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ABSTRACT

Uncertainty estimation and out-of-domain (OOD) input detection are critical for
improving the safety and robustness of machine learning. Unfortunately, most
methods for detecting OOD examples have been evaluated on small tasks while
typical methods are computationally expensive. In this paper we propose a new
gradient-based method called GRODIN. The proposed method is conceptually
simple, computationally cheaper than ensemble methods and can be directly applied
to any existing and deployed model without re-training. We evaluate GRODIN
on models trained on CIFAR-10 and ImageNet datasets, and show its strong
performance on various OOD ImageNet datasets such as ImageNet-O, ImageNet-
A, ImageNet-R, ImageNet-C.

1 INTRODUCTION

Many problems are solved with machine learning techniques today. Prominent examples of supervised
learning power could be found in many domains: image classification, speech recognition, medical
surveys, self-driving cars, text translation (6; 19; 28; 24; 1), etc.. In some applications, it is very
important to be confident on the prediction of a trained model: self-driving cars, medicine, stock
market trading, etc.. Usually, the prediction mechanism remains uncovered and it requires additional
efforts to ensure the model quality when working with real-world data. We search for a new way to
automatically understand that prediction on this particular sample is not reliable with data uncertainty
estimation or knowledge uncertainty estimation (2).

One of the most important tasks in this field is out-of-domain detection. It allows us to separate
the data suitable for inference from the examples that are not intended for model usage. Due to the
importance of the task out-of-domain methods evolved from ‘naive‘ approaches to sophisticated
algorithms. These algorithms either analyse the prediction model results to understand if we could
rely on them, or build a new dedicated model for OOD. The first type of the methods we call
“lightweight”, as they usually could be used for on-the-fly verification of prediction. The other class
could deliver better detection quality, but requires substantive computational resources and separate
training. We refer to this one as “heavy”.

The “lightweight” models are usually built on top of certain prediction tasks, such as classification,
and are based on the properties of loss functions used in the training process. Softmax probability
is an example of such property, it is directly used for many practical implementations (10; 7). The
prediction quality of the softmax probability thresholding could be extended with input preprocessing
and probability calibration as shown in ODIN(20) algorithm. This method provides the state-of-the-
art results on most available benchmarks (tiny-ImageNet (26), CIFAR-10 (16), CIFAR-100 (16),
MNIST (3), SVHN (25), etc.). However, there is room for improvement. There is a bunch of more
challenging problems constructed on top of ImageNet(26) image classification task: ImageNet-A
(12), ImageNet-O (12), ImageNet-R (8), ImageNet-C (9).

The alternative “heavy” methods were developed: outlier exposure (11); mahalanobis distance-based
confidence score (18); class of strong and theoretically justified out-of-distribution detectors called
ensembles (2; 23; 22). All these methods usually provide better results, but are hard to use in
practice: some of them require changing the training loss function and therefore neural network
retraining (11); or require solving auxiliary logistic regression problem and heavy computation of
mahalanobis distance in (18); sometimes researcher need additional training and inference of several
neural networks simultaneously for ensemble methods (22).
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Recent studies in deep learning suggest that the gradient of the loss function taken for a particular
example carries a lot of information other than model prediction. Influence functions (14) use
information about first and second derivatives with respect to network weights to estimate what is the
impact of a single precedent on test set quality. Neural tangent kernel (13) gives us another point
of view on the training process and generalization from the position of gradient analysis. To the
best of our knowledge, there is only one work in out-of-distribution detection domain that utilize the
gradient of the model with respect to weights (17). This approach uses information from the gradient
of different layers as a building blocks for their separate DNN model. The approach requires a lot of
out-of-distribution data to train the model and could not be assigned to “lightweight” models.

In this paper, we focus on developing a new simple and computationally lightweight approach for
detecting out-of-distribution examples based on gradient analysis. We investigate the derivative of
cross-entropy loss function and decompose it into two parts, showing the difference between them.
The proposed method is being tested on several challenging benchmarks and compared with various
methods. Also, we analyse the impact of highly popular input preprocessing and give intuition why
this technique helps OOD detectors.

2 METHOD

Γ is a statistical population.
X = {(xi, yi)}m1 training set, consisting of m i.i.d. precedents from population Γ.
xi ∈ Rn, yi ∈ Y i-th precedent features vector and corresponding label.

