2023)) and the NFP f (Psi4 (Smith et al.,
2020)), we generate the new dataset Dnew of latent-property
pairs for training the surrogate Φ according to the following
steps. First, latent representations z are randomly sampled
from a Gaussian N (µ, σ) with mean µ and variance σ,

Znew = {znew, i | znew,i ∼ N (0, 1)}Ni=1. (4)

The properties of the molecules represented by the sampled
latents are then calculated by decoding the latents back
into molecules using Ψdec, generating the corresponding 3D
conformations using h, and passing the conformations to f ,
before collecting the pairs into one training dataset,

Pnew = {f(h(Ψdec(znew, i))) | ∀znew, i ∈ Znew}, (5)

Dnew = {(znew, i, pnew, i) | ∀znew, i ∈ Znew and ∀pnew, i ∈ Pnew}.
(6)
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2.3. Uncertainty-aware Molecular Latent Optimization

A neural network is most reliable when performing pre-
diction on samples from regions that are well-represented
during training. In TrustMol, we incorporate epistemic un-
certainty into the molecular latent optimization (Ansari et al.,
2022) to guide the optimization into reliable regions. Since
epistemic uncertainty is a measure of training data sparsity,
minimizing it is equivalent to guiding the optimization to-
ward molecular latents that are novel, but not completely
different from latents that are available during training.

We use the predictive disagreement between accurate and
diverse neural networks (Lakshminarayanan et al., 2017)
to quantify the epistemic uncertainty. Here, we the surro-
gate is an ensemble of n multilayer perceptrons (MLPs)
with identical number of layers but different activation func-
tions. The surrogate model is trained to fit the NFP, i.e.,
{Φj | Φj : z 7→ p̂}, j = 1, ..., n. Given the mean predic-
tion Φavg(z) = 1

N

∑N
j=1 Φj(z), the epistemic uncertainty

(U) can be defined as,

U(z) =
1

N

N∑
j=1

(Φj(z))
2 − (Φavg(z))2. (7)

The final uncertainty-aware IMD process of TrustMol (Fig-
ure 1c) obtains the optimal molecular latent z∗ through
gradient descent,

z∗ = argmin
z

|Φavg(z)− p|+ U(z). (8)

3. Experimental Section
3.1. Single-Objective Inverse Molecular Design

In single-objective IMD, we set our property of interest as
either HOMO, LUMO, or dipole moment, as these three
properties can be calculated using the DFT as the NFP with
relatively high accuracy (Faber et al., 2017; Matuszek &
Reynisson, 2016). We define our target property values as
a set of n = 2000 evenly-spaced values within a specified
range [a, b] that covers both property values present in and
absent from the training dataset. We set the ranges to [-10, 0]
for HOMO, [-4, 2] for LUMO, and [0, 4] for dipole moment.
Each IMD method has a budget of k = 10 tries to generate a
molecule for each target property value, and we retain only
the molecule exhibiting the lowest absolute error. Due to
compute limitation, we set n = 20 for JANUS and omit its
novelty and uniqueness metrics to ensure fairness with other
methods that generate significantly more molecules. When
using 2,000 CPU threads on AMD EPYC 7702 processors,
the DFT-based molecular property calculation of 20K (i.e.,
n · k) molecules takes around 6 hours to complete.

We employ four metrics to evaluate the methods. The NFP
Error is the MAE between the DFT-calculated properties

of the generated molecules and the target properties. We
use novelty and uniqueness to measure the diversity of the
generated molecular designs, with novelty representing the
number of designs not present in the QM9 dataset (Ramakr-
ishnan et al., 2014), and uniqueness representing the number
of unique designs generated. We measure latency in two
ways: single, the time to generate one molecule individually,
and batch, the total time to generate multiple molecules in
parallel.

