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Abstract

Reinforcement finetuning (RFT) has shown great potential for enhancing the math-
ematical reasoning capabilities of large language models (LLMs), but it is often
sample- and compute-inefficient, requiring extensive training. In this work, we
introduce ADARFT (Adaptive Curriculum Reinforcement Finetuning), a method
that significantly improves both the efficiency and final accuracy of RFT through
adaptive curriculum learning. ADARFT dynamically adjusts the difficulty of
training problems based on the model’s recent reward signals, ensuring that the
model consistently trains on tasks that are challenging but solvable. This adaptive
sampling strategy accelerates learning by maintaining an optimal difficulty range,
avoiding wasted computation on problems that are too easy or too hard. ADARFT
requires only a lightweight extension to standard RFT algorithms like Proximal
Policy Optimization (PPO), without modifying the reward function or model archi-
tecture. Experiments on competition-level math datasets—including AMC, AIME,
and IMO-style problems—demonstrate that ADARFT significantly improves both
training efficiency and reasoning performance. We evaluate ADARFT across mul-
tiple data distributions and model sizes, showing that it reduces training time by up
to 2× and improves accuracy by a considerable margin, offering a more scalable
and effective RFT framework.

1 Introduction

Reinforcement Finetuning (RFT) has proven effective for improving large language models (LLMs)
with task-specific goals (DeepSeek-AI et al., 2025; OpenAI et al., 2024b). By optimizing policies
with reward signals, RFT surpasses supervised finetuning (SFT) in targeted learning. However, RFT
remains sample-inefficient and computationally costly due to repeated rollouts, reward computation,
and policy updates (Ahmadian et al., 2024; Kazemnejad et al., 2024; Li et al., 2024; Hu, 2025; Cui
et al., 2025). Recent work has sought to improve efficiency through algorithmic simplifications (e.g.,
RAFT (Dong et al., 2023), GRPO (DeepSeek-AI et al., 2025), ReMax (Li et al., 2024)) or data-centric
strategies (e.g., LIMO (Ye et al., 2025), LIMR (Li et al., 2025)). While effective, these often trade
off stability, rely on static filtering, or require heavy model-specific processing. Curriculum-style
methods (Wen et al., 2025; Luo et al., 2025; Song et al., 2025) and online filtering (Bae et al.,
2025; Yu et al., 2025) offer partial adaptivity but remain coarse-grained or expensive. We introduce
ADARFT, a lightweight, adaptive curriculum method that dynamically aligns training difficulty with
model ability. By maintaining a target difficulty updated from recent rewards, ADARFT samples
problems that are neither trivial nor intractable, enabling steady progression. Unlike staged curricula
or rollout-heavy filtering, ADARFT is general, model-agnostic, and easily integrated into standard

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

https://github.com/limenlp/verl
https://huggingface.co/datasets/lime-nlp/DeepScaleR_Difficulty


RL methods such as Proximal Policy Optimization (PPO) (Schulman et al., 2017b). Experiments
on competition-level math datasets (AMC, AIME, IMO-style) show that ADARFT improves both
training efficiency and final accuracy, achieving up to 2× faster convergence.

2 ADARFT

We aim to improve the performance of a policy model πθ for solving mathematical problems through
adaptive curriculum learning. Finetuning on problems that are too easy or too hard leads to poor
learning outcomes. Instead, the model should be trained on problems whose difficulty is close to the
model’s current capability. We frame this as an adaptive curriculum learning problem and propose
ADARFT, which adaptively adjusts the target difficulty to keep training problems within a suitable
difficulty range. ADARFT is compatible with a variety of RL algorithms (e.g, GRPO, PPO); in this
work, we instantiate it with PPO and refer to this variant as ADARFT (PPO). Let D be a dataset of
mathematical problems, each annotated with a precomputed difficulty score di. The score can be
either human-annotated or model-estimated. The objective is to train a policy πθ that improves its
problem-solving ability by dynamically adjusting the training curriculum according to the model’s
current performance. Our proposed algorithm, ADARFT, is shown in Algorithm 1. The core idea is
simple: at each iteration, the model is trained on problems whose difficulty is closest to a target level
T . After updating the policy with rewards from these problems, T is shifted upward or downward
depending on the model’s success rate. High performance increases T (harder tasks), while low
performance decreases it (easier tasks). This creates a self-adjusting curriculum that avoids both
stagnation on easy problems and frustration on unsolvable ones. The implementation details and the
theoretical justifications can be found in Appendix B and D.1.

Algorithm 1 ADARFT – Adaptive Curriculum Reinforcement Finetuning

1: Input: Data source D with difficulty scores {di}, policy model πθ , reward function R(·, ·), batch size B,
initial target difficulty T , step size η, sensitivity α, target reward β, difficulty bounds dmin, dmax

2: Select RL algorithm A (e.g., PPO, GRPO, REINFORCE++)
3: while training is not finished do
4: Compute absolute differences from target difficulty: ∆i = |di − T | ∀i ∈ {1, . . . , |D|}
5: Sort and select top B samples closest to target difficulty: X ← {s1, s2, . . . , sB}
6: Generate responses using policy model: G = πθ(X)

7: Compute average reward: Ravg ← 1
|X|

∑|X|
i=1 R(Xi, Gi)

8: Update policy: πθ ← A(πθ, X,G,R)

9: Update and clip target difficulty: T ′ ← clip(T + η · tanh(α · (Ravg − β)), dmin, dmax)

10: Update sampler: T ← T ′

11: end while

3 Experiments

3.1 Difficulty Estimation

Accurate estimation of problem difficulty is critical for ADARFT. For difficulty estimation, we select
the Qwen 2.5 MATH 7B model (Qwen et al., 2025) because it demonstrates a balanced solving ability.
For each problem, the difficulty score is computed as: di = 100×

(
1− successful attempts on problem i

n

)
,

where n is the number of attempts per problem. In our setup, we use n = 128. We evaluated the
stability and reliability of our difficulty estimates and found that they correlated well with human
performance (see Appendix C).