θ ∈ Θ θ is particular element of model parameters space Θ.
`(θ,x, y) loss function.

L = 1
m

∑
(x,y)∈X `(θ,x, y) emperical loss function used in training process.

hc(x, θ) output of neural network on class c before softmax layer.
‖·‖2 l2 norm.

Table 1: Notation

Model mistakes come from different sources: irreducible errors, low model capacity, wrong modeling
assumptions, sample distribution shift, and so on. For each type of errors, we define a formal problem
setup and develop methods to deal with it. Those setups are not mutually exclusive and their methods
could complement each other.

This paper focuses on a particular problem: estimation of the probability that a particular sample
comes from a different population. To formally define this problem we use notation from Tab. 1.
Given this notation, there exist a statistical population Γ. Elements of this population are pairs
(x, y), where x ∈ Rn is a sample, y ∈ Y is a label. We assume that there exists a deterministic
correspondence between population precedent and corresponding label. Statistically representative
training set X is used to train prediction model by minimization of empirical loss function L. With
enough data and mild assumptions on loss function, the resulting model with parameters θ̂ should
replicate correspondence between x and y. As a result, our model should give a correct prediction to
any x from the general population. Thus, given assumptions, there is a natural way to define xi as
the out-of-domain sample:

xi is out-of-domain↔ ∀(x, y) ∈ Γ : xi 6= x (1)

Our task is to estimate, if the particular sample xi is out-of-domain, given only the estimated model
parameters θ̂.

The core idea of our method is quite simple. We train prediction model by minimisation of some
additive loss function L = 1

m

∑
(x,y)∈X `(θ,x, y). When minimisation is performed by stochastic

gradient descent or similar methods, the expectation of the model parameters gradient norm reduces
on training set elements with the number of optimization steps. The expectation aims to zero for
flexible enough decision functions. In tangent kernel space (NTK for neural models) the optimization
process looks like seeking for optimization parameter θ that pulls representation of training set points
∇`(θ,x, y) to zero vector. We can use this property and determine the model behavior for an example
by the distance of its representation in the trained tangent kernel space (defined by θ̂) from zero.
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Using this information we can predict many practical properties of the particular prediction: expected
accuracy, model uncertainty, out-of-domain points detection, etc.. In this paper, we focus on the latter
case and build a method for out-of-domain detection on top of this principle.

The modern definition of the domain depends on the application and we will show this difference
in the experimental section. From a theoretical perspective, we equate domain and the population.
This way we allow a researcher to define their notion of the domain with the selection of sampling
technique. The ideally trained model brings all points of the population to a stationary point in
model parameters space. In this paper we make an assumption that kernel of this transformation
is equal to the population and the observed transformation differs from ideal one with Gaussian
error: ∇θ`(θ,x, y)|θ̂ = ∇θ`(θ,x, y)|θ∗ + δ, δ ∼ N (0, E). Now we can define a log probability of
population Γ membership:

g(x, θ̂) = logP (x|Γ) ∼
∥∥∇θ`(θ,x, y)|θ̂

∥∥2
2

The main problem for practical application of the method is to define a loss function for examples,
that come to the model during its exploitation and have no label. In this case, it is natural to use the
class assigned by the model ĉ as a label and check the uncertainty of the model in the decision. We
focus, without loss of generality, on image classification problem over k classes with neural models.
Negative log likelihood over softmax probability modeling is one of the most commonly used loss
functions for this problem:

`(θ,x, y) = − log
ehy(x,θ)∑k
c=1 e

hc(x,θ)

where hc are outputs of the neural model for each class c. Using this model and the label assumption
we can formulate the result log probability of population membership g(x, θ̂) for arbitrary point x:

g(x, θ̂) =

∥∥∥∥∥∇θ log
ehĉ(x,θ)∑k
c=1 e

hc(x,θ)

∣∣∣∣∣
θ̂

∥∥∥∥∥
2

2

Now we can choose significance level α and filter out points that belong to the population with
probability less than this significance level: P (x|Γ) < α. In practice we don’t use significance level
directly, but define a threshold δ(α) for g(x, θ̂). If we have information on out-of-domain examples
we choose the threshold that delivers the selected significance level on cross-validation. We use this
setup as a baseline variant of our method in the experimental section.

