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Abstract

As large language models (LLMs) become integral to code-related tasks, a central
question emerges: do LLMs truly understand program execution semantics? We
introduce EquiBench, a new benchmark for evaluating LLMs through equivalence
checking, i.e., determining whether two programs produce identical outputs for
all possible inputs. Unlike prior code generation benchmarks, this task directly
tests a model’s understanding of code execution semantics. EquiBench consists
of 2400 program pairs across four languages and six categories. These pairs are
generated through program analysis, compiler scheduling, and superoptimization,
ensuring high-confidence labels, nontrivial difficulty, and full automation. The
transformations span syntactic edits, structural modifications, and algorithmic
changes, covering a broad spectrum of semantic variation. We evaluate 19 state-of-
the-art LLLMs and find that in the most challenging categories, the best accuracies
are 63.8% and 76.2%, only modestly above the 50% random baseline. Further
analysis reveals that models often rely on syntactic similarity rather than exhibiting
robust reasoning over execution semantics, highlighting fundamental limitations.

1 Introduction

Large language models (LLMs) have rapidly become central to software engineering workflows,
powering tools for code generation, program repair, test case generation, debugging, and beyond,
significantly boosting developers’ productivity [1-3]. This surge of capability has prompted a natural
yet fundamental question: Do LLMs merely mimic code syntax they have seen during training, or do
they genuinely understand what programs do?

Unlike natural language, code is executable, i.e., its semantic meaning is defined by execution
behavior, not just its form [4]. Two programs may differ syntactically yet be semantically equivalent,
producing identical outputs for all inputs. Conversely, programs with only minor syntactic differences
can behave quite differently at runtime. This gap between surface-level program features and actual
execution behavior raises an important question: Does training on static code corpora equip LLMs
with a grounded understanding of program semantics?

To rigorously assess whether LLMs truly understand code, we need benchmarks that demand
reasoning about program execution semantics. However, widely used coding benchmarks such as
HumanEval [5] and MBPP [6] primarily test a model’s ability to generate short code snippets from
natural language descriptions, offering limited insight into whether the model grasps the underlying
execution semantics of the code it generates.

In this work, we introduce equivalence checking as a new task to evaluate LLMs’ understanding of
program semantics. Unlike tasks that hinge on superficial syntactic similarity, equivalence checking
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Figure 1: Overview of EquiBench. We construct (in)equivalent program pairs from diverse sources,
including C and CUDA programs, x86-64 assembly, and competitive programming, using automated
transformations based on program analysis, compiler scheduling, superoptimization, and changes in
algorithms or variable names.

asks whether rwo programs are semantically equivalent, i.e., whether they produce identical outputs
for all possible inputs, regardless of how differently they may be written. This poses a fundamentally
harder challenge: it requires models to reason about program behavior, not just form. For LLMs,
success on this task cannot be achieved through shallow memorization or token-level heuristics
alone; it demands a deeper grasp of the control flow, data dependencies of programs, and requires
generalization beyond surface patterns.

Designing a benchmark for equivalence checking requires both equivalent and inequivalent program
pairs spanning diverse categories, which poses several challenges in terms of label soundness,
problem difficulty, and automation. First, it is difficult to guarantee high-confidence labels, as
verifying equivalence by exhaustively executing all possible inputs is almost always computationally
infeasible. Second, existing generation techniques rely on superficial syntactic edits [7, 8], which
are too simplistic to meaningfully challenge state-of-the-art LLMs and fail to probe their semantic
reasoning limits. Third, to enable comprehensive evaluation, the benchmark must be large-scale and
modular, necessitating a fully automated construction pipeline.

In this work, we introduce EquiBench, a dataset of 2400 program pairs for evaluating large language
models on equivalence checking. Covering Python, C, CUDA, and x86-64 programs, it enables a
systematic assessment of LLMs’ ability to reason about program execution semantics.

As illustrated in Figure 1, EquiBench addresses these challenges by automatically constructing both
equivalent and inequivalent program pairs from diverse input sources, including randomly generated
C and CUDA code, assembly instructions, and competitive programming solutions. To ensure label
soundness without exhaustive execution, we apply program transformation techniques grounded
in program analysis and superoptimization. To increase problem difficulty beyond trivial edits, we
incorporate structural transformations through compiler scheduling and algorithmic equivalences.
Finally, the entire generation pipeline is fully automated, enabling scalable construction of a large
and diverse benchmark.

