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Abstract

Time series data across scientific domains are of-
ten collected under distinct states (e.g., tasks),
wherein latent processes (e.g., biological factors)
create complex inter- and intra-state variability.
A key approach to capture this complexity is to
uncover fundamental interpretable units within
the data, Building Blocks (BBs), which modulate
their activity and adjust their structure across ob-
servations. Existing methods for identifying BBs
in multi-way data often overlook inter- vs. intra-
state variability, produce uninterpretable compo-
nents, or do not align with properties of real-world
data, such as missing samples and sessions of dif-
ferent durations. Here, we present a framework
for Similarity-driven Building Block Inference
using Graphs across States (SiBBlInGS). SiB-
BlInGS offers a graph-based dictionary learning
approach for discovering sparse BBs along with
their temporal traces, based on co-activity patterns
and inter- vs. intra-state relationships. Moreover,
SiBBlInGS captures per-trial temporal variability
and controlled cross-state structural BB adapta-
tions, identifies state-specific vs. state-invariant
components, and accommodates variability in the
number and duration of observed sessions across
states. We demonstrate SiBBlINGS’s ability to re-
veal insights into complex biological and medical
phenomena through several synthetic and real-
world examples. Specifically, we found that SiB-
BlInGS recovers meaningful functional neural en-
sembles underlying Macaque neural recordings
and can leverage human EEG data to localize the
source of epileptic seizures moments before their
onset.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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1. Introduction
The analysis of high-dimensional time-series is increasingly
important across various scientific disciplines, ranging from
neuroscience (Kala et al., 2009; Mudrik et al., 2024) to so-
cial sciences (Jerzak et al., 2023) to genetics (Bar-Joseph
et al., 2012; Tanvir Ahmed et al., 2023). These data, how-
ever, present a daunting challenge in terms of comprehensi-
bility as they are often highly heterogeneous. Specifically,
data in many domains are gathered under multiple states
(e.g., clinical interventions), while latent factors may in-
troduce variability across trials within states (e.g., internal
biological processes that lead to variations in patient re-
sponses to treatment). Current analysis methods often strug-
gle to capture the full variability in such multi-state data.
Additionally, integrating data from repeated observations
(trials) under the same state into a coherent representation
is often challenged by missing samples or variable trial du-
ration and sampling rates (Goris et al., 2014; Charles et al.,
2018; Duncker & Sahani, 2018). The common practice of
within-state trial averaging, for example, obscures important
patterns within individual trials.

A promising approach for analyzing multi-state data in-
volves identifying fundamental representational units—
Building Blocks (BBs)—whose composition remains simi-
lar across states, while their temporal profiles can modulate
across trials to capture trial-to-trial variability, both within
the same state and across states. These BBs can represent,
for instance, neural ensembles in the brain; social groups
in diverse contexts; gene clusters under regulatory mecha-
nisms, etc. Identifying these BBs and understanding how
they change across states is a key step for recognizing the
latent processes underlying the data and providing valuable
insights into core commonalities and differences among
states. However, uncovering these BBs poses a challenge,
as their individual activities or compositions are often unob-
servable. This challenge is further complicated by potential
variations across states, not only in the temporal activity
of these BBs, but also in the subtle structural adjustments
of the BBs’ compositions between states. For example,
a neural ensemble may display varying temporal activity
between normal (non-seizure) brain activity sessions and
during seizures, along with subtle structural adaptations in
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the ensemble composition during seizures (van den Berg &
Friedlander, 2008), e.g., neurons that are not typically part
of the ensemble might become involved during a seizure.

Here, we present SiBBlInGS, a graph-based data driven
framework to unravel the complexities of high-dimensional
multi-state time-series data, by unveiling its underlying
sparse, similarity-driven BBs along with their temporal ac-
tivity. Our main contributions include:

• We develop a novel framework to find interpretable
hidden BBs underlying high-dimensional multi-way
data while extracting their cross-trial temporal activ-
ities and inter-state structural variability, and address
real-world challenges unmet by existing methods.

• We accommodate varying trial conditions, including
different time durations, sampling rates, missing sam-
ples, and per-state counts, and enable overlapping BB
composition.

• We highlight our method’s promise by demonstrating
its ability to recover ground-truth components in syn-
thetic data and meaningful latents in several real-world
examples.

2. Background and Related Work
In the case of single-trial analysis, methods for identifying
BBs often rely on matrix decomposition including Singular
Value Decomposition (SVD) (Kogbetliantz, 1955), Principal
Components Analysis (PCA) (Hotelling, 1933), Indepen-
dent Components Analysis (ICA) (Hyvarinen et al., 2001),
or Non-negative Matrix Factorization (NMF) (Lee & Seung,
1999), where sparsity constraints can be added to improve
interpretability (e.g., sparse PCA (SPCA)) (Zou et al., 2006).
Extending these to the multi-trial setting can be addressed by
either concatenating trials end-to-end to create a single wide
matrix or by applying these methods individually to each
trial. However, this either overlooks the temporal scales
of the data (within trial and cross-trial) or ignores shared
factors across trials.

A more suitable extension to multi-trial observations is ten-
sor methods (TF, e.g., PARAFAC and Tucker decompo-
sition) (Harshman, 1970; Williams et al., 2018; Mishne
et al., 2016; De Lathauwer et al., 2000; Wu et al., 2018),
which consider the trials as an additional dimension of the
data. However, none of these methods or their combina-
tions with Gaussian processes (GP) (Tillinghast et al., 2020;
Xu et al., 2011; Zhe et al., 2016) and dynamic information
(e.g., NNDTN and NONFAT (Wang & Zhe, 2022b)) cannot
naturally handle variability in trial duration or address state
variability as a fourth dimension. Extensions of TF methods
seek either identical BBs across states with flexible temporal
patterns or fixed temporal traces across states with flexible
cross-state BBs. For example, the Shared Response Model

(SRM) (Chen et al., 2015) models a multi-subject fMRI
model with the same temporal activity across all individuals
with different spatial responses between subjects. SRM,
however, requires that components be orthogonal, which
may not align with biological plausibility. Hyperalignment
(HA) (Haxby et al., 2011) addresses a similar setting as
SRM by rotating the subjects’ time series responses to op-
timize inter-subject correlation. However, HA does not
explicitly reduce the dimension of the feature space.

Other existing methods, such as Dynamic Mode Decomposi-
tion (DMD) (Schmid, 2010), model the temporal dynamics
explicitly as dynamical systems, however, these methods are
tailored for 2D analysis and thus are not designed to simul-
taneously model multi-state, multi-trial data. State-Space
Models (SSMs) (Auger-Méthé et al., 2021) represent an-
other approach to explore time-series data by describing the
latent states evolution by a state-transition matrix; however,
they do not aim to find sparse interpretable ensembles with
cross-trial structural and temporal variability. Other meth-
ods include demixed PCA (dPCA) (Brendel et al., 2011),
Targeted Dimensionality Reduction (TDR) (Mante et al.,
2013) and model-based TDR (mTDR) (Aoi & Pillow, 2018;
Aoi et al., 2020). The latter two directly regress rank-1
(TDR) or low-rank (mTDR) components that explicitly tar-
get task-relevant variables. However, TDR/mTDR similarly
cannot handle trials of varying duration and do not incorpo-
rate sparsity in the identified ensembles. dPCA falls short in
addressing missing data, different trial durations, and varied
sampling rates.

Closer to our approach, dictionary learning (Olshausen &
Field, 2004; 1996; Aharon et al., 2006), provides more inter-
pretable representations (Tošić & Frossard, 2011) by learn-
ing a feature dictionary where each data point can be linearly
reconstructed using only a few of the feature vectors. While
traditional dictionary learning treats each data point as inde-
pendent, recent advances based on re-weighted ℓ1 (Candes
et al., 2008; Garrigues & Olshausen, 2010) can account for
spatio-temporal similarities in the sparse feature represen-
tations between data points (Garrigues & Olshausen, 2010;
Charles & Rozell, 2013; Charles et al., 2016; Zhang & Rao,
2011; Qin et al., 2017; Mishne & Charles, 2019). In partic-
ular, re-Weighted ℓ1 Graph Filtering (RWL1-GF) (Charles
et al., 2022) was recently developed for demixing fluoresc-
ing components in calcium imaging recordings by correlat-
ing the sparse decompositions across a data-driven graph
defined by pixel similarity. While RWL1-GF proves the effi-
cacy of graph embeddings in extracting meaningful features,
it is constrained to single-trial data and confines its graph
construction to a single dimension of the data—the pixel
space—overlooking possibly meaningful structures in other
dimensions.

