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Abstract—Autonomous mobile robots operating in remote,
unstructured environments must adapt to new, unpredictable ter-
rains that can change rapidly during operation. In such scenarios,
a critical challenge becomes estimating the robot’s dynamics on
changing terrain in order to enable reliable, accurate navigation
and planning. We present a novel online adaptation approach for
terrain-aware dynamics modeling and planning using function
encoders. Our approach efficiently adapts to new terrains at
runtime using limited online data without retraining or fine-
tuning. By learning a set of neural network basis functions that
span the robot dynamics on diverse terrains, we enable rapid
online adaptation to new, unseen terrains and environments as a
simple least-squares calculation. We demonstrate our approach
for terrain adaptation in a Unity-based robotics simulator and
show that the downstream controller has better empirical perfor-
mance due to higher accuracy of the learned model. This leads
to fewer collisions with obstacles while navigating in cluttered
environments as compared to a neural ODE baseline.

I. INTRODUCTION

Rapid adaptation to unknown environments and terrain is
critical for autonomous mobile robots. In off-road navigation,
unpredictable terrain features such as rocky paths, forest floors,
and wet fields can cause skidding, tripping, or immobilization,
jeopardizing the robot’s ability to reach its objective. Au-
tonomous ground vehicles must therefore dynamically adjust
their behavior to terrain-specific conditions. This adaptation
is challenging because terrain variations directly alter system
dynamics. For example, tire response to acceleration depends
on surface friction. As a result, accurate terrain-aware dynam-
ics models are critical for control, particularly in planning-
based control frameworks such as model predictive control
(MPC) or model predictive path integral control (MPPI),
which depend on accurate forward predictions of the robot’s
dynamics [18, 47]. Estimating the robot’s dynamics online in
uncertain environments is a particularly challenging problem
because it typically must be performed without prior data or
knowledge of the environment. This challenge is especially
apparent for mobile robots operating in locations where human
intervention is impractical or impossible, such as extraterres-
trial exploration or hazardous disaster response. Consequently,
learned models for dynamics prediction or estimation must
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Fig. 1: We rapidly identify the robot dynamics on a new,
unseen terrain online using a set of learned neural ODE
basis functions and a small amount of online data, leading
to accurate, terrain-aware MPPI dynamics rollouts.

be able to rapidly adapt to new environments and terrain at
runtime.

We present a method for modeling system dynamics that
enables adaptation to new environments and conditions at run-
time using limited online data. We focus on terrain adaptation
for autonomous ground vehicles, though we note that our
approach is broadly applicable to various systems and envi-
ronment interactions. Our approach uses the theory of function
encoders, which have been applied in reinforcement learning
[20], operator learning for PDE modeling [21, 44], and zero-
shot dynamics estimation using neural ordinary differential
equation (ODE) basis functions [19]. Rather than training a
separate dynamics model for each terrain, we use function
encoders to learn a set of neural network basis functions that
spans a space of robot dynamics. At runtime, the dynamics
are represented as a linear combination of the learned basis
functions, thereby reducing the problem of dynamics estima-
tion to that of identifying a vector of coefficients. We use this
adapted model within a model-predictive controller to plan
trajectories on unseen terrain, enabling closed-loop control
without retraining.

State-of-the-art autonomous off-road navigation systems use
a complex technology stack involving image segmentation
[45], object identification, terrain estimation [23, 31], robot
planning [50], and control [6, 15, 32]. However, many ap-
proaches utilize simplified kinematic models, and neglect



terrain-induced dynamics effects that are important for ac-
curate MPC-based planning. For instance, a ground robot
equipped with a model tuned for driving on dry asphalt will
experience significant tracking errors or loss of control when
encountering slick, icy surfaces due to unmodeled changes in
tire friction.

A common strategy for terrain-aware modeling is to classify
the terrain using semantic segmentation or discrete labels
[8, 39, 46], and then either switch to a corresponding dynamics
model or adapt known models via parameter estimation. How-
ever, these approaches are only effective if the unknown terrain
corresponds to a known model. In practice, this assumption
fails in remote, unstructured environments, where terrain may
be ambiguous or variable. For example, robots may encounter
mixed terrain, such as patches of grass interspersed with mud,
or micro-terrain features, such as loose gravel on top of hard
soil, that does not fit neatly into predefined categories.

