
EquiBench: Benchmarking Large Language Models’
Understanding of Program Semantics via Equivalence

Checking

Anonymous Author(s)
Affiliation
Address
email

Abstract

As large language models (LLMs) become integral to code-related tasks, a central1

question emerges: do LLMs truly understand program execution semantics? We2

introduce EquiBench, a new benchmark for evaluating LLMs through equivalence3

checking, i.e., determining whether two programs produce identical outputs for4

all possible inputs. Unlike prior code generation benchmarks, this task directly5

tests a model’s understanding of code execution semantics. EquiBench consists6

of 2400 program pairs across four languages and six categories. These pairs are7

generated through program analysis, compiler scheduling, and superoptimization,8

ensuring high-confidence labels, nontrivial difficulty, and full automation. The9

transformations span syntactic edits, structural modifications, and algorithmic10

changes, covering a broad spectrum of semantic variation. We evaluate 19 state-of-11

the-art LLMs and find that in the most challenging categories, the best accuracies12

are 63.8% and 76.2%, only modestly above the 50% random baseline. Further13

analysis reveals that models often rely on syntactic similarity rather than exhibiting14

robust reasoning over execution semantics, highlighting fundamental limitations.15

1 Introduction16

Large language models (LLMs) have rapidly become central to software engineering workflows,17

powering tools for code generation, program repair, test case generation, debugging, and beyond,18

significantly boosting developers’ productivity [1–3]. This surge of capability has prompted a natural19

yet fundamental question: Do LLMs merely mimic code syntax they have seen during training, or do20

they genuinely understand what programs do?21

Unlike natural language, code is executable, i.e., its semantic meaning is defined by execution22

behavior, not just its form [4]. Two programs may differ syntactically yet be semantically equivalent,23

producing identical outputs for all inputs. Conversely, programs with only minor syntactic differences24

can behave quite differently at runtime. This gap between surface-level program features and actual25

execution behavior raises an important question: Does training on static code corpora equip LLMs26

with a grounded understanding of program semantics?27

To rigorously assess whether LLMs truly understand code, we need benchmarks that demand28

reasoning about program execution semantics. However, widely used coding benchmarks such as29

HumanEval [5] and MBPP [6] primarily test a model’s ability to generate short code snippets from30

natural language descriptions, offering limited insight into whether the model grasps the underlying31

execution semantics of the code it generates.32

In this work, we introduce equivalence checking as a new task to evaluate LLMs’ understanding of33

program semantics. Unlike tasks that hinge on superficial syntactic similarity, equivalence checking34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

(In)Equivalent Program Pairs

int main() {
 int a, b;
 ...
 if (a < b) {
 a = 1;
 }
 ...
}

if (b > a) {
 a = 1;
}

if (b <= a) {
 a = 1;
}

Program Analysis

Compiler Scheduling

Superoptimization

Algorithm / Variable Changes

Automated TransformationInput Source Programs

Randomly C programs

CUDA tensor programs

x86-64 instructions

Competitive programming

Figure 1: Overview of EquiBench. We construct (in)equivalent program pairs from diverse sources,
including C and CUDA programs, x86-64 assembly, and competitive programming, using automated
transformations based on program analysis, compiler scheduling, superoptimization, and changes in
algorithms or variable names.

asks whether two programs are semantically equivalent, i.e., whether they produce identical outputs35

for all possible inputs, regardless of how differently they may be written. This poses a fundamentally36

harder challenge: it requires models to reason about program behavior, not just form. For LLMs,37

success on this task cannot be achieved through shallow memorization or token-level heuristics38

alone; it demands a deeper grasp of the control flow, data dependencies of programs, and requires39

generalization beyond surface patterns.40

Designing a benchmark for equivalence checking requires both equivalent and inequivalent program41

pairs spanning diverse categories, which poses several challenges in terms of label soundness,42

problem difficulty, and automation. First, it is difficult to guarantee high-confidence labels, as43

verifying equivalence by exhaustively executing all possible inputs is almost always computationally44

infeasible. Second, existing generation techniques rely on superficial syntactic edits [7, 8], which45

are too simplistic to meaningfully challenge state-of-the-art LLMs and fail to probe their semantic46

reasoning limits. Third, to enable comprehensive evaluation, the benchmark must be large-scale and47

modular, necessitating a fully automated construction pipeline.48

In this work, we introduce EquiBench, a dataset of 2400 program pairs for evaluating large language49

models on equivalence checking. Covering Python, C, CUDA, and x86-64 programs, it enables a50

systematic assessment of LLMs’ ability to reason about program execution semantics.51

As illustrated in Figure 1, EquiBench addresses these challenges by automatically constructing both52

equivalent and inequivalent program pairs from diverse input sources, including randomly generated53

C and CUDA code, assembly instructions, and competitive programming solutions. To ensure label54

soundness without exhaustive execution, we apply program transformation techniques grounded55

in program analysis and superoptimization. To increase problem difficulty beyond trivial edits, we56

incorporate structural transformations through compiler scheduling and algorithmic equivalences.57

Finally, the entire generation pipeline is fully automated, enabling scalable construction of a large58

and diverse benchmark.59

Our experiments show that EquiBench is a challenging benchmark for LLMs. Among the 19 models60

evaluated, OpenAI o4-mini performs best overall, yet achieves only 60.8% in the CUDA category61

despite reaching the highest overall accuracy of 82.3%. In the two most difficult categories, the best62

accuracies are 63.8% and 76.2%, respectively, only modestly better than the random baseline of 50%63

for binary classification. In contrast, purely syntactic changes such as variable renaming are much64

easier, with accuracies as high as 96.5%. We further find, through difficulty analysis, that models65

often rely on superficial form features such as syntactic similarity rather than demonstrating robust66

semantic understanding. Moreover, prompting strategies such as few-shot in-context learning and67

Chain-of-Thought (CoT) prompting barely improve LLM performance, underscoring the difficulty of68

understanding code execution semantics.69

In summary, our contributions are as follows:70

• New Task and Dataset: We introduce equivalence checking as a new task to assess LLMs’71

understanding of code execution semantics. We present EquiBench, a benchmark for72

equivalence checking spanning four languages and six equivalence categories.73

• Automated Generation: We develop a fully automated pipeline for constructing diverse74

