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ABSTRACT

Zero-shot quantization (ZSQ) has achieved remarkable success in classification
tasks by leveraging synthetic data for network quantization without accessing the
original training data. However, when applied to object detection networks, current
ZSQ methods fail due to the inherent complexity of the task, which encompasses
both localization and classification challenges. On the one hand, the precise
location and size of objects within the samples for object detection remain unknown
and elusive in zero-shot scenarios, precluding artificial reconstruction without
ground-truth information. On the other hand, object detection datasets typically
exhibit category imbalance, and random category sampling methods designed for
classification tasks cannot capture this information. To tackle these challenges,
we propose a novel ZSQ framework specifically tailored for object detection. The
proposed framework comprises two key steps: First, we employ a novel bounding
box and category sampling strategy in the calibration set generation process to
infer the original training data from a pre-trained detection network and reconstruct
the location, size and category distribution of objects within the data without
any prior knowledge. Second, we incorporate feature-level alignment into the
Quantization Aware Training (QAT) process, further amplifying its efficacy through
the integration of feature-level distillation. Extensive experiments conducted on
the MS-COCO and Pascal VOC datasets demonstrate the efficiency and state-of-
the-art performance of our method in low-bit-width quantization. For instance,
when quantizing YOLOv5-m to 5-bit, we achieve a 4.2% improvement in the mAP
metric, utilizing only about 1/60 of the calibration data required by commonly used
LSQ trained with full trainset.

1 INTRODUCTION

Object detection neural networks play a pivotal role in a wide array of computer vision applications,
spanning from autonomous driving to surveillance systems (Mao et al., 2023; Balasubramaniam &
Pasricha, 2022; Oguine et al., 2022; Mishra & Saroha, 2016). As the demand grows for deploying deep
neural networks on resource-constrained devices, quantization has emerged as a critical technique to
reduce network size and computational complexity while maintaining performance (Chen et al., 2019;
Deng et al., 2020; Han et al., 2015; Wang et al., 2022). However, traditional quantization methods
often necessitate access to the original training data, posing challenges due to privacy concerns or the
impracticality of storing and transferring large datasets (Krishnamoorthi, 2018a; Nagel et al., 2021a).
In this context, Zero-shot Quantization (ZSQ) (Cai et al., 2020; Nagel et al., 2019a; Yvinec et al.,
2023; Xu et al., 2020; Liu et al., 2021) presents a promising approach to quantize neural network
without the reliance on real training data, which mainly leverage synthetic data inversed from network
with randomly sampled label. Most current research on ZSQ is limited to classification tasks and
leverages synthetic data to fine-tune the quantized network in a distillation manner, offering a pathway
to privacy-preserving quantization (Cai et al., 2020; Xu et al., 2020; Liu et al., 2021).

While ZSQ has achieved remarkable success in classification tasks, the extension of zero-shot
techniques to object detection faces unique challenges due to the inherent complexity of the object
detection task that encompasses both localization and classification subtasks. First, the existing data
synthesizing method of zero-shot quantization cannot be extended to object detection. Classification
networks require only a randomly sampled category id label for data synthesizing (Choi et al., 2021;
Zhong et al., 2022; Qian et al., 2023a;b; Chen et al., 2024). Unlike classification networks, the
location and size of objects within the samples for object detection remain unknown and elusive in
zero-shot scenarios, precluding artificial reconstruction without ground-truth information. Random
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(a) Images generated using Adaptive 

Sampling with effective reconstruction 

of object location information.

(b) Category distribution from Adaptive 

Sampling v.s. MS-COCO train set, with 

object category names listed on the right.

(c) mAP on MS-COCO achieved by 

various YOLO models with 5-bit QAT.

Image Show

Cup
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Figure 1: (a) Images generated by Adaptive Sampling on a YOLOv5 detector pre-trained on MS-
COCO. (b) Adaptive Sampling can generate a category distribution frequency similar to MS-COCO
in a data-free setting. (c) We achieve SOTA under all settings where LSQ and LSQ+ use 120K real
data for training, while ours uses the 2K calibration set for training.

sampling the location and size tends to result in bad plausibility of the relative positions and sizes of
the objects. Chawla et al. (2021); Chen et al.; Wang et al. (2024) focus on synthetic detection sample
and take ground-truth as the label for generation, which can accurately reconstruct the location and
size of the detection samples, but ground-truths are not allowed in the zero-shot settings and internal
information of the network such as batch normalization statistics is not considered. On the other
hand, object detection datasets typically exhibit category imbalance, and random category sampling
methods designed for classification tasks like category-balanced ImageNet and CIFAR-10/CIFAR-
100 cannot capture the category distribution of objects. Second, the fine-tuning strategy for zero-shot
quantized detection network with synthetic calibration data has not been studied. The currently used
logits alignments designed for classification networks might not be sufficient in more complex object
detection networks, which makes it hard to make full use of limited synthetic data efficiently.

