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Abstract

Having similar behavior at train-time and test-time—what we call a “What You1

See Is What You Get (WYSIWYG)” property—is desirable in machine learning.2

However, models trained with standard stochastic gradient descent (SGD) are3

known to not capture it. Their behaviors such as subgroup performance, or adver-4

sarial robustness can be very different during training and testing. We show that5

Differentially-Private (DP) training provably ensures the high-level WYSIWYG6

property, which we quantify using a notion of Distributional Generalization (DG).7

Applying this connection, we introduce new conceptual tools for designing deep-8

learning methods by reducing generalization concerns to optimization ones: to9

mitigate unwanted behavior at test time, it is provably sufficient to mitigate this10

behavior on the train datasets. By applying this novel design principle, which11

bypasses “pathologies” of SGD, we construct simple algorithms that are com-12

petitive with SOTA in several distributional robustness applications, significantly13

improve the privacy vs. disparate impact tradeoff of DP-SGD, and mitigate robust14

overfitting in adversarial training. Finally, we also improve on known theoretical15

bounds relating DP, stability, and distributional generalization.16

1 What You See is What You Get Generalization: What, Why, and How?17

Much of machine learning (ML), both in theory and in practice, operates under two assumptions.18

First, we have independent and identically distributed (i.i.d.) samples. Second, we care only about a19

single averaged scalar metric (error, loss, risk). Under these assumptions, we have mature methods20

and theory: Modern learning methods excel when trained on i.i.d. data to directly optimize a scalar21

loss, and there are many theoretical for reasoning about generalization which explain when does22

optimization of a scalar on the train dataset translates to similar values of this scalar at test time.23

The focus on scalar metrics such as average error, however, misses many theoretically, practically,24

and socially relevant aspects of model performance. For example, models with small average error25

often have high error on salient minority subgroups [1, 2]. In general, ML models are applied to the26

heterogeneous and long-tailed data distributions of the real world [3]. Attempting to summarize their27

complex behavior with only a single scalar misses many rich and important aspects of learning.28

These issues are compounded for modern overparameterized networks, as their nuanced test-time29

behavior is not reflected at train time. This presents an obstacle for algorithm design, because30

interventions which alter a network’s properties on its training data do not always transfer to the31

test time. For example, consider the setting of importance sampling: suppose we know that a32

certain subgroup of inputs is underrepresented in the training data compared to the test distribution33
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Figure 1: Differential privacy ensures the desired behavior of importance sampling on test data.
The train and test accuracy of ResNets on CelebA, evaluated on the worst-performing (“male, blond”)
subgroup. Left: Standard SGD has a large generalization gap on this subgroup, and Importance
Sampling (IS) has little effect. Right: DP-SGD provably has small generalization gap on all subgroups,
and IS improves subgroup performance as intended. See App. B for details.

(breaking the i.i.d. assumption). For underparameterized models, we can simply upsample this34

underrepresented group to account for the distribution shift [see, e.g., 4]. This approach, however, is35

known to empirically fail for overparameterized models [5]. Because “what you see” (on the training36

data) is not “what you get” (at test time), we cannot make principled train-time interventions to affect37

test-time behaviors. This issue extends beyond importance sampling. For example, theoretically38

principled methods for distributionally robust optimization (e.g. Namkoong and Duchi [6]) fail for39

overparameterized deep networks, and require ad-hoc modifications [7].40

We develop a theoretical framework which (1) sheds light on these existing issues, and (2) leads to41

improved practical methods in privacy, fairness, and distributional robustness. The core object in our42

framework is what we call the “What You See Is What You Get” (WYSIWYG) property. A training43

procedure with the WYSIWYG property does not exhibit the “pathologies” of standard stochastic44

gradient descent (SGD): all test-time behaviors will be expressed on the training data as well, and45

there will be “no surprises” in generalization.46

What You See Is What You Get (WYSIWYG) as a Design Principle. The WYSIWYG property47

is desirable for two reasons. The first is diagnostic: as there are “no surprises” at test time, all48

properties of a model at test time are already evident on the training data. It cannot be the case,49

for example, that a WYSIWYG model has small disparate impact on the training data, but large50

disparate impact at test time. The second reason is algorithmic: to mitigate any unwanted test-time51

behavior, it is sufficient to mitigate this behavior on the training data. This means that algorithm52

designers can be concerned only with achieving desirable behavior at train time, as the WYSIWYG53

property guarantees it holds at test time too. In practice, this enables the usage of many theoretically54

principled algorithms which were developed in the underparameterized regime to also apply in the55

modern overparameterized (deep learning) setting. For example, we find that interventions such56

as importance sampling, or algorithms for distributionally robust optimization, which fail without57

additional regularization, work exactly as intended with WYSIWYG (See Fig. 1 for an illustration).58

Formalizing WYSIWYG using Distributional Generalization. As WYSIWYG is a high-level59

conceptual property, we have to formalize it to use in practice. We do so using the notion of60

Distributional Generalization (DG), as introduced by Nakkiran and Bansal [8], Kulynych et al. [9]. A61

training algorithm generalizes in expectation in the classical sense if the values of loss on the training62

dataset and at test time are close on average [10]:63

| E
θ,S,z∼S

ℓ(z; θS)− E
θ,S,z∼D

ℓ(z; θS)| ≤ δ, (1)

where θS is the parameter vector of the model obtained by training on the dataset S ∼ Dn, i.i.d.64

sampled from the data distribution D. Distributional generalization is an extension of this standard65

concept that considers not only loss, but any other bounded test function ϕ(z; θ) ∈ [0, 1]. Specifically,66

by saying that a model distributionally generalizes we mean that for all such test functions ϕ, their67
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values in training and test are close on average:68

∀ϕ : | E
θ,S,z∼S

ϕ(z; θS)− E
θ,S,z∼D

ϕ(z; θS)| ≤ δ. (2)

This fact captures the high-level idea of the “What You See is What You Get” (WYSIWYG) guarantee69

for a large class of useful behaviors of machine learning models. Some example behaviors are:70

• Subgroup accuracy: ϕ(z; θ) = 1{z ∈ G} · ℓ(z; θ), for some subgroup G ⊂ D.71

• Robustness to corruptions: ϕ(z; θ) = ℓ(A(z); θ), where A(x) is a possibly randomized transfor-72

mation that distorts the example, e.g., by adding Gaussian noise.73

• Adversarial robustness: ϕ(z; θ) = ℓ(Aθ(z); θ), where Aθ(z) is an adversarial example, e.g.74

generated using the PGD attack [11].75

• Counterfactual fairness: ϕ((x, y); θ) = fθ(CF(x)) − fθ(x), where CF(x) is a counterfactual76

version of x [12].77

Achieving DG in Practice. Our key observation is that distributional generalization (DG) is78

formally implied by differential privacy (DP) [13, 14]). The spirit of this observation is not novel: DP79

training is known to satisfy much stronger notions of generalization (e.g., robust generalization, see80

App. C for more details), and stability than standard SGD [15–18]. We show that a similar connection81

holds for the notion of distributional generalization, and prove (and improve) tight bounds relating82

DP, stability, and DG. In particular, we show that if a training procedure satisfies DP, it also satisfies83

the following DG guarantee:84

Proposition 1.1. A training algorithm satisfying (ϵ, δ)-DP also satisfies δ′-DG with:85

δ′ =
exp(ϵ)− 1 + 2δ

exp(ϵ) + 1
. (3)

This guarantees the WYSIWYG property for any method that is differentially-private, including86

DP-SGD on deep neural networks [19]. We detail these results in App. D.87

2 Example Applications of WYSIWYG Training88

We demonstrate how DG can be a useful design principle in three concrete settings. First, we show89

that we can mitigate disparate impact of DP training [20, 21] by leveraging importance sampling.90

