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Abstract

Humans have the remarkable ability to recognize and acquire novel visual con-
cepts in a zero-shot manner. Given a high-level, symbolic description of a novel
concept in terms of previously learned visual concepts and their relations, humans
can recognize novel concepts without seeing any examples. Moreover, they can
acquire new concepts by parsing and communicating symbolic structures using
learned visual concepts and relations. Endowing these capabilities in machines
is pivotal in improving their generalization capability at inference time. In this
work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a
neuro-symbolic architecture that can recognize and acquire novel concepts in a
zero-shot way. ZeroC represents concepts as graphs of constituent concept models
(as nodes) and their relations (as edges). To allow inference time composition, we
employ energy-based models (EBMs) to model concepts and relations. We design
ZeroC architecture so that it allows a one-to-one mapping between a symbolic
graph structure of a concept and its corresponding EBM, which for the first time,
allows acquiring new concepts, communicating its graph structure, and applying it
to classification and detection tasks (even across domains) at inference time. We
introduce algorithms for learning and inference with ZeroC. We evaluate ZeroC
on a challenging grid-world dataset which is designed to probe zero-shot concept
recognition and acquisition, and demonstrate its capability. 1.

1Project website and code can be found at http://snap.stanford.edu/zeroc/.
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Figure 1: Composition of Concept Models. We demonstrate the model composition for a novel, hierarchical
concepts on the recognition of letter F. (a) During training, we learn the models for constituent concepts, the
concept "line" in this case, and relations, which are "parallel" and "perpendicular". (b) During inference, we
take the concept graph of F and use it to derive the model for F from the models of its constituents. Note that no
training is performed on the hierarchical concept F. (c) Example of detecting hierarchical concept on pixel level
with ZeroC during inference in Sec. 3, using Eq. (1).

1 Introduction

Humans learn in diverse ways. Besides learning from demonstrations of a novel concept, humans can
also learn concepts on a high-level. Consider learning the “rectangle” concept, for example. Suppose
that one has never seen such a concept, but has already mastered the concept of “line” and relations
of “parallel” and “perpendicular”; s/he can easily master the “rectangle” concept when told that a
“rectangle” consists of two pairs of “lines”, the lines within the pairs are “parallel,” and the lines
between the pairs are “perpendicular”. Then s/he can directly use this newly mastered concept to
recognize “rectangles” in novel images.

Such zero-shot concept recognition capability is still beyond the reach of deep learning models,
which require many examples (as in typical supervised learning), or many tasks drawn from the
same distribution (as in few-shot learning) to learn a novel concept. Moreover, along with the above
symbolic to instance direction, humans can easily do the reverse. Suppose again that we haven’t seen
the “rectangle” concept, but have already mastered concepts of “line” and relations of “parallel” and
“perpendicular”. When seeing a novel image which contains an instance of a rectangle, humans can
easily decompose it into its constituent concepts of “lines” and their relational graph structure (from
instance to symbolic). Moreover, humans can then communicate with each other about this new
concept, allowing the transfer of knowledge in a high-level and in a succinct way. Such zero-shot
concept acquisition capability at inference time is beyond the reach of today’s machine learning and
AI systems. Above all, endowing the above two capabilities of zero-shot concept recognition and
acquisition capability to machines at inference time, will allow them to tackle more diverse tasks.

Past efforts have attempted to address aspects of the above problem of recognizing and acquiring
novel concepts at inference time in a zero-shot manner. An essential component is compositionality,
i.e. the ability to compose new concepts from elementary ones. [1] and [2] introduce techniques for
compositional generation in the context of energy-based models (EBMs) and variational autoencoders
(VAEs), respectively. However, these works only consider composing factors of variation (e.g., color,
position, smiling, young). In order to recognize concepts that consist of constituent concepts as parts,
the structure of objects and their relationships are equally important. For instance, given 4 “line”
concepts, without specifying their relational graph structure, they can easily form a trapezoid or a
generic parallelogram. [3] designed a transformer-based relational architecture for learning explicit
relations, and showed that it can generalize to new objects for the relation. However, this architecture
cannot generalize to concepts with more complex relational graph structure.