As shown in Table 1, TrustMol outperforms all methods
by a substantial margin in all three target property cate-
gories. These results demonstrate that improving explain-
ability through a neural surrogate-based latent optimization
approach does not compromise IMD accuracy. All methods
also display high novelty, indicating the effectiveness of
both denoising and property prediction networks for dis-
covering novel molecules. However, existing optimization-
based IMD methods tend to produce identical molecules, as
reflected by their uniqueness. In contrast, TrustMol attains
a high score for uniqueness that is competitive with state-
of-the-art diffusion model, GeoLDM. The high uniqueness
score can be attributed to the improved surrogate model of
TrustMol, which, due to the latent-property pairs reacquisi-
tion, has been trained on a more diverse set of latent vectors,
enabling it to navigate toward more diverse latent solutions
during optimization. Similar to other optimization-based
approaches, TrustMol can generate molecules within rea-
sonable time frame, especially when compared to GeoLDM
in batch generation setup where the latency of TrustMol is
two orders of magnitude smaller.

3.2. Multi-Objective Inverse Molecular Design

While single-objective IMD has been commonly used in
previous studies (Hoogeboom et al., 2022; Xu et al., 2023),
real-world applications often involves multi-objective IMD.
Therefore, we provide an analysis of multi-objective IMD
performance of TrustMol and other IMD methods. In this
comparison, the IMD methods are tasked with generating
molecular designs that simultaneously exhibit specific val-
ues of HOMO, LUMO, and dipole moment.

As shown in Table 2, simultaneously optimizing for multiple
properties tends to reduce the accuracy of IMD methods.
Nevertheless, TrustMol manages to minimize the deteriora-
tion of its IMD accuracy, significantly outperforming others
in all property categories. The superior performance of
TrustMol can be attributed to the synergy of our uncertainty-
aware optimization and latent-property pairs reacquisition
for training the surrogate model.

3.3. Measuring Surrogate-NFP Alignment

For a neural surrogate-based IMD method to be considered
reliable, it should demonstrate a reasonable alignment be-
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Table 1. Experimental results for single-objective IMD (HOMO, LUMO, or Dipole Moment) over three runs. We measure the NFP
error in electronvolt (eV) and Debeye (D). We also report the novelty, uniqueness, and latency, where the batch-latency is evaluated for
generating 2000 molecules in parallel. Bolded values indicate the best performance on the column.

Model NFP Error Nov. Uni. Latency (s)

H (eV) L (eV) D (D) (%) (%) single batch

JANUS (Nigam et al., 2022) 3.29 0.80 0.90 - - 7113 -
GeoLDM (Xu et al., 2023) 1.16±0.03 0.39±0.02 0.56±0.03 81.06 94.26 8.67 1617
SELFIES LDM 0.97±0.01 0.33±0.04 0.95±0.02 82.28 48.20 0.64 0.77
MGCVAE (Lee & Min, 2022) 1.65±0.03 0.30±0.01 0.44±0.02 90.17 85.97 0.33 6.55
SELFIES VAE (Gómez-Bombarelli et al., 2018) 3.75±0.29 1.99 ±0.20 4.98±0.04 21.26 7.82 8.57 -
LIMO (Eckmann et al., 2022) 1.23±0.18 0.35±0.14 0.59±0.08 87.80 21.30 4.12 7.80
TrustMol (ours) 0.95±0.06 0.25±0.01 0.40±0.02 87.70 88.0 7.62 11.53

Table 2. Multi-objective NFP errors for various models across
HOMO (H), LUMO (L), and Dipole Moment (D). Lower val-
ues indicate better performance.

Model H (eV) L (eV) D (D)

JANUS 2.46 1.33 1.07
LIMO 0.85±0.05 1.02±0.05 1.17±0.11
MGCVAE 2.26±0.02 0.71±0.01 3.76±0.01
SELFIES VAE 3.26±0.26 1.70±0.17 1.96±0.02
TrustMol (ours) 0.62±0.03 0.63±0.02 0.79±0.03

tween its surrogate and the NFP. This alignment can be
evaluated by comparing the IMD errors as predicted by the
surrogate (surrogate error) and those calculated by the NFP
(NFP error). In the unlikely event when a surrogate-based
IMD method is perfectly aligned with the NFP, the gap be-
tween the NFP and surrogate errors, i.e., the NFP-surrogate
misalignment, is zero.