Second, we study the setting of distributionally robust optimization [e.g., 7, 22]. We show how91

ideas from DP can be used to construct heuristic optimizers, which do not formally satisfy DP, yet92

empirically exhibit DG. Our heuristics lead to competitive results with SOTA algorithms in five93

datasets in the distributional robustness setting. Third, we show that the same heuristic optimizer also94

is capable of reducing the overfitting of adversarial loss in adversarial training [23]. Next, we provide95

the concise summary of the application settings and results, and defer the details to App. B.96

2.1 Mitigating Disparate Impact of DP97

First, we consider applications in which learning presents privacy concerns, e.g., in the case that the98

training data contains sensitive information. Using training procedures that satisfy DP is a standard99

way to guarantee privacy in such settings. Training with DP, however, is known to incur disparate100

impact on the model accuracy: some subgroups of inputs can have worse test accuracy than others.101

For example, Bagdasaryan et al. [20] show that using DP-SGD—a standard algorithm for satisfying102

DP [19]—in place of regular SGD causes a significant accuracy drop on “darker skin” faces in models103

trained on the CelebA dataset of celebrity faces [24], but a less severe drop on “lighter skin” faces.104

Our goal is to mitigate such disparate impact.105

For this, we propose the DP-IS-SGD algorithm (see App. A), which is a variant of standard DP-106

SGD [19] with importance sampling. Fig. 2 shows that DP-IS-SGD achieves lower disparity at the107

same privacy budget compared to standard DP-SGD, with a mild impact on test accuracy on CelebA.108

2.2 Group-Distributional Robustness109

Next, we consider a setting of group-distributionally robust optimization [e.g., 7, 22]. If in the110

standard learning approach we want to train a model that minimizes average loss, in this setting, we111
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Figure 2: Importance Sampling Mitigates Disparate Impact of DP-SGD at the Cost of Accuracy.
The accuracy disparity of the models trained with DP-SGD and DP-IS-SGD on CelebA. Adding
importance sampling (IS) mitigates disparate impact at most privacy budgets in this setting. We set
δ = 1/2n, where n is the dataset size.

Table 1: Our noisy-gradient algorithms produce competitive results compared to counterparts
with ℓ2 regularization. The table shows the worst-group accuracy of each algorithm. Baselines are
in the top rows; our algorithms are in the bottom. For gDRO-ℓ2-SOTA, we show avg. ± std. over
five runs from Idrissi et al. [25]. For CelebA, we show avg. ± std. over three random splits.

CelebA UTKFace iNat. Civil. MNLI

SGD-ℓ2 73.0 ± 2.2 86.3 41.8 57.4 67.9
IS-SGD-ℓ2 82.4 ± 0.5 85.8 70.6 64.3 70.4
IW-SGD-ℓ2 89.0 ± 0.9 86.5 67.6 65.7 68.1
gDRO-ℓ2 84.5 ± 0.8 85.2 67.3 67.3 75.9
gDRO-ℓ2-SOTA 86.9 ± 0.5 — — 69.9 ± 0.5 78.0 ± 0.3

DP-IS-SGD 86.0 ± 0.8 82.5 51.4 70.4 72.3
IS-SGD-n 84.9 ± 1.0 85.5 71.0 71.9 70.8
IW-SGD-n 88.5 ± 0.4 88.5 70.9 69.9 69.7
gDRO-n 83.3 ± 0.5 87.5 56.4 71.3 78.0

want to minimize the worst-case (highest) group loss. This objective can be used to mitigate fairness112

concerns such as those discussed previously, as well as to avoid learning spurious correlations [7].113

Unlike the previous application, in this setting, we do not require privacy of the training data. We use114

training with DP as a tool to ensure the generalization of the worst-case group loss.115

Inspired by our theoretical results, we propose a relaxation of DP-IS-SGD: gradient noise regulariza-116

tion method. We observe that the gradient noise, in general, has similar or slightly better performance117

compared to its non-noisy counterparts. This showcases that in terms of learning distributionally ro-118

bust models, noisy gradient can be potentially a more effective regularizer than the currently standard119

ℓ2 regularizer. We also find that DP-IS-SGD improves on baseline methods or even achieves similar120

SOTA performance on several datasets. This is surprising, as DP tends to deteriorate performance.121

This suggests that distributional robustness and privacy might not be incompatible goals. Moreover,122

DP can be a useful tool even when privacy is not required.123

2.3 Mitigating Robust Overfitting124

Finally, we consider the setting of robustness to test-time adversarial examples through adversarial125

training [26]. A common way to train robust models in this sense in image domains is to minimize126

robust (adversarial) loss. Rice et al. [23] observed that adversarially trained models exhibit “robust127

overfitting”: higher generalization gap of robust loss than that of the regular loss. In this application,128

we similarly aim to use a relaxed version of training with DP as a tool to ensure generalization of129

robust loss, thus mitigate robust overfitting.130

To verify this, we adversarially train models on the CIFAR-10 [27] dataset with varying levels of131

the noise magnitude. Fig. 8 (in Appendix G.6) shows that our proposed approach decreases the132

generalization gap of robust accuracy by more than 3× to less than 10 p.p.133
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Algorithm 1 DP-IS-SGD (DP Importance Sampling SGD)
Input: Dataset S, loss ℓ(z; θ), initial parameters θ0, learning rate η, maximal gradient norm C, noise

parameter σ, number of epochs T , sampling rate p̄, group probabilities (q1, . . . , qm) .

for t = 1, . . . , T do
Sample batch St ← Samplep(·)(S), with sampling probabilities p(z) ≜ p̄/m·qg(z)

g̃t ← 1
|St|

∑
z∈St

1/max{1, C−1·∥∇θℓ(z;θ)∥2}︸ ︷︷ ︸
Gradient clipping

·∇θℓ(z; θ) + σC · N (0, I)︸ ︷︷ ︸
Gradient noise

θt ← θt−1 + η · g̃t

The highlighted parts indicate the differences with respect to DP-SGD. We obtain DP-SGD as a special case
when we have a single group with q = 1 (implying p(z) = p̄).

A Algorithms which Distributionally Generalize361

In this section, we construct algorithms for the applications in Sec. 2. Our approach follows the362

blueprint: First, we apply a principled algorithmic intervention that ensures desired behavior on363

the training dataset (e.g., importance sampling). Second, we modify the resulting algorithm to364

additionally ensure DG, which guarantees that the desired behavior generalizes to the test data.365

A.1 DP Training with Importance Sampling366

Our first algorithm, DP-IS-SGD (Algorithm 1), is a version of DP-SGD [19] which performs367

importance sampling. DP-IS-SGD is designed to mitigate disparate impact while retaining DP368

guarantees. The standard DP-SGD samples data batches using uniform Poisson subsampling: Each369

example in the training set is chosen into the batch according to the outcome of a Bernoulli trial370

with probability p̄ ∈ [0, 1]. To correct for unequal representation and the resulting disparate impact,371

we use non-uniform Poisson subsampling: Each example z ∈ S has a possibly different probability372

p(z) of being selected into the batch, where p(z) does not depend on the dataset S otherwise, and is373

bounded: 0 ≤ p(z) ≤ p∗ ≤ 1. We denote this subsampling procedure as Samplep(·)(S).374