Fuzzy clustering (Yang, 1993; Wei et al., 2020; He et al.,
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2018) allows data points to exhibit varying degrees of mem-
bership in multiple clusters, addressing limitations of meth-
ods that restrict data points to a single BB. However, these
approaches focus solely on BB structures rather than their
temporal activities, and do not integrate within-state and
between-state variability information.

Nonlinear deep learning models have also been developed
to extract latent factors, however, these typically lack inter-
pretability in mapping back to the feature/sample space, are
limited in their ability to produce sparse latent factors, and
require large amounts of training data. Variational Autoen-
coders (VAEs) (e.g., (Xu & Durrett, 2018; Tillinghast & Zhe,
2021)) offer recovery of nonlinear latent low-dimensional
representations; however, they do not naturally consider the
data’s temporal structure, and their elements do not directly
represent the contribution of individual channels from the
input space. Sparse (Ashman et al., 2020; Barello et al.,
2018) or dynamical (Girin et al., 2020) variants of VAEs do
not consider within-vs between state variability of the latent
representations. Transformer models, e.g., (Liu et al., 2022)
jointly model individual and collective dynamics via an in-
dividual module for each of several component dynamics
and an interaction module that captures pairwise interac-
tions. However, this necessitates prior knowledge about
the system’s separation and requires large-scale data due
to the encoder-decoder architecture. Recently, for neuronal
data analysis, CEBRA (Schneider et al., 2023) incorporates
auxiliary labels and temporal information in contrastive op-
timization, however, it produces a latent state that requires
additional interpretation steps to connect to the neuronal
space.

Notably, all the above approaches are constrained in their
capacity to identify fundamental hidden sparse components
while capturing multi-state, multi-trial variability.

3. Problem Definition and Notations
Consider a system with N channels organized into at most
p BBs, with each BB representing a group of channels with
shared functionality. These BBs serve as the fundamental
constituents of a complex process, however their compo-
sition is not directly observed nor explicitly known. In
particular, let the columns of A ∈ RN×p represent the
BBs, such that Aij is the contribution of the i-th channel
to the j-th BB, with Aij = 0 indicating that channel i
does not belong to BB j. We assume that each channel can
belong to multiple BBs, and that each BB is sparse (i.e.,
∥A:j∥0 = K << N for all j = 1 . . . p).

First, we consider a single trial of the system Y ∈ RN×T

over T time points. During this trial, each BB exhibits
temporal activity denoted by Φ ∈ RT×p, that might reflect
current hidden properties of the system, where Φt,j is the

activity of the j-th BB at time t. These temporal profiles
are assumed to be smooth, bounded (i.e., ||Φ||F < ϵ1, for
some ϵ1), and have a low correlation between distinct BBs’
activity (i.e., ρ(Φ:j ,Φ:i) < ϵ2 ∀i ̸= j, for some ϵ2). In
this single trial, our observations, Y , arise from the collec-
tive activity of all BBs operating together, Y = AΦT + η,
where η denotes i.i.d. Gaussian observation noise. However,
the individual composition (A) or activity (Φ) of each BB
is unknown.

In the more general setting, we observe a set of M trials,
{Ym}Mm=1, where the duration of each trial m = 1 . . .M
may vary, i.e., Ym ∈ RN×Tm . The BBs (A) remain con-
stant across trials while their corresponding temporal ac-
tivity (Φm ∈ RTm×p) may vary across trials to capture
trial-to-trial variability. The setting we focus on extends
beyond a single set of trials; instead, we deal with a col-
lection of D such multi-trial sets, each associated with a
known state d = 1 . . . D (Fig. 1A). Across these sets, both
the number of trials per set (Md for each set d), and the
durations of the trials, may vary. Thus, the full observa-
tion dataset includes the collection of D multi-trial sets,
{Y 1

m}
M1
m=1, ...{Y D

m }
MD
m=1, each representing a different state

d = 1 . . . D, such that Y d
m = Ad(Φd

m)T + ηdm.

We assume that the BBs’ temporal activities ({Φd
m}) can

vary between trials, both within and between states, and
the compositions of the BB ({Ad}) might present sub-
tle controlled adaptations between, but not within, states.
Specifically, we posit that the BBs’ dissimilarity between
any pair of distinct states d and d′ reflects the dissimilar-
ity between those states, such that the distance between
Ad and Ad′

is constrained by ∥Ad − Ad′∥F < ϵ3(d, d
′)

for some threshold ϵ3(d, d
′) determined by the applica-

tion. For example, if considering different disease stages
as states, we assume that consecutive disease stages are
more similar to each other than to a healthy state, such that
ϵ3(ddisease1 , ddisease2) < ϵ3(dhealthy, ddisease). The main chal-
lenge that SiBBlInGS addresses is recovering the unknown
BBs (Ad) and their temporal activities (Φd

m) for all states
and trials given only their combined simultaneous activity
(Fig. 1A,B).

4. SiBBlInGS
In this section, we present SiBBlInGS—our framework to
identify interpretable BBs along with their temporal traces
based on shared activation patterns across trials and states.
Unlike existing methods, SiBBlInGS identifies BBs in high-
dimensional data based on temporal similarity without as-
suming orthogonality, enables BB interdependency or over-
lap, and can tackle trials of different duration, sampling
rates, or count per state (Tab. 2). SiBBlInGS also offers
both expert-based supervised and data-driven unsupervised
approaches for integrating inter-state similarities, thus pro-
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Figure 1. SiBBlInGS Schematic A SiBBlInGS adapts to real-world datasets with varying session durations, sampling rates, and
state-specific data by learning interpretable graph-driven hidden patterns and their temporal activity. B SiBBlInGS is based on a per-
state-and-trial matrix factorization where the BBs (Ad) are identical across trials and similar across states. C SiBBlInGS controls the
BB similarity via data-driven channel graphs (Hd ∈ RN×N ) and state-similarity graph (P ∈ RD×D), which can be either predefined
(supervised) or data-driven. D The learning schematic with an exemplary trial for each of the 3 exemplary states. The BBs of each state
d (columns of Ad) are constrained with two regularization terms: 1) state-specific λd captures similar activity between channels by
leveraging the channel-similarity graph Hd, and 2) P , captures BB consistency across states via the state similarity graph. ν controls the
relative level of cross-state similarity between BBs, allowing the discovery of both background and state-specific BBs. Higher (lower) ν
values promote greater (lesser) consistency of specific BBs across states (e.g. ν1 v.s ν5).

viding the flexibility to choose between data-driven or pre-
defined approaches based on the specific data structure.

SiBBlInGS is based on an extended dictionary learning-like
procedure that alternates between updating the BBs ({Ad})
and their temporal profiles ({Φd

m}) for all states. Critical
to our approach is the integration of the non-linear similar-
ities between both channels and states. We capture these
relationships via two graphs (Fig. 1C), one over channels
to identify cross-channel regularities, and one over states to
promote cross-state similarity in BB structure. Mathemati-
cally, we formulate the fit {Âd}, {Φ̂d

m} for all d = 1 . . . D

and m = 1 . . .Md by minimizing the cost function

min
{Ad},{Φd

m}

D∑
d

(
Md∑
m

[
∥Y d

m −Ad(Φd
m)T ∥2F +R(Φd

m)
]
+

R(Ad) +

D∑
d′ ̸=d

Pd,d′∥(Ad −Ad′
)V ∥2F


where the first term is a data fidelity term, and the second
term regularizes the BBs’ temporal traces. The termR(Ad)
regularizes each BB to be a sparse group of channels based
on shared temporal patterns, and the last term regularizes
the BBs’ similarity across states (Fig. 1). The use of V =
diag(ν) ∈ Rp×p, accompanied by the weight vector ν ∈
Rp, allows assigning varying weights to cross-state BBs’
similarities to facilitate the discovery of state-invariant vs.
state-specific BBs. SiBBlInGS iteratively updatesAd and
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Figure 2. Synthetic data results. A Three example time traces identified by SiBBlInGS vs. ground truth traces, projected into the three
synthetic states. SiBBlInGS recovers both traces that are highly correlated with specific states (e.g., Φ10; green), as well as traces that
exhibit similar activation across states (e.g., Φ2; blue). B Comparison between the identified example BBs and the ground-truth BBs. C
Correlation between the example identified time traces and the ground truth (left), and Jaccard index of the identified BBs compared to
the ground truth (right). D Comparison between the ground-truth data (top), SiBBlInGS reconstruction (middle), and the residual data
(bottom). E Comparison to baseline methods (Sec. 5, App. L). F Performance under noise and random initializations (300 repetitions).
Each dot is a model instance. The curve shows the median values, and the shading corresponds to the 25%-75% percentiles. While
SiBBlInGS remains robust under varying noise (σsignal/σnoise > 3), it experiences a phase transition at a specific noise level, aligning
with the dictionary-learning literature (e.g. (Studer & Baraniuk, 2012)). G Performance with increasing levels of missing samples (200
repeats). The scattered dots represent model repetitions, the curves depict the median values calculated by rounding to the nearest 5%, and
the background shading corresponds to 25%-75% percentiles.