Our main contributions are: (1) a method for terrain adapta-
tion that combines function encoders, neural ODEs, and MPPI
control, and (2) an implementation of this approach in a real-
istic robotic simulator that demonstrates accurate closed-loop
control on varied terrains. While prior research has introduced
function encoders for zero-shot prediction [19], we extend this
approach to closed-loop control via MPPI. Specifically, we
integrate the adapted dynamics model into an MPC pipeline to
support real-time trajectory optimization on previously unseen
terrain. The function encoder learns a set of neural ODE
basis functions that span a space of vehicle dynamics, trained
on trajectories from known terrains. In contrast to existing
approaches, our approach collects limited data from a new
terrain at runtime and rapidly adapts its coefficients online
without retraining or fine-tuning. We implement and evaluate
our approach in a high-fidelity Unity-based robotics simulator
using a Clearpath Warthog robot. Figure 1 shows a visual
representation of the proposed method.

A. Related Work

Learning-based estimation and prediction: Accurately pre-
dicting the dynamics of robotic systems operating in diverse,
unstructured environments remains a critical yet challenging
problem. Traditional approaches often rely on analytical mod-
els derived from first principles. However, the complexity
and the difficulty of parameterizing real-world interactions,
especially with varying terrain, significantly limit their applica-
bility and accuracy in off-road settings. Data-driven methods,
leveraging neural networks to learn dynamics from experience,
have shown promise in specific scenarios, including robotic
manipulation [3, 16], autonomous driving on structured roads
[33, 40], and even highly dynamic maneuvers on controlled
surfaces [9]. These learned models, however, typically struggle
to generalize to novel terrains not encountered during training,
which can lead to significant errors in trajectory prediction
and control. The assumption of consistent ground conditions,
inherent in many existing models, breaks down in off-road
or unstructured environments where terrain properties change
rapidly and unpredictably.

Transfer learning & domain adaption: Pre-trained dynam-
ics models, while effective in their training domains, often ex-
hibit poor performance when deployed in novel environments.
Domain adaptation techniques aim to mitigate this by fine-
tuning models using data collected in the new environment.
In the context of off-road robotics, significant research has
focused on capturing terrain-specific properties like friction,
slip, deformability, and sinkage through parameter estimation
[7, 13, 26, 36, 37, 38]. These methods typically involve robots
estimating unknown terrain parameters from onboard sensor
data at runtime. However, a critical limitation of this approach
is the reliance on a predefined underlying dynamics model.
If the true terrain dynamics deviate significantly from this
assumed structure, parameter estimation will fail to provide
accurate predictions.

Meta-learning approaches [14, 49] expand these capabili-
ties by training models specifically to adapt quickly to new
tasks or environments with minimal data. These techniques
relate closely to lifelong learning [27, 28], where systems
continuously incorporate new knowledge while maintaining
performance on previously learned tasks. Despite their advan-
tages, meta-learning approaches ultimately still rely on some
form of fine-tuning, which presents challenges in time-critical
or resource-constrained scenarios. What is needed are models
capable of online adaptation without retraining or fine-tuning.
Our work addresses this by developing a dynamics estimation
approach that adapts to novel terrains in real-time without
explicit retraining. Related online policy adaptation methods
use a two-stage training procedure to train a base policy and
an adaptation module that predicts a latent vector that captures
the effects of different terrains [24], such that the robot can
adapt to changing terrains online without meta-learning.

Foundation models have demonstrated exceptional per-
formance and adaptability across unstructured domains. In
robotics, researchers have created diverse datasets [35] and
developed generalizable models for various morphologies
[1, 2, 12, 41, 42], primarily using transformer architectures
and leveraging behavior cloning. Yet they lack built-in mech-
anisms for adaptation. While our work focuses specifically on
ground robot dynamics estimation across diverse terrains, we
take a similar approach in principle and pre-train a function
encoder model using diverse data before adapting predictions
at runtime from observations.

Off-road driving at the limits: Off-road autonomy presents
unique challenges due to highly variable terrain condi-
tions. Significant research has focused on estimating terrain
traversability and hazard detection to identify safe paths
[17, 29, 31], yet comparatively less attention has been given to
directly estimating dynamics and terrain interactions. Terrain
classification and semantic segmentation represent common
adaptation approaches, where robots use sensor measurements
to identify current terrain types [34] and distinguish between
traversable and non-traversable regions [4, 23, 25, 30, 31].
Typically, neural network classification and segmentation mod-
els are trained offline using data from various environments,
then used at runtime to generate cost maps that improve



local planning decisions. However, this approach has important
limitations. First, terrain classification is only useful when the
robot already knows the associated dynamics. Otherwise, the
robot must approximate using the closest available model,
potentially leading to dangerous situations like attempting
to use a pavement model on ice. Second, classification and
segmentation primarily inform cost functions rather than dy-
namics functions, helping robots avoid dangerous areas but
not necessarily navigate them when unavoidable.