We assume that we know to which group any z = (x, y) belongs, denoted as g(z), e.g., the group is375

one of the features in x. We choose p(z) to satisfy two properties. First, to increase the sampling376

probability for examples in minority groups: p(z) ∝ 1/qg(z). Second, to keep the average batch377

size equal to p̄ · n as in standard DP-SGD. In the rest of the paper, we assume that the group378

probabilities (q1, . . . , qm) are known, but it is possible to estimate them in a private way using379

standard methods [28]. We present DP-IS-SGD in Algorithm 1, along with its differences to the380

standard DP-SGD.381

DP Properties of DP-IS-SGD. Uniform Poisson subsampling is well-known to amplify the privacy382

guarantees of an algorithm [29, 30]. For example, Li et al. [30] show that if an algorithm θ(S)383

satisfies (ϵ, δ)-DP, then θ ◦Samplep̄(S) provides approximately (O(p̄ϵ), p̄δ)-DP for small values of ϵ.384

We show in App. E that non-uniform Poisson subsampling provides the same amplification guarantee385

with p̄ = p∗, where p∗ is the maximum value of p(·).386

As this guarantee is independent of the internal workings of θ(S), it is loose. For DP-SGD, one way387

of computing tight privacy guarantees of subsampling is using the notion of Gaussian differential388

privacy (GDP) [31]. GDP is parameterized by a single parameter µ. If an algorithm θ(S) satisfies389

µ-GDP, one can efficiently compute a set of (ϵ, δ)-DP guarantees also satisfied by θ(S) [31]. We390

show that we can use any GDP-based mechanism for computing the privacy guarantee of DP-SGD to391

obtain the privacy guarantees of DP-IS-SGD in a black-box manner:392

Proposition A.1. Let us denote by µ(p̄, σ, C, T ) (see Algorithm 1) a function that returns a µ-GDP393

guarantee of DP-SGD. Then, DP-IS-SGD satisfies a GDP guarantee µ(p∗, σ, C, T ).394
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Figure 3: Privacy induces DG. Train/test worst-case group accuracies as a function of privacy
parameter ϵ of DP-SGD on CelebA (x axis). Increasing privacy reduces the generalization gap.

A.2 Group-DRO with Noisy Gradients395

We showed that DP-IS-SGD enjoys theoretical guarantees for both DP and DG. However, DP models396

often have lower test accuracy compared to standard training [32]. This can be an unnecessary397

disadvantage in settings where privacy is not required, such as in group-distributional robustness.398

Thus, we explore non-DP algorithms which do not come with theoretical guarantees on DG, but are399

inspired by our theory, and satisfy good empirical DG in practice.400

DP-SGD uses gradient clipping (line 5 in Algorithm 1) and gradient noise (lines 7–8). Individually,401

these are used as regularization methods for improving stability and generalization [33, 34], thus402

possibly improving DG in practice. Following this, we relax DP-IS-SGD to only use addition of403

noise to the gradient as a regularizer. This sacrifices privacy in exchange for practical performance.404

Specifically, we apply gradient noise to three standard algorithms for achieving group-distributional405

robustness: importance sampling (IS-SGD), importance weighting (IW-SGD) [4], and gDRO [7].406

This results in the following variations: IS-SGD with noisy gradient (IS-SGD-n), IW-SGD with noisy407

gradient (IW-SGD-n), and gDRO with noisy gradient (gDRO-n). See Appendix F for more details.408

B Experiments409

We empirically study the distributional generalization in real-world applications.410

Datasets. We use the following datasets with group annotations: CelebA [24], UTKFace [35],411

iNaturalist2017 (iNat) [36], CivilComments [37], MultiNLI [7, 38], and ADULT [39]. For every412

dataset, each example belongs to one group (e.g., CelebA) or multiple groups (e.g., CivilComments).413

For example, in the CelebA dataset, there are four groups: “blond male”, “male with other hair color”,414

“blond female”, and “female with other hair color”. Additionally, we use the CIFAR-10 [27] dataset415

for the adversarial-overfitting application. We present more details on the datasets, their groups, and416

used model architectures in App. G.417

B.1 Enforcing DG in Practice418

We empirically confirm that a training procedure with DP guarantees also has a bounded DG gap.419

In practice, it is not possible to compute the exact DG gap. As a proxy in applications which concern420

subgroup performance in this section, and App. B.2 and B.3, we use the difference between train-time421

and test-time worst-group accuracy. This (1) follows the empirical approach by Nakkiran and Bansal422

[8] which proposes to estimate the train-test gap using a finite set of test functions, and (2) measures423

the aspect of distributional generalization that is relevant to our applications. We provide more details424

on this choice of the proxy measure in App. G.2.425

We train a model on CelebA using DP-SGD for different levels of privacy ϵ. Fig. 3 shows that the426

gap between training and testing worst-group accuracy increases as the level of privacy gets smaller,427

which is consistent with our theoretical bounds. In App. G.3 we also explore how regularization428

methods which do not necessarily formally imply DG, can empirically improve DG.429
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B.2 Disparate Impact of Differentially Private Models430

We evaluate DP-IS-SGD (Algorithm 1), and demonstrate that it can mitigate the disparate impact in431

realistic settings where both privacy and fairness are required.432

Fig. 2 shows the accuracy disparity, test accuracy, and worst-case group accuracy, as a function of the433

privacy budget ϵ. The models are trained with DP-SGD and DP-IS-SGD. When comparing DP-SGD434

and DP-IS-SGD with the same or similar ϵ, we observe that DP-IS-SGD achieves lower disparity on435

all datasets. However, this comes with a drop in average accuracy. On CelebA, for example, with436

ϵ ∈ [2, 12], DP-IS-SGD has around 8 p.p. lower test accuracy than DP-SGD. At the same time, the437

disparity drop ranges from 40 p.p. to 60 p.p., which is significantly higher than the accuracy drop.438

We observe similar results on UTKFace. On iNat, however, although DP-IS-SGD decreases disparity,439

the overall test accuracy suffers a significant hit. This is likely because the minority subgroup is440

extremely small, and importance-sampling are poorly behaved for very small groups. Details for441

UTKFace and iNat are in App. G.4.442

In summary, we find that DP-IS-SGD can achieve lower disparity at the same privacy budget compared443

to standard DP-SGD, with mild impact on test accuracy.444

Comparison to DP-SGD-F [40]. DP-SGD-F is a variant of DP-SGD which dynamically adapts445

gradient-clipping bounds for different groups to reduce the disparate impact. We did not manage to446

achieve good overall performance of DP-SGD-F on the datasets above. In App. G.4, we compare it447

to DP-IS-SGD on the ADULT dataset (used by Xu et al. [40]), finding that DP-IS-SGD obtains lower448

disparity for the same privacy level, yet lower overall accuracy.449

B.3 Group-Distributionally Robust Optimization450

We investigate whether our proposed versions of standard algorithms with Gaussian gradient noise451

(App. A.2) can improve group-distributional robustness. To do so, we evaluate empirical DG using452

worst-group accuracy as a proxy for DG gap as in App. B.1, following the evaluation criteria in prior453

work [7, 25]. State-of-the-art (SOTA) methods apply ℓ2 regularization and early-stopping to achieve454

the best performance. We compare three baselines with ℓ2 regularization, IS-SGD-ℓ2, IW-SGD-ℓ2,455

and gDRO-ℓ2 to our noisy-gradient variations as well as DP-IS-SGD. We use the validation set to456

select the best-performing regularization parameter and epoch (for early stopping) for each method.457

See App. G.5 for details on the experimental setup.458

Tab. 1 shows the worst-group accuracy of each algorithm on five datasets. When comparing IS-SGD,459

IW-SGD, and gDRO with their noisy counterparts, we observe that the noisy versions in general have460

similar or slightly better performance compared to non-noisy counterparts. For instance, IS-SGD-n461

improves the SOTA results on CivilComments dataset. This showcases that in terms of learning462

distributionally robust models, noisy gradient can be potentially a more effective regularizer than the463

currently standard ℓ2 regularizer. We also find that DP-IS-SGD improves on baseline methods or464

even achieves similar SOTA performance on several datasets. For instance, on CelebA and MNLI,465