Our experiments show that EquiBench is a challenging benchmark for LLMs. Among the 19 models
evaluated, OpenAl o4-mini performs best overall, yet achieves only 60.8% in the CUDA category
despite reaching the highest overall accuracy of 82.3%. In the two most difficult categories, the best
accuracies are 63.8% and 76.2%, respectively, only modestly better than the random baseline of 50%
for binary classification. In contrast, purely syntactic changes such as variable renaming are much
easier, with accuracies as high as 96.5%. We further find, through difficulty analysis, that models
often rely on superficial form features such as syntactic similarity rather than demonstrating robust
semantic understanding. Moreover, prompting strategies such as few-shot in-context learning and
Chain-of-Thought (CoT) prompting barely improve LLM performance, underscoring the difficulty of
understanding code execution semantics.

In summary, our contributions are as follows:
* New Task and Dataset: We introduce equivalence checking as a new task to assess LLMs’

understanding of code execution semantics. We present EquiBench, a benchmark for
equivalence checking spanning four languages and six equivalence categories.

* Automated Generation: We develop a fully automated pipeline for constructing diverse
(in)equivalent program pairs using techniques that ensure high-confidence labels and nontriv-
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ial difficulty. The pipeline covers transformations ranging from syntactic edits to structural
modifications and algorithmic equivalence.

» Evaluation and Analysis: We evaluate 19 state-of-the-art models on EquiBench. In the two
most challenging categories, the best accuracies are only 63.8% and 76.2%, highlighting
fundamental limitations. Our analysis shows that models often rely on superficial form
features rather than demonstrating a robust understanding of execution semantics.

2 Related Work

LLM Reasoning Benchmarks Extensive research has evaluated LLMs’ reasoning capabilities
across diverse tasks [9—18]. In the context of code reasoning, i.e., predicting a program’s execution
behavior without running it, CRUXEval [19] focuses on input-output prediction, while CodeMind [20]
extends evaluation to natural language specifications. Another line of work seeks to improve LLMs’
code simulation abilities through prompting [21] or targeted training [22-25]. Unlike prior work that
tests LLMs on specific inputs, our benchmark evaluates their ability to reason over all inputs.

Equivalence Checking Equivalence checking underpins applications such as performance op-
timization [26-28], code transpilation [29-32], refactoring [33], and testing [34, 35]. Due to its
undecidable nature, no algorithm can decide program equivalence for all program pairs while always
terminating. Existing techniques [36—41] focus on specific domains, such as SQL query equiva-
lence [42—-44]. EQBENCH [7] and SeqCoBench [8] are the main datasets for equivalence checking
but have limitations. EQBENCH is too small (272 pairs) for LLM evaluation, while SeqCoBench
relies only on statement-level syntactic changes (e.g., renaming variables). In contrast, our work
introduces a broader set of equivalence categories, creating a more systematic and challenging
benchmark.

3 Benchmark Construction

While we have so far discussed only the standard notion of equivalence (that two programs produce
the same output on any input), there are other, more precise definitions of equivalence used for
each category in the benchmark. For each category, we provide the definition of equivalence, which
is included in the prompt when testing LLM reasoning capabilities. We describe the process of
generating (in)equivalent pairs for the following six categories:

* DCE: C program pairs generated via the compiler’s dead code elimination (DCE) pass
(Section 3.1).

* CUDA: CUDA program pairs created by applying different scheduling strategies using a
tensor compiler (Section 3.2).

* x86-64: x86-64 assembly program pairs generated by a superoptimizer (Section 3.3).

* OJ_A, OJ_V, OJ_VA: Python program pairs from online judge submissions, featuring al-
gorithmic differences (OJ_A), variable-renaming transformations (OJ_V), and combinations
of both (OJ_VA) (Section 3.4).

3.1 Pairs from Program Analysis (DCE)

Dead code elimination (DCE), a compiler pass, removes useless program statements. After DCE,
remaining statements in the modified program naturally correspond to those in the original program.

Definition of Equivalence. Two programs are considered equivalent if, when executed on the same
input, they always have identical program states at all corresponding points reachable by program
execution. We expect language models to identify differences between the two programs, align their
states, and determine whether these states are consistently identical.

