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Figure 1: Qualitative results for two in-the-wild subjects reconstructed using GLVD .

Abstract

Existing 3D face modeling methods usually depend on 3D Morphable Mod-
els, which inherently constrain the representation capacity to fixed shape priors.
Optimization-based approaches offer high-quality reconstructions but tend to be
computationally expensive. In this work, we introduce GLVD, a hybrid method for
3D face reconstruction from few-shot images that extends Learned Vertex Descent
(LVD) by integrating per-vertex neural field optimization with global structural
guidance from dynamically predicted 3D keypoints. By incorporating relative spa-
tial encoding, GLVD iteratively refines mesh vertices without requiring dense 3D
supervision. This enables expressive and adaptable geometry reconstruction while
maintaining computational efficiency. GLVD achieves state-of-the-art performance
in single-view settings and remains highly competitive in multi-view scenarios, all
while substantially reducing inference time.

1 Introduction

High-fidelity 3D face modeling from images is a long-standing challenge in the computer vision
community, with broad impact across applications such as Virtual Reality, Augmented Reality,
healthcare, entertainment, and security. Reconstructing an accurate and coherent digital human
representation from a few input images is a highly ill-posed task —particularly in uncontrolled
environments— often requiring geometry-aware methods guided by strong prior assumptions. Adding
to this challenge is the scarcity of abundant, high-quality 3D training data captured under such
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unconstrained conditions, which limits the generalization ability of existing models in diverse real-
world scenarios.

Statistical priors based on parametric 3D Morphable Models [2} [16] 41} 511 154} 155} 162} 163} |64, 169}
17, 1811 180\ 166, [30]] have become the standard approach for few-shot 3D face reconstruction. By
encoding facial geometry using a low-dimensional set of parameters, 3DMMs provide a robust
and efficient framework, particularly effective in scenarios with limited or single-view image input.
However, their effectiveness is hindered by two key limitations: a bias toward the mean shape [59],
and the inherently constrained expressiveness of parametric models. These models typically operate
within fixed low-dimensional subspaces, making it difficult to capture fine-grained details or adapt to
out-of-distribution variations.

Model-free representations using voxels [[26], meshes, point clouds, or Gaussian splatting [28] offer
greater flexibility and high reconstruction accuracy, but they face scalability and resolution trade-offs
due to memory and topology constraints. Neural fields address these challenges by encoding geometry
and appearance as continuous functions via neural networks. These methods can reconstruct detailed
surfaces from images without requiring 3D supervision, but they typically depend on multi-view
inputs and suffer from high inference costs [38, 14]. Recent works [42, 167, 6] have made significant
progress in reducing computational overhead. However, converting such representations into well-
structured, topologically consistent meshes suitable for animation or rendering often necessitates
additional post-processing, commonly involving template fitting.

Optimization-based approaches produce accurate and detailed results through iterative refinement [38
67, 16, 152, 18, [9]], while feed-forward methods [57, 158 23] 122]] offer faster inference at the cost of
robustness and accuracy, especially under out-of-distribution conditions [37]. More recently, Learned
Vertex Descent (LVD) [11] introduced a hybrid strategy that uses pixel-aligned image features to
guide iterative template fitting. Despite its effectiveness, LVD relies on large-scale training data with
posed images and corresponding 3D geometry, and it lacks explicit global structure, predicting vertex
trajectories independently and depending on the image encoder for implicit coherence.

To overcome these limitations, we propose leveraging a 3D face landmark estimator derived from
a 2D image-based predictor to guide 3D shape refinement. We introduce GLVD , a learning-based
optimization approach that fuses local and global cues by combining per-vertex neural fields with
dynamically predicted 3D keypoints. Each neural field predicts 3D displacements for its associated
vertex based on local features sampled at its current position, while the keypoint ensemble provides
global structural guidance that informs and regularizes the optimization process. Central to our
method is a relative encoding scheme, where each vertex is transformed based on the current keypoint
estimates, allowing the network to learn geometry-aware updates that are conditioned on the evolving
global structure.