3.2 Dataset

We use the DeepScaleR dataset (Luo et al., 2025) as the training set. In practice, we do not have
control over the exact difficulty distribution of the data collected for training. This motivates our
investigation into how different difficulty distributions influence ADARFT. To this end, we construct
three distinct distributions from the DeepScaleR dataset. The first is a skew-difficult distribution,
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where most problems are challenging. The second is a skew-easy distribution, where most problems
are relatively easy. The third is a uniform distribution, where problems are evenly balanced across
all difficulty levels. Each of these three distributions includes 10,000 samples. For evaluation, we use
six benchmark datasets to assess the model’s performance across different levels of difficulty and
mathematical reasoning. The first benchmark, MATH 500 (Lightman et al., 2023), GSM8K (Cobbe
et al., 2021), OlympiadBench (He et al., 2024), Minerva Math (Lewkowycz et al., 2022), AMC 23,
and AIME 24.

3.3 Training Setup

We trained two models on the three difficulty-based distributions of the DeepScaleR dataset described
in Section 3.2: Qwen 2.5 7B and Qwen 2.5 MATH 1.5B. This setup allows us to evaluate the
effectiveness of ADARFT on models with different initial performance levels when exposed to skew-
difficult, skew-easy, and uniform problem distributions. All models were trained using three different
approaches: (1) the standard PPO algorithm, (2) ADARFT (PPO), our method that integrates adaptive
curriculum learning with PPO (see Section 2), and (3) PPO with filtered data, a strong baseline that
trains PPO using filtered data based on pass@k accuracy. For the data filtering baseline (3), we
remove examples that are either too easy or too hard, excluding problems with solved percentages
≤ 10% or ≥ 90%. The implementation details can be found in Appendix E.

4 Results and Analysis

As shown in Figure 1 and Table 1, models trained with ADARFT consistently require fewer training
steps to match the performance of those trained with standard PPO or PPO on filtered data. In
addition to improved sample efficiency, ADARFT also achieves faster average training time per step
across nearly all settings, as reported in Table 1. This is largely due to the fact that easier problems
require fewer tokens to solve. As a result, curriculum learning’s tendency to prioritize shorter, easier
problems early in training leads to shorter sequences on average, reducing per-step compute and
improving overall training throughput.

In addition to improving efficiency, ADARFT (PPO) also improves the final model performance.
As shown in Table 2, at the end of training (step 100), ADARFT yields consistent improvements in
final accuracy across all configurations. The reported averages reflect accuracy across six diverse
benchmarks: GSM8K, MATH 500, OlympiadBench, Minerva Math, AMC 23, and AIME 24. On
average, models trained with ADARFT (PPO) outperform their PPO-only counterparts in both final
accuracy and training efficiency. This improvement is particularly notable in non-uniform data
distributions, where curriculum adaptation is most beneficial.

Table 1: Average time per step (in seconds) at step 100 and
extra steps required to match ADARFT’s performance at step
60 (for Qwen 2.5 Math 1.5B) or step 40 (for Qwen 2.5 7B),
across different setups and methods.

Model Setup Method Avg Step Time (s) Extra Steps (%)

Qwen2.5
Math
1.5B

skew-difficult
ADARFT 122.24 +0 (0.0%)
PPO 132.95 +43 (71.7%)
PPO (w/ Filter) 128.20 +49 (81.7%)

uniform
ADARFT 121.31 +0 (0.0%)
PPO 126.82 +34 (56.7%)
PPO (w/ Filter) 126.35 +52 (86.7%)

skew-easy
ADARFT 120.52 +0 (0.0%)
PPO 121.15 +16 (26.7%)
PPO (w/ Filter) 115.12 +21 (35.0%)

Qwen2.5
7B

skew-difficult
ADARFT 239.92 +0 (0.0%)
PPO 246.21 +24 (60.0%)
PPO (w/ Filter) 254.22 +25 (62.5%)

uniform
ADARFT 234.16 +0 (0.0%)
PPO 243.82 +13 (32.5%)
PPO (w/ Filter) 263.11 +23 (57.5%)

skew-easy
ADARFT 247.44 +0 (0.0%)
PPO 235.27 +20 (50.0%)
PPO (w/ Filter) 233.13 +17 (42.5%)

Our findings show that curriculum
learning provides the greatest bene-
fits under two key conditions: (1)
imbalanced training distributions,
and (2) limited model capacity. In
skewed distributions, particularly
the skew-difficult settings, standard
PPO often struggles to gain trac-
tion early in training due to insuf-
ficient reward signals. ADARFT
mitigates this by initially sampling
easier problems, enabling the model
to bootstrap capabilities before tack-
ling harder content. Conversely, the
benefits of ADARFT are less pro-
nounced when the model is strong
enough or the data is already well-
balanced. In both cases, the model
is either already exposed to a rep-
resentative distribution of task diffi-
culties or finds most problems chal-
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lenging enough, thus reducing the need for dynamic difficulty adjustment. In addition, we conducted
further experiments detailed in Appendix D, including evaluations on datasets with more extreme
difficulty distributions (D.2), ablation studies on different target reward β (D.3), difficulty estimation
using an LLM-based judge (D.4), and instantiations of ADARFT with alternative RL algorithms
(GRPO, REINFORCE++) (D.5). Across all these settings, ADARFT consistently demonstrates
effectiveness, highlighting its robustness to diverse data distributions, compatibility with various RL
algorithms, and flexibility with different difficulty metrics.
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Figure 1: Performance comparison of PPO, PPO with filtered data, and ADARFT (PPO) across
different setups (uniform, skew-easy, skew-difficult). Accuracy is the average of MATH 500, GSM8K,
AIME 24, AMC 23, OlympiadBench, and Minerva Math. Compared with baselines, ADARFT
improves both the accuracy and training efficiency. For clarity, curves are exponentially smoothed.

Table 2: Accuracy (%) at step 100 for every model, setup, and benchmark. ADARFT in this table
refers to ADARFT instantiated with PPO, i.e., ADARFT (PPO).