Table 3 shows the NFP-surrogate misalignment of several
IMD methods. We can see that the misalignments of other
surrogate-based IMD methods are relatively high. On the
other hand, TrustMol achieves lower NFP-surrogate mis-
alignment across all three property categories. These results
validate our hypothesis that incorporating epistemic uncer-
tainty into the optimization process can effectively reduce
the NFP-surrogate misalignment, resulting in a more trust-
worthy IMD method.

4. Conclusion
We introduced TrustMol, a molecular latent optimization
method that focuses on aligning with the NFP for a trust-
worthy IMD. TrustMol not only demonstrates superior per-
formance over existing IMD methods in accuracy, but also
excels in trustworthiness, as indicated by the low disagree-
ment with the NFP. The effectiveness of TrustMol, however,
is limited by the expressiveness of the latent space and the

Table 3. NFP-surrogate error misalignment between TrustMol and
other models. Misalignment is defined as the absolute difference
between the NFP error and the surrogate error. Note that some
methods cannot predict the surrogate errors.

Model H (eV) L (eV) D (D)

JANUS 3.32 1.11 1.56
LIMO 1.01±0.07 0.54±0.06 1.36±0.32
MGCVAE - - -
SELFIES VAE 3.75±0.29 1.99±0.20 4.98±0.04
TrustMol (ours) 0.89±0.13 0.25±0.01 0.40±0.02

reliability of the surrogate model. Therefore, improving the
latent space construction and the surrogation is crucial for a
highly performant IMD. A promising path toward this goal
is to explore the latent space further with active learning (Set-
tles, 2009). We note that our uncertainty-aware molecular
latent optimization is closely related to Bayesian optimiza-
tion (BO) (Frazier, 2018). However, TrustMol follows an
offline model-based optimization approach (Trabucco et al.,
2022) and does not assume access to the NFP during the
optimization, whereas BO requires frequent back and forth
with the NFP (i.e., density functional theory (DFT)).
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A. Methods
A.1. Dataset and Molecular Properties

We use the QM9 dataset (Ramakrishnan et al., 2014) as our initial training dataset D for the SGP-VAE. QM9 is a quantum
chemistry dataset that consists of around 130K small molecules. Each molecule is represented at atomic-level, i.e., atom
types and their corresponding 3D coordinates. The molecules contains up to 9 heavy atoms (C, N, O, F), and up to 29
atoms when including the Hydrogens. QM9 also provides various molecular properties including dipole moment, isotropic
polarizability, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), thermal
capacity, among others.

In our experiments, we use HOMO, LUMO, and dipole moment as the potential target properties of the inversion. The gap
between HOMO and LUMO can be used to predict the stability of a compound. Dipole moment, on the other hand, is a
measure of a molecule’s polarity, which in turn can be used to predict various physical properties such as solubility in water
and boiling point.

A.2. Implementation Details

We implement all neural networks with PyTorch (Paszke et al., 2019). AdamW optimizer (Loshchilov & Hutter, 2017) and
cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016) are used in the optimization process for all models.
We train the SGP-VAE for 50 epochs and the ensemble surrogate model for 300 epochs, with a batch size of 32. To improve
diversity of the ensemble surrogate model, at each iteration, a subnetwork Φi in the ensemble has a probability of only
q = 0.3 to perform a gradient descent step. This is equivalent to independently training each subnetwork for 90 epochs with
different random seeds.

We use RDKit (RDKit, 2023) and Psi4 (Smith et al., 2020) as the NFP, the ground truth functions that model the behavior of
molecules in real-world. RDKit is an open-source cheminformatics and machine learning software that can perform analysis
on chemical structures. We use RDKit to generate the molecular conformation, i.e., the spatial arrangement of atoms in
a molecule, of the SELFIES strings generated by LIMO (Eckmann et al., 2022) and TrustMol. Psi4 is an open-source
quantum chemistry software that is capable of accurately predicting the properties of a molecular conformation using DFT.
We use Psi4 to calculate the HOMO, LUMO, and dipole moment values of molecular conformations generated by the IMD
methods.