Example. Figure 2 illustrates an inequivalent pair of C programs. In the left program, the condition
(p1 == p2) compares the memory address of the first element of the array b with that of the static
variable c. Since b and c reside in different memory locations, this condition can never be satisfied.
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__global__ void GEMV(const float* A, | _ global__ void GEMV(const float* A, const float* x,
const float* x, float* y, int R, int C) {
float* vy, _ shared__ float tile[32]; // tiling with shared memory
int R, int r = blockIdx.x * blockDim.x + threadIdx.x;
int C) { bool valid = (r < R);
float s = 0.0f;
// Calculate the row index for (int start = 0; start < C; start += 32) {
// assigned to the thread for (int i = threadIdx.x; i < 32; i += blockDim.x) {
int r = blockIdx.x * blockDim.x int ¢ = start + i;
+ threadIdx.x; if (c < C) tile[i] = x[c]; // load x into tile
}
// Return if out of bounds __syncthreads();
if (r >= R) return; if (valid) {
float s = 0.0f; for (int j = @; j < min(32, C - start); j++) {
s += A[r * C + (start + j)] * tile[j];
for (int ¢ = 0; c < C; c++) { }
s += A[r * C + c] * x[c]; }
} __syncthreads();
}
y[r] = s; if (valid) y[r] = s;
} }

Figure 3: An equivalent pair from the CUDA category in EquiBench. Both programs perform
matrix-vector multiplication (y = Ax). The right-hand program uses shared memory tiling to improve
performance. Tensor compilers are utilized to explore different scheduling strategies, automating the
generation.

As aresult, the assignment ¢ = 1 is never executed in the left program but is executed in the right
program. This difference in program state during execution renders the pair inequivalent.

Automation. This reasoning process iS  char b[2]; char b[2];

automated by compilers through alias anal-  static int ¢ = 0; static int ¢ = @;

ysis, which statically determines whether

two pointers can reference the same mem- int main() { int main() {

ory location. Based on this analysis, the char* pl = &b[e]; char* pl = &b[e];

compiler’s Dead Code Elimination (DCE) ~ 1"t* P2 = &¢; int* p2 = &c;

pass removes code .that does not affect pro- if (p1 == p2) { if (true) {

gram semantics to improve performance. ¢ = 1; //dead code c =1; //live code
} }

Dataset  Generation. We  utilize e e

CSmith [45] to create an initial pool of ran- return 0; return 0;

dom C programs. Building on techniques }

from prior compiler testing research [46],

we implement an LLVM-based tool [47] Figure 2: An inequivalent pair from the DCE cate-
to classify code snippets as either dead gory in EquiBench. In the left program, ¢ = 1 is dead
or live. Live code is further confirmed by code and has no effect on the program state, whereas in
executing random inputs with observable the right program, it is executed and alters the program
side effects. Equivalent program pairs state. Such cases are generated using the Dead Code
are generated by eliminating dead code, Elimination (DCE) pass in compilers.

while inequivalent pairs are generated by

removing live code.

3.2 Pairs from Compiler Scheduling (CUDA)

Definition of Equivalence. Two CUDA programs are considered equivalent if they produce the
same mathematical output for any valid input, disregarding floating-point rounding errors. This
definition differs from that in Section 3.1, as it does not require the internal program states to be
identical during execution.

Example. Figure 3 shows an equivalent CUDA program pair. Both compute matrix-vector multipli-
cation y = Ax, where A has dimensions (R, C) and z has size C. The right-hand program applies the
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shared memory tiling technique, loading x into shared memory tile (declared with __shared__).
Synchronization primitives __syncthreads () are properly inserted to prevent synchronization issues.

Automation. The program transformation can be automated with tensor compilers, which provide
a set of schedules to optimize loop-based programs. These schedules include loop tiling, loop fusion,
loop reordering, loop unrolling, vectorization, and cache optimization. For any given schedule, the
compiler can generate the transformed code. While different schedules can significantly impact
program performance on the GPU, they do not affect the program’s correctness (assuming no compiler
bugs), providing the foundation for automation.

Dataset Generation. We utilize TVM as the tensor compiler [48] and sample tensor program
schedules from TenSet [49] to generate equivalent CUDA program pairs. Inequivalent pairs are
created by sampling code from different tensor programs.