In the literature there are at least two ways how to enhance the result of the baseline model: tem-
perature scaling (5), and input perturbation (20). In our framework these enhancements are easily
explained and compliment the baseline model. To show this we need to unfold components of the
gradient vector:

∇θ`(x, θ̂) = −∇θ log maxc′ e
h
c′ (x,θ)∑k

c=1 e
hc(x,θ)

∣∣∣
θ̂

= S(x, θ̂)G(x, θ̂), where
S(x, θ̂) = 1

1+
∑
c 6=ĉ e

(hc(x,θ̂)−hĉ(x,θ̂))

G(x, θ̂) = −
∑
c 6=ĉ e

(hc(x,θ̂)−hĉ(x,θ̂)) ∂(hĉ(x,θ)−hc(x,θ))
∂θ

∣∣∣
θ̂

In the last expression there are two multiplicative parts (S and G). S is a scalar part, that reflects the
probability of the predicted class. The G is cumulative gradient vector for all classes output nodes
of the network weighted by their preference over predicted class ehc(x,θ̂)/ehĉ(x,θ̂). The first part is
equal to the softmax score from ODIN up to the notations used. The second part is the information
from NTK space.

As one can see both S and G heavily depend on class weights hc, and it is important to calibrate
these values for the task the model is used for. One of the most popular ways of model calibration is
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temperature parameter injection (5). In this method we scale class weights hc with the temperature
factor 1

T . The optimal temperature is then optimized using some calibration quality metric like
Expected Calibration Error (5) for the target dataset. The solution of this optimization problem
depends on the data provided, see the experimental section for details.

The other way of out-of-domain detection model improvement is altering the source signal, e.g. the
image in case of the image classification task. In our framework we assume that during training
process the optimization pulls domain space to a stationary point in model parameters space. As only
training examples are observed, we pull the entire domain using the train set as mount points. In
this process the rest of the domain slacks and this cause well-known difference in gradients between
training set points and validation points. To reduce this slack we can move point towards training
points. We follow the alteration procedure introduced in the ODIN paper:

xp = xo − ε sign

(
−∇x log

maxc′ e
hc′ (x,θ)/T∑k

c=1 e
hc(x,θ)/T

∣∣∣∣∣
xo

)

During this procedure, source image is altered to reduce the gradient and compensate the slack
between training points and the rest of the domain.

To sum it up, the proposed method is a composition of ε-input perturbation, temperature calibration by
scaling outputs by 1/T factor and decomposition of ∇θ`(x, θ̂) into two multiplicative parts: S(x, θ̂)

and G(x, θ̂). These parts can be used as a single estimator: g(x, θ̂) = ‖S(x, θ̂)G(x, θ̂)‖22, or alone:
g(x, θ̂) = ‖G(x, θ̂)‖22, g(x, θ̂) = S(x, θ̂). The last variant gives us exactly ODIN.

3 EXPERIMENTS

We performed a set of experiments to study the properties of our method, its effectiveness and
its competitiveness with other approaches. Both versions of the proposed gradient method were
evaluated: G and S ∗G to show that there is a significant difference in their performance.

We used popular image collections as a source of out-of-domain examples. Benchmark is standard:
out-of-distribution detector is evaluated as a binary classifier that should separate in-domain samples
from out-of-domain. The test dataset is a mixture of the in-domain test set and the out-of-domain
dataset. The tiny-ImageNet dataset was used as an out-of-domain for all experiments with networks,
trained on CIFAR-10. For neural networks, trained on ImageNet-1K, we used four recently proposed
out-of-distribution collections, that represent different distribution shifts: ImageNet-O, ImageNet-R,
ImageNet-A, and part of ImageNet-C. Image databases statistics are shown in Tab. 2.

• ImageNet-O (12) is a subset of ImageNet-22k that do not intersect with ImageNet-1K. It
consists of images that fool Maximum Softmax Probability out-of-distribution detector (10)
based on ResNet-50 neural network and represents distribution shift that brings new un-
observed classes. Popular out-of-distribution detection methods work poorly on this setup
as they utilize logits or softmax probabilities that are heavily biased by the design of the
dataset.

• ImageNet-R (8) contains images of ImageNet objects with different textures and styles:
paintings, sculptures, origami, cartoons, toys, etc. Classes are a subset of original ImageNet
classes. This dataset represents distribution shift that does not change the semantic of objects
but change their shape or texture.