DP-IS-SGD achieves better performance than IS-SGD-ℓ2, and achieves comparable performance to466

SOTA. This is surprising, as DP tends to deteriorate performance. This suggests that distributional467

robustness and privacy might not be incompatible goals. Moreover, DP can be a useful tool even468

when privacy is not required.469

B.4 Mitigating Robust Overfitting470

As in the previous section, we expect that a modification of a standard projected gradient-descent471

method for adversarial training [11]—with added Gaussian gradient noise (App. A.2)—improves the472

generalization behavior of adversarial training.473

To verify this, we adversarially train models on the CIFAR-10 dataset with varying levels of the474

noise magnitude. We provide more details on the setup in App. G.6. Fig. 8 shows that in standard475

adversarial training without noise the gap between robust training accuracy and robust test accuracy476

is large at approximately 30 p.p., which is consistent with the prior observations of Rice et al. [23].477

By injecting noise into the gradient, our proposed approach decreases the generalization gap of robust478

accuracy by more than 3× to less than 10 p.p. Surprisingly, in our experiments, training with gradient479

noise achieves both a small adversarial accuracy gap and better adversarial test accuracy compared to480
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standard adversarial training, when using a small noise magnitude (σ = 0.0005). These experimental481

results demonstrate how WYSIWYG can be a useful design principle in practice.482

C Related Work483

DP and Strong Generalization. DP is known to imply a stronger than standard notion of gen-484

eralization, called robust generalization1 [16, 17]. Robust generalization can be thought as a485

high-probability counterpart of DG: generalization holds with high probability over the train dataset,486

not only on average over datasets. We focus on our notion of DG for both conceptual and theoretical487

simplicity. Other than robust generalization, our connection between DP and DG can also be derived488

from weaker generalization bounds that rely on information-theoretic measures [18].489

Disparate Impact of DP. Bagdasaryan et al. [20], Pujol et al. [21] have shown that ensuring DP490

in algorithmic systems can cause error disparity across population groups. Xu et al. [40] proposed491

a variant of DP-SGD for reducing disparate impact. We compare our method to DP-SGD-F in492

App. G.4. In another line of related work, Sanyal et al. [41], Cummings et al. [42] show fundamental493

trade-offs between performance and DP training. As our theoretical results concern generalization,494

not performance, our results do not contradict these theoretical trade-offs.495

Group-Distributional Robustness. Group-distributional robustness aims to improve the worst-case496

group performance. Existing approaches include using worst-case group loss [7, 43, 44], balancing497

majority and minority groups by reweighting or subsampling [5, 25, 45], leveraging generative498

models [46], and applying various regularization techniques [7, 47]. Although some work [7, 47]499

discusses the importance of regularization in distributional robustness, they have not explored potential500

reasons for this (e.g. via the connection to generalization). Another line of work studies how to501

improve group performance without group annotations [48–50], which is a different setting from502

ours as we assume the group annotations are known.503

Robust Overfitting. Rice et al. [23], Yu et al. [51] have shown that adversarially trained models tend504

to overfit in terms of robust loss. Rice et al. [23] proposed to use regularization to mitigate overfitting,505

but the noisy gradient has not been explored for this. We showed that the WYSIWYG framework can506

serve as an alternative direction for mitigating and explaining this issue.507

D Details on Theory508

The connections between privacy, stability, and generalization are well-known. In particular, stabil-509

ity of the learning algorithm—its non-sensitivity to limited changes in the training data—implies510

generalization [10, 52]. In turn, differential privacy implies strong forms of stability, thus ensuring511

generalization through the chain Privacy⇒ Stability⇒ Generalization [15, 53–55].512

Let us formally define differential privacy:513

Definition D.1 (Differential Privacy [13, 14]). An algorithm θ(S) is (ϵ, δ)-differentially private (DP)514

if for any two neighbouring datasets—differing by one example—S, S′ of size n, for any subset515

K ⊆ Θ it holds that Pr[θ(S) ∈ K] ≤ exp(ϵ) Pr[θ(S′) ∈ K] + δ.516

DP mathematically encodes a notion of plausible deniability of the inclusion of an example in the517

dataset. However, it can also be thought as a strong form of stability [54]. As such, DP implies other518

notions of stability.519

We consider the following notion, which has been studied in the literature under multiple names520

and contexts. In the context of privacy, it is equivalent to (0, δ)-differential privacy, and has been521

called additive differential privacy [56], and total-variation privacy [57]. In the context of learning, it522

has been called total-variation (TV) stability [17]. We take this last approach and refer to it as TV523

stability:524

Definition D.2 (TV Stability). An algorithm θ(S) is δ-TV stable if for any two neighbouring datasets525

S, S′ of size n, for any subset T ⊆ Θ it holds that Pr[θ(S) ∈ K] ≤ Pr[θ(S′) ∈ K] + δ.526

1Unrelated to “robust overfitting” in adversarial training.
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It is easy to see that (ϵ, δ)-DP immediately implies δ′-TV stability with:527

δ′ = exp(ϵ)− 1 + δ (4)

From Classical to Distributional Generalization. Similarly to the classical generalization, one528

way to achieve distributional generalization is through strong stability:529

Theorem D.3. Suppose that the training algorithm is δ-TV stable. Then, the algorithm satisfies530

δ-DG.531

We refer to App. E for the proofs of this and all other formal statements in the rest of the paper.532
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Figure 4: Bound on TV stability (therefore
DG) from DP, assuming δ = 0. x axis: ϵ level
of DP. y axis: δ-level of TV stability/DG.

As DP implies TV-stability, by Theorem D.3 we have533

that DP also implies DG. We show that DP algorithms534

enjoy a significantly stronger stability guarantee than535

previously known, which means that the DG guaran-536

tee that one obtains from DP is also stronger.537

Proposition D.4. Suppose that the algorithm is (ϵ, δ)-538

DP. Then, the algorithm satisfies δ′-TV stability with:539

δ′ =
exp(ϵ)− 1 + 2δ

exp(ϵ) + 1
.

We show that our bound is tight in App. E.540

Stronger Distributional Generalization Guarantees. Although DG immediately implies gener-541

alization for all bounded properties, it is possible to obtain tighter bounds from TV stability. For542

example, directly applying δ-DG to the subgroup loss property yields a bound that decays with the543

size of the subgroup: accuracy on very small subgroups is not guaranteed to generalize well. In ??544

we show that TV stability in fact implies “subgroup DG”, which guarantees that the accuracy on545

even small subgroups generalizes well in expectation. As another example, in ?? we show that TV546

stability also ensures the generalization of calibration properties of the learning algorithm.547

E Proofs548

E.1 TV-Stability implies Distributional Generalization549

Proof of Theorem D.3. First, observe that the following distributions are equivalent as the dataset is550

an i.i.d. sample:551

Pr
S∼Dn

z∼S

[ϕ
(
z; θ(S)

)
] ≡ Pr

S∼Dn−1

z∼D

[ϕ
(
z; θ(S ∪ {z})

)
],

Pr
S∼Dn

z∼D

[ϕ
(
z; θ(S)

)
] ≡ Pr

S∼Dn−1

z∼D
z′∼D

[ϕ
(
z′; θ(S ∪ {z})

)
]. (5)

It is thus sufficient to analyze the equivalent distributions instead. By the post-processing property of552

differential privacy, for any dataset S ∈ Dn−1, any two examples z, z′ ∈ D, and any set K ⊆ {0, 1}:553

Pr[ϕ
(
z; θ(S ∪ {z})