Planning and control for autonomous navigation: Adapta-
tion strategies for control systems typically operate through
either cost function or dynamics model adjustments. Local
planners such as MPPI control use cost functions to evaluate
planned trajectories and improve future control decisions. Prior
work demonstrates that terrain-informed cost functions help
robots avoid dangerous terrain [4, 23, 25, 31]. However,
when robots must traverse challenging terrain, such as large
patches of ice, they require terrain-informed dynamics that
enable local planners to determine how to navigate such
terrain, beyond simply identifying areas to avoid. Dynamics-
based adaptation directly models how the robot interacts with
different terrains. This approach allows control systems to
anticipate and compensate for terrain-specific behaviors such
as wheel slip or reduced traction [10, 11]. While cost function
adaptation primarily influences path selection, dynamics adap-
tation affects both planning and execution by providing more
accurate predictions of how control inputs will translate to
robot motion across varying terrain types. Our work focuses on
dynamics adaptation as it provides a more complete solution
for autonomous navigation in challenging environments.

II. PRELIMINARIES & PROBLEM FORMULATION

We seek to compute an estimate of robot dynamics on-
line without prior data or knowledge of the environment.
This is particularly challenging for mobile robots navigating
unstructured environments. Specifically, we seek a model
that is compatible with the Model Predictive Path Integral
(MPPI) control framework [48]. MPPI is a sampling-based
optimization algorithm that computes an approximate solution
to a optimal control problem at each control step. Below, we
summarize its formulation and refer the reader to [48] for
additional details.

Let w ∈ W denote the world state, which parameterizes
the terrain effects on the dynamics. The discrete-time system
dynamics are given by,

xt+1 = Fw(xt, vt), (1)

where xt ∈ Rn is the state of the system at time t and
vt ∈ Rm is the control input. Note that the world state w is
unobserved, meaning the true dynamics Fw are unknown. We
assume that the actual control inputs applied to the system
V = {v0, v1, . . . , vT−1}, over the horizon T ∈ N, are not
directly controllable. Instead, they are affected by noise such
that vt ∼ N (ut,Σ). The goal of MPPI is to compute a mean
control sequence U = {u0, u1, . . . , uT−1}.

Given a terminal cost function ϕ(xT ) and a running cost
function L(xt, ut), the discrete-time optimal control problem
is defined as,

min
U∈U

E
[
ϕ(xT ) +

T−1∑
t=0

L(xt, ut)
]
, (2)

where U is the set of admissible control sequences and the
expectation is taken with respect to the distribution over the
control inputs V . We presume that the running cost L(xt, ut)
can be split into a state-dependent cost term c(xt) and a control
cost that is a quadratic function of ut,

L(xt, ut) = c(xt) +
λ

2
(u⊤t Σ

−1ut + β⊤
t ut). (3)

From [48], the affine term β allows the location of the
minimum control cost to be shifted away from zero.

Using a learned estimate F̂w of the dynamics Fw in (1),
the control algorithm computes r rollouts, or state trajectories.
From a given initial condition x0 and control sequence V , a
rollout is the predicted state trajectory {x1, . . . , xT } such that
xt+1 = F̂w(xt, vt). The state cost of a rollout is given by,

S(V, x0) = ϕ(xT ) +

T−1∑
t=0

c(xt). (4)

Each rollout is generated by randomly sampling sequences
of control perturbations V1, . . . , Vr, which are random draws
from the distribution over V . Then, we compute the state costs
S(Vi, x0), i = 1, . . . , r, for each rollout.

After we obtain the costs, we compute probability weights
and update the control sequence {u0, . . . , uT−1} by taking
a probability-weighted average followed by a Savitsky-Galoy
smoothing filter. We then send the first control input u0 to
the robot, and the remaining sequence is used to initialize the
optimization algorithm at the subsequent time instant. See [48]
for more details.