• ImageNet-A (12) contains images of ImageNet objects that are extremely hard to be classi-
fied correctly by any neural network trained on ImageNet. It represents natural adversarial
examples: it is obvious for humans what is depicted on an image, but trained model struggles
to give the correct answer.

• ImageNet-C (9) contains copies of the ImageNet validation set that were corrupted with
various noises. Original dataset consists of fifteen noise types, each noise type has five levels
of severity. We selected the most challenging for the ResNet-50 model noise type according
to the original paper: level five ‘Frosted Glass Blur‘. ImageNet-C dataset represent a
distribution shift that occurs when for example a camera or transmission channel is broken.
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Table 2: List of used datasets

Dataset Train size Validation size Test size Outlier for Reference
CIFAR-10 50000 500 9500 — (15)

ImageNet-1K ≈ 1.28 ∗ 106 3000 47000 — (27)
tiny ImageNet — 500 9500 CIFAR-10 (27)
ImageNet-O — 600 1400 ImageNet-1K (12)
ImageNet-R — 600 29400 ImageNet-1K (8)
ImageNet-A — 600 6900 ImageNet-1K (12)
ImageNet-C — 3000 47000 ImageNet-1K (9)

In our experimental study out-of-distribution detectors are applied to popular neural network archi-
tectures trained on CIFAR-10 or ImageNet-1K collections, such as ResNet-18 and ResNet-50. The
detailed information about the models used for each setup could be found in Tab. 3. All experiments
were performed with the PyTorch framework, due to a blind-review we attached source code to
supplementary materials and will provide the link to the repository with the camera-ready paper
version.

Table 3: List of used neural networks

Architecture Training set Number of parameters Accuracy (test set) Reference
Wide-ResNet-28-10 CIFAR-10 ≈ 36.5M 96.2 (29)

ResNet-18 ImageNet-1K ≈ 11.5M 69.7 (6)
ResNet-50 ImageNet-1K ≈ 25.5M 76.1 (6)

The following out-of-distribution detectors were used as competitors to our method:

1. Maximum Softmax Probability (MSP), also referred as a baseline, described in (10). This
method uses negative maximum softmax probability as an out-of-distribution score.

2. ODIN described in (20). This method is a modification of MSP. It combines input prepro-
cessing and MSP together using negative maximum softmax probability of preprocessed
image as an out-of-distribution score.

3. Maximum Logit (ML) described in (7). This method uses negative maximum logit (neural
network output without applying softmax activation function) as an out-of-distribution score.

4. Ensemble method(2; 23), trained with different random seeds. The ensemble consists of 6
different uncertainty measures that can be used as a scoring function (confidence, entropy
of expected, expected entropy, mutual information, EPKL, MKL) and we choose the one
that brings the best separation in terms of ROC-AUC as the final score. Here we need to
train several models from scratch, thus the access to a training set is mandatory. As a result,
the method can’t be used on an arbitrary pretrained model so we evaluate it only for the
ResNet-50 model, as we train it from scratch.

ROC-AUC is our quality measure for out-of-distribution detection. All table cells express experimen-
tal results in µ± σ pairs, where µ is the average value of the metric and σ is its bootstrap deviation
computed on 100 resamplings.

The rest of the experimental section consists of two parts: the competitive comparison in Sec. 3.1 and
ablation study for our method in Sec. 3.2.

3.1 COMPARISON WITH OTHER METHODS

The following methodology is used to compare out-of-domain detectors for each collection from
Tab. 2:

• The classification model is trained on a base dataset (CIFAR-10 or ImageNet-1K)

• The OOD model parameters are tuned on the validation subset of the collection to maximize
the ROC-AUC score
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• The resulting method is then applied to test part of the collection and reported in the result
table

Parameters tuning is required for the proposed gradient method and for ODIN. We used grid-search
to estimate optimal ε and T . The grid for ε was 21 evenly spaced points from 0 to 0.004. We select
among {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} to find optimal temperature T . The same grid for ε
and T was used in ODIN paper (20).

Our experiments can be divided into two groups:

1. Ones that use pretrained weights from PyTorch collection. A researcher can skip the
training procedure and just evaluate methods on downloaded data. These experiments were
performed with the ResNet-18 model trained on the ImageNet classification task.