It remains an open problem of how to design an architecture that has the capability to compose novel
concepts at inference time, based on its internal relational graph structure of prior learned concepts
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and relations. A separate line of works [4, 5, 6, 7, 8] tackle zero-shot classification, but are limited to
novel composition of label features for concepts, and ignore relation features as well as the graph
structure formed by concepts and relations.

Here we introduce our ZeroC architecture, which is a model designed towards zero-shot concept
recognition and acquisition. It models a visual concept or relation as an Energy-Based Model (EBM)
with 3 inputs: an image, a mask (or two masks for relation) denoting a set of pixels within the
image, and a concept/relation label string. It returns a low scalar energy value if the mask(s) correctly
indicates the concept or relation within the image, and a high energy value otherwise. After training,
the concept and relation EBMs are able to perform classification of concept/relation labels given an
image, and detection of concept/relation mask(s) given an image and concept/relation label. The core
contribution of this work is ZeroC’s architecture and inference algorithms that allow a one-to-one
correspondence between a specification of a relational graph structure of a novel concept and its
corresponding composed concept model that can also perform similar downstream classification and
detection, which enables zero-shot concept recognition and acquisition at inference time.

To perform zero-shot concept recognition at inference time, ZeroC can simply compose a new
concept EBM, by summing over the constituent concept and relation EBMs according to the specified
graph structure. This new concept EBM has the same input-output format as its constituent concept
EBMs, allowing the same capability of classification and detection. Note that through the above
process, ZeroC have mastered a concept without seeing an image, only symbolic instruction, thus
it is called “zero-shot”. To perform zero-shot concept acquisition, we introduce an algorithm that
given an instance (image) of a novel concept, parse it into a relational graph of prior learned concepts
and relations. Such relational graph can then be transferred, even cross-domain, allowing models
independently trained in a different domain to be able to zero-shot classify and detect this concept in
its own domain.

There are currently no specialized benchmarks to test such zero-shot concept recognition and acqui-
sition capabilities. Inspired by the Abstraction and Reasoning Corpus (ARC) [9], we have created
a synthetic, grid-world based dataset with tasks that capture the essence of the above capabilities
that are deceptively simple for humans, but very hard for neural models. We demonstrate that our
model, trained to classify and detect elementary visual concepts and relations, is able to classify
and detect novel concepts at inference time, being given a zero-shot symbolic graph structure. We
also compare with a state-of-the-art zero-shot learning model CADA-VAE [8]. Due to that it is not
designed for such graph-based composition, it significantly underperforms our ZeroC. Furthermore,
we show that two independently trained models, one on 2D images and the other on 3D images, are
able to acquire hierarchical concepts from each other by communicating the graph structure and then
perform classification and detection of these hierarchical concepts in their respective domains.

2 Method

In this section, we describe the ZeroC architecture for recognizing and acquiring novel visual concepts
at inference time2. We give an overview of our approach, describe how it performs classification
and detection, how it supports zero-shot concept recognition, how independently-trained models can
acquire hierarchical concepts from each other and, finally, introduce its learning method.

2.1 An Overview of ZeroC Architecture

The key components of ZeroC are concepts and relations. Each concept consists of a graph and an
energy-based model. The concept graph describes the concept as a composition of its constituent
concepts and relations between them. The base concepts that do not have any constituent concepts
are called elementary concepts. Their graph is a singleton. The concept energy-based model is used
to recognize the concept in the input data. Each relation is represented in ZeroC also with a graph and
an energy-based model. The relation graph is simply an edge that connects the two related concepts.
A hierarchical concept is a concept composed of constituent concepts as nodes and relations as edges
according to a graph structure.

2In this paper, we focus on visual concepts. However, our framework is fully general and may be applied to
other input modalities such as graphs, natural language, etc.
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During training, energy-based models are learned from images and concept or relation labels. During
inference, the learned models are used to recognize concepts seen during training or more complex
hierarchical concepts which were not seen before. For concepts seen during training, their learned
models are applied. For new hierarchical concepts not seen during training (i.e., without learned
model), their models are derived from the graph of the new hierarchical concept and energy-based
models of their constituent concepts and relations. Concepts and relations in ZeroC can be viewed as
templates for objects and their connections, which then get grounded during inference with a specific
image, where those objects and relations are assigned actual values. ZeroC also handles object masks,
which indicate object locations in the image.