To address these challenges, we propose a novel ZSQ framework for quantizing object detection
networks. We first propose a novel bounding box and category sampling strategy to synthesize
a calibration set from a pre-trained detection network, which reconstructs the location, size and
category distribution of objects within the data without any prior knowledge. Then, we integrate
prediction-matching distillation and feature-level distillation into the Quantization Aware Training
(QAT) process to further amplify the efficacy of quantized detection network finetuning. For the first
time, we demonstrate synthetic calibration set can be applied to object detection network quantization,
particularly in privacy-sensitive scenarios. Encouragingly, compared with the time and resource-
intensive quantization-aware training (QAT) method LSQ based on the full training set, it is shown
that our synthetic calibration set, merely 1/60 the size of the original training set, can yield comparable
results with our framework.

Specifically, Our contributions are threefold and are visually illustrated in Fig. 1:

1. Location reconstruction. To reconstruction of position and size of the objects in synthetic
samples for zero-shot quantization, the proposed bounding box sampling method tailored
for object detection exhibit plausibility of the relative positions and sizes of the objects,
showcasing that potential object localization information can be obtained from the network.

2. Category sampling. To inverse the category-imbalance object detection model, we employ
a relabel strategy for category sampling strategy in the calibration set generation process
and reconstruct the category distribution of objects within the synthetic samples without any
prior knowledge.

3. Advanced performance. We integrate knowledge distillation into the quantized object
detection network fine-tuning process for better knowledge transfer. Extensive experiments
conducted on the MS-COCO and Pascal VOC datasets demonstrate the state-of-the-art
performance of our method in zero-shot quantization. For instance, when quantizing
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YOLOv5-m to 5-bit, we improve the mAP metric by 4.2% compared to LSQ trained with
full real data.

2 RELATED WORKS

This section provides a brief overview of the studies relevant to our work, focusing on data-driven
quantization and zero-shot quantization.

Data-driven Quantization Post-training quantization (PTQ) and quantization-aware training (QAT)
(Krishnamoorthi, 2018b; Nagel et al., 2021b) are the most commonly employed quantization methods.
PTQ methods typically utilize a small calibration set, often a subset of the training data, to optimize
or fine-tune quantized networks (Finkelstein et al., 2023; Frantar & Alistarh, 2022). For instance,
AdaRound (Nagel et al., 2020) introduced a layer-wise adaptive rounding strategy, challenging the
quantizers of rounding to the nearest value. Additionally, BRECQ (Li et al., 2021) implemented
block-wise and stage-wise reconstruction techniques, striking a balance between layer-wise and
network-wise approaches. QDrop (Wei et al., 2022) innovatively proposed randomly dropping
activation quantization during block construction to achieve more uniformly optimized weights.
Despite their simplicity and minimal data requirements, PTQ methods often face challenges related
to local optima due to the limited calibration set available for fine-tuning. On the other hand, most
QAT approaches leverage the entire training dataset to quantize networks during the training process
(Jung et al., 2019). PACT (Choi et al., 2018) introduced a parameterized clipping activation technique
to optimize the activation clipping parameter dynamically during training, thereby determining the
appropriate quantization scale. LSQ (Esser et al., 2019) proposed estimating the loss gradient of the
quantizer’s step size and learning the scale parameters alongside other network parameters. LSQ+
(Bhalgat et al., 2020), an extension of the LSQ method, introduced a versatile asymmetric quantization
scheme with trainable scale and offset parameters capable of adapting to negative activations. Both
QAT and PTQ methods rely on training data for quantization, rendering them impractical when faced
with privacy or confidentiality constraints on the training data.

Zero-shot Quantization Zero-Shot Quantization (ZSQ) is a valuable approach that eliminates
access to real training data during the quantization process. Presently, most ZSQ research is confined
to classification tasks. Data-free quantization (DFQ) represents a subset of ZSQ methods that enable
quantization without relying on any data. For instance, DFQ (Nagel et al., 2019b) introduced a
scale-equivariance property of activation functions to normalize the weight ranges across the network.
SQuant (Guo et al., 2022) developed an efficient data-free quantization algorithm that does not
involve back-propagation, utilizing diagonal Hessian approximation. However, due to the absence
of data, DFQ methods may not be suitable for low-bit-width configurations. For example, in the
case of 4-bit MobileNet-V1 on ImageNet, SQuant achieved only 10.32% top-1 accuracy. Another
branch of ZSQ methods leverages synthetic data (Chen et al., 2023; Li et al., 2023) generated by the
full-precision network. GDFQ (Shoukai et al., 2020) introduced a knowledge-matching generator
to synthesize label-oriented data using cross-entropy loss and batch normalization statistics (BNS)
alignment. TexQ (Chen et al., 2024) emphasized the detailed texture feature distribution in real
samples and devised texture calibration for data generation. However, the algorithms designed for
classification tasks may not be directly applicable to detection tasks, as they cannot effectively utilize
the output of the detection head. From the perspective of synthetic samples with detection networks,
Chawla et al. (2021); Chen et al.; Wang et al. (2024) presented relevant methods to synthesize data
with ground-truth or small amounts of real data for distillation or network training. However, both
ground-truth and real samples should be prohibited in the zero-shot settings and they were not aimed
at zero-shot quantization tasks and therefore lacked consideration of the internal information of the
model.

3 METHODOLOGY

In this section, we provide an overview of the proposed framework, as illustrated in Fig. 2. Our
framework consists of two stages: generation of a condensed calibration set and quantization-aware
training (QAT).
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Figure 2: An overview of the proposed framework.