3.3 Pairs from a Superoptimizer (x86-64)

Definition of Equivalence. Two x86-64 as- size t popcnt(uinted t x) {
sembly programs are considered equivalent if, int res = @;

for any input provided in the specified input reg- for (5 x> 05 x >=1) {
. . . res += x & Ox1lull;

isters, both programs produce identical outputs }

in the specified output registers. Differences in return res;

other registers or memory are ignored for equiv- }

alence checking.
Compiler Superoptimizer

Example. Figure 4 shows an example of an << />
equivalent program pair in x86-64 assembly.
Both programs implement the same C function, Lo:

which counts the number of bits set tp 1 in the xorl %eax, %eax Lo:
variable x (mapped to the %rdi register) and testq %rdi, %rdi popcnt %rdi, %rax
stores the result in %rax. The left-hand pro- Je -L2 retq
. e .L1:
gram, generated by GCC with O3 optimization, movq %rdi, %rdx
uses a loop to count each bit individually, while aggl 5931, %edx
foht _ addq %rdx, %rax
the.rlght hand program, produce.d by a super shrq  $ox1. %rdi
optimizer, leverages the popcnt instruction, a jne L1
hardware-supported operation for efficient bit retq
counting. The superoptimizer verifies that both L2:
retq

programs are semantically equivalent. Deter-
mining this equivalence requires a solid under-
standing of x86-64 assembly semantics and the
ability to reason about all possible bit patterns.

Figure 4: An equivalent pair from the x86-64
category in EquiBench. Both programs are com-
piled from the same C function shown above—the
left using a compiler and the right using a superop-
Automation. A superoptimizer searches a fimizer. The function counts the number of set bits
space of programs to find one equivalent to the in the input %rdi register and stores the result in
target. Test cases efficiently prune incorrect can-  %rax. Their equivalence has been formally verified
didates, while formal verification guarantees the by the superoptimizer.

correctness of the optimized program. Superop-

timizers apply aggressive and non-local transfor-

mations, making semantic equivalence reason-

ing more challenging. For example, in Figure 4,

while a traditional compiler translates the loop in the source C program into a loop in assembly, a
superoptimizer can find a more optimal instruction sequence by leveraging specialized hardware
instructions. Such semantic equivalence is beyond the scope of traditional compilers.

Dataset Generation. We use Stoke [50] to generate program pairs. Assembly programs are
sampled from prior work [51], and Stoke applies transformations to produce candidate programs. If
verification succeeds, the pair is labeled as equivalent; if the generated test cases fail, it is labeled as
inequivalent.
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3.4 Pairs from Programming Contests

Definition of Equivalence. Two programs are
considered equivalent if they solve the same prob-
lem by producing the same output for any valid
input, as defined by the problem description. Both
programs, along with the problem description, are
provided to determine equivalence.

Example. Given the problem description in Fig-
ure 5, all four programs are equivalent as they cor-
rectly compute the Fibonacci number. The OJ_A
pairs demonstrate algorithmic equivalence—the
left-hand program uses recursion, while the right-
hand program employs a for-loop. The OJ_V
pairs are generated through variable renaming,
a pure syntactic transformation that can obscure
the program’s semantics by removing meaningful
variable names. The OJ_VA pairs combine both
algorithmic differences and variable renaming.

Dataset Generation. We sample Python sub-
missions using a publicly available dataset from
Online Judge (OJ) [52]. For OJ_A pairs, accepted
submissions are treated as equivalent, while pairs
consisting of an accepted submission and a wrong-
answer submission are considered inequivalent.
Variable renaming transformations are automated
with an open-source tool [53].

4 Experimental Setup

Dataset. EquiBench consists of 2,400 pro-
gram pairs across six equivalence categories,
each with 200 equivalent and 200 inequivalent
pairs. Table 1 summarizes the statistics of pro-
gram lengths. Constructing the program pairs
required substantial systems effort. For example,
for the DCE category, we developed a 2,917-line
LLVM-based tool, including 1,472 lines in C
and C++, with alias analysis and path feasibil-
ity analysis to accurately classify live and dead
code. The complexity of EquiBench should not
be underestimated.

Prompts. The 0-shot evaluation is conducted

Problem Description:
Given an integer n, compute the A single integer n
n-th Fibonacci number:

<F(0)=0
CF()=1

Input:
(0 < n < 10000).