)
∈ K] ≤ Pr[ϕ

(
z; θ(S ∪ {z′})

)
∈ K] + δ,

as datasets S ∪ {z} and S ∪ {z′} are neighbouring. Taking the expectation of both sides over554

z, z′ ∼ D and S ∼ Dn−1, we get:555

Pr
S∼Dn−1

z∼D

[ϕ
(
z; θ(S ∪ {z})

)
∈ K] ≤ Pr

S∼Dn−1

z∼D
z′∼D

[ϕ
(
z; θ(S ∪ {z′})

)
∈ K] + δ

= Pr
S∼Dn−1

z∼D
z′∼D

[ϕ
(
z′, θ(S ∪ {z})

)
∈ K] + δ,

(6)
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where the last equality is simply renaming of the variables for convenience. Note that analogously556

we also can obtain a symmetric bound:557

Pr
S∼Dn−1

z∼D
z′∼D

[ϕ
(
z′, θ(S ∪ {z})

)
∈ K] ≤ Pr

S∼Dn−1

z∼D

[ϕ
(
z; θ(S ∪ {z})

)
∈ K] + δ,

(7)

The total variation between these two distributions is bounded:558

dTV

(
Pr

S∼Dn−1

z∼D

[ϕ
(
z; θ(S ∪ {z})

)
], Pr

S∼Dn−1

z∼D
z′∼D

[ϕ
(
z′, θ(S ∪ {z})

)
]
)

= sup
K⊆range(ϕ)

∣∣∣ Pr
S∼Dn−1

z∼D

[ϕ
(
z; θ(S ∪ {z})

)
∈ K]− Pr

S∼Dn−1

z∼D
z′∼D

[ϕ
(
z′, θ(S ∪ {z})

)
∈ K]

∣∣∣ ≤ δ,

where the last inequality is by Eq. (7). Using the equivalences in Eq. (5) we can see that:559

dTV

(
Pr

S∼Dn

z∼S

[ϕ
(
z; θ(S)

)
], Pr

S∼Dn

z∼D

[ϕ
(
z; θ(S)

)
]
)
=
∣∣ E
S∼Dn

z∼S

[ϕ(z; θ(S)]− E
S∼Dn

z∼D

[ϕ(z; θ(S)]
∣∣ ≤ δ,

which is the sought result.560

E.2 Tight Bound on TV-Stability from DP561

To prove Proposition D.4, we make use of the hypothesis-testing interpretation of DP [58]. Let us562

define the hypothesis-testing setup and the two types of errors in hypothesis testing. For any two563

probability distributions P and Q defined over D, let ϕ : D→ {0, 1} be a hypothesis-testing decision564

rule that aims to tell whether a given observation from the domain D comes from P or Q.565

Definition E.1 (Hypothesis-testing FPR and FNR). Without loss of generality, the false-positive566

error rate αϕ (FPR, or type I error rate), and the false-negative error rate βϕ (FNR, or type II error567

rate) of the decision rule ϕ : D→ [0, 1] are defined as the following probabilities:568

αϕ≜ Pr
z∼P

[ϕ(z) = 1] = E
P
[ϕ],

βϕ≜ Pr
z∼Q

[ϕ(z) = 0] = 1− E
Q
[ϕ].

(8)

A well-known result due to Le Cam provides the following relationship between the trade-off between569

the two types of errors and the total variation between the probability distributions:570

αϕ + βϕ ≥ 1− dTV(P,Q). (9)

DP is known to provide the following relationship between FPR and FNR of any decision rule:571

Proposition E.2 (Kairouz et al. [59]). Suppose that an algorithm θ(S) satisfies (ϵ, δ)-DP. Then, for572

any decision rule ϕ : D→ [0, 1]:573

αϕ + exp(ϵ)βϕ ≥ 1− δ,

exp(ϵ)αϕ + βϕ ≥ 1− δ.
(10)

We can now prove Proposition D.4:574

Proof. Consider a hypothesis-testing setup in which we want to distinguish between the distributions575

θ(S) and θ(S′). Let us sum the two bounds in Eq. (10):576

(exp(ϵ) + 1)(αϕ + βϕ) ≥ 2(1− δ) =⇒ αϕ + βϕ ≥
2− 2δ

exp(ϵ) + 1
. (11)

Let us take the optimal decision rule ϕ∗. In this case, the bound in Eq. (9) holds exactly:577

dTV(θ(S), θ(S
′)) = 1− (αϕ∗ + βϕ∗).
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Combining this with Eq. (11), we get:578

dTV(θ(S), θ(S
′)) ≤ 1− 2− 2δ

exp(ϵ) + 1
=

exp(ϵ)− 1 + 2δ

exp(ϵ) + 1
.

579

Next, we show that the upper bound is tight up to δ:580

Proposition E.3. There is an algorithm θ(S) satisfying (ε, 0)-DP, such that dTV(θ(S), θ(S′)) =581
exp(ε)−1
exp(ε)+1 for two neighbouring datasets S and S′.582

Proof. Consider two distributions P0 and P1 on a set {0, 1}, with P0({0}) = P1({1}) = γ for583

some γ to be chosen later, and P0({1}) = P1({0}) = 1 − γ. Those two distributions satisfy584

dTV(P0, P1) = 1− 2γ, as well as the closeness condition appearing in the definition of (ε, 0)-DP585

∀T, Pr
z∼P0

(z ∈ T ) ≤ exp(ε) Pr
z∼P1

(z ∈ T ),

with exp(ε) = 1−γ
γ . Expressing now TV-distance in terms of ε, we get dTV(P0, P1) =

exp(ε)−1
exp(ε)+1 .586

With those distributions in hand, it is easy to provide a mechanism θ : {0, 1} → {0, 1} satisfying the587

desired property: on the input 0, it generates output according to distribution P0, and on the input 1,588

it generates output according to distribution P1.589

E.3 Privacy Analysis of DP-IS-SGD590

First, we present a loose analysis of the privacy guarantees of non-uniform Poisson subsampling.591

Lemma E.4. Suppose that θ(S) satisfies (ϵ, δ)-DP and Sample(S) is a Poisson sampling procedure592

where each of the sampling probabilities pi depend on the element zi (but do not depend on the set S593

otherwise) and is guaranteed to satisfy pi ≤ p∗. Then θ◦Sample satisfies (ln(1−p∗+p∗eϵ), p∗δ)-DP.594

For small ϵ this can be bounded by (O(p∗ϵ), p∗δ)-DP.595

Proof of Lemma E.4. Consider two neighboring datasets S and S′ = S ∪ {z0} for some z0 ̸∈ S. We596

wish to show that for any set K, we have597

Pr(θ(Sample(S′)) ∈ K) ≤ (1− p+ peϵ) Pr(θ(Sample(S)) ∈ K) + pδ

and symmetrically for S and S′. We will only prove first of those inequalities, as the second is598

analogous.599

Note that with probability p0 ≤ p the element z0 is included in Sample(S′) and we have600

Sample(S′) = {z0} ∪ Sample(S), otherwise the element z0 is not included, and conditioned on z0601

not being included Sample(S′) has the same distribution as Sample(S). Therefore,602

Pr(θ(Sample(S′)) ∈ K) = p0 Pr(θ({z0}∪Sample(S)) ∈ K)+ (1− p0) Pr(θ(Sample(S)) ∈ K).
(12)

Now for each realization Sample(S) = S̃, we have Pr(θ({z0} ∪ S̃) ∈ K) ≤ eϵ Pr(θ(S̃) ∈ K) + δ603

by the assumed DP guarantee of the algorithm θ(S). We can average over all possible subsets S̃ to604

get605

Pr(θ({z0} ∪ Sample(S)) ∈ K) =
∑
S̃

Pr(Sample(S) = S̃) Pr(θ({z0} ∪ S̃) ∈ K)

≤
∑
S̃

Pr(Sample(S) = S̃)(eϵ Pr(θ(S̃) ∈ K) + δ)

= eϵ Pr(θ(Sample(S)) ∈ K) + δ.