Model Setup Method GSM8K MATH
500

Olympiad
Bench

Minerva
Math

AMC 23
(Avg@8)

AIME 24
(Avg@8) Average

Qwen 2.5
Math
1.5B

skew-difficult
PPO 69.67 64.60 20.65 12.87 47.50 9.17 37.41
PPO (w/ Filter) 71.65 62.40 20.06 15.07 45.00 9.17 37.22
ADARFT 74.00 66.40 20.36 15.07 55.00 12.08 40.48

uniform
PPO 71.95 65.20 21.10 15.81 42.50 6.67 37.20
PPO (w/ Filter) 72.63 65.80 20.21 13.60 45.00 10.00 37.87
ADARFT 74.53 66.20 21.99 14.34 57.50 12.08 41.11

skew-easy
PPO 72.71 67.40 19.17 13.97 45.00 12.50 38.46
PPO (w/ Filter) 74.75 65.20 20.36 13.60 45.00 10.00 38.15
ADARFT 73.62 66.20 19.91 13.97 55.00 9.17 39.18

Qwen 2.5
7B

skew-difficult
PPO 89.69 71.20 23.33 23.53 50.00 11.25 44.17
PPO (w/ Filter) 88.48 72.20 24.37 25.00 50.00 12.08 45.35
ADARFT 90.98 71.40 25.85 22.43 52.50 15.83 46.83

uniform
PPO 89.31 72.40 23.63 25.37 42.50 15.00 44.70
PPO (w/ Filter) 89.08 74.40 23.18 22.43 45.00 13.33 44.57
ADARFT 90.14 72.60 24.96 24.26 55.00 14.58 46.92

skew-easy
PPO 89.39 73.60 23.33 24.26 47.50 13.33 45.07
PPO (w/ Filter) 89.31 71.60 24.22 23.90 47.50 13.33 44.98
ADARFT 90.14 72.60 25.56 23.16 50.00 14.17 45.94

5 Conclusion

We propose ADARFT, an adaptive curriculum learning strategy for reinforcement finetuning (RFT)
that dynamically matches problem difficulty to a model’s evolving skill level. By adjusting a target
difficulty based on reward feedback, ADARFT improves both sample and compute efficiency without
modifying the reward function or underlying RL algorithm. Experiments across multiple data
regimes and model sizes show consistent gains in convergence speed and final accuracy, especially
in imbalanced training distributions. This lightweight, scalable approach highlights the value of
curriculum-aware training for efficient and robust alignment in structured reasoning tasks.
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A Related Work

Efficient Reinforcement Finetuning. Most RFT pipelines build on Proximal Policy Optimization
(PPO) (Schulman et al., 2017b), with recent variants like RAFT (Dong et al., 2023), ReMax (Li
et al., 2024), GRPO (DeepSeek-AI et al., 2025), and REINFORCE++ (Hu, 2025), aiming to reduce
computational overhead by simplifying RL components. While effective, these methods often trade
off stability or sample efficiency. In parallel, data-centric strategies have emerged as promising
alternatives for efficient finetuning. LIMO (Ye et al., 2025) and s1 (Muennighoff et al., 2025) show
that small, carefully selected supervised datasets can yield strong downstream performance, but their
success hinges on manual curation, prompt engineering, and careful dataset construction, which
may not generalize across tasks or models. LIMR (Li et al., 2025) and Wang et al. (2025) proposes
scoring training examples based on their estimated learning impact, enabling selective finetuning
with fewer samples. Yet, computing these scores requires a full training run, and the scores must
be recomputed for each new model, limiting practicality and scalability. Moreover, reducing the
number of training samples does not inherently translate to improved efficiency. Models still require
a comparable number of optimization steps and wall-clock time to converge. In contrast, ADARFT
introduces a lightweight, model-agnostic curriculum learning strategy that dynamically adjusts task
difficulty based on reward feedback. This allows continuous adaptation to the model’s capabilities,
improving convergence speed and final accuracy without modifying the RL algorithm or requiring
manual data curation.

Curriculum Learning for RL. Curriculum learning (CL) structures training by presenting tasks
in an organized progression, typically from easy to hard, to enhance learning efficiency and gener-
alization (Bengio et al., 2009). In RL, CL methods include task sorting by difficulty (Zaremba &
Sutskever, 2015; Justesen et al., 2018; Wang et al., 2019), teacher-student frameworks that adaptively
select tasks based on learning progress (Matiisen et al., 2017; Portelas et al., 2019), and self-play
approaches that induce automatic curricula through agent competition (Sukhbaatar et al., 2018; Zhao
et al., 2025). Other strategies use intermediate-goal generation in sparse-reward settings (Florensa
et al., 2018), unsupervised skill discovery (Jabri et al., 2019), or knowledge transfer via progressive
networks and imitation (Czarnecki et al., 2018; Rusu et al., 2022). While CL is well-studied in
classical RL, its application to RFT of LLMs is still limited. Existing methods typically use staged
training with hand-designed difficulty tiers (Wen et al., 2025; Luo et al., 2025; Song et al., 2025), or
online filtering schemes that repeatedly sample and discard data until rewards reach a target range
(Bae et al., 2025; Yu et al., 2025). These methods either lack adaptability or introduce significant
computational overhead due to repeated rollouts. In contrast, ADARFT is among the first truly
adaptive curriculum learning approaches for RFT: it continuously adjusts task difficulty based on
the model’s reward signal, enabling efficient, scalable training without fixed schedules or repeated
rollouts.

B Implementation Details of AdaRFT

B.1 Dynamic Curriculum Sampling

To construct an adaptive curriculum, we define a target difficulty T , which represents the current
target difficulty level for training (more in § B.3). ADARFT dynamically adjusts T based on the
model’s reward signal to maintain an optimal difficulty level for learning. At each step, the algorithm
computes the absolute difference between the target difficulty and the difficulty of each problem in
the dataset (Alg. 1, line 4): ∆i = |di − T | for all i ∈ [1, |D|]. The batch of training problems is
formed by selecting the B problems with the smallest values of ∆i (Alg. 1, line 5), producing a batch:
X = {s1, s2, . . . , sB}. This ensures that the selected problems are closest to the model’s current
target difficulty, focusing the learning process on problems that are neither too easy nor too hard.