Output:

« F(n) = F(n-1) + F(n-2) forn =2  Output a number.

def f(n):
if n <= 1:
return n
return f(n-1)

+ f(n-2)

n = int(input())
print(f(n))

f

. . def fib(n):
Algorithmic 5 p - o, 1
Equivalence for _ in range(n):

a, b=>b,a+b
OJ_A return a
Category n = int(input())
print(fib(n))

Variable Renaming f

4

0OJ_V Category i

def var2(q):
if q <= 1:
return q

return

var2(q-1)

def func(x):

Both 22”‘” =ii) range(x):
— - .

m, n=n,m+n

1

+ var2(q-2) 0J_VA return m
varl = int(input()) Category var1 = int(input())
print(var2(varl))

print(func(varl))

Figure 5: Equivalent pairs from the OJ_A,
OJ_V, OJ_VA categories in EquiBench.
OJ_A pairs demonstrate algorithmic equiva-
lence, OJ_V pairs involve variable renaming
transformations, and OJ_VA pairs combine both
types of variations.

Category Language # Pairs Lines of Code
Min Max Avg.
DCE C 400 98 880 541
CUDA CUDA 400 46 1733 437
x86-64 x86-64 400 8 29 14
OJ_A Python 400 3 3403 82
oIV Python 400 2 4087 70
OJ_VA Python 400 3 744 35

Table 1: Statistics of the EquiBench dataset.

using the prompt “You are here to judge if two programs are semantically equivalent. Here equivalence
means {definition}. [Program 1]: {codel} [Program 2]: {code2} Please only output the answer of
whether the two programs are equivalent or not. You should only output Yes or No.” The definition
of equivalence and the corresponding program pairs are provided for each category. Additionally, for
the categories of OJ_A, OJ_V, and OJ_VA, the prompt also includes the problem description. The
full prompts used in our experiments for each equivalence category are in Appendix A.4.



Model DCE CUDA x86-64 OJ_ A OJ_V OJ_VA Overall Accuracy

Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama-3.2-3B-Instruct-Turbo 50.0 49.8 50.0 51.5 51.5 51.5 50.7
Llama-3.1-8B-Instruct-Turbo 41.8 49.8 50.5 57.5 75.5 56.8 55.3
Mistral-7B-Instruct-v0.3 51.0 57.2 73.8 50.7 50.5 50.2 55.6
Mixtral-8x7B-Instruct-vO0.1 50.2 47.0 64.2 59.0 61.5 55.0 56.1
Mixtral-8x22B-Instruct-v0.1 46.8 49.0 62.7 63.5 76.0 62.7 60.1
Llama-3.1-70B-Instruct-Turbo 475 50.0 58.5 66.2 72.0 67.5 60.3
QwQ-32B-Preview 48.2 50.5 62.7 65.2 71.2 64.2 60.3
Qwen2.5-7B-Instruct-Turbo 50.5 49.2 58.0 62.0 80.8 63.0 60.6
gpt-40-mini-2024-07-18 46.8 50.2 56.8 64.5 91.2 64.0 62.2
Qwen2.5-72B-Instruct-Turbo 42.8 56.0 64.8 72.0 76.5 70.8 63.8
Llama-3.1-405B-Instruct-Turbo ~ 40.0 49.0 75.0 72.2 74.5 72.8 63.9
DeepSeek-V3 41.0 50.7 69.2 73.0 83.5 72.5 65.0
gpt-40-2024-11-20 432 49.5 65.2 71.0 87.0 73.8 65.0
claude3.5-sonnet-2024-10-22 38.5 62.3 70.0 71.2 78.0 73.5 65.6
claude3.7-sonnet-2025-04-16 40.5 63.8 64.8 70.5 89.2 73.5 67.0
01-mini-2024-09-12 55.8 50.7 74.2 80.0 89.8 78.8 71.5
DeepSeek-R1 52.2 61.0 78.2 79.8 91.5 78.0 73.5
03-mini-2025-01-31 68.8 59.0 84.5 84.2 88.2 83.2 78.0
04-mini-2025-04-16 76.2 60.8 83.0 89.0 96.5 88.5 82.3
Mean 49.0 53.4 66.7 68.6 78.1 68.5 64.0

Table 2: Accuracy of 19 models on EquiBench under 0-shot prompting. We report accuracy for
each of the six equivalence categories along with the overall accuracy.