2. Experiments with models trained from scratch. In this work we train WideResNet-28-10
for CIFAR-10 classification and ResNet-50 for ImageNet classification. All parameters
for the training procedure were taken from original papers for these models. For ResNet-
50 experiments, we trained four (as proposed gradient methods require two forward and
two backward passes) different models from different random seeds to evaluate ensemble
methods.

Results of out-of-distribution detections are presented in tables 4, 5. One can see that both gradient
methods: G and SG outperform all baselines on CIFAR-10 vs tiny ImageNet benchmark with a
significant margin. Confidence intervals for G and SG parts intersect, so we can say that both methods
show nearly the same performance.

Results for ImageNet-like datasets are more various. Let’s inspect results for every dataset separately
(both architectures ResNet-18 and ResNet-50 behave nearly the same):

• ImageNet-O: It is the only dataset on which SG-part is better than G-part. Still, both
gradient methods outperform all baselines with giant margin.

• ImageNet-R, ImageNet-C: G-part outperforms all baselines on these two datasets. SG-part
showed bad performance giving up to ODIN and ML.

• ImageNet-A: On this dataset G-part outperforms ODIN and ML but failed to overtake
ensemble baseline.

To sum it up, G-part can significantly outperform all “lightweight” baselines (ones that do not require
training several models from scratch) on both benchmarks. And only in the case of ImageNet-A with
ResNet-50 as a predictor the ensemble model was able to outperform the proposed method.

Table 4: Wide-Resnet-28-10. CIFAR-10 vs tiny-ImageNet. ROC-AUC values.

MSP ODIN ML G-part SG-part
0.954 ± 0.001 0.97 ± 0.001 0.965 ± 0.001 0.983 ± 0.001 0.981 ± 0.001

Table 5: ImageNet-like datasets. ROC-AUC values.

Dataset MSP ODIN ML Ensemble G-part SG-part

ResNet-18

ImageNet-O 0.484 ± 0.006 0.628 ± 0.007 0.599 ± 0.006 — 0.76 ± 0.006 0.804 ± 0.006
ImageNet-R 0.776 ± 0.001 0.84 ± 0.001 0.838 ± 0.001 — 0.852 ± 0.001 0.833 ± 0.002
ImageNet-A 0.818 ± 0.003 0.848 ± 0.002 0.843 ± 0.002 — 0.853 ± 0.002 0.837 ± 0.002
ImageNet-C 0.943 ± 0.001 0.974 ± 0.0001 0.974 ± 0.0001 — 0.985 ± 0.0001 0.95 ± 0.001

ResNet-50

ImageNet-O 0.47 ± 0.006 0.599 ± 0.007 0.564 ± 0.008 0.612 ± 0.006 0.735 ± 0.006 0.769 ± 0.006
ImageNet-R 0.803 ± 0.002 0.863 ± 0.001 0.863 ± 0.001 0.856 ± 0.001 0.877 ± 0.001 0.856 ± 0.001
ImageNet-A 0.839 ± 0.002 0.872 ± 0.002 0.861 ± 0.002 0.885 ± 0.002 0.877 ± 0.002 0.859 ± 0.002
ImageNet-C 0.937 ± 0.001 0.969 ± 0.0001 0.969 ± 0.0001 0.976 ± 0.0001 0.982 ± 0.0001 0.958 ± 0.001

3.2 ABLATION STUDY

The proposed method consists of three parts: input perturbation, temperature scaling, and scoring
based on a gradient with respect to neural network weights. Our initial intuition suggested that
a gradient-based scoring scheme is self-sufficient and could be used as a stand-alone discrepancy
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measure. Turns out this is not the case, and both preprocessing steps are also essential to achieve
competitive results.

We evaluated this impact on ImageNet-like datasets. This stand-alone discrepancy measure is a
specific case of our final methods, thus it is enough to set free parameters for particular values: T = 1
and/or ε = 0. Thus we compare the final model with 3 simplified variants: T -scaling only model,
where ε was fixed to zero and temperature T was tuned with grid-search; ε-perturbation only, with
temperature T fixed to 1 and ε tuned on the grid; the pure gradient-scored method with ε equal 0 and
T equal 1. The presented results are obtained on the test set, while hyperparameters were chosen
depending on the best performance on gridsearch set.

The results are presented in Tab. 6, 7. As one can see for both G and SG parts vanilla and only ε
tuning are nearly the same and both are weaker than only T tuning or full method. Only T tuning
in some cases match the full scheme, but to achieve outstanding results it is necessary to use both
preprocessing steps.