3.1 PRELIMINARIES

Quantizer. Following LSQ (Esser et al., 2019), we adopt per-tensor symmetric quantization on
both weights and activations. Given a floating-point tensor wfp (weights or activations), step size s
and quantization bit width b, the quantized representation of the data ŵfp can be defined as:

wint = clip(⌊wfp/s,−2b−1, 2b−1 − 1⌉), (1)

ŵfp = wint × s. (2)

Here, wint denotes the quantized integer representation of the data, ⌊input⌉ rounds the input to its
nearest integer. We conduct quantization on a 32-bit floating-point full-precision pre-trained YOLO
network. During optimization finetuning, We follow LSQ (Esser et al., 2019) to update the weight
parameters and step size.

Calibration Set Generation. The calibration set utilized in model quantization needs to reflect
the model’s inherent distribution. Data-free quantization seeks to generate a synthetic calibration set
that matches the model’s distribution (Cai et al., 2020). The synthetic calibration set can be derived
through noise optimization (Cai et al., 2020; Zhong et al., 2022; Zhang et al., 2021), which is usually
instantiated by distribution approximation (Cai et al., 2020; Xu et al., 2020). Existing data-free
methods in object detection typically require generating a calibration set the same size as the training
set (120k images for MS-COCO) (Chawla et al., 2021). In contrast, we only generate a small amount
of calibration set to extract features of the data.

Given a batch of N inputs x ∈ RN×3×H×W , where each pixel is initialized from random Gaus-
sian noise xi,c,h,w ∼ N (0, 1), and a pre-trained full-precision detection network ϕ(θ), synthetic
calibration set are obtained through optimizing the inputs to match the batch normalization statis-
tics (BNS) (Yin et al., 2020):

min
x

LBNS(x) =

L∑
l=1

(||µl(θ, x)− µl(θ)||2 + ||σl(θ, x)− σl(θ)||2), (3)

where µl(θ)/σl(θ) are mean/variance parameters stored in the l-th BN layer of ϕ(θ) and
µl(θ, x)/σl(θ, x) are mean/variance parameters calculated on inputs using ϕ(θ). It enforces fea-
ture similarities at all levels by minimizing the distance between the feature map statistics for the
synthesized image x and the real image x̂.

Besides the BNS alignment objective function, a network training loss is also utilized to optimize
the sampled inputs. In classification networks, the standard form is Lclassify(ϕ(x), c), where the
target label c is an integer and can be generated through random sampling. In object detection tasks,
however, the label information is more intricate, often comprising the object’s position and size,
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which can be formulated as: Ldetect(ϕ(x), y). This consists of three components: a box category
loss Lcategory, a box dimension loss Lbox, and a grid location loss Lconf . The ground truth target
y ∈ RN×6 includes the batch index (y[:, 0]) i, the category of the bounding box (y[:, 1]) c, and the
coordinates of the bounding box (y[:, 2:6]) x,y,w,h. More specifically, a prior term consisting of the
total variance and l2 norm of the input image is always involved in the final loss function to steer
images away from unrealistic images (Mahendran & Vedaldi, 2015):

min
x

Lprior(x) = αTV LTV (x) + αl2∥x∥22, (4)

where LTV promotes similarity between adjacent pixels by minimizing their Frobenius norm, con-
sequently enhancing the smoothness of the synthetic image, αTV and αl2 are hyper-parameters
balancing the importance of two terms. Finally, we can regard our framework as a regularized
minimization problem and optimize the following function:

min
x

αBNSLBNS(x) + αdetectLdetect(ϕ(x), y) + Lprior(x). (5)

3.2 ADAPTIVE SAMPLING
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Figure 3: An overview of Relabel process.

In this section, we propose an adaptive sampling strategy to sample bounding box coordinates
and categories needed for generating the calibration set in the Section 3.1. The proposed adaptive
sampling strategy only requires a pre-trained network and does not rely on additional information
(e.g. meta-data, feature activation) or additional networks(e.g. pre-trained generative networks).

Unlike classification networks, the inversion of object detection networks presents several challenges.
First, the location and size of objects within the network are unknown. In contrast to classification
networks, where classification labels can be randomly sampled, the labels for object detection
networks include both object categories and bounding boxes. Therefore, random sampling faces
challenges related to the plausibility of the relative positions and sizes of the objects. As shown in
Section D, the performance of random sampling using given multi-object labels is significantly worse
than that of our adaptive sampling method. Besides, object categories distribution is also unknown.
Current method typically uses ground truth to guide model inversion, which is not truly zero-shot. In
the field of object detection, the DIODE (Chawla et al., 2021) method introduced the use of positive
samples, but it lacks a mechanism for adjusting negative samples and has not been applied to the field
of zero-shot quantization.
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Table 1: Bounding box sampling details: we start by sampling one object Y for each image, where C
represents the number of categories. We assume that the relative width and height of the image are
both 1. W_min and H_min are set to 0.2, while W_max and H_max are set to 0.8. U denotes
uniform distribution.