Importantly, the system model in (1) is effectively a black
box. In MPPI, the control updates and optimization proce-
dure are decoupled from the rollout generation process. This
decoupling allows learning-based models to serve as drop-in
replacements for analytical models. However, the performance
of MPPI is highly sensitive to model fidelity. Model predictive
control—and MPPI in particular—relies heavily on accurate
forward models to generate rollouts. When there is mismatch
between the learned model and the true system, the opti-
mizer evaluates candidate control sequences under incorrect
assumptions about how the system will evolve. As a result, it
may select actions that appear optimal under the model but
lead to poor or unsafe behavior in the real system. These
errors are especially problematic in off-road environments,
where unmodeled nonlinearities, contact dynamics, and terrain
effects introduce significant model mismatch. Moreover, be-
cause learned models are typically trained in fixed conditions,
they often fail to generalize to new environments without
mechanisms for online adaptation.

We consider the problem of learning a model F̂w of the
system dynamics in (1). The key challenge in the off-road
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Fig. 2: Function encoders consist of two steps: a training
step to learn the neural network basis functions using offline
datasets and an inference step using online data.

setting is that the world state w is unobserved. To adapt to
changing conditions and terrains, we seek a learned model that
is both terrain-aware and computationally efficient for model-
predictive control, suitable for deployment on hardware. Dur-
ing training, we presume access to historical trajectories of
the robot operating on diverse terrains. From the trajectory
data, we construct a set of datasets {Dw1 , . . . , Dwℓ}. Each
dataset Dwi consists of states and actions collected from a
single dynamics function Fwi ,

Dwi = {(xj , vj , xj+1)}mj=0 , (5)

where xj+1 = Fwi(xj , vj). Such a dataset may be available,
for instance, from historical trajectories observed during robot
operation.

III. METHOD

We seek to learn a model of the system dynamics that can
rapidly adapt to new terrains at runtime. The evolution of the
system can be expressed in terms of the equation,

xt+1 = Fw(xt, vt) = xt +

∫ t+1

t

fw(x(τ), vt)dτ, (6)

where fw is the underlying vector field, and we integrate fw

holding vt constant over the interval from t to t+ 1.
Neural ordinary differential equations [5] are a common

approach for learning dynamical system models. These models
approximate the vector field f of a dynamical system with a
neural network fθ. Unlike discrete-time neural network models
which map directly to the future states in a single forward
pass, neural ODEs integrate over time in order to compute
the solutions to initial value problems. Because neural ODEs
compute the vector field of the system, they demonstrate excel-
lent prediction accuracy without suffering from compounding
errors that are inherent to discrete-time models. Like standard
Euler integration, discrete-time models accumulate prediction
errors over long time horizons, which compound over time and
can be detrimental for model predictive control that requires
accurate rollouts. However, neural ODEs do not have a built-in
mechanism for online adaptation.

To learn a model that can rapidly adapt to new terrains
at runtime without retraining, we use function encoders with
neural ODE basis functions [19]. Our work advances the
existing function encoder approach by adapting the formu-
lation with neural ODE basis functions to use least squares
coefficient calculations and integrating it within MPPI control.
In section IV, we demonstrate its effectiveness for ground
robots navigating unstructured environments.

A. Learning Neural ODE Basis Functions

Let F = {fw | w ∈ W} denote the space of all dynamics
functions parameterized by the world state w ∈ W . The space
F can be viewed as the space of all possible dynamics of the
robot on different terrains, where the world state w determines
the terrain. We assume that F is a Hilbert space. Note that
this assumption is generally mild, since it imposes only mild
regularity or smoothness conditions on the dynamics. This
assumption is key to our approach, since it allows us to learn
a representation for F .

We employ function encoders as in [19] to estimate the
dynamics. Figure 2 shows a visual representation of function
encoders. Function encoders learn a set of neural network basis
functions {g1, . . . , gk} to span the Hilbert space F . We can
compute an estimate f̂w of any function fw ∈ F as a linear
combination of the learned basis functions,

f̂w =

k∑
j=1

αw
j gj (7)

where αw ∈ Rk are real coefficients corresponding to fw.
Intuitively, we can view the model as a linear combination of
neural ODE basis functions,

xt+1 − xt =

k∑
j=1

αw
j

∫ t+1

t

gj(x(τ), vt)dτ (8)

=

k∑
j=1

αw
j Gj(xt, vt) (9)

where Gj(xt, vt) :=
∫ t+1

t
gj(x(τ), vt)dτ is a neural ODE.

Note that the basis functions output the change in state. This
means that in practice, we generally need to account for
this during integration by adding the state xt back at each
integration step. The future state of the system xt+1 can be
computed as in (6) by integrating f̂w as in (9).