(in)equivalent program pairs using techniques that ensure high-confidence labels and nontriv-75

2

ial difficulty. The pipeline covers transformations ranging from syntactic edits to structural76

modifications and algorithmic equivalence.77

• Evaluation and Analysis: We evaluate 19 state-of-the-art models on EquiBench. In the two78

most challenging categories, the best accuracies are only 63.8% and 76.2%, highlighting79

fundamental limitations. Our analysis shows that models often rely on superficial form80

features rather than demonstrating a robust understanding of execution semantics.81

2 Related Work82

LLM Reasoning Benchmarks Extensive research has evaluated LLMs’ reasoning capabilities83

across diverse tasks [9–18]. In the context of code reasoning, i.e., predicting a program’s execution84

behavior without running it, CRUXEval [19] focuses on input-output prediction, while CodeMind [20]85

extends evaluation to natural language specifications. Another line of work seeks to improve LLMs’86

code simulation abilities through prompting [21] or targeted training [22–25]. Unlike prior work that87

tests LLMs on specific inputs, our benchmark evaluates their ability to reason over all inputs.88

Equivalence Checking Equivalence checking underpins applications such as performance op-89

timization [26–28], code transpilation [29–32], refactoring [33], and testing [34, 35]. Due to its90

undecidable nature, no algorithm can decide program equivalence for all program pairs while always91

terminating. Existing techniques [36–41] focus on specific domains, such as SQL query equiva-92

lence [42–44]. EQBENCH [7] and SeqCoBench [8] are the main datasets for equivalence checking93

but have limitations. EQBENCH is too small (272 pairs) for LLM evaluation, while SeqCoBench94

relies only on statement-level syntactic changes (e.g., renaming variables). In contrast, our work95

introduces a broader set of equivalence categories, creating a more systematic and challenging96

benchmark.97

3 Benchmark Construction98

While we have so far discussed only the standard notion of equivalence (that two programs produce99

the same output on any input), there are other, more precise definitions of equivalence used for100

each category in the benchmark. For each category, we provide the definition of equivalence, which101

is included in the prompt when testing LLM reasoning capabilities. We describe the process of102

generating (in)equivalent pairs for the following six categories:103

• DCE: C program pairs generated via the compiler’s dead code elimination (DCE) pass104

(Section 3.1).105

• CUDA: CUDA program pairs created by applying different scheduling strategies using a106

tensor compiler (Section 3.2).107

• x86-64: x86-64 assembly program pairs generated by a superoptimizer (Section 3.3).108

• OJ_A, OJ_V, OJ_VA: Python program pairs from online judge submissions, featuring al-109

gorithmic differences (OJ_A), variable-renaming transformations (OJ_V), and combinations110

of both (OJ_VA) (Section 3.4).111

3.1 Pairs from Program Analysis (DCE)112

Dead code elimination (DCE), a compiler pass, removes useless program statements. After DCE,113

remaining statements in the modified program naturally correspond to those in the original program.114

Definition of Equivalence. Two programs are considered equivalent if, when executed on the same115

input, they always have identical program states at all corresponding points reachable by program116

execution. We expect language models to identify differences between the two programs, align their117

states, and determine whether these states are consistently identical.118

Example. Figure 2 illustrates an inequivalent pair of C programs. In the left program, the condition119

(p1 == p2) compares the memory address of the first element of the array b with that of the static120

variable c. Since b and c reside in different memory locations, this condition can never be satisfied.121

3

__global__ void GEMV(const float* A,
 const float* x,
 float* y,
 int R,
 int C) {

 // Calculate the row index
 // assigned to the thread
 int r = blockIdx.x * blockDim.x
 + threadIdx.x;

 // Return if out of bounds
 if (r >= R) return;
 float s = 0.0f;

 for (int c = 0; c < C; c++) {
 s += A[r * C + c] * x[c];
 }

 y[r] = s;
}

__global__ void GEMV(const float* A, const float* x,
 float* y, int R, int C) {
 __shared__ float tile[32]; // tiling with shared memory
 int r = blockIdx.x * blockDim.x + threadIdx.x;
 bool valid = (r < R);
 float s = 0.0f;
 for (int start = 0; start < C; start += 32) {
 for (int i = threadIdx.x; i < 32; i += blockDim.x) {
 int c = start + i;
 if (c < C) tile[i] = x[c]; // load x into tile
 }
 __syncthreads();
 if (valid) {
 for (int j = 0; j < min(32, C - start); j++) {
 s += A[r * C + (start + j)] * tile[j];
 }
 }
 __syncthreads();
 }
 if (valid) y[r] = s;
}

Figure 3: An equivalent pair from the CUDA category in EquiBench. Both programs perform
matrix-vector multiplication (y = Ax). The right-hand program uses shared memory tiling to improve
performance. Tensor compilers are utilized to explore different scheduling strategies, automating the
generation.

As a result, the assignment c = 1 is never executed in the left program but is executed in the right122

program. This difference in program state during execution renders the pair inequivalent.123

char b[2];
static int c = 0;

int main() {
 char* p1 = &b[0];
 int* p2 = &c;
 ...
 if (true) {
 c = 1; //live code
 }
 ...
 return 0;
}

char b[2];
static int c = 0;

int main() {
 char* p1 = &b[0];
 int* p2 = &c;
 ...
 if (p1 == p2) {
 c = 1; //dead code
 }
 ...
 return 0;
}

Figure 2: An inequivalent pair from the DCE cate-
gory in EquiBench. In the left program, c = 1 is dead
code and has no effect on the program state, whereas in
the right program, it is executed and alters the program
state. Such cases are generated using the Dead Code
Elimination (DCE) pass in compilers.