Variable Sampling Distribution Description

Y[i,0] - Batch index
Y[i,1] U(0, C) Category
Y[i,2] U(W/2, 1−W/2) Bouding box x-center
Y[i,3] U(H/2, 1−H/2) Bouding box y-center
Y[i,4] U(W_min,W_max) Bouding box width
Y[i,5] U(H_min,H_max) Bouding box height

Motivated by (Yin et al., 2024), which integrates soft labels into the data recovery process, making
synthetic data and labels more aligned, we propose a two-stage label sampling method, outlined as
follows:

1. Relabel. The first stage is responsible for generating labels through relabeling, as illustrated
in Fig. 3. We start by sampling one object Y ∈ RK×6 for each image x ∈ R3×H×W in
the batch, details are included in Table 1. While optimizing the input toward the generated
targets using Eq. 5, we use a pre-trained teacher detection network to relabel the synthetic
images according to Alg. 1 every 100 iterations. We aggregate labels with high confidence
in the label space of the teacher’s dataset and remove labels with low confidence, ensuring
at least one label in each image.

2. Synthetic. In the second stage, we fix the generated labels and optimize the input towards
the targets using Eq. 5. The main difference from the calibration set generation process is
that the labels we use are obtained through relabeling samples, rather than real labels.

With this sampling strategy, we eliminate the need for real detection labels. As presented in Fig. 1,
this approach can produce bounding box categories that closely resemble the actual distribution, while
also reconstructing objects’ relative positions, sizes, and counts. This capability supports downstream
tasks, such as quantization-aware training, in a data-free setting.

Algorithm 1 Adaptive Sampling Algorithm

Input: existing image and labels {image, targets}, pre-trained detection network teacher,
filtering threshold: confidence conf_thresh, iou iou_thresh
1. new_targets = teacher(image).predictions[conf > conf_thresh]
2. ious = IOU(new_targets, targets)
# Add targets that do not overlap with the existing targets.
3. add_targets = new_targets[(max(ious, dim = 1) < iou_thresh).bool()]
# Remove targets from the existing list that are not detected by the pre-trained detection network.
4. minus_targets = (max(ious, dim = 0) < iou_thresh).bool()
5. targets = targets[∼ minus_targets]
6. targets = cat([targets, add_targets], dim = 0)

3.3 EFFICIENT FINE-TUNING WITH DISTILLATION

In this section, we propose to reduce the knowledge discrepancy between full-precision pre-trained
network (teacher) and quantized network (student) through knowledge distillation.

Knowledge distillation (Hinton et al., 2015) is a commonly used method for knowledge transfer.
Previous works (Ding et al., 2023; Li et al., 2023) have applied it to classification tasks with quantized
CNNs and LLMs for better performance. This indicates that aligning quantized networks in the
feature dimension is beneficial for maintaining network performance. The backbone and prediction
head of a full-precision pre-trained YOLO network contains much of the statistical information from
real training data (Yin et al., 2020), which cannot be fully explored by object detection loss. Therefore,
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we propose using feature-level distillation to match intermediate features and prediction-matching
distillation to align the predictions of the quantized network and pre-trained network.

Prediction-matching Distillation As proposed in Section 3.1, our synthetic calibration set
{(x̂i, ŷi)}Ni=1 is the result of the network backpropagating through pre-defined labels, directly align-
ing predictions of the quantized network with the targets would lead to severe over-fitting issues.
Therefore, we introduce Kullback–Leibler (KL) divergence loss (Kullback & Leibler, 1951) between
the predictions of quantized network and full-precision network as soft labels and object detection loss
between the predictions of quantized network and targets as hard labels to recover the performance of
the quantized network, which is represented as:

min
θ′

LKD = βKL
τ2

N

N∑
i=1

KL(zF (x̂i; θ), z
Q(x̂i; θ

′)) + βdetect
1

N

N∑
i=1

Ldetect(ϕ
′(x̂i), ŷi), (6)

where {x̂i}Ni=1 is a batch of the calibration set images, zF (x̂i; θ)/z
Q(x̂i; θ

′) are output predictions
from full-precision / quantized network and τ is the distilling temperature. We denote parameters of
full-precision / quantized network as θ/θ′, βKL and βdetect are hyper-parameters to balance the two
terms.

Feature-level Distillation We extend the knowledge transfer manner to the feature level and
introduce a feature distillation method to match intermediate features from teacher and student
explicitly. We find the benefits are two-fold: On the one hand, it accelerates the network convergence.
Typical LSQ methods train the network’s weight parameters and quantization step size with a whole
set of real images. In contrast, as we will demonstrate in Section 4.1, through finer knowledge
transfer, we enable the quantized student to train on a synthetic calibration set of merely 1/60 of the
original size and boost the convergence speed by about 16×. On the other hand, QAT training at
ultra-low bit width always leads to rapid error accumulation. Feature distillation ensures the similarity
of features extracted by the teacher and student, thereby minimizing error accumulation during the
training process.