2.2 Zero-shot Concept Recognition and Acquisition

Formally, we model a concept with EX,M,C(x,m, c)3, which maps an image x 2 RD, a mask
m 2 [0, 1]D and a concept label4 c to a scalar energy. Similarly, we model relations with
EX,M1,M2,R(x,m1,m2, r), where m1 and m2 are a pair of masks indicating two objects in the
image x, and r is a relation label between the objects. The concept and relation models have a
probabilistic interpretation. For example, the energy function EX,M,C(x,m, c) corresponds to the
joint probability of

PX,M,C(x,m, c) =
1

ZC
exp (�EX,M,C(x,m, c))

where ZC =
P

c2C

R
e�EX,M,C(x,m,c) dx dm is a normalizing constant. Therefore, if the mask

m is actually masking an object that belongs to concept c in image x, then PX,M,C(x,m, c) will
be high and EX,M,C(x,m, c) will be low, and vice versa. Essentially, the models define an energy
landscape for their respective multi-modal inputs that give low energy if the mask correctly identifies
its corresponding concept.

Next, we show how ZeroC performs detection, classification, and models hierarchically composed
concepts. We use the term HC-EBM to denote concept models and R-EBM for relation models.

Detection. We want to infer the location mask m of the concept c, given image x. Probabilistically,
we are computing PM |X,C(m|x, c). To perform detection, we employ Stochastic Gradient Langevin
Dynamics (SGLD) to sample masks on the energy landscape [10]:

m̃k = m̃k�1 � �

2
rmEX,M,C(x, m̃

k�1, c) + !k, !k ⇠ N (0,�) (1)

where m̃k is the inferred mask at the kth iteration, k = 1, 2, ...K. Applying [11], as
K ! +1 and � ! 0, we generate samples from the distribution of PM |X,C(m|x, c) =
1

Zx,c
exp(�EX,M,C(x,m, c)), where Zx,c =

R
exp(�EX,M,C(x,m, c)) dm is a normalizing con-

stant. In practice, we use a finite K to generate samples5 m̃K
n , n = 1, 2, ...N given x, c.

Classification. We want to determine whether the concept c appears in a given image x, i.e. compute
PC|X(c|x). We need to marginalize over the mask m:

PC|X(c|x) =PX,C(x, c)

PX(x)
=

R
PX,M,C(x,m, c) dmP

c2C

R
PX,M,C(x,m, c) dm

=

R
exp (�EX,M,C(x,m, c)) dmP

c2C

R
exp (�EX,M,C(x,m, c)) dm

We again use SGLD [10] in Eq. (1) to generate N samples m̃K
n , n 2 [N ] = {1, 2, ...N} given x, c,

and approximate the above integral using maximum a posteriori (MAP) estimation:

PC|X(c|x) '
maxn2[N ] exp

�
�EX,M,C(x, m̃K

n , c)
�

P
c2C maxn2[N ] exp (�EX,M,C(x, m̃K

n , c))
(2)

3We will use capital letters (e.g. X,M ) to represent random variables, and small ones (e.g. x,m) to represent
their instances.

4The concept label c is a categorical variable, that we use to refer to a concept, like “line”, “rectangle”, or
“cat”. In the following, if without confusion, we will refer to a concept using its label c.

5In this paper, we use i to index different concepts, j to index relations, and n to index example images.
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In practice, we only need to find the concept with the highest value in the numerator.

Zero-shot recognition of novel concepts. To master a novel hierarchical concept and directly use it
for classification and detection only given its relational graph structure, we need a way to compose the
previous concept and relation energy based models. Here we introduce the hierarchical composition
rule, using an English letter “F” as an illustrative example6.

The concept F has one constituent concept, a "line", and two relations, "parallel" and "perpendicular".
The models for constituents are learned during training. During inference, these models are combined,
using the concept graph, into a combined energy model for the letter F. Essentially, the models of all
the recognized constituent concepts and relations are added together. Note that although F contains
three lines, only one "line" model is needed. The concept graph acts as a template and recognized line
instances (objects) are matched with nodes in the template to obtain actual models. The "line" model
is instantiated three times with specific values for the three identified lines and the three models plus
their corresponding relations models are used to derive the hierarchical model. In addition to the
models, we also need to combine the masks of all the recognized constituent objects.