Automation. This reasoning process is124

automated by compilers through alias anal-125

ysis, which statically determines whether126

two pointers can reference the same mem-127

ory location. Based on this analysis, the128

compiler’s Dead Code Elimination (DCE)129

pass removes code that does not affect pro-130

gram semantics to improve performance.131

Dataset Generation. We utilize132

CSmith [45] to create an initial pool of ran-133

dom C programs. Building on techniques134

from prior compiler testing research [46],135

we implement an LLVM-based tool [47]136

to classify code snippets as either dead137

or live. Live code is further confirmed by138

executing random inputs with observable139

side effects. Equivalent program pairs140

are generated by eliminating dead code,141

while inequivalent pairs are generated by142

removing live code.143

3.2 Pairs from Compiler Scheduling (CUDA)144

Definition of Equivalence. Two CUDA programs are considered equivalent if they produce the145

same mathematical output for any valid input, disregarding floating-point rounding errors. This146

definition differs from that in Section 3.1, as it does not require the internal program states to be147

identical during execution.148

Example. Figure 3 shows an equivalent CUDA program pair. Both compute matrix-vector multipli-149

cation y = Ax, where A has dimensions (R, C) and x has size C. The right-hand program applies the150

4

shared memory tiling technique, loading x into shared memory tile (declared with __shared__).151

Synchronization primitives __syncthreads() are properly inserted to prevent synchronization issues.152

Automation. The program transformation can be automated with tensor compilers, which provide153

a set of schedules to optimize loop-based programs. These schedules include loop tiling, loop fusion,154

loop reordering, loop unrolling, vectorization, and cache optimization. For any given schedule, the155

compiler can generate the transformed code. While different schedules can significantly impact156

program performance on the GPU, they do not affect the program’s correctness (assuming no compiler157

bugs), providing the foundation for automation.158

Dataset Generation. We utilize TVM as the tensor compiler [48] and sample tensor program159

schedules from TenSet [49] to generate equivalent CUDA program pairs. Inequivalent pairs are160

created by sampling code from different tensor programs.161

3.3 Pairs from a Superoptimizer (x86-64)162

size_t popcnt(uint64_t x) {
 int res = 0;
 for (; x > 0; x >>= 1) {
 res += x & 0x1ull;
 }
 return res;
}

.L0:
 xorl %eax, %eax
 testq %rdi, %rdi
 je .L2
.L1:
 movq %rdi, %rdx
 andl $0x1, %edx
 addq %rdx, %rax
 shrq $0x1, %rdi
 jne .L1
 retq
.L2:
 retq

.L0:
 popcnt %rdi, %rax
 retq

Compiler Superoptimizer

Figure 4: An equivalent pair from the x86-64
category in EquiBench. Both programs are com-
piled from the same C function shown above—the
left using a compiler and the right using a superop-
timizer. The function counts the number of set bits
in the input %rdi register and stores the result in
%rax. Their equivalence has been formally verified
by the superoptimizer.

Definition of Equivalence. Two x86-64 as-163

sembly programs are considered equivalent if,164

for any input provided in the specified input reg-165

isters, both programs produce identical outputs166

in the specified output registers. Differences in167

other registers or memory are ignored for equiv-168

alence checking.169

Example. Figure 4 shows an example of an170

equivalent program pair in x86-64 assembly.171

Both programs implement the same C function,172

which counts the number of bits set to 1 in the173

variable x (mapped to the %rdi register) and174

stores the result in %rax. The left-hand pro-175

gram, generated by GCC with O3 optimization,176

uses a loop to count each bit individually, while177

the right-hand program, produced by a super-178

optimizer, leverages the popcnt instruction, a179

hardware-supported operation for efficient bit180

counting. The superoptimizer verifies that both181

programs are semantically equivalent. Deter-182

mining this equivalence requires a solid under-183

standing of x86-64 assembly semantics and the184

ability to reason about all possible bit patterns.185

Automation. A superoptimizer searches a186

space of programs to find one equivalent to the187

target. Test cases efficiently prune incorrect can-188

didates, while formal verification guarantees the189

correctness of the optimized program. Superop-190

timizers apply aggressive and non-local transfor-191

mations, making semantic equivalence reason-192

ing more challenging. For example, in Figure 4,193

while a traditional compiler translates the loop in the source C program into a loop in assembly, a194

superoptimizer can find a more optimal instruction sequence by leveraging specialized hardware195

instructions. Such semantic equivalence is beyond the scope of traditional compilers.196

Dataset Generation. We use Stoke [50] to generate program pairs. Assembly programs are197

sampled from prior work [51], and Stoke applies transformations to produce candidate programs. If198

verification succeeds, the pair is labeled as equivalent; if the generated test cases fail, it is labeled as199

inequivalent.200

5

3.4 Pairs from Programming Contests201

def fib(n):
 a, b = 0, 1
 for _ in range(n):
 a, b = b, a + b
 return a
n = int(input())
print(fib(n))

def f(n):
 if n <= 1:
 return n
 return f(n-1)
 + f(n-2)
n = int(input())
print(f(n))

Problem Description:
Given an integer n, compute the
n-th Fibonacci number:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) for n ≥ 2

Input:
A single integer n
(0 ≤ n ≤ 10000).

Output:
Output a number.

Algorithmic
Equivalence

def var2(q):
 if q <= 1:
 return q
 return var2(q-1)
 + var2(q-2)
var1 = int(input())
print(var2(var1))

OJ_A
Category

def func(x):
 m, n = 0, 1
 for _ in range(x):
 m, n = n, m + n
 return m
var1 = int(input())
print(func(var1))

Variable Renaming
OJ_V Category

OJ_VA
Category

Both

Figure 5: Equivalent pairs from the OJ_A,
OJ_V, OJ_VA categories in EquiBench.
OJ_A pairs demonstrate algorithmic equiva-
lence, OJ_V pairs involve variable renaming
transformations, and OJ_VA pairs combine both
types of variations.

Definition of Equivalence. Two programs are202

considered equivalent if they solve the same prob-203

lem by producing the same output for any valid204

input, as defined by the problem description. Both205

programs, along with the problem description, are206

provided to determine equivalence.207

Example. Given the problem description in Fig-208

ure 5, all four programs are equivalent as they cor-209

rectly compute the Fibonacci number. The OJ_A210

pairs demonstrate algorithmic equivalence—the211

left-hand program uses recursion, while the right-212

hand program employs a for-loop. The OJ_V213

pairs are generated through variable renaming,214

a pure syntactic transformation that can obscure215

the program’s semantics by removing meaningful216

variable names. The OJ_VA pairs combine both217

algorithmic differences and variable renaming.218

Dataset Generation. We sample Python sub-219

missions using a publicly available dataset from220

Online Judge (OJ) [52]. For OJ_A pairs, accepted221

submissions are treated as equivalent, while pairs222

consisting of an accepted submission and a wrong-223

answer submission are considered inequivalent.224

Variable renaming transformations are automated225

with an open-source tool [53].226

4 Experimental Setup227

Category Language # Pairs Lines of Code

Min Max Avg.