The combination of local neural fields and global keypoint-based guidance in GLVD enables more
precise control and adaptive refinement of 3D facial geometry, as shown in Figure|[l| Leveraging
this fusion, we conduct a comprehensive evaluation on both single-view and multi-view 3D face
reconstruction benchmarks. Our approach achieves state-of-the-art performance in single-image
reconstruction and remains competitive with optimization-based methods in multi-view scenarios,
demonstrating its robustness, accuracy, and broad applicability.

2 Related work

3D Morphable Models (3DMM). The use of 3D Morphable Models (3DMMs) has become the
standard paradigm for reconstructing 3D facial geometry from images, particularly in single-view or
few-shot scenarios. These statistical models [46, 132} 3] are widely adopted and mainly focus on the
facial region. In single-image settings, several methods have demonstrated effective reconstruction
performance [62, (17, 181} 166} 80, [30].

Recent advancements in single-image 3D face reconstruction have explored both parametric and
non-parametric strategies to improve accuracy, robustness, and detail preservation. 3DDFAv2 [21]]
proposes a regression-based approach combining a lightweight architecture with meta-joint opti-
mization to achieve real-time performance while maintaining alignment accuracy. Building upon
this, 3DDFAv3 [68] introduces Part Re-projection Distance Loss, which leverages dense facial part
segmentation as a strong geometric prior for guiding 3D reconstruction, especially under extreme
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Figure 2: Overview of GLVD . Given one or more input images, each paired with a head mask and
calibrated camera parameters, the method reconstructs a 3D face mesh through two branches. (1)
The 3D Keypoint Branch predicts a set of facial keypoints by extracting localized image features
and estimating their 3D displacements iteratively. (2) The 3D Vertex Branch refines the full-face
geometry by leveraging these keypoints to encode relative spatial information for each surface vertex.
This branch extracts pixel-aligned features and predicts vertex-wise displacements in an iterative
optimization process.

expressions where landmarks are unreliable. SADRNet [56] introduces a self-aligned dual-regression
framework that disentangles pose-dependent and pose-independent features and fuses them through
an occlusion-aware alignment strategy. HRN [30] proposes a hierarchical representation network that
disentangles geometric components and incorporates high-frequency priors, enabling the reconstruc-
tion of fine facial details, such as wrinkles and skin texture, from in-the-wild images.

Neural Fields for Face Reconstruction. Neural fields have emerged as a leading approach for 3D
reconstruction, offering continuous and high-fidelity representations of geometry and appearance.
They have been successfully applied to full-head and facial modeling tasks using techniques such
as volume rendering and surface priors [40, 44, 45| 52| 18,9, |6]. Hybrid models combine parametric
approaches such as 3DMMs with neural implicit functions to increase control and expressiveness. For
instance, IMFace [74] and IMFace++ [75]] introduce implicit displacement fields to refine a 3DMM
geometry, and NeuFace [[76] proposed an approximated BRDF integration and a low-rank prior for
human face rendering. In [[7], authors combine geometry-aware features with image features that
output a signed distance field. However, these approaches tend to collapse and generate artifacts.

When several input images are available, a line of research [20, [78| [79} 15, 182} [19] aims to obtain
animatable full-head avatars from videos. Building on the recent success of Gaussian Splatting [28]],
several works [350 15} 149,161 have integrated this representation to improve rendering efficiency and
visual fidelity. Combining them with 3DMM:s has been explored in recent works, with methods such
as HeadGAP [77] and GPHM [[71] that learns parametric head models using Gaussian-splatting-based
models. While effective, these methods often rely on dense multi-view input. In contrast, model-free
feed-forward approaches use pixel-aligned features [57] for faster inference from sparse views.