Formally, we define the following composition rule for HC-EBMs plus the masks to be combined.
Definition 2.1. Hierarchical Composition Rule: Let a hierarchical concept c have graph G =
(C,R), where C are constituent concept nodes and R are relation edges. During inference, these
nodes and edges are matched to recognized concept objects and their relationships, which provides
their models and masks. The combined model EX,M,C(x,m, c) is then a sum of the models for all
the nodes and edges in the graph and the mask M is the maximum of all the masks:

EX,M,C(x,m, c) =
X

ci2C
EX,Mi,C(x,mi, ci) +

X

rj2R
EX,Mj1,Mj2,R(x,mj1,mj2, rj) (3)

M := max{{Mi}, {Mj1}, {Mj2}}

2.3 Zero-shot Concept Acquisition at Inference Time

Here, we introduce techniques for acquiring novel concept graph, which is useful for sharing
high-level knowledge transfer between independently trained models. Such capability may have
implications in future scenarios where a hypothetical self-driving car communicating the structure
of a novel road sign to other cars on the road, or a 2D vision model learning a novel object and
transferring it to a more accurate 3D depth model for inference. To achieve this, we need to establish
an equivalence relation between concepts in different domains (e.g. in 2D and 3D images).
Definition 2.2. Structural Equivalence for HC-EBM: Two HC-EBMs are structurally equivalent,
if their graphs are isomorphic, and their constituent HC-EBMs are recursively structurally equivalent.

For example, HC-EBMs for a “rectangle” concept in 3D and 2D images are structurally equivalent
if they have the same decomposition into two “parallel-line” HC-EBMs connected by a “connect”
R-EBM, and the “parallel-lines” have the same decomposition into two “line” HC-EBMs connected
by a “parallel” R-EBM. Even though the HC-EBMs are grounded in different domains, they have the
same abstract structure, so they represent the same hierarchical concept.

With structural equivalence, independently-trained HC-EBMs from different domains can acquire
hierarchical concepts via the graph structure. The algorithm works as follows (see Appendix A.5):
the image is parsed to decompose it into a graph of concepts and relations previously learned by
HC-EBM and R-EBM, then the graph is used in a different domain to compose its HC-EBM for the
new concept. The key step of this process is the first, parsing step.

The parsing step can be seen as an inverse of the Hierarchical Composition Rule and is critical
in allowing the model to recognize novel hierarchical concepts in its domain using prior-learned
concepts and relations from other domains, thus facilitating downstream knowledge transfer between
domains. Alg. 1 provides further details. Steps 1-2 infer the concept instances in image x using
SGLD (Eq. 1). Here the energy E(p)(x,MC , c) is the summation of HC-EBMs on independent
masks, each mask mil representing a potential concept instance belonging to concept ci. E(overlap) =

max
⇣
0,
P

min2MC
min � 1

⌘
penalizes overlapping masks. Since the image probably contains

fewer concept instances than given, some masks are empty with all-zero values; Step 3 removes these.
6For clarity, the concept graph shown has been simplified from the real model used in the experiments.
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Algorithm 1 Parsing Hierarchical Concept From Image

Require: HC-EBM E(C) with prior-learned concepts {c1, c2, ...cI}, R-EBM model E(R) with
prior-learned relations {r1, r2, ...rJ}.
Require: Image x, containing unseen hierarchical concept c.
Require: Maximum number of instances Ni for each concept ci, i = 1, 2, ...I .
1: E(p)(x,MC , c) :=

PI
i=1

PNi

n=1 E
(C)(x,min , ci)

+�1E(overlap)(MC), where MC := {min}, in =
1, ...Ni for i = 1, ...I , is the set of all masks.

2: MC  SGLDMC (E
(p)(x,MC , c)) // Using Eq. 1

3: MC  Remove-empty-masks(MC)
4: R {rj1j2 |Classify(E(R);x,mj1 ,mj2), 8(mj1 ,mj2) 2MC} // Using Eq. 2 to classify
5: G  Build-Graph(MC ,R)
6: return G

Step 4 classifies relations (using Eq. 2) between pairs of detected concept instances. Step 5 combines
the detected concept instances and their relations to build the graph G for this new hierarchical
concept c.