DCE C 400 98 880 541
CUDA CUDA 400 46 1733 437
x86-64 x86-64 400 8 29 14
OJ_A Python 400 3 3403 82
OJ_V Python 400 2 4087 70
OJ_VA Python 400 3 744 35

Table 1: Statistics of the EquiBench dataset.

Dataset. EquiBench consists of 2,400 pro-228

gram pairs across six equivalence categories,229

each with 200 equivalent and 200 inequivalent230

pairs. Table 1 summarizes the statistics of pro-231

gram lengths. Constructing the program pairs232

required substantial systems effort. For example,233

for the DCE category, we developed a 2,917-line234

LLVM-based tool, including 1,472 lines in C235

and C++, with alias analysis and path feasibil-236

ity analysis to accurately classify live and dead237

code. The complexity of EquiBench should not238

be underestimated.239

Prompts. The 0-shot evaluation is conducted240

using the prompt “You are here to judge if two programs are semantically equivalent. Here equivalence241

means {definition}. [Program 1]: {code1} [Program 2]: {code2} Please only output the answer of242

whether the two programs are equivalent or not. You should only output Yes or No.” The definition243

of equivalence and the corresponding program pairs are provided for each category. Additionally, for244

the categories of OJ_A, OJ_V, and OJ_VA, the prompt also includes the problem description. The245

full prompts used in our experiments for each equivalence category are in Appendix A.4.246

6

Model DCE CUDA x86-64 OJ_A OJ_V OJ_VA Overall Accuracy

Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama-3.2-3B-Instruct-Turbo 50.0 49.8 50.0 51.5 51.5 51.5 50.7
Llama-3.1-8B-Instruct-Turbo 41.8 49.8 50.5 57.5 75.5 56.8 55.3
Mistral-7B-Instruct-v0.3 51.0 57.2 73.8 50.7 50.5 50.2 55.6
Mixtral-8x7B-Instruct-v0.1 50.2 47.0 64.2 59.0 61.5 55.0 56.1
Mixtral-8x22B-Instruct-v0.1 46.8 49.0 62.7 63.5 76.0 62.7 60.1
Llama-3.1-70B-Instruct-Turbo 47.5 50.0 58.5 66.2 72.0 67.5 60.3
QwQ-32B-Preview 48.2 50.5 62.7 65.2 71.2 64.2 60.3
Qwen2.5-7B-Instruct-Turbo 50.5 49.2 58.0 62.0 80.8 63.0 60.6
gpt-4o-mini-2024-07-18 46.8 50.2 56.8 64.5 91.2 64.0 62.2
Qwen2.5-72B-Instruct-Turbo 42.8 56.0 64.8 72.0 76.5 70.8 63.8
Llama-3.1-405B-Instruct-Turbo 40.0 49.0 75.0 72.2 74.5 72.8 63.9
DeepSeek-V3 41.0 50.7 69.2 73.0 83.5 72.5 65.0
gpt-4o-2024-11-20 43.2 49.5 65.2 71.0 87.0 73.8 65.0
claude3.5-sonnet-2024-10-22 38.5 62.3 70.0 71.2 78.0 73.5 65.6
claude3.7-sonnet-2025-04-16 40.5 63.8 64.8 70.5 89.2 73.5 67.0
o1-mini-2024-09-12 55.8 50.7 74.2 80.0 89.8 78.8 71.5
DeepSeek-R1 52.2 61.0 78.2 79.8 91.5 78.0 73.5
o3-mini-2025-01-31 68.8 59.0 84.5 84.2 88.2 83.2 78.0
o4-mini-2025-04-16 76.2 60.8 83.0 89.0 96.5 88.5 82.3

Mean 49.0 53.4 66.7 68.6 78.1 68.5 64.0

Table 2: Accuracy of 19 models on EquiBench under 0-shot prompting. We report accuracy for
each of the six equivalence categories along with the overall accuracy.

5 Results247

5.1 Model Accuracy248

Table 2 shows the accuracy results for 19 state-of-the-art large language models on EquiBench under249

zero-shot prompting. Our findings are as follows:250

Reasoning models achieve the highest performance. As shown in Table 2, reasoning models such251

as OpenAI o3-mini, DeepSeek R1, and o1-mini significantly outperform all others in our evaluation.252

This further underscores the complexity of equivalence checking, where reasoning models exhibit a253

distinct advantage.254

EquiBench is a challenging benchmark. Among the 19 models evaluated, OpenAI o4-mini255

achieves only 60.8% in the CUDA category despite being the top-performing model overall, with an256

accuracy of 82.3%. For the two most difficult categories, the highest accuracy across all models is257

63.8% and 76.2%, respectively, only modestly above the random baseline of 50% accuracy for binary258

classification, highlighting the substantial room for improvement.259

Scaling up models improves performance. Larger models generally achieve better performance.260

Figure 6 shows scaling trends for the Qwen2.5, Llama-3.1, and Mixtral families, where accuracy261

improves with model size. The x-axis is on a logarithmic scale, highlighting how models exhibit262

consistent gains as parameters increase.263

5.2 Difficulty Analysis264

We conduct a detailed difficulty analysis across equivalence categories and study how syntactic265

similarity influences model predictions.266

Difficulty by Transformation Type. Across categories, we find that purely syntactic transforma-267

tions are substantially easier for models, while structural and compiler-involved transformations are268

much harder. Specifically, OJ_V (variable renaming) achieves the highest mean accuracy of 78.1%,269

as it only requires surface-level reasoning. OJ_A (algorithmic equivalence) and OJ_VA (variable270

renaming combined with algorithmic differences) achieve similar accuracies of 68.6% and 68.5%,271