Plugging this back to the inequality (12), we get606

Pr(θ(Sample(S′)) ∈ K) ≤ p0(e
ϵ Pr(θ(Sample(S)) ∈ K) + δ) + (1− p0) Pr(θ(Sample(S)) ∈ K)

≤ (1− p∗ + p∗eϵ) Pr(θ(Sample(S)) ∈ K) + p∗δ.
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Finally, when ϵ ≤ 1 we have eϵ ≤ (1 + 2ϵ), and therefore (1− p∗ + p∗eϵ) ≤ 1 + 2ϵp∗ ≤ e2ϵp
∗
.607

For the tight privacy analysis of non-uniform Poisson subsampling, we make use of the notion of608

f -privacy:609

Definition E.5 (f -Privacy Dong et al. [31]). An algorithm θ(S) satisfies f -privacy if for any two610

neighbouring datasets S, S′ the following holds:611

τ(θ(S), θ(S′)) ≥ f,

where τ(P,Q) is a trade-off function between the FPR and FNR of distinguishing tests (see App. E.2):612

τ(P,Q)(α) = inf
ϕ:D→[0,1]

{βϕ : αϕ ≤ α}, (13)

and f(α) ∈ [0, 1] is a convex, continuous, non-increasing function.613

Bu et al. [60] show that uniform Poisson subsampling (see App. A.1) provides the following privacy614

amplification:615

Proposition E.6 (Bu et al. [60]). Suppose that θ(S) satisfies f -privacy, and Sample(S) is a uniform616

Poisson sampling procedure with sampling probability p̄. The composition θ ◦ Sample(S) satisfies617

f ′-privacy with f ′ = p̄f + (1− p̄)Id, where Id(α) = 1− α is the trade-off function that corresponds618

to perfect privacy.619

We show that a similar result holds for non-uniform Poisson subsampling:620

Lemma E.7. Suppose that θ(S) satisfies f -privacy, and Sample(S) is a non-uniform Poisson621

sampling procedure, where the sampling probabilities pi depend on the element zi (but do not depend622

on the set S otherwise) and each is guaranteed to satisfy pi ≤ p∗. The composition θ ◦ Sample(S)623

satisfies f ′-privacy with f ′ = p∗ + (1− p∗)Id.624

To show this, we adapt the proof Proposition E.6, and make use of the following lemma:625

Lemma E.8 (Bu et al. [60]). Let {Pi}i∈I and {Qi}i∈I be two collections of probability distributions626

on the same sample space for some index set I . Let (λi)i∈I ∈ [0, 1]|I| be a collection of numbers627

such that
∑

i∈I λi = 1. If τ(Pi, Qi) ≥ f for all i ∈ I , then for any p ∈ [0, 1]:628

τ

(∑
i

λi · Pi,
∑
i

(1− p) · λi · Pi +
∑
i

p · λi ·Qi

)
≥ pf + (1− p)Id.

Proof of Lemma E.7. We can think of the result of the subsampling procedure as outputting a binary629

vector b⃗ = (b1, . . . , bn) ∈ {0, 1}n, where each bit bi indicates whether an example zi ∈ S was630

chosen in the subsample or not. We denote the resulting subsample as Sb⃗ ⊆ S. By definition of631

Poisson subsampling, each bit bi is an independent sample bi ∼ Bern(pi). Let us denote by λb⃗ the632

joint probability of b⃗. The composition θ(S) ◦ Sample(S) can be expressed as a mixture distribution:633

θ(S) ◦ Sample(S) =
∑

b⃗∈{0,1}n

λb⃗ · θ(S).

Analogously, for a neighbouring dataset S′≜S∪{z0}, with the sampling probability p0 corresponding634

to z0, we have:635

θ(S) ◦ Sample(S) =
∑

b⃗∈{0,1}n

p0 · λb⃗ · θ(S′
b⃗
∪ {z0}) +

∑
b⃗∈{0,1}n

(1− p0) · λb⃗ · θ(Sb⃗).

Applying Lemma E.8, we get f0-privacy with f0 = p0f + (1− p0)Id. Applying to an arbitrary other636

z0 ∈ D, we potentially get the worst-case privacy guarantee for the highest sampling probability, i.e.,637

f = p∗f + (1− p∗)Id.638

Proposition A.1 is immediate from Lemma E.7 by the fact that GDP is a special case of f -privacy.639
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F Additional Details on Algorithms640

We define qg as the probability of group g, and m as the number of groups.641

IS-SGD. The weight for group g is wg = 1/m·qg. Let gi be the group that the i-th example belongs642

to. We then sample (with replacement) from the training set with the i-th example having a wgi643

chance of being sampled until we have b examples, where b is the batch size. Finally, for each644

mini-batch, we optimize the standard cross-entropy loss with the sampled examples.645

IW-SGD. The weight for group g is wg = 1/m·qg. We optimize the following loss function:646

wg · ℓ(fθ(x), y),
where ℓ(·, ·) is the cross-entropy loss and (x, y) ∈ S drawn uniformly random drawn from the dataset,647

and g is the group to which (x, y) belongs.648

G Additional Experiment Details649

G.1 Details on Datasets, Software, and Model Training650

Table 2: The number of examples in each subgroup for CelebA.

training validation testing

not blond, female 71629 8535 9767
not blond, male 66874 8276 7535
blond, female 22880 2874 2480
blond, male 1387 182 180

Table 3: The number of examples in each subgroup for UTKFace.

training validation testing

male, White 3919 454 1105
male, Black 1700 181 437
male, Asian 1115 157 303
male, Indian 1594 190 477
male, Others 563 61 136
female, White 3316 384 902
female, Black 1606 188 414
female, Asian 1302 158 399
female, Indian 1230 152 333
female, Others 655 75 202

Table 4: The number of examples in each subgroup for iNat.

training validation testing

Actinopterygii 2112 195 312
Amphibia 14531 1242 1930
Animalia 5362 491 737
Arachnida 4838 461 660
Aves 191773 17497 26251
Chromista 435 52 55
Fungi 6148 575 883
Insecta 96894 8648 13013
Mammalia 26724 2475 3624
Mollusca 7627 693 1057
Plantae 159843 14653 22117
Protozoa 309 25 37
Reptilia 33404 2983 4494
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Table 5: The number of examples in each subgroup for CivilComments.

training validation testing

Non-toxic, Identity 94895 15759 46185
Non-toxic, Other 143628 24366 72373
Toxic, Identity 18575 3088 9161
Toxic, Other 11940 1967 6063

Table 6: The number of examples in each subgroup for MNLI.

training validation testing

Contradiction, No negation 57498 22814 34597
Contradiction, Negation 11158 4634 6655
Entailment, No negation 67376 26949 40496
Entailment, Negation 1521 613 886
Neutral, No negation 66630 26655 39930
Neutral, Negation 1992 797 1148

Table 7: The number of examples in each subgroup for ADULT.

training validation testing

Female, income≤50k 11763 911 1749
Male, income≤50k 18700 1373 2659
Female, income>50k 1444 105 220
Male, income>50k 8093 611 1214

All algorithms are implemented in PyTorch2 [61]. For DP-related utilities, we use opacus3 [62].651

Other packages, including numpy 4 [63], scipy 5 [64], tqdm 6, and pandas 7 [65], are also used. For652

gDRO [7], we use the implementation from wilds [66]. We use Nvidia 2080ti, 3080, and A100653