In the quantization-aware training stage, given a batch of synthetic image {x̂i}Ni=1, we impose the
mean squared error constraints between the feature maps from teachers and students. With L being
the number of distilling network layers, the feature distillation loss Lfeat can be expressed as:

min
θ′

Lfeat =
1

NL

N∑
i=1

L∑
l=1

||fF
l (x̂i; θ), f

Q
l (x̂i; θ

′)||2. (7)

To this end, the total loss for quantization-aware training can be summarized as:

min
θ′

LQ = LKD + βfeatLfeat. (8)

4 EXPERIMENTS AND RESULTS

In this section, we show the effectiveness of our proposed zero-shot quantization-aware training
scheme on MS-COCO 2017 (Lin et al., 2014) and Pascal VOC (Everingham et al., 2010) datasets.
Following (Esser et al., 2019), we perform symmetric quantization on both weights and activations
across YOLOv5 (Ultralytics, 2021) series and Mask R-CNN (He et al., 2017) for object detection.
We also compare our method against standard baselines including LSQ (Esser et al., 2019) and
LSQ+ (Bhalgat et al., 2020). Implementation details can be found in Appendix A. We also conduct
ablation studies to analyze the effectiveness of different settings and components in Appendix B. In
summary, our results establish a state-of-the-art benchmark for zero-shot object detection tasks at
different quantization bit-widths while outperforming comparable baselines trained with full real
data.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison with real data QATs on one-stage YOLOv5 on MS-COCO validation set.

mAP / mAP50

Method Real Data Num Data Prec. YOLOv5-s YOLOv5-m YOLOv5-l

Pre-trained ✓ 120k(full) FP32 37.4/56.8 45.4/64.1 49.0/67.3

LSQ ✓ 120k(full)

W8A8

35.7/54.9 43.2/62.2 46.0/64.9
LSQ+ ✓ 120k(full) 35.4/54.6 43.3/62.4 46.3/64.9
LSQ ✓ 2k 31.6/50.6 36.5/55.6 40.3/59.1
LSQ+ ✓ 2k 31.5/50.3 36.6/55.8 40.1/58.6
Ours × 2k 35.8/55.0 43.6/62.3 47.3/65.6
LSQ ✓ 120k(full)

W6A6

31.5/49.9 41.3/60.0 43.3/62.1
LSQ+ ✓ 120k(full) 32.3/50.9 41.3/60.3 43.4/62.3
LSQ ✓ 2k 28.9/47.2 35.0/53.9 37.7/55.7
LSQ+ ✓ 2k 28.6/46.7 34.2/52.6 37.5/55.8
Ours × 2k 32.7/51.4 41.0/59.7 45.1/63.3
LSQ ✓ 120k(full)

W5A5

26.9/44.9 32.9/50.6 35.2/53.0
LSQ+ ✓ 120k(full) 27.0/44.9 33.1/51.0 35.2/53.4
LSQ ✓ 2k 24.7/42.2 31.2/49.3 35.2/53.1
LSQ+ ✓ 2k 25.0/42.9 31.2/49.2 34.8/52.7
Ours × 2k 28.0/45.8 37.1/55.7 41.5/59.7
LSQ ✓ 120k(full)

W4A4

23.3/40.0 27.9/45.4 33.1/50.3
LSQ+ ✓ 120k(full) 23.3/40.2 27.7/44.6 33.3/50.9
LSQ ✓ 2k 17.2/32.2 25.5/42.3 28.9/45.7
LSQ+ ✓ 2k 17.3/32.1 26.1/42.6 28.6/45.8
Ours × 2k 19.0/33.4 29.5/47.1 35.0/52.6

4.1 COMPARISON WITH REAL DATA QATS

To demonstrate the effectiveness of our zero-shot quantization scheme, we select common one-stage
object detection networks including YOLOv5-m/s/l as well as two-stage object detection network
Mask R-CNN for experimentation and use competitive QAT methods like LSQ (Esser et al., 2019),
LSQ+ (Bhalgat et al., 2020) as baselines. Extensive experiments demonstrate that we can outperform
both LSQ and LSQ+, which use all real images for training, with only a small amount of ground truth
label information. We compare the performance against LSQ and LSQ+ methods, which use 120k/5k
real training data of MS-COCO/Pascal VOC dataset. As a comparison, we only use 2k/50 ground
truth labels for calibration set generation, the results are presented in Table 2 and Table 3.

Bit-width For low-bit-width cases, conventional QAT methods suffer from significant performance
degradation, while our method performs good generalization capability. Specifically, for the 4-bit
YOLOv5-l case, our method achieves an mAP score of 35.0%, outperforming LSQ by 1.9%. In the
6-bit case, we retain a lead of 1.8% over LSQ. Even in the 8-bit case where LSQ starts to perform
well, we still maintain a 1.3% advantage. Similar results were obtained in YOLOv5-s/l.

Network size Larger networks tend to exhibit poor performance with existing Quantization-Aware
Training (QAT) methods, particularly in low-bit-width cases. For instance, in the 5-bit case, LSQ+
applies to YOLOv5-s resulting in a 10.4% decrease in mAP compared to the pre-trained network,
which even achieves 13.8% with YOLOv5-l. In contrast, our approach yields only a 9.4% gap in
mAP when quantizing YOLOv5-s to ultra-low 5-bit, and the difference further reduces to 7.5%
with YOLOv5-l. Furthermore, as presented in Table 3, we achieve state-of-the-art results with the
two-stage object detection network Mask R-CNN, surpassing LSQ trained with full real data at 8-bit
width. This further highlights the reliability and versatility of our method.