Importantly, we can quickly compute an estimate f̂w of
any dynamics function fw ∈ F by identifying the coefficients
αw ∈ Rk. The coefficients αw can be computed efficiently in
closed form as the solution to a least squares problem via the
normal equation as,

αw =

⟨G1, G1⟩ · · · ⟨G1, Gk⟩
...

. . .
...

⟨Gk, G1⟩ · · · ⟨Gk, Gk⟩


−1 ⟨F,G1⟩

...
⟨F,Gk⟩

 . (10)

This requires us to compute the inverse of a k×k Gram matrix,
which is generally O(k3). However, k is generally chosen to



be small, on the order of 100 or fewer, meaning the inverse
can be computed efficiently. Additionally, we note that this
computation can be performed once offline after training, and
that we do not need to recompute the inverse during inference.
Since the basis functions output the change in state xt+1−xt,
the inner product between functions F and G is defined as

⟨F,G⟩ =
∫
X×U

F (x, u)⊤G(x, u)d(x, u). (11)

We approximate the inner product using Monte Carlo integra-
tion [19, 20] using a small amount of input-output data of the
form (xt, vt) and xt+1 − xt collected online.

Offline Training: For each function fwi and the correspond-
ing dataset Dwi , we first compute the coefficients via (10) and
then compute an empirical estimate f̂wi of fwi as in (7). We
then compute the MSE of the estimate using the norm induced
by the inner product of F . The loss is the sum of the errors
for all f̂wi , which is minimized via gradient descent. After
training, the basis functions {g1, . . . , gk} are fixed. We denote
the low-dimensional representation of F as

F̂ := span{g1, . . . , gk}. (12)

Online Inference: At inference time, the basis functions do
not require retraining or fine-tuning. For any new function
fwnew ∈ F , we simply need to identify the coefficients of the
dynamics representation f̂wnew in the learned function space F̂
in order to estimate the function via (7). This representation
is central to our approach, since it offers a means to quickly
identify and estimate the dynamics. In practice, we typically
require only a small amount of online data to compute αw.
Generally, we can identify αw using approximately 100 data
points, which corresponds to a few seconds of online data.

As a remark, it is important to clarify the coefficients αw

correspond to a single terrain. However, the terrain may change
during off-road navigation, e.g. from dirt to sand to mud.
We note that our proposed approach can likely be adapted
to streaming data collected online via recursive least squares,
which would offer a significant advantage over existing adap-
tation approaches such as meta-learning that require network
fine-tuning, since we can use update our learned model via a
simple coefficient update.

B. Online Terrain Adaptation with MPPI

At runtime, we collect a small sample of online data and
solve the least squares problem (10) to estimate an approxi-
mate dynamics model f̂w for fw as a linear combination of
the learned neural ODE basis functions (9). We then use f̂w in
place of the dynamics model in (1) to compute state trajectory
rollouts from the robot’s current state and compute the control
inputs from MPPI as normal. Using the r sampled control
sequences V1, . . . , Vr, we generate predicted state trajectories
using (9) by integrating the model over the planning horizon
T . Then, for each rollout, we compute the state costs S(Vi, x0)
as in (4) and compute the MPPI probability weights as normal.

By incorporating terrain-dependent dynamics, we obtain
more accurate trajectory predictions and corresponding state

costs (4). As a result, MPPI generates more accurate trajec-
tories that guide it toward better candidate solutions of the
optimal control problem (2). Moreover, the rollouts for MPPI
can be computed efficiently since they can be computed in
batch, where each single-step prediction incurs only a cheap
forward pass through f̂w. Most importantly, the function en-
coder model gives us terrain-aware predictions. Using function
encoders with neural ODE basis functions to compute the
rollouts for MPPI yields a computationally efficient online
adaptation scheme that does not rely on expensive gradient
updates or neural network fine-tuning.

IV. RESULTS

We demonstrate our proposed approach for terrain-aware
planning and control in Phoenix, a Unity-based, high-fidelity
robotic simulation environment designed for realistic outdoor
navigation experiments. Phoenix provides accurate dynamics
modeling for robotic vehicles and supports obstacle-aware
planning. In this work, we evaluate our approach using a
simulated Clearpath Warthog robot, a wheeled ground rover
employing skid-steer drive.