Φd
m for each trial and state (Alg. 1 and Fig. 1; computational

complexity is described in App. E), as described below:

Updating Ad : Since we assume that BBs may require
subtle state-to-state adaptations but must remain constant
within a state, SiBBlInGS demands that the BB matrix (Ad)
is shared across same-state trials but undergoes subtle ad-
justments across states, proportionate to the corresponding
states’ similarities (P ). The update of Ad for each state
d, is achieved via an extended re-weighted ℓ1 graph fil-
tering with an integration of the channel-similarity graph,
H ∈ RN×N , in a way that promotes channels with similar
temporal activity to be grouped into the same BB. In each
updating iteration ofAd, as a pre-calculation step, we first
horizontally concatenate the observations from all Md trials
of that d state to receive the matrix Y d∗ ∈ RN×(

∑Md
m=1 Td

m),
and vertically concatenate the last estimates of the tempo-
ral traces from all trials of that state to build the matrix
Φd∗ ∈ R(

∑Md
m=1 Td

m)×p.

We then update each row n = 1 . . . N of Âd (Âd
n:) via

a re-weighted procedure that alternates between updating

Âd
nj and λd

n,j :

Âd
n: =argmin

Ad
n:

∥Y d∗
n −Ad

n:(Φ
d∗)T ∥22+ (1)

p∑
j=1

λd
n,j |Ad

n,j |+
∑
d′ ̸=d

Pdd′∥(Ad
n: −Ad′

n:) ◦ ν∥22,

and

λd
n,j =

ϵ

β + |Âd
n,j |+ wgraph|Hd

n:Â
d
:j |

. (2)

Above, ◦ is element-wise multiplication, and β, ϵ, and wgraph
are model hyper-parameters. The matricesHd and P d are
channel and state similarity graphs, described below:

State similarity graph: P ∈ RD×D is a state-similarity
graph that determines the effect of the similarity between
each pair of states on the regularization of the distance be-
tween their BB representations. P can be set manually (su-
pervised P ) or in a data-driven way (unsupervised P ), thus
allowing selection based on specific goals, data type, and
knowledge of data labels (Fig. 1C). Each of these two op-
tions offers unique benefits: the supervised variant enables
explicit regulation of the similarity and the incorporation of
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human-expert knowledge into the model, whereas the unsu-
pervised variant leverages the data itself to learn similarities
and patterns without preconceived biases.

Here, we present the supervised version of P , which is
particularly useful when one has prior knowledge or expec-
tations about quantitative state values that can be leveraged
to integrate desired information into the model, while the
data-driven approach is presented in Appendix B.2. This
supervised version, unlike the data-driven option, assumes
that a numerical label Ld, associated with each state d,
can provide valuable information for constructing the state-
similarity graph P (e.g., vector labels that denote x-y co-
ordinates in a movement task). In this way, the similarity
Pd,d′ between each pair of states (d, d′) is calculated based
on the distance between the labels (Ld,Ld′ ) associated with
these states: Pd,d′ = exp

(
−∥Ld −Ld′∥22/σ2

P

)
where σ2

P

controls how the similarities in labels scale to similarities in
BBs. The supervised approach easily extends to both data
with identical or different session durations and can also
handle categorical states as described in the Appendix B.1.1.

Channel similarity graphs: Hd ∈ RN×N is the
channel graph for each state d and is calculated by
Hd

i,j = exp
(
−∥Y d∗

i: − Y d∗
j: ∥22/σ2

H

)
, where σH is an hy-

perparameter that controls the kernel bandwidth and Y d∗
j:

is the horizontally concatenated observations under state d
described before. To enhance the robustness of {Hd}Dd=1,
we add a post-processing step and utilize the state-graph
(P ) to re-weigh each Hd along the states dimension:
Hd ←

∑D
d=1Pd,d′Hd′

. We then retain only the k largest
values in each row, setting the rest to zero, symmetrize, and
row normalizeHd so that each row sums to one (App. C).
This process mitigates the influence of outliers and encour-
ages the clustering of similarly-behaving channels into the
same BB. The advantage of graph-driven re-weighting, com-
pared to other TF and dictionary learning procedures, is that
the updated weighted regularization (λd ∈ RN×p) promotes
the grouping (separating) of channels with similar (dissimi-
lar) activity into the same (different) BBs by integrating the
channel similarity graph Hd into the regularization. Specif-
ically, in the last term of the λd

n,j’s denominator, for a given
state d, a strong (weak) correlation between the temporal
neighbors of the nth channel (captured by Hd

n:) and the
members of the j-th BB (Âd

:j) results in a decreased (in-
creased) λd

n,j . Consequently, ℓ1 regularization on Âd
n: is

reduced (increased)—promoting the inclusion (exclusion)
of each channel into BBs that include (exclude) its temporal
neighbors.

After each update of all rows inAd, each column is normal-
ized to have a maximum absolute value of 1. In practice,
we updateA (Eq. (1)) for a random subset of trials in each
iteration to improve robustness and computational speed.

Updating Φd
m: The update step over Φd

m uses the current
estimate of Ad to re-estimate the temporal profile matrix
Φd

m independently over each state d and trial m. Note that
we do not enforce cross-trial similarity in Φd

m to allow for
flexibility in capturing trial-to-trial variability both within
and across states. Thus, for each trial m and state d, ϕ =
Φd

m is updated by solving:

ϕ̂ =argmin
ϕ≥0

∥∥Y d
m −AdϕT

∥∥2
F
+ γ1∥ϕ∥2F+ (3)

γ2∥ϕ− ϕ̂iter−1∥2F + γ3∥ϕ− ϕt−1∥2F + γ4Rcorr(ϕ)

where the first term preserves data fidelity, the sec-
ond term regularizes excessive activity, the third term
encourages continuity across iterations (ϕ̂iter−1 is ϕ
from the previous iteration), and the fourth term is
a diffusion term that promotes temporal consistency
of the dictionary (ϕt−1 is ϕ shifted by one time
point). Rcorr(ϕ) = ∥

(
ϕTϕ− diag(ϕTϕ)

)
◦D∥sav pro-

motes decorrelation of distinct temporal traces, where sav is
sum-of-absolute-values andD ∈ Rp×p is a normalization
matrix withDij =

1
∥ϕ:i∥2∥ϕ:j∥2

(App. D).

5. Experiments
SiBBlInGS recovers ground truth BBs in synthetic data:
Synthetic data were generated with D = 3 states, each
consisting of a single trial, with p = 10 ground-truth BBs,
and N = 100 channels. Each i-th BB was generated with
a maximum cardinality of maxd,i ∥Ad

:,i∥0 = 21 channels,
and on average each channel was associated with 2.1 BBs.
While the BBs were designed to be non-orthogonal, we con-
strained their pairwise correlations to be below a threshold
of max ρ < 0.6. The temporal dynamics of the synthetic
data were generated by summing 15 trigonometric functions
with different frequencies (App. H.2 for details).
SiBBlInGS demonstrated monotonically improving perfor-
mance during training (Fig. 6A-D), and at convergence was
able to successfully recover the underlying BBs in the syn-
thetic data and their temporal traces (Fig 2A-C). In partic-
ular, example traces demonstrate a high precision of the
recovered temporal traces, with correlation to the ground
truth traces being close to one (Fig. 2A, C, 6F). Further-
more, the identified BB components align closely with the
ground-truth BBs (Fig. 2B,C), as indicated by high Jaccard
index values. We compared SiBBlInGS to existing meth-
ods, including Tucker Decomposition, PARAFAC, (S)PCA
“global” (a single (S)PCA for all states), (S)PCA “local”
((S)PCA for each state), NONFAT, NNDTN, mTDR, and
dPCA, with details in App. L). Notably, SiBBlInGS out-
performs existing baselines both in terms of identifying the
ground truth BBs and their traces (Fig. 2E, 6F, 8).

SiBBlInGS finds interpretable BBs in Google Trends:
We used Google Trends to demonstrate SiBBlInGS’ capabil-
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Figure 3. Demonstration on Google Trends Data. A The BBs’ temporal traces, as SiBBlInGS found, demonstrate seasonal trends
consistent with the terms associated with each BB. B Standard deviation of temporal traces over time for the different states align with
variability in the states’ demographics (Sec. 5). C The BBs SiBBlInGS identified along with their per-state dominancy produce more
meaningful clusters than baselines (Fig. 10). States are marked by colors; dot sizes represent the contribution of a term in the BB.