Table 6: Ablation study for G-part. ROC-AUC values.

Dataset G-vanilla G-(only ε) G-(only T) G

ResNet-18

ImageNet-O 0.517 ± 0.007 0.517 ± 0.007 0.678 ± 0.008 0.76 ± 0.006

ImageNet-R 0.786 ± 0.001 0.786 ± 0.001 0.839 ± 0.001 0.852 ± 0.001

ImageNet-A 0.826 ± 0.003 0.826 ± 0.003 0.852 ± 0.002 0.853 ± 0.002

ImageNet-C 0.951 ± 0.001 0.951 ± 0.001 0.985 ± 0.0001 0.985 ± 0.0001

ResNet-50

ImageNet-O 0.502 ± 0.007 0.502 ± 0.007 0.657 ± 0.008 0.735 ± 0.006

ImageNet-R 0.813 ± 0.002 0.811 ± 0.002 0.863 ± 0.001 0.877 ± 0.001

ImageNet-A 0.849 ± 0.002 0.849 ± 0.002 0.877 ± 0.002 0.877 ± 0.002

ImageNet-C 0.948 ± 0.001 0.948 ± 0.001 0.982 ± 0.0001 0.982 ± 0.0001

Table 7: Ablation study for SG-part. ROC-AUC values.

Dataset SG-vanilla SG-(only ε) SG-(only T) SG

ResNet-18

ImageNet-O 0.518 ± 0.007 0.538 ± 0.007 0.691 ± 0.006 0.804 ± 0.006

ImageNet-R 0.786 ± 0.001 0.79 ± 0.002 0.787 ± 0.002 0.833 ± 0.002

ImageNet-A 0.826 ± 0.002 0.82 ± 0.002 0.82 ± 0.002 0.837 ± 0.002

ImageNet-C 0.931 ± 0.001 0.937 ± 0.001 0.937 ± 0.001 0.95 ± 0.001

ResNet-50

ImageNet-O 0.503 ± 0.007 0.503 ± 0.007 0.659 ± 0.007 0.769 ± 0.006

ImageNet-R 0.813 ± 0.002 0.811 ± 0.002 0.811 ± 0.001 0.856 ± 0.001

ImageNet-A 0.849 ± 0.002 0.849 ± 0.002 0.846 ± 0.002 0.859 ± 0.002

ImageNet-C 0.948 ± 0.001 0.948 ± 0.001 0.939 ± 0.001 0.958 ± 0.001

4 DISCUSSION

The task for out-of-domain detection is usually related to sensitive information and it is extremely
hard to find real-world data on this topic. To resolve this issue there are joined academic and industry
initiatives such as NeurIPS Challenge (21). The data from this event is not yet publicly available
and we have to use state of the art datasets, that are artificially designed. In this section, we want to
analyse this bias and its influence on the methods from the experimental section.

4.1 MODEL CALIBRATION

In theoretical Sec. 2 we noted, that calibration procedure is mandatory because the datasets used for
out-of-domain detection could differ from the training set in many ways. We use Expected Calibration
Error (5) as a measure of temperature fit for our data:

ECE(T,X, θ̂) =

B∑
b=1

|Xb|
|X|

∣∣∣acc(Xb|θ̂, T )− conf(Xb|θ̂, T )
∣∣∣
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Figure 1: Dependence graph between conf(Xb|θ̂, T ) and acc(Xb|θ̂, T ) for ImageNet-A dataset. Red
is the trend line.

where dataset X is ordered by model confidence `(x, θ̂, T ) and then split into bins Xb. For each
bin we use two statistics: acc(Xb|θ̂, T ) — mean accuracy for this bin of the model with weights θ̂,
conf(Xb|θ̂, T ) — mean model confidence score e`(x,θ̂,T ).

When the labels from out-of-domain dataset match those from the training set, this parameter can be
calculated and optimized directly. During this optimization we have found, that the higher temperature
T is used, the better ECE score becomes. This result matches conclusion from the ODIN paper, but
looks counter-intuitive at the first glance. In the Fig. 1 we presented a dependence graph between
conf(Xb|θ̂, T ) and acc(Xb|θ̂, T ) for ImageNet-A dataset. From this graph, it is clear, that with the
growth of model confidence its accuracy becomes lower. Calibration assumes these variables are
correlated which is not the case. The problem comes from dataset construction where we choose the
examples, that are hard to detect (12). This way we bias the dataset towards the examples that give
high model confidence but a wrong label. In this case calibration procedure become irrelevant and
will choose the highest possible temperature T .