27 5 Results

248 5.1 Model Accuracy

249 Table 2 shows the accuracy results for 19 state-of-the-art large language models on EquiBench under
250 zero-shot prompting. Our findings are as follows:

25t Reasoning models achieve the highest performance. As shown in Table 2, reasoning models such
252 as OpenAl 03-mini, DeepSeek R1, and ol-mini significantly outperform all others in our evaluation.
253 This further underscores the complexity of equivalence checking, where reasoning models exhibit a
254 distinct advantage.

255 EquiBench is a challenging benchmark. Among the 19 models evaluated, OpenAl o4-mini
256 achieves only 60.8% in the CUDA category despite being the top-performing model overall, with an
257 accuracy of 82.3%. For the two most difficult categories, the highest accuracy across all models is
258 63.8% and 76.2%, respectively, only modestly above the random baseline of 50% accuracy for binary
259 classification, highlighting the substantial room for improvement.

260 Scaling up models improves performance. Larger models generally achieve better performance.
261 Figure 6 shows scaling trends for the Qwen2.5, Llama-3.1, and Mixtral families, where accuracy
262 improves with model size. The x-axis is on a logarithmic scale, highlighting how models exhibit
263 consistent gains as parameters increase.

264 5.2 Difficulty Analysis

265 We conduct a detailed difficulty analysis across equivalence categories and study how syntactic
266 similarity influences model predictions.

267 Difficulty by Transformation Type. Across categories, we find that purely syntactic transforma-
268 tions are substantially easier for models, while structural and compiler-involved transformations are
269 much harder. Specifically, OJ_V (variable renaming) achieves the highest mean accuracy of 78.1%,
270 as it only requires surface-level reasoning. OJ_A (algorithmic equivalence) and OJ_VA (variable
271 renaming combined with algorithmic differences) achieve similar accuracies of 68.6% and 68.5%,
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respectively. In contrast, x86-64 (66.7%) and CUDA (53.4%) involve complex instruction-level or
memory-level transformations, requiring deeper semantic reasoning. DCE (dead code elimination) is
the most difficult category, with a mean accuracy of 49.0%, suggesting that models struggle with
nuanced program analysis concepts. We also observe biases in how models behave across certain
categories, which we evaluate further in Appendix A.1.

Difficulty by Syntactic Similarity. To assess whether LLM predictions reflect understanding of
execution semantics rather than mere reliance on surface-level syntax, we analyze how syntactic
similarity affects model behavior. Using Moss [54], a plagiarism detection tool, we observe the
following:

» For program pairs with low syntactic similarity, models tend to predict “inequivalent,”
even when the programs are semantically equivalent. This suggests an overreliance on the
superficial form of the code.

* For syntactically similar pairs, models are more likely to predict “equivalent,” indicating a
tendency to associate similarity in form with equivalence in execution semantics.

We validate this trend through statistical testing: at significance level (v = 0.05), model accuracy on
equivalent pairs increases with syntactic similarity, while accuracy on inequivalent pairs decreases.
This disconnect between syntactic form and execution behavior, as discussed in Section 1, suggests

that models are not grounded in program semantics.
Model Scale & Overall Accuracy

Implications for Benchmark Design. These o Y "

findings suggest that future benchmarks should 62

emphasize syntactically dissimilar yet equiva-  §

lent program pairs and syntactically similar yet 3 o - .

inequivalent program pairs to create more chal- < 60 '

lenging and diagnostic benchmarks for evaluat- ' -

ing the deep semantic reasoning capabilities of £ 58 Modgl Families

LLMs. o @ Qwen25

& B Llama-3.1

56 - : ) @ Mixtral

5.3 Prompting Strategies Analysis 57 53 3% 35 36 37 38 39 5lo

. . Model Parameters (Billion)
We study few-shot in-context learning and

Chain-of-Thought (CoT) prompting, evaluating Figure 6: Scaling Trend on EquiBench.
four strategies: 0-shot, 4-shot, 0-shot with CoT,

and 4-shot with CoT. For 4-shot, prompts include 2 equivalent and 2 inequivalent pairs. Table 3
shows the results.

Our key finding is that prompting strategies barely improve performance on EquiBench, high-
lighting the difficulty in understanding code execution semantics.