GPUs. Our experiments required approximately 400 hours of GPU time.654

Datasets. For CelebA and CivilComments, we follow the training/validation/testing split in655

Koh et al. [66]. For UTKFace and iNat, we randomly split the data into 17000/2000/4708 and656

550000/50000/75170 for training/validation/testing. For MNLI, we use the same training/valida-657

tion/testing split in Sagawa et al. [7]. For Adult [39], we randomly split the data into 35000/3000/5842658

for training/validation/testing. Tab. 2 to 7 show the dataset statistics on each group.659

All the datasets are publicly available for non-commercial use. In our work, we adhere to additional660

rules regulating the use of each dataset. All datasets other than iNat could potentially contain661

personally identifiable information, and are likely collected without consent, to the best of our662

knowledge. They are all, however, collected from manifestly public sources, such as public posts on663

social media. Thus, we consider the associated privacy risks low.664

The data also contain offensive material (e.g., explicitly in the case of CivilComments dataset). We665

consider the associated risks of reproducing the offensive behavior low, as we use the datasets only to666

evaluate our theoretical and theoretically-inspired results.667

Models. Similar to previous work [7], we use the ImageNet-1k pretrained ResNet50 [67] from668

torchvision for CelebA, UTKFace, and iNat, and use the pretrained BERT-Base [68] from669

huggingface [69] for CivilComments and MNLI.670

For ADULT, we follow the setup in [40] and use logistic regression with standard optimization,671

and DP-based training methods. We fix the batch size to 256 (for SGD), weight decay to 0.01, and672

2Code and license can be found in https://github.com/pytorch/pytorch.
3Code and license can be found in https://github.com/pytorch/opacus.
4Code and license can be found in https://github.com/numpy/numpy
5Code and license can be found in https://github.com/scipy/scipy
6Code and license can be found in https://github.com/tqdm/tqdm
7Code and license can be found in https://github.com/pandas-dev/pandas
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Table 8: The accuracy for each subgroup on CelebA. These results are acquired without any regular-
ization or early stopping (trained on full 50 epochs).

blond not blond
female male female male

SGD train 1.00 0.99 1.00 1.00
test 0.80 0.42 0.97 1.00

IW-SGD train 0.98 0.99 0.98 0.99
test 0.87 0.49 0.95 0.98

IS-SGD train 1.00 1.00 1.00 1.00
test 0.83 0.38 0.96 0.99

DP-SGD train 0.80 0.41 0.96 0.99
test 0.74 0.29 0.98 1.00

DP-IS-SGD train 0.94 0.96 0.88 0.90
test 0.92 0.85 0.91 0.92

number of epochs to 20. For the DP algorithms, we use gradient norm clipping to 0.5, and sampling673

rate of 0.005. For all training algorithms, we train five model times with different random seeds674

and we record the mean and standard error of the mean of our metrics. The noise parameter σ for675

DP-SGD-F and DP-SGD is set to 1.0, and we set the σ for DP-IS-SGD to 5.0 to achieve similar676

privacy budget ϵ ≈ 0.7. The additional noise parameter for DP-SGD-F σ2 is set to 10σ as in Xu et al.677

[40].678

Hyperparameters. We run 50 epochs for CelebA, 100 epochs for UTKFace, 20 epochs for iNat,679

and 5 epochs for CivilComments and MNLI. For image datasets (CelebA, UTKFace, and iNat), we680

use the SGD optimizer and for NLP datasets (CivilComments and MNLI), we use the AdamW [70]681

optimizer. We use opacus’s [62] implementation of DP-SGD and DP-AdamW to achieve DP682

guarantees.683

We fix the batch size for none-DP algorithms to 64 for CelebA and UTKFace, 256 for iNat, 16 for684

CivilComments, and 32 for MNLI. For DP-SGD and DP-IS-SGD, we set the sample rate to 0.0001685

for CelebA and iNat, 0.001 for UTKFace, and 0.00005 for CivilComments and MNLI.686

G.2 Generalization of Worst-Case Group Accuracy as a Proxy for the DG Gap687

Although generalization of worst-case group accuracy is not explicitly implied by DG, in our688

experiments it is practically equivalent to using the generalization gap of subgroup accuracy, which is689

bounded by TV stability. Let us first concretely define the generalization gap of the worst-case group690

accuracy:691

Definition G.1. The on-average generalization gap of the worst-case accuracy is defined as the692

following difference:693

WGGAP ≜ E
S∼Dn

[
max
g∈G

E
z∼Sg

[ℓ(z, θ(S))]
∣∣∣ |Sg| > 0

]
− E

S∼Dn

[
max
g∈G

E
z∼Dg

[ℓ(z, θ(S))]

]
, (14)

where we take ℓ((x, y), θ) ≜ 1[fθ(x) = y] to be the 0-1 loss. In this definition we explicitly restrict694

the datasets to include elements of each group g ∈ G, which is a technicality needed in order to avoid695

undefined behavior.696

In all our experimental results, the worst-performing groups (the maximizers in Eq. (14)) are always697

the same on the training and test data. As long as this holds—the worst-performing group is the same698

on the train and test data—the generalization gap above simplifies to:699

WGGAP = E
S∼Dn

z∼Sg∗

[ℓ(z, θ(S)) | |Sg∗ | > 0]− E
S∼Dn

z∼Dg∗

[ℓ(z, θ(S))],
(15)

where g∗ ∈ G is the worst-performing group. In ?? we show that this simplified gap from Eq. (15) is700

bounded by TV stability.701

Therefore, in practice the generalization gap in Eq. (14) offers a lower bound on the DG gap in ??.702

Using it as a proxy for DG gap follows the spirit of the estimation approach by Nakkiran and Bansal703
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(c) Early-stopping as regularization

Figure 5: Regularization induces DG. The figure shows train/test worst-group accuracies as a
function of regularization strength for SGD on CelebA, with different types of regularizers: differential
privacy budget ϵ, weight decay, and train time. For DP-SGD, ϵ =∞ represents standard SGD. For all
types of regularizers, increasing the strength (left on x-axis) corresponds to a smaller generalization
gap in worst-group accuracy.

[8] which proposes to estimate the DG gap by taking the maximum of empirical generalization gaps704

for a finite set of relevant test functions (here, per-group accuracies).705

Other Approaches to Estimate the DG Gap. The generalization gap of worst-case group accuracy706

can be loose as a proxy. Finding the worst-case test function is an object of study in the literature on707

membership inference attacks [71], because DG and the accuracy of such attacks are equivalent, as708

showed by Kulynych et al. [9]. We avoid using accuracy of a membership inference attack as a proxy709

for DG gap in this work as the fact that differential privacy and regularization impacts vulnerability710

to these attacks is known and well-documented [72, 73]. This body of evidence from the field of711

membership inference offers an alternative source of empirical support for our claims checked in712

App. B.1.713

G.3 Additional Details for App. B.1714

As mentioned in App. A, many regularization methods can be used to improve different generalization715

gaps. For example, Sagawa et al. [7] show that strong ℓ2 regularization helps with improving group-716

distributional generalization, and Yang et al. [74] show that dropout helps with adversarial-robustness717

generalization. However, these works do not have theoretical justification.718

Our framework suggests a unifying reason why strong regularization is helpful in distributional ro-719

bustness: because it enforces DG. Following this theoretically-inspired intuition, other regularization720

methods beyond a combination of gradient noise and clipping (DP-SGD) can imply DG in practice.721