2.4 Learning

Since a standard EBM-training method yields poor performance as shown later in our experiments,
we describe here our approach to train the models. Further details of our training algorithm are given
in Alg. 2 in Appendix A.1. We are optimizing the following objective:

L =
1

N

NX

n=1

�
L(Improved)
n + ↵pos-stdL

(pos-std)
n + ↵emL

(em)
n + ↵negL

(neg)
n

�
(4)

The expression of each term is given in Appendix A.2. The first loss L(Improved) is the objective
proposed in [12], a state-of-the-art EBM training technique. However, to enable the challenging
zero-shot concept recognition and acquisition, we need more suitable inductive biases. The next
three terms inject the right inductive bias for the task. L(pos-std) makes sure that the positive energy
have similar level, so the composed concept EBM can identify all constituent concepts and relations,
without one constituent EBM having too low energy and only recognizing it. The empty-mask
regularization L(em) makes sure that the when the mask is empty, its energy is between the positive
and negative energy, which we prove in Appendix A.3 that it is the necessary condition for correctly
discover the underlying graph in Sec. 2.3. The L(neg) additionally provide additional negative
examples, encouraging discovering full concept instead of a part of it (see Appendix A.2 for details).

3 Experiments

In this section, we set out to answer the following two questions: (a) given a specification of graph
structure for a novel hierarchical concept, can the composed concept model successfully perform
classification and detection tasks? (b) Can HC-EBM acquire a novel concept from HC-EBM trained
from another domain?

We also evaluated our model in a challenging setting by comparing with other existing approaches
in a controlled and systematic way. Since there are no suitable dataset, we designed a Hierarchical-
Concept corpus, a dataset based on grid-world images. The dataset comes with testing images for
the classification and detection tasks which contain more complex, hierarchical concepts, composed
from simpler concepts in the training set (See Appendix A.9 for details). The concept instances
on our images have varying locations, size, and relative positions, making them more difficult than
fixed-location fixed-size inference tasks such as in [3]. We also provide 2D and 3D versions of images
for demonstrating concept acquisition across domains.
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Table 1: Performance of models on classification accuracy for hierarchical dataset 1 and 2 (%) and on detection
for hierarchical concepts with distractors. For the latter task, we use the pixel-wise intersection-over-union (IoU)
(%) as our metrics. The bold fonts in the tables indicate the best model comparing with baselines. The “Statistics”
in classification predicts the class that has the most global label fraction.

Classification (acc.) Detection (IoU)
Model HD-Letter HD-Concept HD-Letter+distractor HD-Concept+distractor

Statistics 46.5 53.5 5.69 12.6
Heuristics (–) (–) 42.3 29.2
CADA-VAE [8] 18.0 66.0 (–) (–)

ZeroC (ours) 84.5 70.5 72.5 84.7

ZeroC composition without R-EBM 62.5 32.5 45.3 84.3
ZeroC composition without HC-EBM 67.0 55.0 67.7 78.4
ZeroC without L(pos-std) 43.6 65.5 76.1 81.5
ZeroC without L(neg) 64.5 59.0 60.0 84.2
ZeroC without L(em) 81.5 61.0 68.0 86.0
ZeroC with only L(Improved) 27.5 55.5 49.1 81.7