6 Discussion and Future Directions

Scope and Positioning Machine learning has
been applied to many code-related tasks, such

as clone detection [55], code search [56], and Model 05 45 0S-CoT 4S-CoT
bug finding [57]. EquiBench focuses on equiv- ~ 01-mini 715 715 719 71.9
alence checking, which differs fundamentally ~ gpt-40 65.0  66.5 62.5 62.7
by evaluating a model’s understanding of execu- ~ DeepSeek-V3  65.0  66.9 633 62.5
gpt-4o0-mini 62.2 63.5 60.2 61.2

tion semantics. Unlike natural language, code
is executable, and its correctness depends on ex-
ecution results rather than form. For example,
clone detection captures syntactic or structural
similarity without considering behavior. In con-
trast, EquiBench tests whether two programs
produce the same outputs for all inputs, offering
a stricter and more informative benchmark for reasoning about code execution.

Table 3: Accuracies of different prompting tech-
niques. We evaluate 0-shot and 4-shot in-context
learning, both without and with Chain-of-Thought
(CoT). Prompting strategies barely improve perfor-
mance.
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Labeling Soundness To ensure high-assurance equivalence labels, EquiBench relies on transforma-
tions grounded in program analysis, compiler scheduling, and superoptimization, all of which offer
strong soundness guarantees. In contrast, approaches such as random testing [58], similarity-based
tools [59], and refactoring datasets lack formal guarantees and risk introducing incorrect labels.

Modularity and Extensibility EquiBench is designed with modularity in mind, with each equiv-
alence category representing a distinct class of transformations. The dataset is extensible and can
be expanded to include additional categories in future work. As the first benchmark in this space,
EquiBench provides a foundation for systematic evaluation and further development.

Evaluation of Reasoning Trace While our evaluation centers on binary classification, understand-
ing the rationale behind model predictions is an important direction. Explanations may take the form
of natural language or formal proofs, but verifying their correctness remains difficult. Natural lan-
guage lacks reliable automated validation, since using LLMs as judges can produce unsound results.
Building a proof-based evaluation framework using tools such as Lean is also highly nontrivial. We
present a manual case analysis of reasoning trace correctness in Appendix A.2 and leave automated
robust evaluation of reasoning as future work.

Implications for Model Training Our results suggest that current models have limited understand-
ing of code execution semantics. To improve this, future work may incorporate program execution
traces [24, 23] into training, enabling models to learn execution behavior more directly rather than
relying on next-token prediction over surface-level syntax.

7 Conclusion

We introduced EquiBench, a benchmark for evaluating whether large language models (LLMs)
truly understand code execution semantics. We propose the task of equivalence checking, which
asks whether two programs produce identical outputs for all possible inputs, as a direct way to test
a model’s ability to reason about program behavior. The dataset consists of 2400 program pairs
across four languages and six categories, constructed through a fully automated pipeline that provides
high-confidence labels and nontrivial difficulty. Our evaluation of 19 state-of-the-art LLMs shows that
even the best-performing models achieve only modest accuracy in the most challenging categories.
Further analysis shows that LLMs often rely on syntactic similarity instead of demonstrating robust
reasoning about code execution semantics, underscoring the need for further advances in semantic
understanding of programs.
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A Appendix

A.1 Bias in Model Prediction

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify
equivalent programs as inequivalent in the CUDA and x86-64 categories. Table Al presents the
results for four representative models, showing high accuracy for inequivalent pairs but significantly
lower accuracy for equivalent pairs, with full results for all models in Appendix A.3.

The bias in the CUDA category arises from extensive structural transformations, such as loop
restructuring and shared memory optimizations, which make paired programs appear substantially
different. In the x86-64 category, superoptimization applies non-local transformations to achieve
optimal instruction sequences, introducing aggressive code restructuring that complicates equivalence
reasoning and leads models to misclassify equivalent pairs as inequivalent frequently.

CUDA x86-64
Eq 1Ineq Eq Ineq
Random Baseline  50.0 50.0 50.0 50.0

Model

03-mini 27.5 905 695 995
ol-mini 25 99.0 500 985
DeepSeek-R1 28.0 94.0 575 99.0
DeepSeek-V3 85 93.0 440 945

Table Al: Accuracies on equivalent and inequivalent pairs in the CUDA and x86-64 categories
under 0-shot prompting, showing that models perform significantly better on inequivalent pairs.
Random guessing serves as an unbiased baseline for comparison. Full results for all models are
shown in Appendix A.3.