Efficiency QAT methods require the entire training dataset as input, while our method achieves
superior results with a condensed synthetic detection calibration set that is only 1/60 of the size of
the original. Taking the YOLOv5-m network as an example, LSQ necessitates 120k real images for
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Table 3: Comparison with real data QATs on two-stage Mask R-CNN.

Dataset Method Real Data Num Data Precision mAP

VOC

Pre-trained ✓ 5k(full) FP32 75.6

LSQ ✓ 5k(full)
W8A8

72.4
LSQ ✓ 50 70.9
Ours × 50 72.9

MS-COCO

Pre-trained ✓ 120k(full) FP32 38.1

LSQ ✓ 120k(full)
W8A8

35.0
LSQ ✓ 2k 32.9
Ours × 2k 35.2
LSQ ✓ 120k(full)

W4A8
34.6

LSQ ✓ 2k 32.3
Ours × 2k 34.6

Table 4: Comparison with real data PTQs on YOLOv5-s on MS-COCO validation set.

Network Method Real Data Precision mAP mAP50

YOLOv5-s

Pre-trained ✓ FP32 37.4 56.8

LSQ (PTQ only) ✓
W6A6

29.5 48.2
LSQ+ (PTQ only) ✓ 29.6 48.5
Ours × 32.7 51.4
LSQ (PTQ only) ✓

W5A5
11.9 23.9

LSQ+(PTQ only) ✓ 12.2 24.5
Ours × 28.0 45.8
LSQ(PTQ only) ✓

W4A4
1.3 3.6

LSQ+(PTQ only) ✓ 1.2 3.5
Ours × 19.0 33.4

fine-tuning with 17 minutes per epoch, which takes about 4 hours to converge on two RTX 4090
GPUs. In contrast, our method only requires 2k synthetic calibration samples as input and achieves
convergence in approximately 15 minutes, boosting the convergence speed of around 16 times during
the fine-tuning phase.

4.2 COMPARISON WITH REAL DATA PTQS

We further compare with the post-training quantization (PTQ) using the LSQ/LSQ+ initialization
method. We utilize the first batch of data from the MS-COCO 2017 training set as a calibration
set to initialize the quantization scaling/bias factors. As presented in Table 4, our method achieves
state-of-the-art across different bit-widths, improving the mAP scores by 17.7%/16.2%/3.2% in
4/5/6-bit cases compared to PTQ methods using real data on MS-COCO 2017 validation set. This
demonstrates that our synthetic calibration set effectively captures feature information in the advanced
MS-COCO dataset.

4.3 COMPARISON WITH DATA FREE METHODS

Furthermore, we explore the completely data-free scenario where even sample, label, data distribution
are not available and showcase the robustness of our novel adaptive sampling method compared to
previous competitors. We compare on quantization-aware training and results are shown in Table 5.

First, we build a weak baseline by adopting Gaussian noise as calibration images and find the
quantized network fails to converge. This highlights the quality of the calibration set for QAT. We
also compare our adaptive sampling method with other proxy datasets. We consider two types —

9
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Table 5: Quantization-aware training results on quantized YOLOv5-s object detector, with a pre-
trained full-precision YOLOv5-s as the teacher for knowledge distillation. For a fair comparison,
we report results based on 2k synthetic images in all cases. Real Label denotes detailed information
about labels including bouding box categories and coordinates. Data Distri. represents quantity
distribution information about the labels per image. "-" indicates that the network diverges.

Network Prec. Method Real label Data Distri. mAP mAP50

YOLOv5-s

FP32 Baseline(pre-trained) ✓ ✓ 37.4 56.8

W6A6

Real Label ✓ ✓ 32.7 51.4

Gaussian noise × × - -
Tile(Out-of-distri.) × × 23.9 39.0
Tile(In-distri.) × ✓ 24.0 39.3
MultiSample(Out-of-distri.) × × 28.2 46.7
MultiSample(In-distri.) × ✓ 29.7 48.0
Ours(Adaptive Sampling) × × 32.0 50.0

W5A5

Real Label ✓ ✓ 28.0 45.8

Gaussian noise × × - -
Tile(Out-of-distri.) × × 16.1 27.9
Tile(In-distri.) × ✓ 17.7 31.0
MultiSample(Out-of-distri.) × × 21.9 37.3
MultiSample(In-distri.) × ✓ 22.5 37.4
Ours(Adaptive Sampling) × × 26.1 42.3

W4A4

Real Label ✓ ✓ 19.0 33.4

Gaussian noise × × - -
Tile(Out-of-distri.) × × 5.4 11.1
Tile(In-distri.) × ✓ 6.8 13.4
MultiSample(Out-of-distri.) × × 11.9 22.3
MultiSample(In-distri.) × ✓ 13.1 23.3
Ours(Adaptive Sampling) × × 15.0 27.0

in-distribution and out-of-distribution. In-distribution datasets assume we have quantity distribution
information about the labels per image, while out-of-distribution datasets suppose we are unaware
of the original label. For comparison, we replicate Tile method from (Chawla et al., 2021) and
implement MultiSample method, which directly samples multiple labels for each image randomly.
As shown in Table 5, QAT using the images generated by our adaptive sampling outperforms the best
in-distribution proxy dataset at different bit widths (1.9%/3.6%/2.3% higher at 4-6 bits). Furthermore,
We also compared our sampling method with images generated by real labels and observed only
a 0.7% difference at 6-bit, which further demonstrates the effectiveness of our data-free sampling
method.