A.3. Loss Function of the SGP-VAE

Our SGP-VAE architecture features an encoder Ψenc that takes as inputs the multivew representations of a molecule, xselfies
and xgraph. The graph representation is processed with a graph neural network (EGNN, (Satorras et al., 2021)) before
being fused with features from the SELFIES representation into a latent vector z. During training, the VAE’s decoder Ψdec

reconstructs both SELFIES and graph representations and predict the properties of the molecule directly from its latent. The
loss is calculated as follows,

L = |px − p̂x|+ ||xgraph − x̂graph||22 + CE(xselfies, x̂selfies)

+ KL(z||N (0, 1)),
(9)

where CE and KL are cross-entropy and KL-divergence (Kullback & Leibler, 1951) loss functions, respectively.

B. Additional Results
B.1. Verifying High-frequency and Discontinuous Nature of the Molecule Space

In earlier sections, we have discussed the high-frequency and discontinuous nature of the mapping from molecular space to
property space, which has motivated us to choose molecular latents as our design representation. To validate our design
choices, we analyze the impact of minimal noise injections on various molecular design representations with respect to their
molecular properties.

Table 4 shows the mean absolute error (MAE) between properties of the original and the noise-perturbed molecular designs.
When noise from a N (0, 0.1) distribution is injected into a randomly-chosen atom coordinate of a 3D graph, the proportion
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Figure 1. The framework of TrustMol. (a) Existing surrogate-based IMD often finds solutions in high-uncertainty regions that are far away
from the training distribution, in which the surrogate predictions are most unreliable. This could lead to molecules that are invalid or have
high NFP-error. TrustMol directs the IMD process into low-uncertainty regions where the surrogate can be trusted. (b) Improvement in
the forward modeling comes from the SGP-VAE, which encourages similar latents to exhibit similar properties. Moreover, the surrogate
model is trained with latent-property pairs that are representative of the learned latent space. (c) During inversion, TrustMol optimizes a
latent design by minimizing the predicted surrogate error and the epistemic uncertainty. The optimal latent design will then be decoded
back into SELFIES by the pretrained SGP-VAE decoder.
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Table 4. Effects of small perturbations on stability and property values. We randomly add N (0, 0.1) noise to an atom coordinate or a
latent’s component, and randomly change an atom type or a SELFIES’ alphabet. We show the NFP errors between the original and
perturbed molecules’ properties.

Perturbation Stable NFP Error

On (%) H (eV) L (eV) D (D)

Graph - 3D coord. 38.5 1.59 1.79 0.53
Graph - atom type 38.0 1.48 1.44 0.41
SELFIES 60.0 0.86 1.16 0.47
Latent 67.2 0.42 0.47 0.24

of stable molecules drastically decreases to 38.5%. Additionally, the properties of the remaining stable molecules changes
significantly, as indicated by the relatively high MAE values. The same trend can be seen when the perturbation targets atom
types of the 3D graphs, in which we randomly change a single atom type into another. Interestingly, utilizing SELFIES
as molecular representations can improve robustness to such perturbations. For instance, replacing a randomly-selected
alphabet in a SELFIES string with another valid alphabet only reduces the stability to 60.0%, while the MAEs between the
original and perturbed molecular designs show improvements. Note that while SELFIES strings can always be translated
into a stable molecule, the NFP that is used to generate the corresponding 3D conformation may not always converge due to
the complexity of the molecule, which flags the molecule as unstable in our evaluation.

Finally, we can see that latent representations of molecules exhibit the greatest robustness toward perturbations. When a
N (0, 0.1) noise is injected into the latents, the proportion of stable molecules remains high at 67.2%, and the MAE between
the properties of the original and perturbed molecules is approximately 45% lower in average than that observed with
SELFIES strings. These results validate our explanations regarding the high-frequency and discontinuous nature of the
molecule-property mapping, and support our strategy of developing a custom latent space to smooth this mapping.
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