A.2 Case Studies

Models lack capabilities for sound equivalence checking. We find that simple changes that lead
to semantic differences can confuse the models, causing them to produce incorrect predictions despite
their correct predictions on the original program pairs. For example, 03-mini, which is one of the top-
performing models in CUDA category, can correctly classify the pair shown in Figure 3 as equivalent.
Next, we introduce synchronization bugs into the right-hand program, creating two inequivalent
pairs with the original left-hand program: (1) removing the first __syncthreads(); allows reads
before all writes complete, causing race conditions; (2) removing the second __syncthreads(); lets
faster threads overwrite shared data while slower threads read it. Despite these semantic differences,
03-mini misclassifies both pairs as equivalent.

Proper hints enable models to correct misjudgments. After 03-mini misclassifies the modified
pairs, a hint about removed synchronization primitives allows it to correctly identify both as in-
equivalent, with accurate explanations highlighting data races. This suggests that training models on
dedicated program analysis datasets, beyond only raw source code, may be useful for improving their
code reasoning capabilities.

A.3 Model Prediction Bias

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify
equivalent programs as inequivalent in the CUDA and x86-64 categories. Table A2 here shows the
full results on all models under 0-shot prompting.
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CUDA x86-64

Model
Eq Ineq Eq Ineq
Random Baseline 50.0 50.0 50.0 50.0
deepseek-ai/DeepSeek-V3 8.5 93.0 440 945
deepseek-ai/DeepSeek-R1 28,0 940 575 99.0

meta-llama/Llama-3.1-405B-Instruct-Turbo 6.0 92.0 68.5 81.5
meta-llama/Llama-3.1-8B-Instruct-Turbo 2.0 97.5 1.0 100.0
meta-llama/Llama-3.1-70B-Instruct-Turbo 7.0 93.0 275 89.5
meta-llama/Llama-3.2-3B-Instruct-Turbo 0.0 99.5 0.0 100.0

anthropic/claude-3-5-sonnet-20241022 62.5 620 495 905
Qwen/Qwen2.5-7B-Instruct-Turbo 185 80.0 175 985
Qwen/Qwen2.5-72B-Instruct-Turbo 145 975 360 935
Qwen/QwQ-32B-Preview 350 660 39.0 86.5
mistralai/Mixtral-8x7B-Instruct-v0.1 18.0 760 505 78.0
mistralai/Mixtral-8x22B-Instruct-v0.1 105 875 325 930
mistralai/Mistral-7B-Instruct-v0.3 525 620 870 60.5
openai/gpt-40-mini-2024-07-18 0.5 100.0 165 97.0
openai/gpt-40-2024-11-20 0.0 99.0 685 62.0
openai/o3-mini-2025-01-31 275 905 695 995
openai/ol-mini-2024-09-12 2.5 99.0 500 985

Table A2: Model prediction bias.

s49 A4 Prompts

s50 A.4.1 DCE Category

551 We show the prompts for the 0-shot setting.

552 You are here to judge if two C programs are semantically equivalent.

553 Here equivalence means that, when run on the same input, the two programs always have the same
554 program state at all corresponding points reachable by program execution.

555  [Program 1]:

556

557 {program_1_code}
ss8  [Program 2]:
559

560 {program_2_code}

561 Please only output the answer of whether the two programs are equivalent or not. You should only
se2 output YES or NO.

563

564

s65  A.4.2 CUDA Category

se6 We show the prompts for the 0-shot setting.

567 You are here to judge if two CUDA programs are semantically equivalent.

ses8 Here equivalence means that, when run on the same valid input, the two programs always compute
s69 the same mathematical output (neglecting floating point rounding errors).

570 [Program 1]:

571 {program_1_code}

572 [Program 2]:

573 {program_2_code}
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Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.

A4.3 x86-64 Category

We show the prompts for the 0-shot setting.

You are here to judge if two x86-64 programs are semantically equivalent.

Here equivalence means that, given any input bits in the register {def_in}, the two programs
always have the same bits in register {1ive_out}. Differences in other registers do not matter for
equivalence checking.

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}
Please only output the answer of whether the two programs are equivalent or not. You should only

output YES or NO.

A44 OJ_A,0J_V,0J_VA Category

We show the prompts for the 0-shot setting.

You are here to judge if two Python programs are semantically equivalent.

You will be given [Problem Description], [Program 1] and [Program 2].

Here equivalence means that, given any valid input under the problem description, the two programs
will always give the same output.

[Problem Description]:

{problem_html}
[Program 1]:
{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.
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