7

respectively. In contrast, x86-64 (66.7%) and CUDA (53.4%) involve complex instruction-level or272

memory-level transformations, requiring deeper semantic reasoning. DCE (dead code elimination) is273

the most difficult category, with a mean accuracy of 49.0%, suggesting that models struggle with274

nuanced program analysis concepts. We also observe biases in how models behave across certain275

categories, which we evaluate further in Appendix A.1.276

Difficulty by Syntactic Similarity. To assess whether LLM predictions reflect understanding of277

execution semantics rather than mere reliance on surface-level syntax, we analyze how syntactic278

similarity affects model behavior. Using Moss [54], a plagiarism detection tool, we observe the279

following:280

• For program pairs with low syntactic similarity, models tend to predict “inequivalent,”281

even when the programs are semantically equivalent. This suggests an overreliance on the282

superficial form of the code.283

• For syntactically similar pairs, models are more likely to predict “equivalent,” indicating a284

tendency to associate similarity in form with equivalence in execution semantics.285

We validate this trend through statistical testing: at significance level (α = 0.05), model accuracy on286

equivalent pairs increases with syntactic similarity, while accuracy on inequivalent pairs decreases.287

This disconnect between syntactic form and execution behavior, as discussed in Section 1, suggests288

that models are not grounded in program semantics.289

22 23 24 25 26 27 28 29 210

Model Parameters (Billion)

56

58

60

62

64
Ov

er
al

l A
cc

ur
ac

y
Model Scale & Overall Accuracy

Model Families
Qwen2.5
Llama-3.1
Mixtral

Figure 6: Scaling Trend on EquiBench.

Implications for Benchmark Design. These290

findings suggest that future benchmarks should291

emphasize syntactically dissimilar yet equiva-292

lent program pairs and syntactically similar yet293

inequivalent program pairs to create more chal-294

lenging and diagnostic benchmarks for evaluat-295

ing the deep semantic reasoning capabilities of296

LLMs.297

5.3 Prompting Strategies Analysis298

We study few-shot in-context learning and299

Chain-of-Thought (CoT) prompting, evaluating300

four strategies: 0-shot, 4-shot, 0-shot with CoT,301

and 4-shot with CoT. For 4-shot, prompts include 2 equivalent and 2 inequivalent pairs. Table 3302

shows the results.303

Our key finding is that prompting strategies barely improve performance on EquiBench, high-304

lighting the difficulty in understanding code execution semantics.305

6 Discussion and Future Directions306

Model 0S 4S 0S-CoT 4S-CoT

o1-mini 71.5 71.5 71.9 71.9
gpt-4o 65.0 66.5 62.5 62.7
DeepSeek-V3 65.0 66.9 63.3 62.5
gpt-4o-mini 62.2 63.5 60.2 61.2

Table 3: Accuracies of different prompting tech-
niques. We evaluate 0-shot and 4-shot in-context
learning, both without and with Chain-of-Thought
(CoT). Prompting strategies barely improve perfor-
mance.

Scope and Positioning Machine learning has307

been applied to many code-related tasks, such308

as clone detection [55], code search [56], and309

bug finding [57]. EquiBench focuses on equiv-310

alence checking, which differs fundamentally311

by evaluating a model’s understanding of execu-312

tion semantics. Unlike natural language, code313

is executable, and its correctness depends on ex-314

ecution results rather than form. For example,315

clone detection captures syntactic or structural316

similarity without considering behavior. In con-317

trast, EquiBench tests whether two programs318

produce the same outputs for all inputs, offering319

a stricter and more informative benchmark for reasoning about code execution.320

8

Labeling Soundness To ensure high-assurance equivalence labels, EquiBench relies on transforma-321

tions grounded in program analysis, compiler scheduling, and superoptimization, all of which offer322

strong soundness guarantees. In contrast, approaches such as random testing [58], similarity-based323

tools [59], and refactoring datasets lack formal guarantees and risk introducing incorrect labels.324

Modularity and Extensibility EquiBench is designed with modularity in mind, with each equiv-325

alence category representing a distinct class of transformations. The dataset is extensible and can326

be expanded to include additional categories in future work. As the first benchmark in this space,327

EquiBench provides a foundation for systematic evaluation and further development.328

Evaluation of Reasoning Trace While our evaluation centers on binary classification, understand-329

ing the rationale behind model predictions is an important direction. Explanations may take the form330

of natural language or formal proofs, but verifying their correctness remains difficult. Natural lan-331

guage lacks reliable automated validation, since using LLMs as judges can produce unsound results.332

Building a proof-based evaluation framework using tools such as Lean is also highly nontrivial. We333

present a manual case analysis of reasoning trace correctness in Appendix A.2 and leave automated334

robust evaluation of reasoning as future work.335

Implications for Model Training Our results suggest that current models have limited understand-336

ing of code execution semantics. To improve this, future work may incorporate program execution337

traces [24, 23] into training, enabling models to learn execution behavior more directly rather than338

relying on next-token prediction over surface-level syntax.339

7 Conclusion340

We introduced EquiBench, a benchmark for evaluating whether large language models (LLMs)341

truly understand code execution semantics. We propose the task of equivalence checking, which342

asks whether two programs produce identical outputs for all possible inputs, as a direct way to test343

a model’s ability to reason about program behavior. The dataset consists of 2400 program pairs344

across four languages and six categories, constructed through a fully automated pipeline that provides345

high-confidence labels and nontrivial difficulty. Our evaluation of 19 state-of-the-art LLMs shows that346

even the best-performing models achieve only modest accuracy in the most challenging categories.347

Further analysis shows that LLMs often rely on syntactic similarity instead of demonstrating robust348

reasoning about code execution semantics, underscoring the need for further advances in semantic349

understanding of programs.350

References351

[1] N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and352

I. Stoica, “Livecodebench: Holistic and contamination free evaluation of large language models353

for code,” arXiv preprint arXiv:2403.07974, 2024.354

[2] C. Yang, Y. Deng, R. Lu, J. Yao, J. Liu, R. Jabbarvand, and L. Zhang, “Whitefox: White-355

box compiler fuzzing empowered by large language models,” Proceedings of the ACM on356