B.2 Policy Update

The selected batch X is used to train the policy model πθ, which generates responses: G = πθ(X).
A reward signal is computed based on the correctness of the model’s output (Alg. 1, line 7): Ri = 1
if the response is correct, and Ri = 0 if the response is incorrect. The average reward over the
batch is computed as (Alg. 1, line 7): Ravg = 1

|X|
∑|X|

i=1 R(Xi, Gi). The policy can then be updated
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Figure 2: Evaluation of difficulty estimation: (a) Stability of difficulty scores under subsampling of
model rollouts; (b) Correlation between labeled difficulty levels and average solved percentage.

using a reinforcement learning algorithm A such as PPO, GRPO, or REINFORCE++ (Alg. 1, line 8):
πθ ← A(πθ, X,G,R).

B.3 Target Difficulty Update

To adapt the curriculum dynamically, the target difficulty is updated based on the average reward. If
the model performs well on the current difficulty level (high reward), the target difficulty increases,
making the training problems harder. Conversely, if the model performs poorly, the target difficulty
decreases. This dynamic update mechanism lies at the core of ADARFT’s curriculum adaptation
strategy. The update rule (Alg. 1, line 9) is defined as:

T ′ = clip(T + η · tanh(α · (Ravg − β)), dmin, dmax)

Here, η, α, β are hyperparameters: η is the step size for adjusting the target difficulty, α controls
the sensitivity of the update, and β is the target reward level, representing the desired success rate.
The tanh function ensures smooth updates and prevents large jumps in difficulty by saturating for
large deviations, while the “clip” function constrains the target difficulty within the valid range
[dmin, dmax]. These bounds can be manually specified or automatically derived from the training
set, for example by taking the minimum and maximum of the difficulty scores {di}. Intuition and
guidance for selecting these hyperparameters are discussed in Section D.1 and 3.3.

C Stability and Reliability of Difficulty Estimation

To evaluate the stability of our difficulty estimation process, we simulate how confidence varies with
different numbers of samples. For each problem, we treat the full set of 128 rollouts as the ground-
truth difficulty estimate and compute how often sub-sampled estimates fall within a tolerance of
ϵ = 0.05. Specifically, we run 10 random sampling trials per sample size and average the confidence
across all problems in the dataset. As shown in Figure 2a, even with as few as 64 samples, the
estimated difficulty remains within ±0.05 of the full estimate over 90% of the time. With just 40
samples, the confidence remains around 80%. These results indicate that accurate and robust difficulty
estimation can be achieved with significantly fewer rollouts, reducing the computational burden of
large-scale curriculum construction.

To further validate the reliability of our difficulty estimates, we examined their alignment with the dif-
ficulty levels provided in the MATH dataset. The MATH dataset comprises 12,500 competition-level
mathematics problems sourced from contests such as the American Mathematics Competitions (AMC)
and the American Invitational Mathematics Examination (AIME). Each problem is categorized into
one of five difficulty levels, following the classification system used by the Art of Problem Solving
(AoPS) community.1 In this system, level 1 denotes the easiest problems, while level 5 represents the
most difficult. As shown in Figure 2b, there is a clear downward trend in the average solve rate as
the labeled difficulty level increases, ranging from 86.0% at level 1 to 52.7% at level 5. Specifically,

1https://artofproblemsolving.com/wiki/index.php/AoPS_Wiki:Competition_ratings
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the AoPS-derived difficulty levels yield a Pearson correlation of r = −0.34 (p < 0.05) with model
success rates. This negative correlation indicates that the model’s empirical performance aligns well
with the intended difficulty stratification, reinforcing the utility of both the labeled difficulty levels
and our estimation approach in guiding curriculum learning. To further streamline the difficulty
estimation process, we also prompted GPT-4o (gpt-4o-0806) (OpenAI et al., 2024a) to assign
difficulty levels to the DeepScaleR dataset based on the AoPS rubric. Each problem was presented to
GPT-4o with a request to rate its difficulty according to AoPS guidelines (the full prompt is shown
in Appendix E.3). This approach provides a lightweight and scalable alternative to rollout-based
estimation. As shown in Figure 2b, GPT-4o’s difficulty ratings also correlate well with the model
success rates, with a Pearson correlation of r = −0.32 (p < 0.05), making it a practical proxy for
curriculum scheduling when computational resources are constrained.

D Further Discussion

D.1 Theoretical Justification for Target Reward β

A key component of ADARFT is its adaptive curriculum mechanism, which steers training toward
a target reward level β. Intuitively, we aim to train on examples that are neither trivially easy nor
prohibitively hard. In this light, setting β = 0.5, corresponding to a success rate of roughly 50%,
naturally aligns with this goal. This section formalizes that intuition by analyzing the relationship
between reward variance and learnability in RFT with binary rewards.

In entropy-regularized reinforcement learning, the optimal policy π∗ can be expressed relative to a
reference policy πinit as (Korbak et al., 2022; Go et al., 2023; Rafailov et al., 2023):

π∗(y | x) = Z(x)πinit(y | x) exp
(
1

τ
r(x, y)

)
(1)

where τ is the inverse temperature parameter controlling entropy regularization, and Z(x) is the
partition function that normalizes the action probability. The corresponding optimal value function
and the partition function is given by (Schulman et al., 2017a; Richemond et al., 2024):

V ∗(x) := τ logEy∼πinit(·|x)

[
exp

(
1

τ
r(x, y)

)]
and Z(x) = exp

(
1

τ
V ∗(x)

)
(2)

We can then take the expectation of the log-ratio between the optimal policy and the initial policy
with respect to y ∼ πinit(· | x), leading to (Haarnoja et al., 2017; Schulman et al., 2017a):

Ey∼πinit(·|x)

[
log

π∗(y | x)
πinit(y | x)

]
=

1

τ
Eπinit [r(x, y)]−

1

τ
V ∗(x) (3)

Since the left-hand side can be interpreted as the negative reverse KL divergence between πinit and
π∗ (Rafailov et al., 2024), Bae et al. (2025) show that when the reward r(x, y) with y ∼ πinit(· | x) is
Bernoulli, the KL divergence is lower-bounded by the reward variance:

DKL(πinit∥π∗) ≥ p(x)(1− p(x))

2τ2
(4)

where p(x) is the model’s success rate on prompt x. This implies that the lower bound on the KL
divergence, and consequently the gradient magnitude during policy updates, is proportional to the
reward variance, which is maximized when p(x) = 0.5. In other words, training on prompts that
the model succeeds on roughly half the time may yield the strongest learning signal. In Section 4
and Appendix D.3, we conduct an ablation study by varying the target reward β, demonstrating that
setting β = 0.5 consistently leads to the best performance, supporting the hypothesis that training on
prompts with a success rate near 50% provides the most informative learning signal.