Model-free methods leveraging pixel-aligned features have gained popularity for fast 3D reconstruc-
tion, as they avoid the need for test-time optimization [57, 58| 23 [1}160} 13} 22]]. PIFu [57]] introduced
pixel-aligned implicit functions, using 2D image features to predict 3D occupancy from single or
multiple views, and PHORHUM [l1]] extended this by employing signed distance fields for surface
modeling. JIFF [7] proposed combining features from a face morphable model and pixel-aligned
features. In contrast, using volumetric rendering, KeypointNeRF aggregates pixel-aligned features
with a relative spatial encoder. More recently, LVD [11] emerged as a learning-based optimization
approach that leverages pixel-aligned features to guide an iterative-based template fitting. While
it acquires a good trade-off between computation requirements and accuracy for human mesh re-
covery, it remains unexplored for 3D face modeling. However, single feed-forward methods based
on pixel-aligned features still lag behind optimization-based approaches in terms of reconstruction
quality [9].
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Figure 3: Qualitative results on two subjects of the H3DS dataset, for LVD [[L1], SIRA++[9],
JIFF [[7], and GLVD , with an increasing number of input views.

Encoding Representations for 3D Reconstruction. Previous approaches have explored various
spatial encoding strategies to enhance learning. PVA [50] and PortraitNeRF [18] utilize face-
centric coordinate systems, while ARCH [25] and ARCH++ [24]] adopt canonical body coordinates.
KeypointNeRF [39] proposes to encode relative spatial 3D information in the form of depth via
sparse 3D keypoints. In [14], the authors introduced a three-step pipeline of landmark selection,
low-dimensional embedding via MDS, and distance-based triangulation to embed points. GLVD
follows a similar idea by selecting identity-specific facial keypoints and encoding mesh vertices
through their Euclidean distances to these keypoints within the learned space. In this work, we
conduct a thorough investigation of spatial encoding and find that a simple yet effective encoding
based on relative distances w.r.t 3D keypoints [12] yields effective results in combination with neural
fields guided by pixel-aligned features. We adopt a canonical aligned space to stabilize training. In
addition to achieving state-of-the-art results on 3D face reconstruction from as few as a single input
image, our approach can also be used beyond face modeling.

Mesh Recovery for body. Several works [34] [72| 136, 133 [73]] focus on full-body mesh recovery
and remain unexplored in the context of face modeling. These methods often operate in single-
image settings [34} [72] 136} 133]] or on video sequences [31]. METRO [34] and DeFormer [72]]
use transformers to jointly process mesh joints and vertices, differing in attention aggregation but
both relying on global self-attention. METRO further conditions on a global image embedding,
discarding pixel-aligned spatial detail. In contrast, 3D Virtual Markers [36]] predicts latent 3D markers
and reconstructs the mesh as a linear combination, while One-Stage Mesh Recovery [33]] directly
regresses SMPL parameters via a transformer. Both are constrained by the limited expressiveness
of low-dimensional latent spaces. PYMAF-X [73] introduces an iterative refinement approach that
samples pixel-aligned features from prior vertex predictions, but does not leverage explicit landmark
or keypoint constraints for structural supervision. GART [31]] leverages skeletal priors and temporal
video input for avatar reconstruction, whereas GLVD is purely image-driven and effective in both
monocular and few-shot settings. Finally, [53]] replaces PCA-based 3D face models with convolutional
mesh autoencoders to learn shape priors, but focuses on latent mesh encoding rather than direct facial
geometry estimation from RGB images as in GLVD

3 Method

In this section, we present our method for 3D face reconstruction using learned keypoint guidance.
We first review the Learned Vertex Descent (LVD) framework [L1] and then introduce our key
architectural innovations. The section concludes with details on training and inference. An overview
is shown in Figure 2] with implementation details in the supplementary material.
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Figure 4: Qualitative results on the 3DFAW dataset for a single input image. Each 3D recon-
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structed face is accompanied by a heatmap, where reddish areas indicate larger errors in mm.
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3.1 Background: Learned Vertex Descent

Learned Vertex Descent (LVD) [11]] is an optimization-based method for 3D human shape reconstruc-
tion from single-view images or scans. While it has been applied to full-body and hand reconstruction,
we explore its potential for 3D face modeling. The model learns a transformation g(-) which takes
the current 3D vertex position at iteration ¢ and the associated 2D image features f; for vertex ¢ as
input, and outputs a displacement vector Av;:

g: (Vﬁ,fi) = Av;. (1)

This vector represents the correction needed to align the vertex with its ground truth position v;. The
updated vertex position is then given by v’g“ = v! + Av;. The reconstruction process involves
iteratively applying this update to refine the 3D shape.