Figure 4. Identification of Temporal Patterns in Monkey Somatosensory Cortex. A The reaching out task ((Rodriguez, 2023)). B
Sparse clusters of neurons representing the identified BBs. C Confusion matrix of a multi-class logistic regression model using the inferred
temporal traces to predict the state label. D The BBs’ temporal traces as they vary across states and time. E Ratios of within-to-between
states temporal correlations for each BB, with ρwithin

ρbetween
> 1, indicating states distinguishability.

ity in identifying temporal and structural patterns by query-
ing search term frequency on Google over time. We used
normalized monthly Trends volume of 44 queries (from Jan.
2011 to Oct. 2022) related to various topics, as searched in
8 US states selected for their diverse characteristics (Coulby,
2000) (see pre-processing in App. I.1). The p = 5 BBs iden-
tified by SiBBlInGS reveal meaningful clusters of terms,
whose time traces convey the temporal evolution of user
interests per region (Fig. 3A), while aligning with the sea-
sonality of the BBs’ components. For instance, the first BB
represents college-related terms and shows a gradual annual
decrease with periodic activity and a notable deviation dur-
ing the COVID pandemic, possibly reflecting factors such
as the shift to remote learning (Fig. 3A, 11). The second and

third BBs, respectively, demonstrate periodic patterns asso-
ciated with Passover in April (Fig. 12) and winter terms in
December. Interestingly, CA, FL, MD, and NY—all states
with larger Jewish populations∗—show more pronounced
peaks of the “Passover” BB activity in April (when Passover
is celebrated) compared to the other states (Fig. 3B and 12).
The last BB represents COVID-related terms and exhibits
temporal patterns with a sharp increase around Jan. 2020,
coinciding with the onset of the COVID pandemic in the US.
Remarkably, ‘Hopkins’ exhibits a less pronounced COVID-
related search peak in MD (blue), where the university and
hospital are located, likely attributed to its well-established
local presence (Fig. 3C, right). Conversely, other states wit-
nessed a more significant surge in Hopkins-related searches
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Figure 5. Emerging local BBs in Epilepsy. The recovered BBs under 1) normal activity, 2) activity during the 8 seconds proceedings
CPS seizures located around the F8 area, and 3) activity during the seizures. Colors represent different BBs, and the size of the dots
corresponds to the contribution of the respective electrode to each BB.

at the onset of the COVID outbreak, as Hopkins suddenly
garnered increased attention during this period. This empha-
sizes our model’s interpretability and the need to capture
similar yet distinct BBs across states. Other methods ap-
plied with the same number of BBs (p = 5) as used in
SiBBlInGS produced less meaningful BBs (Fig. 10).

SiBBlInGS identifies meaningful patterns in brain
recordings: We tested SiBBlInGS on neural activity
recorded in the somatosensory cortex in a monkey perform-
ing a reaching task, as described by (Chowdhury & Miller,
2022). The data we used include 18 trials under each of the
8 hand directions, with each direction corresponding to a
unique state. The raw spike data were convolved over time
with a Gaussian kernel. When applying SiBBlInGS with a
maximum of p = 4 BBs, it identified sparse functional BBs
(Fig. 4B) along with meaningful temporal traces (Fig. 4D)
that exhibit state-specific patterns. Interestingly, the third
BB consistently shows minimal activity across all states,
suggesting that it captures background or noise activity. The
structure of the identified BBs exhibits subtle yet signifi-
cant adaptations across states in terms of neuron weights
and BB assignments. Furthermore, SiBBlInGS finds neu-
rons belonging to multiple neural clusters, suggesting their
involvement in multiple functions. When examining the
temporal correlations of the corresponding BBs within and
between states, all BBs exhibited a within/between corre-
lations ratio > 1 (Fig. 4E, 13C, App. J.4) indicating robust
within state trajectories and distinctions between states. Fur-
thermore, multi-class logistic regression based only on the
identified temporal traces accurately predicted the states
(Fig. 4C).

SiBBlInGS discovers emerging BBs preceding seizure:
We applied SiBBlInGS to EEG recordings of an epileptic pa-
tient from (Handa et al., 2021; Nasreddine, 2021) (App. K).
We examined data from an 8-year-old individual who had ex-
perienced 5 complex partial seizures (CPS) localized around

electrode F8. SiBBlInGS unveiled interpretable and local-
ized EEG activity in the period preceding seizures (Fig. 5),
a feat not achieved by other methods. It identified a BB spe-
cific to the region around the clinically labeled area (F8) that
emerged during the 8 seconds prior to the seizure (Fig. 5,
pink circle in SiBBlInGS’s middle). Additionally, it found
several alterations in the BB composition during the seizure
in comparison to the normal activity. E.g., the contribution
of T4 to the red BB during normal activity is higher than its
contribution during a seizure, while the contribution of T5
to the same BB is larger during a seizure. This underscores
the potential of SiBBlInGS in discovering BBs that uniquely
emerge under specific states, made possible by the flexibility
of ν to support both state-variant and state-invariant BBs.

6. Conclusion
We propose SiBBlInGS for graphs-driven identification of
interpretable cross-state BBs with their temporal profiles in
multi-way time-series data—providing insights into system
structure and variability. Unlike other approaches, SiB-
BlInGS supports the discovery of BBs with subtle changes
in cross-state structures, allows each channel to belong to a
few with varying contributions, and promotes the discovery
of both state-invariant and state-specific BBs. We demon-
strate SiBBlInGS’ capacity to identify functional neural
ensembles and discern cross-state variations in web-search
data structures, showcasing its promise in additional do-
mains, including, e.g., detecting gene expression clusters in
health vs. disease, unveiling local financial patterns based
on stock data, and more. Regarding limitations, SiBBlInGS
assumes Gaussian statistics, yet Poisson may sometimes be
more suitable. Additionally, exploring advanced distance
metrics for the graphs construction holds promise for future
research. Finally, the identified BBs currently do not con-
sider potential directed connectivity, presenting an exciting
future direction.
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Appendix

A. Notations
Throughout the paper, we adopt the following notations: the superscript ()d refers to state d, and the subscript ()m refers to
trial m. Specifically, Y d

m and Φd
m denote the observations and temporal traces of trial m of state d, whileAd represents the

BBs of state d. Additionally, for a general matrix Z, Zi: (Z:j) denotes its i-th row (j-th column).

Table 1. Notations used in the paper.
Symbol Description
BBs Building Blocks
channels Each feature in the observations, e.g., neurons in recordings
states Different “views” of the observations. e.g., different cognitive tasks
trials/sessions Repeated observations within state
p Number of BBs
D Number of states
Md Number of trials for state d
N Number of channels
Zn: (or Z[n,:]) The n-th row of a general matrix Z
Z:i (or Z[:,i]) The i-th column of a general matrix Z
Ld Label of state d (optional, can be a scalar or a vector)
Y d
m ∈ RN×Td

m Observation for trial m and state d
Ad ∈ RN×p Matrix of BBs for state d.
Φd

m ∈ RTd
m×p Matrix of temporal traces for trial m of state d.

P ∈ RD×D States similarity graph
{Hd}Dd=1, s.t. Hd ∈ RN×N Channel similarity graphs
ν ∈ Rp Controls the relative level of cross-state similarity for each BB
V = diag(ν) A diagonal matrix whose entry in index ii is the i-th entry of ν
ϵ, β, wgraph Hyperparameters controlling the strength of regularization
γ1, γ2, γ3, γ4 Hyperparameters to regularize Φd

m

σH , σP Hyperparameters that control the bandwidth of the kernel
ψij

n ∈ RMj ,Mi Transformation of the data from state i to state j for channel n

B. Further options for P computation
Here, we explore additional approaches for computing the state-similarity graph P . These options take into account
factors like data properties, single vs. multi-trial cases, variations in trial duration, and the desired approach (supervised or
data-driven).

B.1. Supervised P

In addition to the case presented in the paper, for sequential/ordered states, here we introduce the supervised version designed
for categorical or similar-distanced states.