From our experiments, we conclude that it is practical to use higher temperatures when we use S part
only. Unlike ODIN, GRODIN uses information from G part which is influenced by the temperature
as well. With the grows of the temperature the contribution of gradient vectors of hc from all classes
become even. Irrelevant classes give almost random gradients and this signal becomes too noisy.
That is why we need to seek for optimal temperature. On the other hand, the signal from G is based
not only on class weights but on fundamental properties of the image, that are detected on different
layers of the model (4). That is why our model works better on the biased towards hard examples
datasets, such as ImageNet-O.

4.2 GRADIENT COMPONENTS

Our method is based on assumption that classification model parameters gradient contains information
on point resemblance to the domain the model is trained for. But it is unclear how this information is
distributed among S and G parts of the gradient. In this section we want to confirm the assumption
that G part is necessary for the model.

To understand if the G part compliments information from S (that is already used in ODIN) we take
the in-domain and out-of-domain examples mixture from ImageNet-R that is hard to split by S and
use information from G part for this task. In the left part of the Fig. 2 reader can find the histograms
of two distributions grouped by levels of S: red for out-of-domain examples and blue for those
in-domain. From these examples we chose those bins that are placed between two black lines. This
area is the hardest for separation and with S signal alone we can achieve 0.708± 0.002 ROC-AUC.

The right part of the Fig. 2 contains the histogram for this same subset of “hard” examples but from
G perspective. As one can see, these points are still hard to separate, but the G part contains a bit
different signal and allows to get 0.735± 0.002 ROC-AUC. This fact demonstrates, that information
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Figure 2: Histograms of ImageNet-R scoring functions. S for full dataset to the left and G for only
"hard" examples to the right

from G part contains additional information to S and explains the difference of GRODIN results the
from original ODIN algorithm.

4.3 METHOD COMPLEXITY

Our method is computationally quite lightweight. Input perturbation requires one forward pass
through the network, and one backward pass to compute a gradient. After this, we need one
more forward and backward pass to compute gradient l2-norm at the perturbed point. The total
complexity is O(|F |+ |B|+ |Θ|), where O(|F |) is forward pass complexity, O(|B|) is backward
pass complexity, and |Θ| is a number of parameters in neural network. In practice, the computation
time is approximately two times slower than single training step (forward + backward pass), and
approximately 4− 6 times slower, than a single inference step.

5 CONCLUSIONS

In this paper, we have found a way to utilize a back propagation procedure for out-of-distribution
detection. We think this solution is both practical and theoretically found. From a practical point
of view modern DL inference accelerators are suitable for back propagation step by their design
and our approach could be easily implemented in practice. The other practical advantage of the
proposed method is that it uses only prediction model properties and there is no need for training
an additional model for out-of-distribution detection. The theoretical basis of the proposed method
comes from recent theoretical results in neural tangent kernels and allows us to say that the method
will be relevant for bigger models that emerge in recent papers.

We have found that interaction of the model and the argument item depends severely on the gradient
with respect to model parameters at this item. This naive and straightforward assumption allows
us to predict out-of-distribution items. In this paper, we have shown that a method based on this
property is able to outperform the state-of-the-art methods. We used several modern collections
(CIFAR-10/100, ImageNet-O, ImageNet-R, ImageNet-A, part of ImageNet-C, tiny-ImageNet) to
explore the properties of our method and to compare it with state-of-the-art results. We found that
in all cases our approach gives comparable results and in eight of nine experiment cases performs
significantly better.

All modern out-of-distribution detectors use parameters tuning for better detection on different
collections and we found that parameters could dramatically change the performance of the method.
In a situation when the environment is unknown during the training process (e.g. adversarial attacks)
this property makes such methods impractical. We found that proposed method has an extremely
stable set of optimal parameters that could be used in a wide variety of situations.

In this work we used a very simple approach to gradient analysis and one of the possible directions of
the future work is to apply more sophisticated instruments such as gradient normalization, newton
step instead of gradient, gradient component distribution analysis on per layer/block/individual basis.
We believe that back propagation has a wider field of applications than out-of-domain detection and
going to expand this field in the future.
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