5 CONCLUSIONS

In this paper, a novel zero-shot quantization framework specially tailored for object detection is
proposed. The proposed framework consists of two main components: a novel bounding box and
category sampling method for synthetic calibration set generation and a quantization-aware training
(QAT) process that incorporates prediction-matching distillation and feature-level distillation to
distill knowledge from a pre-trained full-precision network to a quantized network with the synthetic
images. Extensive experiments demonstrate that the proposed method is more efficient and accurate
than traditional QAT methods like LSQ trained with full real data, empowering ZSQ with immense
practical significance for object detection tasks. Moreover, The presented zero-shot adaptive label
sampling method for object detection shows significant improvement over other in-distribution proxy
datasets and achieves competitive results with real labels. It is obvious that our method can be
compatible with any object detection networks with BatchNorm layers including YOLO, Mask
R-CNN, etc. and the limitation also lies in the inapplicability to networks without BatchNorm layers,
which will be explored in the future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

The models used in this paper, including various YOLOv5 variants and the Mask-RCNN model, as
well as the datasets, such as MS-COCO and VOC, are all open-source. In Appendix A, we provide
additional details about the experimental setup, including hardware configurations and hyperparameter
settings. In Appendix B, we perform a series of ablation studies on various components of the
experimental framework to assess their contributions to the outcomes. Appendix C provides a visual
representation of the efficiency advantages of our approach. We believe these supplementary materials
will significantly enhance reproducibility.
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A IMPLEMENTATION DETAILS

We report mAP and mAP50 on the validation set of MS-COCO 2017(Lin et al., 2014) for the object
detection task, utilizing various YOLOv5 variants. All experiments are conducted using pre-trained
YOLOv5 as the teacher, and executed on two NVIDIA Geforce RTX 4090 GPUs.

A.1 ADAPTIVE SAMPLING

While theoretically, merging the updates of labels and images into a single stage seems feasible, our
experiments at Section B.1 revealed that the continuously evolving target could detrimentally affect
the quality of the generated images. To address this issue, we first conduct a rapid sampling of labels
at a low resolution (160) and then use the fixed labels to generate images at a high resolution (640).

A.2 CALIBRATION SET GENERATION

We apply Eq. 5 and the optimal trade-off parameters for {αdetect, αBN , αTV , αl2} are set to
{0.5, 0.01, 0, 0.0005}. We generate Xinv by optimizing the cost function for 2500 iterations. We use
Adam as the optimizer with an initial learning rate of 1e-2, adjusted by cosine annealing (Loshchilov
& Hutter, 2016). We also use cutout (DeVries & Taylor, 2017) as a data augmentation method to
enhance the diversity of the synthetic calibration set.

A.3 QUANTIZATION AWARE TRAINING

Subsequently, we employ the synthesized calibration set for QAT . Given the complexity of object
detection as a downstream task and the challenges posed by ultra-low-bit quantization, we follow
existing literature (Esser et al., 2019), quantizing all layers except the first and last layers. During
QAT , we use per-tensor symmetric quantization for both activations and weights and learn the
quantization scaling/bias factor via back-propagation, with an initial learning rate of 1e-4 in the
ADAM optimizer. Rest experimental hyper-parameters follow official YOLOv51 implementations.
Since LSQ is only evaluated on ImageNet, we re-implement it on YOLO for the object detection
task and report mAP/mAP50 as our results. We use Eq. 8 as our loss function, with the optimized
hyper-parameters for {βdetect, βKL, βfeat} being {0.04, 0.1, 1}.

1https://github.com/ultralytics/yolov5/tree/master
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B ABLATION STUDY

B.1 ADAPTIVE SAMPLING STAGE

We conduct ablations on the impact of the sampling stage number, results are shown in Table. 6.
Overall, the two-stage sampling strategy outperforms the one-stage strategy, which we attribute to
the continuous variation of targets causing fluctuation in the regression targets of the image, thus
hindering stable convergence. It also matches the performance of the three-stage approach. Ultimately,
we opt for the two-stage strategy to strike a balance between performance and cost.

Table 6: Ablations on Adaptive Sampling stages number. One stage: update images and labels
simultaneously in one process. Two stages: Relabel first, then synthesize images with fixed labels.
Three stages: Generate images with one label first, then relabel with fixed images, and finally
synthesize images with fixed labels

Stages Num Precision mAP mAP50

W6A6 30.6 48.8
One W5A5 25.2 41.1

W4A4 16.0 27.9
W6A6 32.1 50.1

Two W5A5 26.3 42.3
W4A4 15.8 28.1

W6A6 31.7 49.3
Three W5A5 26.1 42.5

W4A4 15.7 27.8

B.2 CALIBRATION SET SIZE

After hyper-parameters are fixed, the calibration set size S is searched for its optimal trade-off
between computation cost and effectiveness with grid search by quantizing YOLOv5-s to 4-8 bits,
as displayed in Table 7. When S reaches 2k, the performance of the quantized network approaches
convergence. Further increasing the size will lead to increased data generation time and computational
costs. To avoid complex searches, S is used for all experiments. While this may not be optimal for
all networks, it is sufficient to demonstrate the superiority of our approach.