B.1.1. CATEGORICAL OR SIMILAR-DISTANCED STATES

For cases where observation states are represented by categorical labels, and we expect a high degree of similarity between
all possible pairs of states (i.e., no pair of labels is closer to each other than to another pair), we can define the state similarity
matrix P to ensure uniform values for all entries of distinct states, with larger values assigned to same-state entries located
on the matrix diagonal. P is then constructed as

P = 1⊗ 1T + cI, (4)

where 1⊗ 1T ∈ RD×D is a matrix of all ones, I ∈ RD×D is the identity matrix, and c is a weight that scales the strength
of same-state similarity with respect to cross-state similarities.
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Figure 6. Synthetic Data Results Robustness - cont. A Model performance under increasing levels of noise, along with random
initializations, over the model training iterations. Color: increasing levels of missing samples. Left: Jaccard index between the recovered
A and the ground true A. Middle: Correlation between the recovered A and the ground truth A. Right: Correlation between the
recovered Φ and the ground true Φ. B Model performance under random initializations (no noise), over the model training iterations. The
blue curve is the median over all repeats. C Model performance under increasing levels of noise only (fixed initializations). D Model
performance under increasing levels of missing samples, over the model training iterations. E SiBBlInGSPerformance under increasing
noise levels. F Comparison to other relevant methods, for each state individually (SiBBlInGSin blue, other methods in pink to red colors).
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Table 2. Assumptions and capabilities comparison between SiBBlInGS and other methods.
Method SiBBlInGS mTDR PCA Fast ICA NMF GPFA SRM HOSVD PARAFAC

Do not force orthogonality? V X X V V V X X V
Sparse? V X X X X X X X X

Flexible in time across states? V X X X X X X V V
Support variations in BB across states? V X X X X X X X X

Used for condition variability? V V X X X X X V V
Works on tensors? V V X X X X V V V

Consider both within V V na na na na X X X
& between states variability?

Supports state-specific V V na na na na V X X
emerging components?

Works on non-consistent V X na na na na X X X
data duration or
sampling rates?

Can prior knowledge V V na na na na V X X
(labels) control state

similarity?
Ability to define both V V na na na na X X X

state-specific and
background components?

Supports non-negative V X X X V X X X V
decomposition?

B.2. Data-Driven P

When prior knowledge about state similarity is uncertain or unavailable, SiBBlInGS also provides an unsupervised, data-
driven approach to calculate P based on the distance between data points across states. Here we discuss the four options for
constructing the matrix P in a data-driven manner, depending on the structure of the observations.

B.2.1. SINGLE-TRIAL PER-STATE WITH EQUAL-LENGTH ACROSS STATES:

This case refers to the scenario of a single trial for each state (Md = 1, ∀d = 1 . . . D), where all cross-state trials have
the same length (T d

1 = T ∀d = 1 . . . D). Here, the similarity graph P is constructed as

Pd,d′ = exp
(
−||Y d

1 − Y d′

1 ||2F /σ2
P

)
, (5)

where σP controls the bandwidth of the kernel.

B.2.2. MULTIPLE TRIALS PER STATE, SAME TRIAL DURATION

In the case where all trials have the same temporal duration, the similarity matrix P is computed by evaluating the distance
between the values of each pair of states, considering all trials within each state. For this, we first find the transformation
ψij

n ∈ RMj×Mi between the observations of state i to the observation of state j, by solving the Orthogonal Procrustes
problem (Golub & Van Loan, 2013; Gower, 2004). For this, let Y i∗ ∈ RMi×(T×N) be the matrix obtained by vertically
concatenating the flattened observations from each trial (m = 1 . . .Mi) of state i. Then, the optimal transformation from
the observations of state i (Y i∗ ∈ RMi×(T×N)) to the observations of state j (Y j∗ ∈ RMj×(T×N)) will be

ψ̂ij = argmin
ψij

∥ψijY i∗ − Y j∗∥2F , (6)

where this mapping projects the multiple trials of state i into the same space as of state j, via Ỹ i∗ = ψ̂ijY i∗. The state
similarity matrix will thus be

Pij = exp
(
−∥Ỹ i∗ − Y j∗∥2F /σp

2
)
, (7)

for all states i ̸= j = 1 . . . D, where σp controls the kernel bandwidth.
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B.2.3. SINGLE-TRIAL PER STATE, SAME DURATION

Further generalization of the state similarity computation requires addressing the case of trials with varying duration. When
the observations correspond to the same process and their alignment using dynamic time warping is justifiable, we can
replace the Gaussian kernel measure with the Dynamic Time Warping (DTW) distance metric (Berndt & Clifford, 1994). In
the case of a single trial for each state, the similarity metric becomes the average DTW distances over all channels,

Pij = exp

(
− 1

N

N∑
n=1

DTW (Y i
n:,Y

j
n:)

)
. (8)

B.2.4. MULTIPLE TRIALS PER STATE, DIFFERENT DURATION

Similarly, for the multi-trial case we have

Pij = exp

− 1

N

N∑
n=1

 1

Mi

1

Mj

Mj∑
mj=1

Mi∑
mi=1

DTW
((
Y j
mj

)
n:
−
(
Y i
mi

)
n:

), (9)

where, DTW, is, as before, the Dynamic Time Wrapping (Berndt & Clifford, 1994) operator, applied on the activity of
the n-th channel in both states. It is crucial to note that this approach operates under the assumption that the trials being
compared depict similar processes, and hence aligning them using DTW is a valid assumption.

C. Channel-similarity kernel (H)—generation and processing

The kernel post-processing involves several steps. First, we construct the kernel H̃d for each state d = 1 . . . D, as described
in the main text. To incorporate similarities between each possible pair of states d′ ̸= d, where d, d′ = 1 . . . D, we
perform a weighted average of each H̃d with the kernels of all other states, using Pd: for the weights, as it quantifies the
similarity between state d and all other states: Hd =

∑D
d′=1Pdd′H̃d′

. Then, to promote a more robust algorithm, we only
retain the k highest values (i.e., k-Nearest Neighbors; kNN) in each row, while the rest are set to zero. The value of k
is a model hyperparameter, and depends on the desired BB size. We then symmetrize each state’s kernel by calculating
Hd ← 1

2

(
Hd + (Hd)T

)
for all d = 1 . . . D. Finally, the kernel is row-normalized so that each row sums to one, as

follows: Let Λd be a diagonal matrix with elements representing the row sums ofHd, i.e., Λd
ii =

∑N
n=1H

d
i,n. The final

normalized channel similarity kernel is obtained asHd
final = (Λd)−1Hd.

D. Solving Φ in practice
In Section 4, the model updates the temporal traces dictionary ϕ = Φd

m for all m = 1 . . .Md, d = 1 . . . D using an extended
least squares for each time point t, i.e.,

ϕ̃[t,:] = arg min
ϕ[t,:]

∥Ỹ d
m[:,t]

− M̃ϕ[t,:]∥22, (10)

where ϕ[t,:] ∈ Rp is the dictionary at time t,

Ỹ d
m[:,t]

=

 Y d
m[:,t]

[0]p×1

γ2ϕ
(iter−1)
[t,:] + γ3ϕ[(t−1),:]

 , and M̃ =

 Ad

γ4(
[1]p×p

p − Ip×p) ◦
√
D

(γ1 + γ2 + γ3)Ip×p

 ,

with all parameters being the same as those defined in Section 4 of the main text and ◦ denotes element-wise multiplication.
Here, [0]p×1 ∈ Rp×1 represents a column vector of zeros, [1]p×p represents a square matrix of ones with dimensions p× p,
and Y d

m[:,t]
∈ RN denotes the measurement in the m-th trial of state d at time t.

E. Model Complexity
SiBBIInGS relies on 4 main computational steps:
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Channel Graph Construction: This operation, performed once for all N channels of every state d = 1 . . . D, generates a
channel graphHd ∈ RN×N for each state d ∈ [1, D] by concatenating within-state trials 1 . . .Md horizontally, resulting in
a N ×

∑Md

m=1 T
d
m matrix. For simplicity, let T̃ =

∑Md

m=1 T
d
m. The computational complexity of calculating the pairwise

similarities of this concatenated matrix for all D states is thus O
(
DT̃ 2N(N − 1)

)
.

For the k-threshold step (B.2.1), that involves keeping only the k largest values in each row while setting the other values to
zero—the complexity will be O

(
T̃ log k

)
per row for a total computational complexity of O

(
DNT̃ log k

)
for N rows

and D states.

State Graph Construction: This is a one-time operation that involves calculating the pairwise similarities between each
pair of states. For simplicity, if we assume the case of user-defined scalar labels, and as in this case there are D states (and
accordingly D labels), the computation includes D(D − 1))/2 pairwise distances for O

(
D2
)
.

BB Inference (Eq. (1)): This iterative step involves per-channel re-weighted ℓ1 optimization. If the computational
complexity of a weighted ℓ1 is denoted as C, then the computational complexity of the re-Weighted ℓ1 Graph Filtering is
NLC + LNk, where N is the number of channels, L is the number of iterations for the RWLF procedure, and k is the
number of nearest neighbors in the graph. For the last term in Eq. (1), there are p2 multiplicative operations involving
the vector ν and the difference in BBs, arising from the ℓ22 norm. Additionally, there is an additional multiplication step
involving Pdd′ . For each state d, this calculation repeats itself D − 1 times (for all d′ ̸= d). This process is carried out for
every d = 1 . . . D. In total, these multiplicative operations sum up to

(
p2 + 1

)
D(D − 1), resulting in a computational

complexity of O
(
D2p2

)
.