3.1 Zero-shot Classification and Detection of Novel Concepts

To test recognition of novel concepts, we designed two datasets consisting of different concept and
relation types. The HD-Letter hierarchical dataset consists of concept instances of “line” and relation
instances of “parallel”, “perp-edge” (perpendicular and touching edge), “perp-mid” (perpendicular
and touching middle), together with distractor objects. Examples are provided in the form of 3-tuples
(image,mask, concept) for concepts, and (image,mask1,mask2, relation) for relations. ZeroC
models are trained via objective Eq. 4 (See Appendix A.9 for examples of training datasets). At
inference time, the models need to perform classification and detection on novel images with more
complicated English characters of “E-shape”, “F-shape” and “A-shape”, given their structure graphs
with up to 4 nodes and 6 edges. For detection, the images also contain a few distractors (concepts
unrelated to the ones the model is predicting). The model is asked to return a mask indicating which
pixels belong to an instance of the specified novel concept. Although looking simple, this is actually
a very challenging task. because in order to solve the problem of classifying/detecting hierarchical
concepts, the model needs to solve a subgraph isomorphism problem, which is NP-hard. For example,
take the problem of detecting “E” shape in an image with distractor of “T” and “Rectangle” (Fig.
2 (a) first subfigure), a graph with 10 nodes (lines), 45 possible edges. Note that during training
time, a model has only learned “line” concept, and relations “parallel”, “perp-edge” (perpendicular,
touching edge), and “perp-mid”, but not the overall “E” shape. At inference time and given the “E”
concept graph with 4 nodes (lines), 6 edges (relations), the model needs to find the “E” concept
subgraph within the large image graph. This involves C4

10 ⇥ 4! = 5040 possible mask assignments.
Additionally, a model may not perfectly detect the masks for low-level concepts.

For more complex concepts and relations, we designed the HD-Concept hierarchical dataset, which
consists of training concepts of “E-shape” and “rectangle”, and training relations of “inside”, “enclose”
and “non-overlap”. The hierarchical concepts to be classified and detected are three characters which
we term Concept1, Concept2 and Concept3, as the ground-truth masks in Fig. 2 (a) indicate. The
three hierarchical concepts have the same multiset of concepts, but a different relation structures.

As the closest setting to our classification task is zero-shot classification, we compare ZeroC to a
state-of-the-art zero-shot learning algorithm CADA-VAE [8], which we adapted to our setting, using
the set of concepts and relations as feature embeddings to represent the concept graph (see Appendix
A.6 for details). Additionally, we evaluated a “Statistics” baseline which samples random pixels on
the image based on the global statistics of pixel occurrence, and a “Heuristics” baseline that randomly
chooses a same-color connected object. We use a CNN-based architecture for ZeroC, as given in
Appendix A.4. We add comparisons with ablation of different aspects of ZeroC, including without
HC-EBM terms or R-EBM terms in the composition rule of Def. 2.1 (Eq. 3), and without different
regularization terms of the objective in Eq. 4.

Fig. 2 shows a demonstration of this experiment. From performance results in Table 1, we see
that ZeroC achieves classification accuracy of 84.5% and 70.5% on HD-Letter and HD-Concept,
respectively, both higher than CADA-VAE. The gap is more significant in HD-Letter, where there
is a larger distribution shift for hierarchical concepts (as can be seen in Appendix A.9), which the
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Figure 2: Sample of ZeroC’s Inference Results. Tasks are (a) pixel-wise detection, and (b) classification,
for the datasets of HD-Letter (consisting of concept E-shape, F-shape and A-shape) and HD-Concept Dataset
(consisting of Concept1, Concept2, Concept3). We see that ZeroC has high pixel-wise detection IoU for the
specified concepts. For classification, ZeroC uses each candidate concept’s graph and performs SGLD on the
composed HC-EBM to infer the mask and compute its energy. We see that ZeroC gives lower energy to the
correct concept, even when sometimes candidate concepts have similar inferred mask ((b) right).

Table 2: Performance of models on acquiring concepts between models and domains at inference time (%).
Domain 1 (2D image) Parsing Domain 2 (3D image)

Model Isomorphism (acc.) " Edit distance # Classification (acc.) " Detection (IoU) "
Statistics 2.33 3.14 33.3 2.53
Mask R-CNN [13]+relation classification 35.5 1.01 (–) (–)

ZeroC1 ! ZeroC2 (ours) 72.7 0.50 60.7 94.4

ZeroC1 without L(pos-std) ! ZeroC2 55.2 1.57 54.7 90.5
ZeroC1 without L(neg) ! ZeroC2 53.5 0.99 52.5 92.1
ZeroC1 without L(em) ! ZeroC2 50.7 1.58 51.3 95.4
ZeroC1 with only L(Improved) ! ZeroC2 11.5 2.00 50.5 94.7
ZeroC2 with ground-truth graph (upper bound) (–) (–) 61.8 94.2

joint embedding of the image and features learned by CADA-VAE is insufficient to handle. The
reason for the low accuracy is that CADA-VAE is not able to address these out-of-domain distribution
shifts (See Appendix A.7 for details). During inference, its embedding (multi-hot vector) for the
graph structure can contain up to 10 hots (4 lines, 6 edges), while during training, it is only up to
1-hot. This example also shows the intrinsic difficulty of the task. In addition, Table 1 and Fig. 2 (a)
show that ZeroC is able to detect the hierarchical concepts in the presence of distractors, and that its
performance is significantly better than “Statistics” and “Heuristics” baselines.