The robot’s tires in Phoenix feature adjustable friction
parameters, enabling simulation of various terrains such as
pavement, mud, and ice. Phoenix defines each tire’s forward
and lateral friction behavior using five parameters: extremum
slip, extremum value, asymptote slip, asymptote value, and
stiffness [43]. Here, slip quantifies the relative rotation of
the tire with respect to the ground before friction thresholds
are reached, while value denotes the frictional force at these
thresholds. The extremum represents the point of maximum
frictional force, and the asymptote describes the steady-state
friction force after surpassing the extremum slip. Adjusting
these parameters modulates the robot’s traction, effectively
simulating diverse terrain interactions and driving dynamics.

We leverage the simulator’s adjustable friction parameters
to replicate a variety of terrains. Specifically, we define two
extreme parameter sets: a “normal friction” set representing
pavement conditions, a, and a “low friction” set representing
slick, icy conditions b. To systematically generate intermediate
terrains, we select 6 parameters in-between these two values a
and b using a convex combination θa+(1−θ)b of the param-
eter vector with θ ∈ [0, 0.25, 0.5, 0.75, 0.812, 0.875, 0.939, 1]
to create a total of 8 different terrains. Each resulting terrain
corresponds uniquely to a different world state w.

A. Dataset Collection and Pre-processing

For each simulated terrain, we collect approximately 15
minutes of driving data using the simulator’s integrated MPPI
controller and analytical model guided by manually specified
waypoints. The dataset comprises odometry measurements and
control commands sent to the robot. Specifically, odometry
data includes the robot’s inertial frame coordinates x, y, head-
ing angle ψ, linear velocities vx, vy , and angular velocity ωz ,
with velocities expressed in the robot’s local (body) coordinate
frame. Additionally, we record the commanded forward and
angular velocities throughout each run.



Fig. 3: We collect data corresponding to diverse terrains that induce significant variation in the dynamics. Several terrains have
low friction, which causes high lateral velocity.

Fig. 4: (Left) MSE of the function encoder versus the neural ODE model on unseen data from in-distribution scenes. (Middle)
MSE on an out-of-distribution scene whose dynamics is an interpolation of two in-distribution scenes. (Right) MSE on an
out-of-distribution scene whose dynamics are more slippery than anything in the training sets, i.e., extrapolation. We evaluate
over 10 random seeds. Each plot shows the median bounded by the minimum and maximum values (shaded regions).

The collected dataset comprises measurements expressed in
both inertial and body reference frames. Because the system
dynamics are invariant under translation and rotation, we
apply a coordinate transformation to express the inertial states
(x, y, ψ) within the robot’s local (body) frame. Since the
robot’s dynamics remain consistent irrespective of absolute
position or orientation, converting global states into the body
frame significantly improves data efficiency and model learn-
ing. In the inertial frame, odometry data collected from the
simulator tends to be sparse and broadly distributed across a
large range, leading to limited overlap among trajectories. This
sparsity can degrade model accuracy, motivating our transfor-
mation to the robot’s local frame. However, we acknowledge
that such a coordinate transformation may not be feasible or
practical in all real-world scenarios.

Figure 3 shows the distribution of velocities recorded on
each terrain. On high-friction terrain, the robot exhibits min-
imal slip, and its y-velocity remains tightly bounded. As
terrain friction decreases, slip increases, particularly during
acceleration. In low-friction conditions, the robot frequently

loses traction, resulting in significant lateral drift, spinouts,
and occasional backward sliding.

From each terrain, we generate a dataset Dwi from the col-
lected trajectory {x0, v0, . . . , xT−1, vT−1, xT }. From the tra-
jectory, we compute the time difference ∆t between consecu-
tive states, as well as the state difference ∆xt = xt+1−xt. We
then construct a dataset of input-output pairs (xt, vt,∆t,∆xt)
for training the model as described in Equation (9).

B. Model & Implementation Details

Both the neural ODE and function encoder (FE-NODE)
models are trained on identical datasets. Training was per-
formed on a desktop equipped with an NVIDIA RTX 4060
GPU, Intel Core i7-14700 CPU, and 32GB RAM. The function
encoder model required approximately 1 hour and 15 minutes
of training, while the neural ODE model took approximately
21 minutes. For inference, both models used a Runge-Kutta 4
(RK4) numerical integrator to compute forward passes. In our
implementation, the hyperparameter k denoting the number
of basis functions was set to k = 8. The number of basis
functions required depends on the system. However, this is



Fig. 5: We evaluate the performance of the function encoder in
an online setting. At each timestep, we use the most recent n
data points to compute the coefficients. This figure shows that
the function encoder only requires a small amount of online
data to get accurate 1-step predictions.

generally unknown without prior knowledge. Therefore, we
can overestimate with a larger number of basis functions than
needed. For an ablation analysis of increasing the number of
basis functions, see [19, 22]. The MPPI controller used in our
experiments samples 1, 000 rollouts at each control iteration.
Each rollout was simulated over a time horizon of 10 seconds
with a sampling rate of 10 Hz, resulting in predictions at 0.1-
second intervals.