Table 7: A detailed analysis of calibration set size S across different bit widths

mAP

Method Real Data S W4A4 W5A5 W6A6 W7A7 W8A8

LSQ ✓ 120k (Full) 23.3 26.9 31.5 33.4 35.7

× 5k 19.1 28.0 32.6 34.9 35.7
× 4k 18.9 27.9 32.8 34.7 35.8

Ours × 3k 19.2 27.9 32.7 35.0 36.0
× 2k 19.0 27.4 32.7 34.7 35.4
× 1k 18.3 27.8 32.6 34.8 35.6

B.3 MODULES

Ablation on key modules of the QAT stage including LKL (Kullback-Leibler Loss, Eq. 6), Ldetect

(Eq. 6), and Lfeat (Eq. 7) is conducted. As presented in Table 8, dropping one or two of them
results in a mAP loss. The largest mAP loss (7.2%) occurs when both LKL and Lfeat are removed,
indicating their cooperative relationship: Lfeat constrains features of network layers, facilitating
LKL to align the network’s predictions with the targets.
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Table 8: Ablations on modules. We use 2k calibration set and report mAP/mAP50 of 4-bit YOLOv5-s
on MS-COCO validation set.

Lfeat LKL Ldetect mAP mAP50

✓ ✓ ✓ 19.0 33.4
✓ ✓ 16.8 30.1

✓ 11.8 21.5

60X 16X

(a) Number of images involved in 

different training sets.

(b) Quantization-aware training (QAT) 

convergence time on 5-bit YOLOv5-m.

Figure 4: (a) Our synthetic condensed calibration set is 60× smaller than the MS-COCO training set.
(b) The training convergence speed can be improved by up to 16× compared to LSQ.

C SAMPLE EFFICIENCY

We would like to emphasize that by employing Adaptive Sampling, we achieved comparable or
even superior results on QAT using a synthetic calibration set that is only 1/60 the size of the original
training dataset. Additionally, by integrating self-distillation into the fine-tuning process of the
quantized object detection network, we enabled a more efficient knowledge transfer. In the initial
stage, utilizing 8 RTX 4090 GPUs for image generation allows us to produce 256 images every 20
minutes, resulting in a total of 160 minutes to generate 2,000 images. It is important to note that the
calibration set we generate captures the overall characteristics of the original training set, allowing it
to be reused multiple times during the quantization-aware training process. As the number of training
iterations increases, our method progressively enhances the training convergence speed, achieving
up to 16x faster convergence compared to the LSQ method trained on the full real dataset. The
corresponding results are visually illustrated in Fig. 4.

D ADDITIONAL QUALITATIVE RESULTS

Qualitative results for synthetic data In this section, we highlight the advantages of our Adaptive
Sampling method over both random sampling for multiple labels and the False Positive Sampling
approach proposed by (Chawla et al., 2021). As shown in Fig. 5, the left side illustrates our Adaptive
Sampling method, which initially starts with single-label random sampling as presented in Table 1.
After Adaptive Sampling, the model leverages the information stored during pre-training and add
objects it considers highly confident, ultimately producing high-quality images. For instance, you can
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Figure 5: A comparison of the image quality generated by various sampling methods.

observe a person riding a horse, three boats gently floating on the shimmering water, and someone
about to sit and rest next to a couch, etc.

Next, we use the obtained labels to perform multi-label random sampling by generating the corre-
sponding object sizes and locations based on the sampling distribution in Table 1. The resulting
images are shown on the right side of Fig. 5. In this scenario, the image quality deteriorates signifi-
cantly, and the visual features fail to accurately reflect the generated objects. Consequently, compared
to multi-label sampling, our Adaptive Sampling method captures the model’s internal information
more effectively, producing higher-quality and more coherent images.

Additionally, in the middle part of Fig. 5, we use the same single-label input to generate data using
the false-positive sampling method from (Chawla et al., 2021). Compared to our adaptive sampling
method, the false-positive sampling approach often fails to synthesize additional objects beyond the
initial target in certain cases. Moreover, the overall quality of the generated images is noticeably
lower than that achieved with our method. This further demonstrates the effectiveness of our sampling
approach.

Qualitative results for object detection performance In this section, we present visualizations
showcasing the object detection capabilities of various neural networks. Specifically, we randomly
selected four images from the COCO validation set and used the detection results of a full-precision
YOLOV5-s network as the reference. The visual comparisons display the detection results of neural
networks trained using our adaptive sampling method versus those trained with the false positive
sampling method from (Chawla et al., 2021) on 4-bit quantization-aware training (QAT). The results
are shown in Fig. 6.

The visualizations reveal that our quantized network can detect objects that the network trained with
false positive sampling fails to recognize, such as teddy bears and toilets. Furthermore, in scenarios
where only one object is present, our quantized network demonstrates higher confidence (0.72),
outperforming the other quantized network by 9% in confidence level.
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Figure 6: Qualitative analysis of object detection performance across different neural networks
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