3.2 Problem Definition

Our goal is to recover a 3D face surface S from a small set of input images {I,,}/\_,, where each
image I,, is paired with a head mask M, and calibrated camera parameters T,,. The surface S is
represented by a fixed topology of 7,225 vertices and 14,342 faces.

We aim to incorporate global 3D-aware guidance into the per-vertex optimization by leveraging a
relative encoding based on the Euclidean distances between vertices and keypoints. As a result,
we propose a two-stage architecture to address limited multi-view input images: (1) a 3D keypoint
estimation module that defines spatial keypoints on the facial surface by estimating displacements,
and (2) a vertex prediction module that encodes vertices relative to these keypoints to estimate vertex
updates. Our formulation does not rely on a predefined parametric model or fixed joint sets, making
it adaptable to arbitrary topologies. A sparse set of surface points is conveniently selected to act as
ground-truth keypoints.

3.3 Learning-Based Keypoint Estimation

Our goal is to establish a reference space to guide vertex optimization towards the target surface.
To achieve this, we estimate a fixed set of K 3D keypoints {kt j=1, Where k; € R3 represents the
j-th keypoint on the target surface, at iteration ¢. These keypomts are used for encoding the relative
positions of query vertices v;.

The 3D keypoint branch consists of two components: one responsible for extracting image features
F, and another focused on learning 3D keypoint displacements Ak;. To compute Fy, we first
generate facial keypoint heatmaps using off-the-shelf HRNet [65]], which are then concatenated with
vertex image features F',, obtained from the first stack of the Hourglass network [43]]. This combined
feature map is subsequently refined using a single-stack Hourglass module f(-):
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Figure 5: Qualitative results on the 3DFAW dataset for three input images. Each 3D reconstructed
face is accompanied by a heatmap, where reddish areas indicate larger errors in mm.

k,

fk : (I7M5Fv) = Fk' (2)

The keypoints employed to guide the vertex branch do not necessarily coincide with the facial
landmarks defined by HRNet. We adopt a strategy of predicting vertex displacements from local
features, as this approach has been demonstrated to yleld more accurate geometric detail [57} 158, [10}
L1]]. To estimate the 3D keypoints, we implement g (-) (Eq.|l] ' ) with a 3-layer MLP that takes as input
the current estimate of keypoint k’ and its local F-dimensional local features F}, ; extracted at the

projection of k on the image plane, and predicts the displacement AK!. In the first step, we begin by
uniformly sampling k? within a volume of size 2 centered at the origin.

3.4 Vertex Displacement Prediction

The vertex branch consists of two modules: a local feature extractor f,, : (I, M) — F,, that computes
image-aligned features for each projected vertex, and a regressor g, (+) that predicts the final vertex
displacements Av;, which is also implemented as a 3-layer MLP.

We extract local image features F,, and F, for each image I, and following Sec. |’53_5L we estimate
a set of predefined 3D keypoints at each iteration ¢. Given a query vertex v; € R”, we compute
a keypoint-relative encoding matrix P € R¥*3, where each row represents a displacement vector
P! = k' — v!. As shown in our ablations (Sec. , this encoding outperforms alternatives such as
Euclidean distances, attention, or concatenation.

3.5 Displacement Learning and Optimization

The network is trained to learn the parameters of f,(-), fx(:), gx(*), and g,(-). We use a dataset of N
training scenes, each with a ground truth mesh with known topology, posed RGB images, and head
masks. We sample query points for each scene using a hybrid strategy that combines uniform sampling
with points near the mesh surface. Both model components are trained to predict displacements at
each iteration ¢. The iteration index is not explicitly encoded during training, as the model is exposed
to a stochastic distribution of vertex states, making it inherently timestep-independent. At inference
time, iteration ¢ corresponds to updating each vertex by adding the displacement predicted at the
previous step (Sec.[3.1). We pre-train the feature encoder on the 3D reconstruction task by augmenting
it with a signed distance function (SDF) prediction head. This improves convergence behavior and
leads to higher reconstruction accuracy. Further details are provided in the supplementary material.