Optimization for ϕ: This step refers to the least-squares problem presented in Eq. (10) in Appendix D. If a non-
negative constraint is applied, SiBBlInGS uses scipy’s “nnls” for solving ϕ̃[t,:] = argminϕ[t,:]

∥Ỹ d
m[:,t]

− M̃ϕ[t,:]∥22,

where Ỹ d
m ∈ R(N+2p)×Td

m andM ∈ R(N+2p)×p. This results in complexity of O
(
p(N + 2p)2F max (T d

m)
)
, where F is

the number of nnls iterations. Without non-negativity constraint, this problem is a least squares problem with a complexity
of O

(
max (T d

m)p2(2p+N))
)
. Potential complexity reduction options include parallelizing RWL1 optimizations per

channel, using efficient kNN or approximate kNN search for constructing kNN graphs instead of full graphs, and employing
dimensionality reduction techniques to expedite nearest neighbor searches.

F. Data and Code Availability
The code employed in this study will be made publicly available on GitHub upon publication and is included in the
supplementary material of the submission. The data used in this study are publicly available and cited within the paper.

Algorithm 1 The SiBBlInGS Model (short version)

Inputs
{Y 1

m}
M1
m=1, ...{Y D

m }
MD
m=1 {Observations}

β, ϵ, γ1, γ2, γ3, γ4, wgraph, σp, σH {Hyperparameters}
Initialization and pre-Calculations
{Ad}, {Φd

m}
Md

m=1,∀d = 1 . . . D {Initialize BBs&traces}
P ∈ RD×D {Calculate state-similarity graph}
Hd ∈ RN×N ,∀d = 1 . . . D {Calculate channels graphs}
repeat

for d = 1 . . . D do
Select a random batch of trials from state d
UpdateAd and λd {via Eq. (1) and Eq. (2)}
for m = 1 . . .Md do

Update Φd
m {via Eq. (3)}

end for
end for

until BBs and traces of all states converged
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Figure 7. BBs identified by different methods. BBs identified by SiBBlInGS are compared with those from other methods, including
PARAFAC, Tucker, PCA (global and local), Sparse PCA (global and local), demixed PCA (Kobak et al., 2016), mTDR (Aoi & Pillow,
2018), and Gaussian-process-based methods (Wang & Zhe, 2022b). The identified BBs were reordered to best match the ground truth
BBs’ temporal traces through maximum correlations. A subsequent hard-thresholding step was applied to achieve sparsity, aligning with
the sparsity level with of the ground truth components. The BBs were normalized to have an absolute sum of 1 each for visualization
purposes.

G. General Experimental Details
All experiments and code were developed and executed using Python version 3.10.4 and are compatible with standard
desktop machines.

H. Synthetic Data—Additional Information
H.1. Synthetic Generation Details

We initiated the synthetic data generation process by setting the number of channels to N = 100 and the maximum number
of BBs to p = 10. We further defined the number of states as D = 3 and determined the number of time points in each
observation to be T d = 300, where d represents the state index (here d ∈ {1, 2, 3}). We defined the number of trials for
each state as one, i.e., Md = 1 for d = 1, 2, 3.

We first initialized a “general” BB matrix (A) as the initial structure, which will later undergo minor modifications for each
state.

For each state d, we generated the time-traces Φd via a linear combination of 15 trigonometric signals, such that the
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Figure 8. Correlations between BBs identified by different methods and ground truth BBs for each state and BB number.

temporal trace of the j-th BB was defined as Φd
:j =

∑15
i=1 cifi(freqi ∗ x) where x is an array of T = 300 time points

(x = [1, . . . , 300]), freqi is a random scaling factor sampled uniformly on [0, 5], f refers to a random choice between the
sine and cosine functions (with probability 1/2 for each), and the sign (ci) was flipped (+1 or −1) with a probability of 1/2.

During the data generation process, we incorporated checks and updates to A and Φ to ensure that the BBs and their
corresponding time traces are neither overly correlated nor orthogonal, are not a simple function of the states labels, and
that different BBs exhibit comparable levels of contributions. This iterative process involving the checks persisted until no
further modifications were required.

The first check aimed to ensure that the temporal traces of at least two BBs across all states were not strongly correlated
with the state label vector ([1, 2, 3]) at each time point. Specifically, we examined whether the temporal traces of a j-th BB
across all states (Φ1

tj ,Φ
2
tj ,Φ

3
tj) exhibited high correlation with the state label vector at each time point. This check was

important to avoid an oversimplification of the problem by preventing the temporal traces from being solely influenced by
the state labels. To perform this check, we calculated the average correlation between the temporal traces and the state labels
([1, 2, 3]) at each time point. If the average correlation over time exceeded a predetermined threshold of 0.6, we introduced
additional variability in the time traces of the BB that exhibited a high correlation with the labels. This was achieved by
adding five randomly generated trigonometric functions to the corresponding BB. These additional functions were generated
in the same manner as the original data (with Φd

:j =
∑5

i=1 cifi(freqi · x)).
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The second check ensured that the time traces were not highly correlated with each other and effectively represented separate
functions. If the correlation coefficient between any pair of temporal traces of different BBs exceeded a threshold of ρ = 0.6,
the correlated traces were perturbed by adding zero-mean Gaussian noise with a standard deviation of σ = 0.02.

Next, we ensured that the BBs represented distinct components by verifying that they were not highly correlated with each
other. Specifically, if the correlation coefficient between a pair of BBs (A:j ,A:i for j, i = 1 . . . 10) within a state exceeded
the threshold ρ = 0.6, each BB in the highly-correlated pair was randomly permuted to ensure their distinctiveness.

To prevent any hierarchical distinction or disparity in BB contributions and distinguish our approach from order-based
methods like PCA or SVD, we evaluated each BB’s contribution by measuring the increase in error when exclusively using
that BB for reconstruction. Specifically, for the j-th BB, we calculated its contribution as contributionj = −∥Y −A:j ⊗
Φ:j∥F , where ⊗ denotes the outer product. Then, we compared the contributions between every pair of BBs within the
same state. If the contribution difference between any pair of BBs exceeded a predetermined threshold of 10, both BBs in
the pair were perturbed with random normal noise. Subsequently, a hard-thresholding operation was applied to ensure that
the desired cardinality was maintained.

To introduce slight variability also in the BBs’ structures across states (in addition to the temporal variability), the general
basis matrix A underwent modifications for each of the states. In each state and for each BB, a random selection of
0 to 2 non-zero elements from the corresponding BB in the original A matrix were set to zero, effectively introducing
missing channels as differences between states, such thatAd is the updatedA modified for state d. Finally, the data was
reconstructed using Y d = Ad(Φd)T for each state d = 1, 2, 3.

H.2. Experimental details to the Synthetic data

We applied SiBBLInGS to the synthetic data with p = 10 components and a maximum number of 103 iterations, while in
practice about 50 iterations were enough to converge (see Fig. 6). The parameters for the λ update in Eq. (2) were ϵ = 0.01,
β = 0.09, and wgraph = 1. For the regularization of Φ (Eq. (3)), the parameters used were γ1 = 0.1, γ2 = 0.1, γ3 = 0, and
γ4 = 0.0001. ν was set to be a vector of ones with length p = 10. The number of repeats for the update of A within an
iteration, for each state, was set to 2. The number of neighbors used in the channel graph reconstruction (Hd) was k = 25.
The python scikit-learn’s (Pedregosa et al., 2011) LASSO solver was used for updatingA in each iteration. This synthetic
demonstration used the supervised case for building P , where P was defined assuming similar similarity levels between
each pair of states, by defining P = 1⊗ 1T ∈ R3×3 (the case described in App. B.1.1, with c = 1).

H.3. Jaccard index calculation

In Figure 1C, we computed the Jaccard similarity index between the identified BBs by SiBBlInGS and the ground truth BBs.
To obtain this measure, we first rearranged the BBs based on the correlation of their temporal traces with the ground truth
traces (since the method is invariant to the order of the BBs). Then, we nullified the 15 lower percentiles of the Â matrix,
which correspond to values very close to zero. Finally, we compared the modified identified BBs to the ground truth BBs
using the “jaccard score” function from the sklearn library (Pedregosa et al., 2011).

I. Google Trends—Additional Information
I.1. Trends data acquisition and pre-processing

The acquisition and pre-processing of Google Trends data involved manually downloading the data from April 1, 2010, to
November 27, 2022, for each of the selected states: California (CA), Maryland (MD), Michigan (MI), New York (NY),
Illinois (IL), Louisiana (LA), Florida (FL), and Washington (WA), directly from the Google Trends platform (Google Trends,
Accessed 11 November 2022). The full list of terms (including their clusters as SiBBlInGS recovered) is presented in
Figure 9. To ensure coverage of search patterns, the data was downloaded by examining each query in all capitalization
formats, including uppercase, lowercase, and mixed case.