D.2 Data Difficulty on Model Performance

To better understand the effect of data difficulty on model performance, we introduce two addi-
tional data distributions: easy-extreme and hard-extreme. Unlike the skew-difficult and skew-easy
distributions, which still include a mix of difficulty levels, the easy-extreme and hard-extreme sets
consist exclusively of the most polarized examples. Specifically, easy-extreme contains only the
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easiest samples with difficulty levels no greater than 15, while hard-extreme includes only the hardest
samples with difficulty levels of at least 97. Each of these extreme distributions consists of ap-
proximately 8,000 samples, providing a focused and controlled evaluation of model behavior under
minimal or maximal difficulty conditions. We trained a Qwen 2.5 7B model on each of the two
extreme distributions using PPO, and compared their performance to models trained on the uniform
distribution with PPO (Uniform) and with ADARFT instantiated with PPO (Uniform + ADARFT),
as described in Section 4. The results are presented in Figure 3. The key takeaway is that training on
only overly easy or hard problems fails to provide useful learning signals, reinforcing the need for
ADARFT to adaptively steer models toward challenges matched to their current ability.
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Figure 3: Performance comparison of Qwen 2.5 7B trained on different data distributions using PPO
(Uniform, Easy-Extreme, Hard-Extreme) and ADARFT instantiated with PPO (Uniform + ADARFT).
For clarity, curves are exponentially smoothed (α = 0.3) to reduce noise.

Accuracy. The leftmost panel of Figure 3 shows that uniform + ADARFT achieves the highest
overall accuracy throughout training, outperforming both uniform and the two extreme settings.
This highlights the effectiveness of ADARFT in guiding the model through an optimal difficulty
progression. In contrast, hard-extreme struggles significantly, with a flat and lower trajectory,
indicating that exposing the model only to very difficult problems limits learning progress. This
suggests that without a gradual exposure strategy, models trained on only the hardest problems are
unable to bootstrap their capabilities effectively.

Reward. The reward trends provide important clues about learning dynamics. The easy-extreme
setup achieves the fastest reward improvement during early training, surpassing both uniform and
hard-extreme. In particular, easy-extreme consistently operates in a reward range between 0.4 and 0.6
during early training, which corresponds to a success rate that is both challenging and attainable. In
contrast, the reward of the uniform and hard-extreme setup lingers below 0.2 in early training, leading
to slower learning. This suggests that training on problems with intermediate difficulty—those that
are neither trivially easy nor prohibitively hard—provides the most effective learning signal. Notably,
ADARFT is explicitly designed to exploit this insight: by setting the target reward β = 0.5, we
encourage the model to train on problems that match this “productive struggle” zone. As shown
by the uniform + ADARFT curve, the algorithm successfully maintains an average reward near 0.5
throughout training, allowing the model to learn at an optimal pace. Notably, while the uniform setup
eventually reaches a reward of nearly 0.5 by step 50, it does not result in faster learning. This is
likely because the model is already fairly well trained by that stage, so the additional reward signal
contributes less to further improvement. In contrast, the hard-extreme model receives almost no
reward signal for most of the training, while the uniform setup shows slower and more gradual reward
accumulation.

Response Length. The response length panel reveals how the complexity of generated solutions
evolves during training. The hard-extreme model consistently produces the longest responses, with
length increasing steadily, reflecting the higher complexity and reasoning depth required by the
hardest problems. In contrast, the easy-extreme setup maintains short and stable responses, consistent
with its simpler problem set. The uniform and uniform + ADARFT setups fall between these two
extremes. Notably, uniform + ADARFT shows a gradual increase in response length over time. This
trend aligns with the behavior of the curriculum learning algorithm: as the model improves, it is
exposed to increasingly difficult problems, which naturally demand more elaborate reasoning and
longer solutions. This dynamic suggests that response length can serve as a useful proxy for problem
difficulty and reasoning complexity during training.
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Difficulty. Finally, the difficulty panel illustrates how problem difficulty evolves under each setup.
The easy-extreme and hard-extreme curves remain flat, confirming that these datasets contain only
problems from the tail ends of the difficulty spectrum (i.e., ≤ 15 and ≥ 97, respectively). The
uniform curve is centered around 50, as expected, while uniform + ADARFT shows a steady increase
in difficulty over time. This adaptive progression confirms that curriculum learning effectively steers
the model from easier to harder problems, aligning difficulty with the model’s evolving capabilities.

D.3 Ablation on Target Reward β

To better understand the role of the target reward β in ADARFT, we perform an ablation study varying
β in the target difficulty update rule. Recall that β controls the target average reward the model is
expected to achieve and implicitly steers the curriculum: lower values prioritize easier problems,
while higher values shift the curriculum toward more challenging samples. We train a Qwen 2.5 Math
1.5B model on the uniform data distribution with ADARFT (PPO) using three different values of β:
0.2, 0.5, and 0.8. For comparison, we also include standard PPO without ADARFT (denoted as “w/o
ADARFT”) as a baseline.