Programming Languages, vol. 8, no. OOPSLA2, pp. 709–735, 2024.357

[3] C. Yang, Z. Zhao, and L. Zhang, “Kernelgpt: Enhanced kernel fuzzing via large language358

models,” arXiv preprint arXiv:2401.00563, 2023.359

[4] E. M. Bender and A. Koller, “Climbing towards nlu: On meaning, form, and understanding in360

the age of data,” in Proceedings of the 58th annual meeting of the association for computational361

linguistics, 2020, pp. 5185–5198.362

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,363

N. Joseph, G. Brockman et al., “Evaluating large language models trained on code,” arXiv364

preprint arXiv:2107.03374, 2021.365

[6] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,366

Q. Le et al., “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732,367

2021.368

9

[7] S. Badihi, Y. Li, and J. Rubin, “Eqbench: A dataset of equivalent and non-equivalent program369

pairs,” in 2021 IEEE/ACM 18th International Conference on Mining Software Repositories370

(MSR). IEEE, 2021, pp. 610–614.371

[8] N. Maveli, A. Vergari, and S. B. Cohen, “What can large language models capture about code372

functional equivalence?” arXiv preprint arXiv:2408.11081, 2024.373

[9] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,374

J. Hilton, R. Nakano et al., “Training verifiers to solve math word problems,” arXiv preprint375

arXiv:2110.14168, 2021.376

[10] J. Huang and K. C.-C. Chang, “Towards reasoning in large language models: A survey,” arXiv377

preprint arXiv:2212.10403, 2022.378

[11] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,379

Y. Li, S. Lundberg et al., “Sparks of artificial general intelligence: Early experiments with gpt-4,”380

arXiv preprint arXiv:2303.12712, 2023.381

[12] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar, “Gsm-symbolic:382

Understanding the limitations of mathematical reasoning in large language models,” arXiv383

preprint arXiv:2410.05229, 2024.384

[13] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,385

Q. Le et al., “Least-to-most prompting enables complex reasoning in large language models,”386

arXiv preprint arXiv:2205.10625, 2022.387

[14] N. Ho, L. Schmid, and S.-Y. Yun, “Large language models are reasoning teachers,” arXiv388

preprint arXiv:2212.10071, 2022.389

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-390

thought prompting elicits reasoning in large language models,” Advances in neural information391

processing systems, vol. 35, pp. 24 824–24 837, 2022.392

[16] L. Chen, B. Li, S. Shen, J. Yang, C. Li, K. Keutzer, T. Darrell, and Z. Liu, “Large language393

models are visual reasoning coordinators,” Advances in Neural Information Processing Systems,394

vol. 36, 2024.395

[17] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord, “Think396

you have solved question answering? try arc, the ai2 reasoning challenge,” arXiv preprint397

arXiv:1803.05457, 2018.398

[18] D. Zhang, C. Tigges, Z. Zhang, S. Biderman, M. Raginsky, and T. Ringer, “Transformer-399

based models are not yet perfect at learning to emulate structural recursion,” arXiv preprint400

arXiv:2401.12947, 2024.401

[19] A. Gu, B. Rozière, H. Leather, A. Solar-Lezama, G. Synnaeve, and S. I. Wang, “Cruxeval: A402

benchmark for code reasoning, understanding and execution,” arXiv preprint arXiv:2401.03065,403

2024.404

[20] C. Liu, S. D. Zhang, A. R. Ibrahimzada, and R. Jabbarvand, “Codemind: A framework to405

challenge large language models for code reasoning,” arXiv preprint arXiv:2402.09664, 2024.406

[21] E. La Malfa, C. Weinhuber, O. Torre, F. Lin, S. Marro, A. Cohn, N. Shadbolt, and M. Wooldridge,407

“Code simulation challenges for large language models,” arXiv preprint arXiv:2401.09074, 2024.408

[22] C. Liu, S. Lu, W. Chen, D. Jiang, A. Svyatkovskiy, S. Fu, N. Sundaresan, and N. Duan, “Code409

execution with pre-trained language models,” arXiv preprint arXiv:2305.05383, 2023.410

[23] A. Ni, M. Allamanis, A. Cohan, Y. Deng, K. Shi, C. Sutton, and P. Yin, “Next: Teaching large411

language models to reason about code execution,” arXiv preprint arXiv:2404.14662, 2024.412

[24] Y. Ding, J. Peng, M. J. Min, G. Kaiser, J. Yang, and B. Ray, “Semcoder: Training code language413

models with comprehensive semantics reasoning,” arXiv preprint arXiv:2406.01006, 2024.414

10

[25] M. Chen, G. Li, L.-I. Wu, and R. Liu, “Dce-llm: Dead code elimination with large language415

models,” in Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the416

Association for Computational Linguistics: Human Language Technologies (Volume 1: Long417

Papers), 2025, pp. 9942–9955.418

[26] A. Shypula, A. Madaan, Y. Zeng, U. Alon, J. Gardner, M. Hashemi, G. Neubig, P. Ranganathan,419

O. Bastani, and A. Yazdanbakhsh, “Learning performance-improving code edits,” arXiv preprint420

arXiv:2302.07867, 2023.421

[27] C. Cummins, V. Seeker, D. Grubisic, M. Elhoushi, Y. Liang, B. Roziere, J. Gehring, F. Gloeckle,422

K. Hazelwood, G. Synnaeve et al., “Large language models for compiler optimization,” arXiv423

preprint arXiv:2309.07062, 2023.424

[28] C. Cummins, V. Seeker, D. Grubisic, B. Roziere, J. Gehring, G. Synnaeve, and H. Leather,425

“Meta large language model compiler: Foundation models of compiler optimization,” arXiv426

preprint arXiv:2407.02524, 2024.427

[29] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain,428

D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. GONG, M. Zhou,429

N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and S. LIU, “CodeXGLUE: A machine learning430

benchmark dataset for code understanding and generation,” in Thirty-fifth Conference on Neural431

Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. [Online].432

Available: https://openreview.net/forum?id=6lE4dQXaUcb433

[30] Z. Yang, F. Liu, Z. Yu, J. W. Keung, J. Li, S. Liu, Y. Hong, X. Ma, Z. Jin, and G. Li, “Exploring434

and unleashing the power of large language models in automated code translation,” Proceedings435

of the ACM on Software Engineering, vol. 1, no. FSE, pp. 1585–1608, 2024.436

[31] A. R. Ibrahimzada, K. Ke, M. Pawagi, M. S. Abid, R. Pan, S. Sinha, and R. Jab-437

barvand, “Repository-level compositional code translation and validation,” arXiv preprint438

arXiv:2410.24117, 2024.439

[32] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler, B. Sobolev, R. Pavu-440

luri, S. Sinha, and R. Jabbarvand, “Lost in translation: A study of bugs introduced by large441

language models while translating code,” in Proceedings of the IEEE/ACM 46th International442

Conference on Software Engineering, 2024, pp. 1–13.443

[33] S. Pailoor, Y. Wang, and I. Dillig, “Semantic code refactoring for abstract data types,” Proceed-444

ings of the ACM on Programming Languages, vol. 8, no. POPL, pp. 816–847, 2024.445

[34] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich, “Automating regression446

verification,” in Proceedings of the 29th ACM/IEEE international conference on Automated447

software engineering, 2014, pp. 349–360.448

[35] Z. Tian, H. Shu, D. Wang, X. Cao, Y. Kamei, and J. Chen, “Large language models for equivalent449

mutant detection: How far are we?” in Proceedings of the 33rd ACM SIGSOFT International450

Symposium on Software Testing and Analysis, 2024, pp. 1733–1745.451

[36] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven equivalence checking,” in Pro-452

ceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming453

systems languages & applications, 2013, pp. 391–406.454

[37] M. Dahiya and S. Bansal, “Black-box equivalence checking across compiler optimizations,” in455

Asian Symposium on Programming Languages and Systems. Springer, 2017, pp. 127–147.456

[38] S. Gupta, A. Saxena, A. Mahajan, and S. Bansal, “Effective use of smt solvers for program457

equivalence checking through invariant-sketching and query-decomposition,” in International458

Conference on Theory and Applications of Satisfiability Testing. Springer, 2018, pp. 365–382.459

[39] F. Mora, Y. Li, J. Rubin, and M. Chechik, “Client-specific equivalence checking,” in Proceedings460

of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018, pp.461

441–451.462

11

[40] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program alignment for equivalence463

checking,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming Language464

Design and Implementation, 2019, pp. 1027–1040.465

[41] S. Badihi, F. Akinotcho, Y. Li, and J. Rubin, “Ardiff: scaling program equivalence checking via466

iterative abstraction and refinement of common code,” in Proceedings of the 28th ACM joint467

meeting on European software engineering conference and symposium on the foundations of468

software engineering, 2020, pp. 13–24.469

[42] F. Zhao, L. Lim, I. Ahmad, D. Agrawal, and A. E. Abbadi, “Llm-sql-solver: Can llms determine470

sql equivalence?” arXiv preprint arXiv:2312.10321, 2023.471

[43] H. Ding, Z. Wang, Y. Yang, D. Zhang, Z. Xu, H. Chen, R. Piskac, and J. Li, “Proving query472

equivalence using linear integer arithmetic,” Proceedings of the ACM on Management of Data,473

vol. 1, no. 4, pp. 1–26, 2023.474

[44] R. Singh and S. Bedathur, “Exploring the use of llms for sql equivalence checking,” arXiv475

preprint arXiv:2412.05561, 2024.476

[45] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c compilers,”477

in Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and478

implementation, 2011, pp. 283–294.479

[46] T. Theodoridis, M. Rigger, and Z. Su, “Finding missed optimizations through the lens of dead480

code elimination,” in Proceedings of the 27th ACM International Conference on Architectural481

Support for Programming Languages and Operating Systems, 2022, pp. 697–709.482

[47] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &483

transformation,” in International symposium on code generation and optimization, 2004. CGO484

2004. IEEE, 2004, pp. 75–86.485

[48] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze486

et al., “Tvm: An automated end-to-end optimizing compiler for deep learning,” in 13th USENIX487

Symposium on Operating Systems Design and Implementation (OSDI 18), 2018, pp. 578–594.488

[49] L. Zheng, R. Liu, J. Shao, T. Chen, J. E. Gonzalez, I. Stoica, and A. H. Ali, “Tenset: A large-489

scale program performance dataset for learned tensor compilers,” in Thirty-fifth Conference on490

Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.491

[50] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” ACM SIGARCH492

Computer Architecture News, vol. 41, no. 1, pp. 305–316, 2013.493

[51] J. R. Koenig, O. Padon, and A. Aiken, “Adaptive restarts for stochastic synthesis,” in Proceedings494

of the 42nd ACM SIGPLAN International Conference on Programming Language Design and495

Implementation, 2021, pp. 696–709.496

[52] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov, J. Dolby, J. Chen,497

M. Choudhury, L. Decker et al., “Codenet: A large-scale ai for code dataset for learning a498

diversity of coding tasks,” arXiv preprint arXiv:2105.12655, 2021.499

[53] D. Flook, “Python variable renaming tool,” 2025, https://github.com/dflook/python-minifier.500

[54] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for document finger-501

printing,” in Proceedings of the 2003 ACM SIGMOD international conference on Management502

of data, 2003, pp. 76–85.503

[55] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code fragments for code504

clone detection,” in Proceedings of the 31st IEEE/ACM international conference on automated505

software engineering, 2016, pp. 87–98.506

[56] Z. Gao, H. Wang, Y. Wang, and C. Zhang, “Virtual compiler is all you need for assembly507

code search,” in Proceedings of the 62nd Annual Meeting of the Association for Computational508

Linguistics (Volume 1: Long Papers), 2024, pp. 3040–3051.509

12

[57] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language models are zero-shot510

fuzzers: Fuzzing deep-learning libraries via large language models,” in Proceedings of the 32nd511

ACM SIGSOFT international symposium on software testing and analysis, 2023, pp. 423–435.512

[58] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code fragments via random513

testing,” in Proceedings of the eighteenth international symposium on Software testing and514

analysis, 2009, pp. 81–92.515

[59] D. Silva and M. T. Valente, “Refdiff: Detecting refactorings in version histories,” in 2017516