The data (in CSV format) was processed using the “pandas” library in Python (pandas development team, 2020; Wes
McKinney, 2010) and keeping only the relevant information from January 2011 to October 2022, inclusively. We conducted
a verification to ensure the absence of NaN (null) values for each term in every selected state. To pre-process each term, we
implemented a two-step normalization procedure. First, the values within the chosen date range were scaled to a maximum
value of 100. This step ensured that the magnitude of each term’s fluctuations remained within a consistent range. Next,
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Figure 9. Table of clustered words for the Google Trends experiment

Figure 10. Comparison of The Google Trends Results to Other Methods with 5 BBs for CA: Comparison to other methods, each
applied with p = 5 BBs, yielded less interpretable BBs. For example, SiBBlInGS discerns theme-specific BBs (e.g., ’Covid’ and
’University’), while other methods produce more blended compositions. Empty cells for PARAFAC and Tucker indicate that those BBs
remained empty.

the values for each term were divided by the sum of values across all dates and then multiplied by 100, resulting in an
adjusted scale where the area under the curve for each term equaled 100. This normalization procedure accounted for
potential variations in the frequency and magnitude of term occurrences, enabling fair comparisons across different terms.
By applying these pre-processing steps, we aimed to mitigate the influence of isolated spikes or localized peaks that could
distort the overall patterns and trends observed in the data. Since the focus of this processing was on assessing the relative
contribution of a term within a BB rather than comparing the overall amplitude and mean of the term across states, factors
such as population size and other characteristics of each state were not taken into consideration.

I.2. Experimental details for Google trends

We ran the Trends experiment with p = 5 BBs, and applied non-negativity constraints to both the BB components and their
temporal traces. The λ’s parameters in Equation (1) included ϵ = 9.2, β = 0.01, and wgraph = 35. For the regularization of
Φ in Equation (3), we used the parameters γ1 = 0, γ2 = 0, γ3 = 0.05, γ4 = 0.55. The trends example used the data-driven
version for studying P , and we set ν to be a vector of ones with length p = 5.

During each iteration,A underwent two updates within each state d. The number of neighbors we used in the channel graph
reconstruction was k = 4. We used the PyLops package in Python, along with the SPGL1 solver (Ravasi & Vasconcelos,
2020) to update A in each iteration. With respect to SPGL1 parameters (as described in (Ravasi & Vasconcelos, 2020)), we
set the initial value of the parameter τ to 0.12, and a multiplicative decay factor of 0.999 was applied to it at each iteration.
We note here that SPGL1 solves a Lagrangian variation of the original Lasso problem, where, i.e., it bounds the ℓ1 norm of
the selected BB to be smaller than τ , rather than adding the ℓ1 regularization to the cost (van den Berg & Friedlander, 2008;
Ravasi & Vasconcelos, 2020).
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Figure 11. Temporal traces of one of the BBs SiBBlInGS identified, which includes college admission terms, show bi-yearly peaks around
March and October, aligning with key milestones in the US college admissions process. Additionally, a decrease in online interest in the
college BB is observed during the COVID-19 pandemic.

I.3. Temporal traces of college BB

The temporal traces of the BBs that relate to college admission, as identified by SiBBlInGS, exhibit distinct bi-yearly peaks,
with notable increases in activity around March and October, along with a clear decrease between March to next October
(Fig. 11). These peaks align with key periods in the US college admissions cycle, including application submission and
admission decision releases. Particularly, around the end of March, many colleges and universities in the US release their
regular admission decisions, prompting increased population interest. Similarly, October marks the time when prospective
students typically start showing increased interest in applying to colleges, as many colleges have early application deadlines
that fall in late October or early November. The bi-yearly peaks pattern in March and October thus reflects the concentrated
periods of activity and anticipation within the college admissions process. External factors such as the COVID-19 pandemic
can also influence the timing and dynamics of the college admissions process, as we observe by the decrease in the college
BB activity during the pandemic period (Fig. 11).

I.4. Temporal traces of “Passover” BB

SiBBInGS identified a “Passover” BB, characterized by temporal traces that show a clear alignment with the timing of
Passover, which usually occurs around April. The time traces demonstrate a prominent peak in states with higher Jewish
population percentages, like CA, FL, and NY, as presented by the average peak value in Figure 12B plotted for the different
states. The peaks detection (in Fig. 12) was done using scipy’s (Virtanen et al., 2020) “find peaks” function with a threshold
of 4.

J. Neural Data—Additional Information
J.1. Neural Data Pre-Processing

In this experiment we used the neural data collected from Brodmann’s area 2 of the somatosensory cortex in a monkey
performing a reaching-out movement experiment from Chowdhury et al. (Chowdhury & Miller, 2022; Chowdhury et al.,
2020). While the original dataset includes data both under perturbed and unperturbed conditions, here, for simplicity, we
used only unperturbed trials. We followed the processing instructions provided by Neural Latents Benchmark (Pei et al.,
2021) to extract the neural information and align the trials. The original neural data consisted of spike indicators per neuron,
which we further processed to approximate spike rates by convolving them with a Gaussian kernel.

For each of the 8 angles, we randomly selected 18 trials, resulting in a total of 144 data matrices. The states were defined as
the angles, and for learning the supervised P , we used as labels the x-y coordinates of each angle in a circle with a radius of
1 (i.e., sine and cosine projections).
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Figure 12. Temporal trace of Passover BB. The Passover’s BB patterns, as SiBBlInGS found, show an alignment with the percentage of
Jewish population in different states. A Temporal traces of the Passover BB for each state. Vertical black lines indicate the month of April,
when Passover is usually celebrated. B The mean and standard error of peak values for each state.

J.2. Experimental details for the neural data experiment

We ran SiBBLInGS on the reaching-out dataset with p = 4 BBs. The λ’s parameters used were ϵ = 2.1, β = 0.03, and
wgraph = 10.1. For the regularization of Φ we used: γ1 = 0.001, γ2 = 0.001, γ3 = 0.1, and γ4 = 0.3 and we set ν to be a
vector of length p = 4 with ν1 = 0.8 (to allow more flexibility in the first BB), and νk = 1 for k = 2, 3, 4. For the neural
data, we used the supervised version of P , where the x− y coordinates are used as the labels for calculating P . During
each iteration,A underwent two updates within each state. We chose k = 7 neighbors for the channel graph reconstruction,
and used Python scikit-learn’s (Pedregosa et al., 2011) LASSO solver for the update ofA.

J.3. State prediction using temporal traces

We used the identified temporal traces Φ to predict the state (hand direction). The dimensionality of each state’s temporal
activity Φd was reduced to a vector of length p × 4 = 16 using PCA with 4 components. A k-fold cross-validation
classification approach with k = 4 folds was used in a multi-class logistic regression model with multinomial loss (trained
on 3 folds and used to predict the labels of the remaining fold). This process was repeated for each fold, and the results were
averaged. The confusion matrix and accuracy scores for each state (angle), are shown in Figure 4C and in Figure 13F.

J.4. Computation of ρwithin/between

To compute the correlation for the “within” state case, a random bootstrap approach was used, such that, for each state, we
randomly selected 100 combinations of temporal trace pairs corresponding to the same BB from different random trials
within the same state. We computed the correlations between these temporal trace pairs, and averaged the result over all 100
bootstrapped pairs to obtain the average correlation.

Similarly, for the “between” states case, we repeated this procedure for pairs of trials from distinct states. Particularly, we
selected 100 random bootstrapped combinations of pairs of the same BB from trials of different states. In Figure 13C, the
average correlations are shown for each BB. The ratio depicted in Figure 4E represents the ratio between the averages of the
“within” and “between” state correlations.

K. Epilepsy—Additional Information
K.1. Data Characteristics and Pre-processing for SiBBlInGS Analysis

The Epilepsy EEG experiment in this paper is based on data kindly shared publicly in (Handa et al., 2021).

The data consist of EEG recordings obtained from six patients diagnosed with focal epilepsy, who were undergoing
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presurgical evaluation. As part of this evaluation, patients temporarily discontinued their anti-seizure medications to
facilitate the recording of habitual seizures. The data collection period spanned from January 2014 to July 2015. These
seizures manifest different patients, seizure types, ictal onset zones, and durations.

The EEG data, as described by (Handa et al., 2021), were recorded using a standard 21 scalp electrodes setup, following the
10-20 electrode system, with signals sampled at a rate of 500 Hz. To enhance data quality, all channels underwent bandpass
filtering, with a frequency ranging from 1/1.6 Hz to 70 Hz. Certain channels, including Cz and Pz, were excluded from
some recordings due to artifact constraints.