As shown in Figure 4, the model trained with β = 0.5 achieves the highest accuracy throughout
training. This supports our theoretical motivation in Section D.1: maximizing reward variance, which
occurs when success rate ≈ 0.5, provides the strongest learning signal. Models with β = 0.2 and
β = 0.8 underperform likely due to curriculum misalignment: β = 0.8 overly focuses on easy
problems, while β = 0.2 overemphasizes difficult ones, both of which limit the model’s capacity to
generalize. The reward and difficulty curves align with the accuracy outcomes discussed above. The
β = 0.5 configuration maintains a stable reward near 0.5, reflecting balanced difficulty exposure.
In contrast, β = 0.8 results in overly high reward (i.e., easy samples), while β = 0.2 maintains a
reward around 0.2 for most of training, indicating the model is repeatedly presented with overly
difficult problems. As expected, response length is the shortest for β = 0.8 and longest for β = 0.2,
consistent with the idea that longer responses correlate with problem complexity.
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Figure 4: Ablation on β in ADARFT: we compare model accuracy, average reward, response length,
and mean difficulty under β = 0.2, β = 0.5, and β = 0.8, along with standard PPO (w/o ADARFT).

D.4 Training on LLM-Estimated Difficulty

In addition to rollout-based difficulty estimation, we explore an alternative strategy that uses LLM-
judged difficulty levels to guide curriculum construction. As described in Section 3.1, we prompt GPT-
4o (gpt-4o-0806) to assign difficulty levels to math problems in the DeepScaleR dataset according
to the AoPS rubric. This approach offers a lightweight and scalable alternative to computing pass@k
success rates from model rollouts, making it especially attractive in low-resource scenarios.
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Figure 5: Comparison of different diffi-
culty estimation strategies.

To assess the effectiveness of this strategy, we train a Qwen
2.5 Math 1.5B model on the skew-difficult distribution us-
ing ADARFT (PPO) with two curriculum schedules: one
based on rollout-derived pass@k difficulty, and the other
guided by GPT-4o’s difficulty ratings. Since the LLM-
judged difficulty is on a scale of 1 to 5 (rather than 0 to
100), we set the step size hyperparameter η = 2.5 to align
the difficulty adjustment magnitude with the reward sig-
nal. All other hyperparameters are kept unchanged. As
shown in Figure 5, both curriculum strategies outperform
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standard PPO without curriculum learning. While rollout-
based difficulty estimation yields the strongest gains, the
LLM-judged curriculum still provides a noticeable im-
provement over the baseline.

These results demonstrate that ADARFT remains effective even when the difficulty signal is derived
from heuristic or approximate sources like LLM judgments. Although less precise than empirical
pass@k metrics, the LLM-based difficulty still provides enough structure to enable meaningful
curriculum adaptation. This makes it a practical fallback when rollout computation is too costly, and
suggests that future work could explore hybrid approaches that combine lightweight heuristics with
periodic empirical calibration.

D.5 ADARFT with Diverse RL Algorithms
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Figure 6: Comparison between models
trained with and without AdaRFT using
REINFORCE++ and GRPO.

To evaluate the generality of ADARFT beyond PPO, we
trained the Qwen 2.5 Math 1.5B model on a skew-difficult
data distribution using two alternative reinforcement learn-
ing algorithms: REINFORCE++ and GRPO (see imple-
mentation details in Appendix E). As shown in Figure 6,
ADARFT significantly improves both the convergence
speed and final accuracy across these variants. Across
both cases, the adaptive curriculum acts orthogonally to
the underlying optimization method. These results rein-
force the plug-and-play nature of ADARFT: it consistently
enhances sample efficiency and policy robustness across al-
gorithmic choices, making it broadly applicable in diverse
reinforcement finetuning pipelines. Notably, this general-
ization holds without any additional tuning or algorithm-
specific modifications, underscoring the practical utility of
curriculum-aware training in both lightweight and computation-heavy RFT settings.

E Implementation Details

E.1 Training Configuration

We trained both the actor and critic models using the PPO algorithm on a single node with 8 A100
GPUs. Each model was trained for approximately 100 optimization steps using the veRL library
(Sheng et al., 2024). We used two model variants: Qwen2.5-7B and Qwen2.5-MATH-1.5B. The
latter has a shorted context window, so we adjusted the max response length and the sequence parallel
size accordingly.

Table 3 summarizes the core hyperparameter settings used across all three algorithms: PPO, GRPO,
and REINFORCE++. We highlight both shared defaults and algorithm-specific overrides, including
KL treatment modes, rollout settings, and critic configurations.

Following the approach of prior work (Bae et al., 2025; Hu et al., 2025; Zyphra, 2025), we perform a
pass@40 analysis for each model and data distribution combination. For the data filtering baseline (3),
we remove examples that are either too easy or too hard, excluding problems with solved percentages
≤ 10% or ≥ 90%. This focuses training on problems of intermediate difficulty. However, this
filtering discards a significant portion of the training data, including many potentially useful examples.
Moreover, because difficulty is determined via pass@k metrics, filtering must be recomputed each
time the model or data distribution changes. In contrast, ADARFT only requires difficulty estimation
once per dataset and adapts to any model during training. For ADARFT, the target difficulty was
dynamically adjusted throughout training based on the model’s reward signal. This adjustment ensured
that the model consistently encountered problems that matched its current skill level, preventing the
model from being overwhelmed by overly difficult problems or stagnating on problems that were too
easy.
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E.2 ADARFT Parameters

To enable effective ADARFT, we incorporated a simple curriculum learning mechanism that dynami-
cally adjusts task difficulty during training. We tuned several key hyperparameters: training batch
size B = 1024, target reward β = 0.5, sensitivity parameter α = 2, step size η = 50, and initial
difficulty T = 0. These settings were used uniformly across all experiments listed in Table 3. The
difficulty is updated as a function of the discrepancy between the running average reward r̄ and the
target reward β, using the following rule:

∆T = η · tanh (α · (r̄ − β))

This formulation promotes stable learning by providing approximately linear updates when r̄ ≈ β,
and saturated updates when rewards deviate significantly, thereby avoiding abrupt difficulty shifts.
Because the reward is bounded in [0, 1] and the difficulty metric spans [0, 100], we set the step size
η = 50 to align their scales. The modulation parameter α = 2 ensures smooth and controlled
progression throughout training.

Table 3: Comparison of training hyperparameters for PPO, GRPO, and REINFORCE++ using the
veRL library. Shared defaults are used unless overridden.