We verify this hypothesis empirically.722

Privacy, ℓ2 Regularization, and Early Stopping. In Fig. 5, we train a neural network on CelebA723

using DP-SGD, and decrease the “regularization strength” in several different ways: by increasing724

privacy budget ϵ (Fig. 5a), decreasing the ℓ2 regularization (Fig. 5b), or increasing the number of725

training iterations (Fig. 5c).8 We then measure the gap in worst-group accuracy on train vs. test726

(App. G.2). We observe that for all regularizers, the gap between training and testing worst-group727

accuracy increases as the regularization is weakened.728

Investigating ℓ2 Regularization in Depth. In Fig. 6, we show the training and testing worst-729

group accuracy with different strength of ℓ2 regularization and on different epochs (w/ and w/o ℓ2730

regularization). We have three observations: (1) with properly tuned regularization parameter, the gap731

between training and testing worst-group accuracy can be narrowed, (2) the gap can start widening732

in very early stage of training, and (3) the testing worst-group accuracy can fluctuate largely, which733

highlights the importance of using validation set for early stopping in this task.734

8Train time can be considered a regularizer, as its decrease induces stability (e.g. Hardt et al. [33]).
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Figure 6: We show the training and testing worst-group accuracy with different strength of ℓ2
regularization and on different epochs (w/ and w/o ℓ2 regularization). The network is trained with
IS-SGD on CelebA, UTKFace, and iNat. For (a), (b), and (c), we show the result of the last epoch.
For (g), (h), and (i), we set weight decay to 0.01.

G.4 Additional Details for App. B.2735

Fig. 7 shows the accuracy disparity, test accuracy, and worst-group accuracy for CelebA, UTKFace,736

and iNat on DP-SGD and DP-IS-SGD.737

The reason that UTKFace has a similar disparity between DP-SGD and DP-IS-SGD is likely because738

UTKFace has a relatively small difference in the number of training examples between the largest739

group and the smallest group. In UTKFace, the majority group has around seven times more examples740

than in the minority group, whereas in CelebA, this difference is 52×.741

Comparison with DP-SGD-F [40]. We did not manage to obtain good performance from DP-742

SGD-F on CelebA, UTKFace, and iNat, possibly because of the different domain—images—than743

tabular data considered by Xu et al. [40]. To proceed with the comparison, we evaluate the algorithms744

on the census data—ADULT dataset [39] (see Tab. 7 for dataset statistics)—that Xu et al. [40] used745

in their work. As subgroups, we consider four intersectional groups composed of all possible values746

of the “sex” attribute and prediction class (an income higher/lower than 50k).747

We show the results in Tab. 9. For a comparable epsilon value (0.69 for DP-SGD-F, and 0.7 for748

our DP-IS-SGD), we see that our method has smaller accuracy disparity (Eq. 2) across the groups,749

although also lower overall accuracy.750
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Figure 7: The disparity (lower the better) and test accuracies of the models trained with DP-SGD
and IW-SGD on three datasets. If we care about privacy, DP-IS-SGD improves disparate impact at
most privacy budgets. For CelebA, we train the model for 30 epochs. For UTKFace, we train for 100
epochs. For iNat, we train for 20 epochs. The GDP accountant is used to compute the privacy budget.

Table 9: DP-IS-SGD has lower disparity DP-SGD-F on ADULT and better accuracy at the same
privacy level. The table shows the privacy level, maximum accuracy disparity across groups, and
overall accuracy for all algorithms.

Algorithm ϵ Accuracy disparity Overall accuracy

SGD - 0.660± 0.000 0.836± 0.000
DP-SGD 0.6573 0.852± 0.005 0.802± 0.001
DP-SGD-F 0.6964 0.657± 0.023 0.832± 0.001
DP-IS-SGD 0.7059 0.246± 0.034 0.766± 0.010

G.5 Additional Details for App. B.3751

We compare different algorithms, including SGD-ℓ2 and IW-SGD-ℓ2 as baselines, and two other752

algorithms, IS-SGD-ℓ2 [25] and gDRO-ℓ2 [7] in terms of the group robustness. We set the learning753

rate as 0.001 for CelebA, UTKFace, and iNat, 0.00002 for MNLI, and 0.00001 for CivilComments.754

We use the validation set to select the hyperparameters:755

1. For SGD-ℓ2, IW-SGD-ℓ2, IS-SGD-ℓ2, and gDRO-ℓ2, we select the weight decay from756

0.0001, 0.01, 0.1, and 1.0.757

2. For DP-IS-SGD, we fix the gradient clipping to 1.0 (except for iNat, where we set the value758

to 10.0 as 1.0 does not converge). We select the noise parameter from 1.0, 0.1, 0.01, 0.001759

on CelebA and UTKFace, select the noise parameter from 0.0000001, 0.000001, 0.00001,760
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and 0.0001 on iNat and select the noise parameter from 0.01 and 0.001 on CivilComments761

and MNLI.762

3. For IW-SGD-n, IS-SGD-n, and gDRO-n, we select the standard deviation of the random763

noise from 0.001, 0.01, 0.1, and 1.0 on CelebA, UTKFace, and iNat, and we select standard764

deviation of the random noise from 0.00001, 0.0001, and 0.001 on CivilComments and765

MNLI.766

Statistical Concerns. Although our results appear to be comparable to or better than SOTA, we767

caution readers about the exact ordering of methods due to high estimation variance: these benchmarks768

have small validation and test sets (e.g., CelebA has 182 validation examples), and so hyperparameter769

tuning is subject to both overfitting and estimation error. For example, we observe validation770

accuracies which differ from their test accuracies by up to 5% in our experiments. We attempt to771

mitigate this using three random train/val/test splits on CelebA, and avoid large hyperparameter772

sweeps9, but this is not done in prior work.773

G.6 Additional Details for App. B.4774

We use the CIFAR-10 dataset [27], and ResNet-18 [67] as the network architecture. We train the775

model to be robust against L∞ perturbations of at most γ = 8/255 bound, which is a standard setup776

for adversarial training on this dataset. We vary σ (noise parameter) from 0.0 (regular adversarial777

training without gradient noise) to 0.01.778

In this experiment, we measure robust accuracy and its respective generalization gap, thus setting779

ℓ((x, y), θ) ≜ 1[fθ(x) = y] to be the 0-1 loss.780
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Figure 8: Noisy gradient reduces overfitting in adversarial training. We show the generalization
gap of robust accuracy (left), and test-time robust accuracy (right) of adversarially trained models
with different levels of noise magnitude. The model trained without noise exhibits “robust overfitting”
of about 30 p.p. Gradient noise reduces the generalization gap by more than 3× for all values of the
noise parameter at a cost of decreased robust accuracy as the noise gets larger.

9For example, we do not tune the “group adjustments” parameter for gDRO, using the default from Koh et al.
[66] instead.

24


	What You See is What You Get Generalization: What, Why, and How?
	Example Applications of WYSIWYG Training
	Mitigating Disparate Impact of DP
	Group-Distributional Robustness
	Mitigating Robust Overfitting

	Algorithms which Distributionally Generalize
	DP Training with Importance Sampling
	Group-DRO with Noisy Gradients

	Experiments
	Enforcing DG in Practice
	Disparate Impact of Differentially Private Models
	Group-Distributionally Robust Optimization
	Mitigating Robust Overfitting

	Related Work
	Details on Theory
	Proofs
	TV-Stability implies Distributional Generalization
	Tight Bound on TV-Stability from DP
	Privacy Analysis of DP-IS-SGD

	Additional Details on Algorithms
	Additional Experiment Details
	Details on Datasets, Software, and Model Training
	Generalization of Worst-Case Group Accuracy as a Proxy for the DG Gap
	Additional Details for sec:dg-in-practice
	Additional Details for sec:exp-disparate
	Additional Details for sec:exp-dro
	Additional Details for sec:exp-rob-overfitting