The results of our ablation studies in Table 1 show that both the HC-EBM and R-EBM terms in Eq. 3
are key to successful classification and detection. This is likely because without relations and using
only concept terms, ZeroC may lose its ability to distinguish between different hierarchical concepts;
for example, both “E-shape” and “A-shape” have 4 lines but different relation structures. Moreover,
we see that both L(pos-std) and L(neg) improve classification and detection performance.

3.2 Acquiring Novel Hierarchical Concepts Across Domains

We show that ZeroC can acquire novel hierarchical concepts across models and domains (Fig. 3). We
train a ZeroC model in domain ZeroC1, where the images are 2D and one-hot color-coded, containing
the the same training concepts and relation types as in HD-Letter in Sec. 3.1. Independently, we train
another model in a different domain ZeroC2, where the images contain the same set of concepts and
relations, but are viewed in 3D from a certain camera angle, have larger size, and use RGB colors. At
inference time, each test task consists of a tuple of three images showing the hierarchical concepts in
the first domain to ZeroC1. ZeroC1 is only allowed to send symbolic information, up to a few bits, to
ZeroC2. Then ZeroC2 performs classification and detection tasks on three example images in the
second domain. In addition, we also evaluate whether ZeroC1 can parse the concept graph of the
hierarchical concept correctly, using the metric of graph edit distance dedit and graph-isomorphism
accuracy w.r.t. the ground-truth. Note that the graph-isomorphism accuracy is a stringent metric,
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Figure 3: Acquiring Hierarchical Concept between Domains. The figure shows actual example tasks and
results. At inference, ZeroC1 sees the 2D demonstration of three images showing three unseen concepts c1, c2,
c3. It first parses each image into respective concept graphs. We see that except for c2 that has an edit distance
dedit of 1, the others have perfect parsing. ZeroC1 then sends to ZeroC2 the parsed concept graphs, which ZeroC2

uses to perform classification that selects which 3D image corresponds to each concept.

which is only 1 if the parsed graph is isomorphic to the ground-truth, and 0 otherwise7. We compare
with a strong baseline of Mask R-CNN [13] for object detection together with relation classification.
The relation classification network is a CNN which takes as input a pair of embeddings produced
by the Mask R-CNN, and predicts the label of the relation (see Appendix A.8 for details). We did
extensive tuning of the Mask R-CNN approach to obtain its best performance. We also evaluate the
performance of ZeroC2 given the ground-truth structure graph, as an ideal scenario of perfect parsing,
providing an upper bound for the performance.

Table 2 shows that ZeroC1 achieves 72.7% graph isomorphism accuracy for parsing the hierarchical
concepts in the first domain, significantly higher than Mask R-CNN + relation classification. After
sending the concept graphs in the second domain, ZeroC2 achieves a classification accuracy of
60.7% and detection IoU of 94.4%. Without this information and relying on global statistics, the
classification accuracy of ZeroC2 is 33.3%. This demonstrates that ZeroC2 is able to acquire novel
hierarchical concepts at inference time, from an independently trained model from a different domain.
The ablation study shows that L(em), L(neg) and L(pos) all contribute to more accurate parsing. The
standard technique of EBM training [12] are insufficient to achieve good parsing, leading to less
accurate transfer of hierarchical concepts. We also see in the ablations that even without perfect
parsing from ZeroC1, the reduction of classification accuracy for ZeroC2 is small, showing that it is
able to classify under noisy specification of the concept graph. We discuss further on the generality
(Appendix A.13), scalability (Appendix A.14) and computational complexity (Appendix A.15) in
respective Appendix sections.

4 Related Work

Our work relates to visual compositionality, concept and relation learning, and zero-shot learning.