The data processing pipeline for both models was identical.
As input, we use real-time odometry data, including linear
and angular velocities, along with the commanded velocities.
Using this input, we compute forward passes through the
respective learned dynamics models. These predictions are
then used to generate trajectory rollouts within the MPPI-based
model predictive control algorithm. Finally, control inputs
are computed from the rollouts following the standard MPPI
procedure.

C. Training Results

We plot the training curves in Figure 4. The results indicate
that the function encoder slightly outperforms neural ODEs
on in-distribution scenes. However, for an out-of-distribution
scene that is an interpolation of two of the training scenes,
the neural ODE’s performance degrades significantly. This is
because the neural ODE is overfitting to the training scenes,
whereas the function encoder adapts to this new scene via its
coefficient calculation. This effect is even more pronounced
for the held-out, extrapolation scene, where the neural ODE’s
performance suffers. Additionally, the training curve on the
extrapolation dataset is indicative of overfitting for both algo-
rithms.

D. Generalization and Online Adaptation Across Scenes

To highlight our approach’s ability to adapt to new settings,
we mimic an online setting and measure the MSE of the
next state predictions with only recent data to compute the
coefficients. The results are shown in Figure 5. We iterate

Fig. 6: Error per-scene of our proposed approach compared
to a standard neural ODE. Our approach achieves low error
across all scenes, and does not suffer an increase in error for
the interpolation dataset (scene 5). In contrast, neural ODEs
perform much worse at this unseen, interpolation dataset. We
evaluate over 10 random seeds. The median is bounded by the
minimum and maximum values (shaded regions).

over the data for each scene, and at any given timestep, we
use the previous n data points to compute the coefficients. The
resulting loss for the function encoder is the same as during
training, suggesting that the function encoder is successfully
adapting from the most recent n data points. Furthermore,
this curve ablates the amount of data needed to compute the
coefficients. We find that 5 data points, which is approximately
half a second, is enough for the function encoder to outperform
neural ODEs. The function encoder’s performance is stable
as the amount of example data increases, suggesting that the
coefficient estimate’s accuracy has saturated.

In Figure 6, we plot the error per scene. We see that the
function encoder slightly outperforms neural ODEs on all
scenes, which corresponds with the training curves. Further-
more, we see that neural ODEs suffer an increase in error
for scene 5, which is the held-out, interpolation scene. This
is because neural ODEs are overfitting to the training scenes,
whereas the function encoder uses a small dataset to calibrate
to this new scene. Both approaches have worse performance
on the extrapolation scene (Scene 1), although the function
encoder outperforms neural ODEs on the validation set.

In Figures 7 and 8, we evaluate the accumulated MSE
of each model’s predictions over time. To simulate online
trajectory rollouts as in MPPI, we choose random initial
states from the scene data, and the models propagate the
state forward using the recorded control inputs. Then, we
evaluate the MSE between the true and predicted state after
each prediction. Figure 7 shows the results on the interpo-
lation scene (Scene 5), and figure 8 shows the results on
the extrapolation scene (Scene 1). In both plots, the neural



Fig. 7: Accumulated MSE over time for scene 5. Our approach
achieves more accurate rollouts over time on the interpolation
scene (Scene 5). We evaluate over 10 random seeds and 100
rollouts per seed. The median error values are bounded by the
90% and 10% quartiles (shaded regions).

Fig. 8: Accumulated MSE over time for Scene 1 (icy).

ODE accumulates prediction error at a much faster rate than
the function encoder. This indicates that the function encoder
produces more accurate MPPI rollouts over time.