Here, we focused on the EEG data from an 8-year-old male patient. This patient experienced five recorded complex partial
seizures (CPS) in the vicinity of electrode F8. The EEG data for this patient includes both an interictal segment during
which no seizures are recorded and 5 ictal segments representing seizures. ,

To prepare the data for compatibility with the input structure of SiBBlInGS, we divided the epileptic seizure data into
non-overlapping batches, with a maximum of 8 batches extracted from each seizure. Each batch had a duration of 2000 time
points, equivalent to 4 seconds. This process resulted in 4 seizures with 8 batches each and one seizure with 7 batches due to
its shorter duration.

For each seizure, we also included data from the 8 seconds preceding the marked clinical identification of the seizure. This
amounted to 2 additional 2000-long batches (each corresponding to 4 seconds) before each seizure event.

Regarding normal activity data, we randomly selected 40 batches, each spanning 4 seconds (2000 time points), from various
time intervals that did not overlap with any seizure activity or the 8-second pre-seizure period.

In total, we had 40 batches of normal activity, 39 batches of seizure activity, and 10 batches of pre-seizure data.

We ran SiBBlInGS on this data with p = 7 BBs. For the state-similarity graph (P ), we adopted a supervised approach to
distinguish between seizure and non-seizure states, as detailed in the categorical case in Appendix B.1.1, where we assigned
a strong similarity value constraint to same-state trials and lower similarity values to different-state trials.

We also leverage this example to underscore the significance of the parameter ν in the model’s ability to discover net-
works that emerge specifically under certain states as opposed to background networks. In this context, we defined here
ν = [1, 1, 1, 1, 1, 1, 0] such that the similarity levels of the 1st to 6th BBs are determined by the relevant values in P , while
the last BB’s similarity is allowed to vary between states.

During the training of SiBBlInGS on this data, we adopted a training strategy where 8 random batches were selected in
each iteration to ensure that the model was exposed to an equal number of trials from each state during each iteration and
enhancing its robustness.

L. Additional Details about the Baselines
Initial Extraction of BBs from each method: To compare SiBBlInGS with other methods (as presented in Fig. 10, 2, 5),
we took the following approach. For PCA global, we applied PCA on the entire dataset after horizontally concatenating the
time axis using the sklearn (Pedregosa et al., 2011) implementation, specifying the number of Principal Components (PCs)
to match the number of BBs in the ground truth data (p = 10). These PCs were then treated as the BBs. In the case of PCA
local, we followed a similar procedure. However, we ran PCA individually for each state.

For Sparse PCA global (SPCA global) and Sparse PCA local (SPCA local) we used its sklearn implementation, while tuning
the sparsity level on the BBs (the α parameter) to match the sparsity level of the ground truth data. Similar to the regular
PCA, SPCA global refers to applying a single SPCA on the entire dataset with p = 10 components, while and Sparse PCA
local (SPCA local) refers to applying SPCA to the observations of each state.

For dPCA, we used the Python implementation offered here (Kobak et al., 2016) with k = 3 states and p = 10 components.
We chose to protect the time axes within each trial against shuffling (“dpca.protect = [’t’]”) and extracted the temporal traces
using the stimulus component (“s” key) of the trained model.

For Tucker and PARAFAC, we utilized the Tensorly library (Kossaifi et al., 2021) with a rank set to p = 10 (the number of
BBs allowed by SiBBlInGS). We interpreted the BBs as the first factor (factors[0] in Tensorly output), and we considered
the temporal traces as the second factor (factors[1] in Tensorly output) while multiplying them by the corresponding weights
from the state factor (third factor, factors[2]) to enable cross-state flexibility to these temporal traces.
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For mTDR (Aoi & Pillow, 2018; Aoi et al., 2020), we first note that this method focuses on a slightly different problem
than SiBBlInGS, specifically tailored for cases where multiple conditions influence each trial simultaneously. Hence, in
our comparative analysis, we first adapted mTDR to be comparable with SiBBlInGS by applying the following processing
steps. Given that the synthetic example (Fig.2) involves categorical rather than ordinary sequential states, we changed
the categorical states to dummy variables using one-hot encoding before running mTDR. We then ran mTDR on the
concatenation of all trials to obtain the temporal basis matrices (S as denoted in (Aoi & Pillow, 2018)) and their neuron-
specific weights W . We recalculated the optimal coefficients based on the identified S and W to minimize the Mean
Squared Error (MSE) in reconstructing each trial, and then obtained the state-specific temporal activity through optimal
re-weighting of S. We used the reweighed optimal S to compare it with Φ from our paper’s notation, while mTDR’sW
served as the structural matrices for comparison withA in our notation.

For NONFAT (Wang & Zhe, 2022b), we used the code shared by the authors at (Wang & Zhe, 2022a). The model was
executed with the same parameters as specified in (Wang & Zhe, 2022b), but with rank set to 10 to align with the desired
BBs. The algorithm was trained for 500 epochs across 10 folds. BBs were extracted from the two views of the ”Zarr”
matrix during the last epoch. The first view was reweighted using the weights obtained from the second view of ”Zarr” for
each state and BB. Temporal traces were then extracted from the ”Uarr” matrix to calculate the trace of each BB under each
state.

For NNDTN (discrete-time NN decomposition with nonlinear dynamics, as implemented by (Wang & Zhe, 2022a)), we
concatenated individual components of “vin” over states over the number of BBs across all time points with re-weighting by
“Uvec”. The traces were then obtained by optimizing the BBs’ activity to minimize the distance between the reconstruction
and the original tensor.

Post-processing steps applied to baselines’ BBs and traces to align them with the ground truth:

• Synthetic Data:

To assess and compare the results of these alternative methods against the ground truth BBs and traces, we initially
normalized the BBs to fit the range of the ground truth BBs, applied sparsity using hard-thresholding such that the
identified BBs from each method will present similar sparsity level to that of the ground truth, and then reordered the
BBs to maximize the correlations of their temporal traces with the ground truth traces. This alignment was necessary
since SiBBlInGS is insensitive to the ordering of BBs. For the correlation comparisons (ρ(A, Â)), we examined the
correlation between the BBs, as well as their temporal traces, in comparison to the ground truth. Recognizing that
correlation might not be the most suitable metric for sparse BBs comparison, we further evaluated the performance
using the Jaccard index as well.

• EEG and Trends Experiments:

Similar to the synthetic data scenario, in the EEG and Trends experiments, we compared the identified components
with outcomes generated by different tensor and matrix factorization methods. However, since these experiments are
built on real-world data, in these case, no ground truth exists for the ensembles, as the ’real’ ensembles are unknown
and hence the evaluation of the identified structures is qualitative. Specifically, after applying the baselines to the
EEG/Trends data, we extracted the BBs (A) by the following: In the cases of global and local PCA, these BBs were
treated as the Principal Components (PCs). In the PARAFAC and Tucker tensor-factorization methods, they were
considered the first factor (factors[0] from the tensorly output), weighted by the relevant components from the third
factor (the states axis, factors[2]). We then performed the following steps: 1) Normalized the matrices to ensure that
each BB had a similar absolute sum of its columns, resulting in BBs of comparable magnitudes for state comparison,
and 2) Introduced artificial sparsity into the matrices through hard thresholding, aiming to achieve the same level of
sparsity observed in SiBBlInGS for each state. As seen in Figure 5, in the EEG experiment, the baselines failed to
detect the emergence of BBs around electrode F8, resulting in widespread non-specific clusters; As seen in Figure 10,
in the Trneds experiment, these methods produced less meaningful BBs than SiBBlInGS.
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Figure 13. Additional Figures for the Neural Recordings Experiment. A The identified BBs for the different states. While there is
clear consistency, slight modifications can be observed across states, capturing the natural variability in neural ensembles corresponding
to different tasks. B Temporal traces of the identified BBs, shown with a 90% confidence interval (background color), and all trials are
plotted in light gray. The color corresponds to the state color used in Figure 4. We observe adaptation over the states as well as differences
between the temporal traces of BBs within a given state. The third BB exhibits significantly lower activity compared to the others (see
also Figure 4), suggesting that it might capture general background trends or noise. C Within and between temporal trace correlations
(averaged over 100 bootstrapped examples) with standard error, colored according to the BB color (as used in Fig. 4), and transparency
representing the strength of the between (opaque) and within (less opaque) correlations. D Example of the correlations between each pair
of BBs within the 1-st state (0°). This shows that while some BBs are orthogonal, others are not. E Example of within-state correlations
between each pair of temporal traces of the BBs within the 1-st trial of the 1-st state (0°), showing that the temporal traces are neither
orthogonal nor overly correlated. F Accuracy in predicting the state using only the temporal traces of that state as input (colored by the
state color). While the random accuracy would be 1/length(labels) = 1

8
= 0.125, the achieved accuracies are significantly higher for all

states.

26