Category Parameter PPO GRPO REINFORCE++
Algorithm-Specific Settings

General

Advantage estimator GAE GRPO REINFORCE++
Gamma (γ) 1.0 — —
Lambda (λ) 1.0 — —
Batch size 1024 1024 1024
Max prompt length 1024 1024 1024
Gradient checkpointing Enabled Enabled Enabled

Actor

Learning rate 1× 10−6 1× 10−6 1× 10−6

Mini-batch size 1024 1024 1024
Dynamic batch size Enabled Enabled Enabled
KL penalty role Reward Loss Loss
KL loss type Fixed Low-variance KL MSE
KL loss coefficient (β) 0.001 0.001 0.001
Entropy coefficient 0.001 0.001 0
Clip ratio 0.2 0.2 0.2
Gradient clipping 1.0 1.0 1.0
Sequence parallel size Model-specific Model-specific Model-specific

Rollout

Backend vLLM vLLM vLLM
Tensor model parallel size 2 2 2
Rollouts per sample 1 4 1
Nucleus sampling p 1.0 1.0 1.0
GPU memory utilization 0.5 0.5 0.5
Sampling temperature 1.0 1.0 1.0

Critic
Warmup steps 0 — —
Learning rate 1× 10−5 — —
Sequence parallel size Model-specific — —

Model-Specific Overrides (shared across all algorithms)

Qwen2.5-7B
Max response length 8000 8000 8000
Sequence parallel size 2 2 2
Max token length / GPU 8000 8000 8000

Qwen2.5-MATH-1.5B
Max response length 3000 3000 3000
Sequence parallel size 1 1 1
Max token length / GPU 16000 16000 16000

ADARFT Parameters

Curriculum Learning

Target reward (β) 0.5 0.5 0.5
Sensitivity (α) 2 2 2
Step size (η) 50 50 50
Initial difficulty (T ) 0 0 0
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E.3 Prompt for Difficulty Estimation Using LLM as a Judge

The prompt used for difficulty estimation (as described in Section 3.1) is shown in Table 4, Table 5,
and Table 6. The descriptions of the difficulty scales and examples are sourced from the AoPS Wiki.2
Although GPT-4o is prompted to rate problem difficulty on a scale from 1 to 10, we found that over
95% of the problems fall within the range of 1 to 5. Therefore, we clip the scores and use a revised
scale from 1 to 5. In addition to integer scores, we also allow half-point increments such as 1.5, 2.0,
and 2.5 for finer-grained difficulty estimation.

2https://artofproblemsolving.com/wiki/index.php/AoPS_Wiki:Competition_ratings
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Prompt for Difficulty Estimation (Part 1)

# Math Problem
{problem}

# Your Task
You are a subject matter expert in mathematics tasked with evaluating the difficulty level
of individual math problems. Your assessment should be objective and based on a detailed
difficulty scale provided below. Your judgment will help calibrate and categorize problems for
use in educational settings or assessments. Be thorough, fair, and consistent in your evaluation.

# Difficulty Scale
1: Problems strictly for beginner, on the easiest elementary school or middle school levels
(MOEMS, MATHCOUNTS School, AMC 8 1-10, AMC 10 1-10, easier AMC 12 1-5, and
others that involve standard techniques introduced up to the middle school level), most
traditional middle/high school word problems.
1.5: Problems for stronger beginner students, on the level of the middling problems in
most middle school contests (AMC 8 11-20, harder AMC 10 1-10, AMC 12 1-5, and
those others that force students to apply their school-level knowledge to slightly more
challenging problems), traditional middle/high school word problems with more complex
problem solving.
2: For motivated beginners, harder questions from the previous categories (AMC 8 21-25,
MATHCOUNTS Chapter (Sprint 21-30, Target 6-8), MATHCOUNTS States/Nationals, AMC
10 11-15, AMC 12 5-10, easiest AIME 1-3)
2.5: More advanced beginner problems, hardest questions from previous categories (Harder
AMC 8 21-25, harder MATHCOUNTS States questions, AMC 10 16-20, AMC 12 11-15,
usual AIME 1-3)
3: Early intermediate problems that require more creative thinking (harder MATHCOUNTS
National questions, AMC 10 21-25, AMC 12 15-20, hardest AIME 1-3, usual AIME 4-6).
4: Intermediate-level problems (AMC 12 21-25, hardest AIME 4-6, usual AIME 7-10).
5: More difficult AIME problems (11-13), simple proof-based Olympiad-style problems
(early JBMO questions, easiest USAJMO 1/4).
6: High-leveled AIME-styled questions (14/15). Introductory-leveled Olympiad-level ques-
tions (harder USAJMO 1/4 and easier USAJMO 2/5, easier USAMO and IMO 1/4).
7: Tougher Olympiad-level questions, may require more technical knowledge (harder US-
AJMO 2/5 and most USAJMO 3/6, extremely hard USAMO and IMO 1/4, easy-medium
USAMO and IMO 2/5).
8: High-level Olympiad-level questions (medium-hard USAMO and IMO 2/5, easiest US-
AMO and IMO 3/6).
9: Expert Olympiad-level questions (average USAMO and IMO 3/6).
9.5: The hardest problems appearing on Olympiads which the strongest students could
reasonably solve (hard USAMO and IMO 3/6).
10: Historically hard problems, generally unsuitable for very hard competitions (such as the
IMO) due to being exceedingly tedious, long, and difficult (e.g. very few students are capable
of solving on a worldwide basis).