E. Qualitative Results

We deploy the trained neural ODE and function encoder
models on the simulated Warthog ground robot in Phoenix.
The robot must navigate through a wooded area to reach a
series of waypoints without colliding with trees. MPPI controls
the robot during waypoint navigation using a learned model
to calculate trajectory rollouts. Figures 9 and 10 compare
how the neural ODE and the function encoder perform in
this navigation experiment while driving on the unknown ice
terrain (Scene 1 in Figure 6). The blue circle shows the

Fig. 9: The neural ODE struggles to extrapolate to an unknown
icy terrain. Due to poor rollout predictions, the robot collides
with two trees and fails the mission.

proximity radius of each waypoint, and the thin purple line
shows the path along which the robot traveled. As expected,
the robot using the neural ODE model in Figure 9 fails to
extrapolate to the unknown ice terrain, where the surface
friction in Phoenix is set extremely low. The robot only
reached two waypoints because it slides out of control, collides
with a tree, and was unable to recover. On the other hand, the
robot using the function encoder model in Figure 10 reaches
all three waypoint goals without colliding with any obstacles.
Over four trials, the function encoder had no collisions, while
the neural ODE had 11 total.

Figure 11 illustrates each model’s prediction accuracy in a
timelapse. MPPI attempts to control the robot through an arc
maneuver while traveling at high speeds on a slippery terrain.
This is very challenging due to low friction between the tires
and the ground that causes the robot to slide through turns.
The function encoder better predicts how the robot slides while
turning and maintains control of the vehicle. On the other
hand, the neural ODE predicts with less accuracy, and MPPI
loses control.

V. LIMITATIONS

The main limitations of our approach are related to the data
and the limitation of our validation results to a simulated robot
environment.

Sensor Modality: The current implementation relies exclu-
sively on proprioceptive measurements (e.g. odometry and
commanded velocities). Consequently, adaptation is inherently
reactive, meaning it occurs only after the robot has physically
encountered the terrain. This limits the ability to anticipate
upcoming terrain transitions and can result in control degrada-
tion, particularly during abrupt surface changes. Nevertheless,
we anticipate that our approach could likely be adapted to
streaming data via recursive least squares or Bayesian ap-
proaches to update the coefficients in response to new data.

Model Expressiveness and Excitation: The accuracy of the
adapted model is constrained by the span of the learned



Fig. 10: The function encoder successfully extrapolates to an
unknown icy terrain, avoids all obstacles, and completes the
mission.

Fig. 11: Timelapse illustration of model predictions. The
neural ODE trajectory predictions break down during a high
speed turn (left). As a result, MPPI loses control of the vehicle
and collides with an obstacle. The function encoder accurately
predicts the robot’s trajectory during a similar maneuver (right)
and maintains control.

function space. If terrain-induced dynamics fall outside this
span—e.g. due to highly nonlinear effects like slippage or
discontinuous contacts—the model may fail to generalize,
limiting performance in extreme conditions.

At runtime, the method requires only a small number of
transitions (e.g. ∼100) to estimate terrain-specific coefficients
via least-squares. However, this estimation assumes persis-
tently exciting control inputs; under low-excitation conditions,
such as steady, straight-line driving, the resulting regression
problem may be ill-conditioned, reducing adaptation quality.

Simulation-Only Validation: All experiments are conducted
in high-fidelity simulation using a Unity-based physics engine
with realistic terrain modeling. While these results are promis-
ing, real-world validation on hardware is needed to assess
performance and robustness under real-world conditions.

VI. CONCLUSION & FUTURE WORK

This work introduces a method for online adaptation of
terrain-aware dynamics using function encoders, which repre-
sent robot dynamics as a linear combination of basis functions
learned from diverse terrain data. By projecting dynamics
onto a compact function space representation and estimating
terrain-specific coefficients online via least squares regression,
the method achieves fast and data-efficient adaptation without
retraining or fine-tuning. Integrated into a model predictive
path integral (MPPI) controller, the adapted model enables
accurate trajectory prediction and robust closed-loop perfor-
mance on previously unseen terrain. Experiments in a high-
fidelity Unity simulation with a Clearpath Warthog robot
show that our approach reduces model prediction error and
results in fewer collisions compared to a neural ODE baseline,
demonstrating its effectiveness for terrain-aware planning in
unstructured environments.

Future work aims to incorporate visual perception into the
adaptation process, enabling anticipatory, zero-shot dynamics
estimation directly from visual terrain features. Specifically,
we plan to map embeddings from onboard RGB cameras to dy-
namics representations in the learned function space, enabling
the robot to infer terrain dynamics before contact. We also
plan to extend this work to other types of terrain variations.
This work focuses on varying friction parameters, but future
work seeks to evaluate our method on uneven, bumpy surfaces
that are common in real-world, off-road navigation.
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