Visual compositionality. Compositionality is a key for addressing diverse tasks given finite ba-
sic knowledge. Some approaches use composition EBMs for generation [1], and a VAE-based
architecture for bi-directional symbol-image generation that can also learn logical recombination of
concepts [2]. These two works focus on composing factors of variation, e.g. color, position, smiling,
young. In contrast, our work focuses on concepts that abstract objects, where the internal hierarchical
relational structure is key. Moreover, while the above works focus on generation, our work focuses on
the tasks of classification and detection. A novel Bayesian-based method for few-shot learning on the

7This is a stringent metric since, e.g. for “Eshape” that contains 4 concept nodes and 6 relation edges, an
individual accuracy of 0.9 would result in ⇠ 0.94+6 = 0.349 isomorphism accuracy, and an individual accuracy
of 0.8 would result in ⇠ 0.84+6 = 0.107 isomorphism accuracy.
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Omniglot dataset shows that compositionality is pivotal for improved performance [14]. They achieve
compositionality via hierarchical MCMC sampling on hand-coded priors of elementary concepts
and relations. In comparison, our work is neural network-based and only requires demonstrations
of elementary concepts and relations, reducing hand-coded priors. Another approach introduced
a modular neural network, which uses composition of neural modules for visual question answer-
ing [15]. Their method can be seen as composing transformations on a representation. In comparison,
our composition is achieved via composition of energy landscapes. While they focus on question
answering on scene graphs, we focus on classification and detection of hierarchical concepts.

Concept and relation learning. There has been exciting progress in concept learning and relation
learning. Works in concept learning generally represent concepts in latent space via prototypes
[16, 17], or via latent embedding such as SCAN [2], InfoGAN [18] and Neuro-Symbolic Concept
Learner [19]. [20] introduced EBMs to represent concepts with a demonstration in simple state space.
[21] further introduced unsupervised learning of local and global concepts with EBMs. Regarding
relation learning, non-local neural networks [22], Relation Networks [23], Neural Relational Inference
[24] and C-SWM [25] use latent complete graphs as inductive biases to represent potential relations.
PrediNet [3] explicitly represents propositions, relations, and objects with a transformer-based
architecture, and demonstrates that it can learn relations that generalize to novel shapes of objects
and column patterns. In comparison to the above works, ZeroC explicitly learns both concepts and
relations, which has the unique capability to recognize and acquire hierarchical concepts at inference.

Zero-shot learning. Zero-shot learning methods [4, 5, 6, 7, 8] typically learn a joint embedding
space between image and feature labels, and perform classification at inference time on images with
novel classes, based on how the novel classes correspond to a set of features. Our generalization task
also requires generalizing to new concepts without seeing the image (zero-shot), but has the important
distinctions that at inference time, our concepts to be inferred lie at a higher hierarchy than that in
training, and furthermore use the structural concept graph. In comparison, in standard zero-shot
learning, concepts in training and inference lie at the same hierarchy level, and only generalize to
new combinations of features (constituent concepts) while neglecting relation structures.

5 Conclusion

In this paper, we introduce ZeroC, a new framework for zero-shot concept recognition and acquisition
at inference time. Our experiments show that in a challenging grid-world domain, ZeroC is able
to recognize complex, hierarchical concepts composed of English characters in a grid-world in a
zero-shot manner, being given a high-level, symbolic specification of their structures, and after being
trained with simpler concepts. In addition, we demonstrate that an independently trained ZeroC is
able to transfer hierarchical concepts across different domains at inference. Although this work is
evaluated only in grid-world visual domain, we are the first to address this difficult challenge. We are
also excited to see its potential application in broader domains, e.g. in AI for scientific discovery,
where it may infer novel patterns and concepts from data in a zero-shot manner. We hope that this
work will make a useful step in the development of composable neural systems, capable of zero-shot
concept recognition and acquisition and hence suitable for more diverse tasks.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In conclusion and Appendix
A.10.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In
Appendix A.11.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.3.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The Appendix
includes full details on model architecture, training and evaluation to reproduce the
experimental results. Code and data will be released upon publication of the paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Full details to reproduce the experiments are included in the
Appendix.
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