Table 4: Prompt for difficulty estimation using LLM as a judge.
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Prompt for Difficulty Estimation (Part 2)

# Examples
For reference, here are some sample problems from each of the difficulty levels 1-10:
<1: Jamie counted the number of edges of a cube, Jimmy counted the numbers of corners,
and Judy counted the number of faces. They then added the three numbers. What was the
resulting sum? (2003 AMC 8, Problem 1)
1: How many integer values of x satisfy |x| < 3π? (2021 Spring AMC 10B, Problem 1)
1.5: A number is called flippy if its digits alternate between two distinct digits. For example,
2020 and 37373 are flippy, but 3883 and 123123 are not. How many five-digit flippy numbers
are divisible by 15? (2020 AMC 8, Problem 19)
2: A fair 6-sided die is repeatedly rolled until an odd number appears. What is the probability
that every even number appears at least once before the first occurrence of an odd number?
(2021 Spring AMC 10B, Problem 18)
2.5: A, B, C are three piles of rocks. The mean weight of the rocks in A is 40 pounds, the
mean weight of the rocks in B is 50 pounds, the mean weight of the rocks in the combined
piles A and B is 43 pounds, and the mean weight of the rocks in the combined piles A and C
is 44 pounds. What is the greatest possible integer value for the mean in pounds of the rocks
in the combined piles B and C? (2013 AMC 12A, Problem 16)
3: Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of AB,
and let E be the midpoint of AC. The angle bisector of ∠BAC intersects DE and BC at F
and G, respectively. What is the area of quadrilateral FDBG? (2018 AMC 10A, Problem
24)
3.5: Find the number of integer values of k in the closed interval [−500, 500] for which the
equation log(kx) = 2 log(x+ 2) has exactly one real solution. (2017 AIME II, Problem 7)
4: Define a sequence recursively by x0 = 5 and

xn+1 =
x2
n + 5xn + 4

xn + 6

for all nonnegative integers n. Let m be the least positive integer such that

xm ≤ 4 +
1

220
.

In which of the following intervals does m lie?
(A) [9, 26] (B) [27, 80] (C) [81, 242] (D) [243, 728] (E) [729,∞) (2019
AMC 10B, Problem 24 and 2019 AMC 12B, Problem 22)
4.5: Find, with proof, all positive integers n for which 2n + 12n + 2011n is a perfect square.
(USAJMO 2011/1)
5: Find all triples (a, b, c) of real numbers such that the following system holds:

a+ b+ c =
1

a
+

1

b
+

1

c
,

a2 + b2 + c2 =
1

a2
+

1

b2
+

1

c2
.

(JBMO 2020/1)
5.5: Triangle ABC has ∠BAC = 60◦, ∠CBA ≤ 90◦, BC = 1, and AC ≥ AB. Let H , I ,
and O be the orthocenter, incenter, and circumcenter of△ABC, respectively. Assume that
the area of pentagon BCOIH is the maximum possible. What is ∠CBA? (2011 AMC 12A,
Problem 25)
6: Let△ABC be an acute triangle with circumcircle ω, and let H be the intersection of the
altitudes of△ABC. Suppose the tangent to the circumcircle of△HBC at H intersects ω at
points X and Y with HA = 3, HX = 2, and HY = 6. The area of△ABC can be written
in the form m

√
n, where m and n are positive integers, and n is not divisible by the square

of any prime. Find m+ n. (2020 AIME I, Problem 15)

Table 5: Prompt for difficulty estimation using LLM as a judge.
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Prompt for Difficulty Estimation (Part 3)

6.5: Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle
ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent. (USAMO 2021/1, USAJMO 2021/2)
7: We say that a finite set S in the plane is balanced if, for any two different points A, B in
S, there is a point C in S such that AC = BC. We say that S is centre-free if for any three
points A, B, C in S, there is no point P in S such that PA = PB = PC.
Show that for all integers n ≥ 3, there exists a balanced set consisting of n points. Determine
all integers n ≥ 3 for which there exists a balanced centre-free set consisting of n points.
(IMO 2015/1)
7.5: Let Z be the set of integers. Find all functions f : Z→ Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z with x ̸= 0. (USAMO 2014/2)
8: For each positive integer n, the Bank of Cape Town issues coins of denomination 1

n . Given
a finite collection of such coins (of not necessarily different denominations) with total value
at most most 99 + 1

2 , prove that it is possible to split this collection into 100 or fewer groups,
such that each group has total value at most 1. (IMO 2014/5)
8.5: Let I be the incentre of acute triangle ABC with AB ̸= AC. The incircle ω of ABC
is tangent to sides BC,CA, and AB at D,E, and F , respectively. The line through D
perpendicular to EF meets ω at R. Line AR meets ω again at P . The circumcircles of
triangle PCE and PBF meet again at Q.
Prove that lines DI and PQ meet on the line through A perpendicular to AI . (IMO 2019/6)
9: Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there
is at most one way (up to rotation and reflection) to place the elements of S around the circle
such that the product of any two neighbors is of the form x2+x+ k for some positive integer
x. (IMO 2022/3)
9.5: An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for
the numbers in the bottom row, each number is the absolute value of the difference of the two
numbers immediately below it. For example, the following is an anti-Pascal triangle with
four rows which contains every integer from 1 to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1
to 1 + 2 + 3 + · · ·+ 2018? (IMO 2018/3)
10: Prove that there exists a positive constant c such that the following statement is true:
Consider an integer n > 1, and a set S of n points in the plane such that the distance between
any two different points in S is at least 1. It follows that there is a line ℓ separating S such
that the distance from any point of S to ℓ is at least cn−1/3.
(A line ℓ separates a set of points S if some segment joining two points in S crosses ℓ.) (IMO
2020/6)

# Return format
Please return the corresponding difficulty scale (integer) in \box{}

Table 6: Prompt for difficulty estimation using LLM as a judge.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We proposed AdaRFT, a reinforcement finetuning paradigm integrated with
curriculum learning to speedup the training.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation of our work in Section ??. Specifically, we
mentioned that ADARFT is less useful when the dataset is already well-balanced or the
model is strong enough to handle problems with different difficulty levels.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: we provided a theoretical justification in Section 2 on why setting the target
reward β = 0.5 may yield the best results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detailed our implementation in Appendix E. We will also release our
dataset and code after the anonymity period.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted our code and dataset alongside the paper for reviewers.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we provide all implementation details in Section 2, 3, and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we perform significance tests for the correlation of different difficulty metrics.
We also show the raw as well as the smoothed trainning curves in 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we provide all the information in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we use publicly available dataset, code, and training resources.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: this paper proposes ADARFT, a framework designed to accelerate RFT
training. There are no specific societal impacts of this work beyond those already associated
with RFT.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such ricks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the dataset and code we used are properly cited. We also did not violate
the licenses of each asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: we submit our implementation of ADARFT alongside with the paper. See the
readme file of our code for more details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research wit human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The use of LLMs is not an important, original, nor non-standard component of
the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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