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE,517

2017, pp. 269–279.518

13

A Appendix519

A.1 Bias in Model Prediction520

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify521

equivalent programs as inequivalent in the CUDA and x86-64 categories. Table A1 presents the522

results for four representative models, showing high accuracy for inequivalent pairs but significantly523

lower accuracy for equivalent pairs, with full results for all models in Appendix A.3.524

The bias in the CUDA category arises from extensive structural transformations, such as loop525

restructuring and shared memory optimizations, which make paired programs appear substantially526

different. In the x86-64 category, superoptimization applies non-local transformations to achieve527

optimal instruction sequences, introducing aggressive code restructuring that complicates equivalence528

reasoning and leads models to misclassify equivalent pairs as inequivalent frequently.529

Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
o3-mini 27.5 90.5 69.5 99.5
o1-mini 2.5 99.0 50.0 98.5
DeepSeek-R1 28.0 94.0 57.5 99.0
DeepSeek-V3 8.5 93.0 44.0 94.5

Table A1: Accuracies on equivalent and inequivalent pairs in the CUDA and x86-64 categories
under 0-shot prompting, showing that models perform significantly better on inequivalent pairs.
Random guessing serves as an unbiased baseline for comparison. Full results for all models are
shown in Appendix A.3.

A.2 Case Studies530

Models lack capabilities for sound equivalence checking. We find that simple changes that lead531

to semantic differences can confuse the models, causing them to produce incorrect predictions despite532

their correct predictions on the original program pairs. For example, o3-mini, which is one of the top-533

performing models in CUDA category, can correctly classify the pair shown in Figure 3 as equivalent.534

Next, we introduce synchronization bugs into the right-hand program, creating two inequivalent535

pairs with the original left-hand program: (1) removing the first __syncthreads(); allows reads536

before all writes complete, causing race conditions; (2) removing the second __syncthreads(); lets537

faster threads overwrite shared data while slower threads read it. Despite these semantic differences,538

o3-mini misclassifies both pairs as equivalent.539

Proper hints enable models to correct misjudgments. After o3-mini misclassifies the modified540

pairs, a hint about removed synchronization primitives allows it to correctly identify both as in-541

equivalent, with accurate explanations highlighting data races. This suggests that training models on542

dedicated program analysis datasets, beyond only raw source code, may be useful for improving their543

code reasoning capabilities.544

A.3 Model Prediction Bias545

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify546

equivalent programs as inequivalent in the CUDA and x86-64 categories. Table A2 here shows the547

full results on all models under 0-shot prompting.548

14

Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
deepseek-ai/DeepSeek-V3 8.5 93.0 44.0 94.5
deepseek-ai/DeepSeek-R1 28.0 94.0 57.5 99.0
meta-llama/Llama-3.1-405B-Instruct-Turbo 6.0 92.0 68.5 81.5
meta-llama/Llama-3.1-8B-Instruct-Turbo 2.0 97.5 1.0 100.0
meta-llama/Llama-3.1-70B-Instruct-Turbo 7.0 93.0 27.5 89.5
meta-llama/Llama-3.2-3B-Instruct-Turbo 0.0 99.5 0.0 100.0
anthropic/claude-3-5-sonnet-20241022 62.5 62.0 49.5 90.5
Qwen/Qwen2.5-7B-Instruct-Turbo 18.5 80.0 17.5 98.5
Qwen/Qwen2.5-72B-Instruct-Turbo 14.5 97.5 36.0 93.5
Qwen/QwQ-32B-Preview 35.0 66.0 39.0 86.5
mistralai/Mixtral-8x7B-Instruct-v0.1 18.0 76.0 50.5 78.0
mistralai/Mixtral-8x22B-Instruct-v0.1 10.5 87.5 32.5 93.0
mistralai/Mistral-7B-Instruct-v0.3 52.5 62.0 87.0 60.5
openai/gpt-4o-mini-2024-07-18 0.5 100.0 16.5 97.0
openai/gpt-4o-2024-11-20 0.0 99.0 68.5 62.0
openai/o3-mini-2025-01-31 27.5 90.5 69.5 99.5
openai/o1-mini-2024-09-12 2.5 99.0 50.0 98.5

Table A2: Model prediction bias.

A.4 Prompts549

A.4.1 DCE Category550

We show the prompts for the 0-shot setting.551

You are here to judge if two C programs are semantically equivalent.552

Here equivalence means that, when run on the same input, the two programs always have the same553

program state at all corresponding points reachable by program execution.554

[Program 1]:555

556

{program_1_code}557

[Program 2]:558

559

{program_2_code}560

Please only output the answer of whether the two programs are equivalent or not. You should only561

output YES or NO.562

563

564

A.4.2 CUDA Category565

We show the prompts for the 0-shot setting.566

You are here to judge if two CUDA programs are semantically equivalent.567

Here equivalence means that, when run on the same valid input, the two programs always compute568

the same mathematical output (neglecting floating point rounding errors).569

[Program 1]:570

{program_1_code}571

[Program 2]:572

{program_2_code}573

15

Please only output the answer of whether the two programs are equivalent or not. You should only574

output YES or NO.575

576

A.4.3 x86-64 Category577

We show the prompts for the 0-shot setting.578

You are here to judge if two x86-64 programs are semantically equivalent.579

Here equivalence means that, given any input bits in the register {def_in}, the two programs580

always have the same bits in register {live_out}. Differences in other registers do not matter for581

equivalence checking.582

583

[Program 1]:584

585

{program_1_code}586

[Program 2]:587

588

{program_2_code}589

Please only output the answer of whether the two programs are equivalent or not. You should only590

output YES or NO.591

592

A.4.4 OJ_A, OJ_V, OJ_VA Category593

We show the prompts for the 0-shot setting.594

You are here to judge if two Python programs are semantically equivalent.595

You will be given [Problem Description], [Program 1] and [Program 2].596

Here equivalence means that, given any valid input under the problem description, the two programs597

will always give the same output.598

599

[Problem Description]:600

601

{problem_html}602

[Program 1]:603

604

{program_1_code}605

[Program 2]:606

607

{program_2_code}608

Please only output the answer of whether the two programs are equivalent or not. You should only609

output YES or NO.610

16