Keypoint Displacement Learning. We select a consistent set of 3D keypoints to guide the surface
displacement learning. For each mesh, we choose the same subset of vertices to serve as target
keypoints {kz} While their selection can be arbitrary, it must remain consistent across training



Table 1: 3D face reconstruction comparison. Average surface error (in mm) computed over all
subjects in 3DFAW and H3DS datasets. We place "-" for not applicable configurations. Optimitzation-
based have been included for reference.

3DFAW H3DS 2.0
1 view 3view 1views 3views 4 views 6 views
MVENet [69] - 1.56 - 1.73 - -
DFENRMVS [2] - 1.69 - 1.83 - -
DECA [17] 1.71 - 1.99 - - -
MICA [81] 1.83 - 2.08 - - -
FaceVerse [66] 1.88 - 2.57 - - -
FaceScape [80] 1.61 - 1.78 - - -
HRN [30] 1.60 - 1.73 - - -
VHAP [48] 2.05 - 2.15 - - -
3DDFA-V3 [68] 1.45 - 1.65 - - -
RAFaRe [22] 1.68 - 2.54 - - -
PIFU [57] 2.19 1.99 1.98 1.70 1.85 2.03
JIFF [7] 1.48 1.47 1.85 1.80 1.79 1.79
LVD [11] 1.58 1.26 1.39 1.45 1.39 1.37

GLVD (ours) 1.25 1.22 1.36 1.33 1.34 1.34

H3D-Net [52] 1.70  1.37 -
SIRA++ [9] 1.35 1.32 1.57 1.18 1.23 1.04

scenes and during test-time inference. Each query keypoint, together with the input image I, is passed
to the model (gi. o fi)(z), which predicts 3D keypoint displacements Ak?.

Surface Displacement Learning. We train f,(-) and g, (+) separately from the 3D keypoint branch.
We encode vertices relative to the ground-truth 3D keypoints. To simulate prediction uncertainty, we
perturb the sampled keypoints with noise drawn from a zero-mean multivariate Gaussian distribution
with spherical covariance o2. These noisy keypoints are then used for encoding. Since depth errors
in camera-aligned show higher variance, we apply noise with standard deviation 30 along the depth
axis in the camera frame.

Given a ground-truth mesh V= [¥1,...,Vy] and its corresponding image I. We randomly sample
M 3D points X = {x1,...,Xu}, and compute the loss for each of the M points:

=

N AL

1 1 Ax? - Ax . o

L=mi2w [M (1 - ”) + o [llAx]]l2 - |Ax52\] 3)
i 123512 | A 2

=1 Jj=

where x; is the ¢-th 3D query point, N is the number of ground-truth vertices, Ax{ is the predicted

displacement from x; to the j-th point, and AAXZ is the corresponding ground truth displacement.
The symbol - denotes the dot product, and || - ||2 represents the Euclidean (L2) norm. The parameter
A1 controls the contribution of the directional loss term, which minimizes the angular deviation
1 — cos(8) between the predicted and ground truth vectors. The parameter A\, weights the magnitude
loss, which penalizes differences in the length of the displacement vectors. To promote locality in the
extracted image features, this term is clipped during training. This weighted combination encourages
both directional consistency and training stability. During training, we apply binary dropout to the
image features F',, to enhance robustness against unreliable predicted neural fields. Additionally,
we model the 3D keypoints used for encoding vertices in the vertex branch as stochastic variables,
introducing noise to the ground-truth keypoints only during training.
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Figure 6: Quantitative comparison on H3DS dataset with one and three input views. Left.
Reconstruction error (mm) is plotted against runtime for various state-of-the-art methods under
different view configurations. Right. Inference times for single and multi-view settings.

4 Experiments

Training face dataset. We employ a proprietary dataset of 3D head scans collected from 10,000
individuals, balanced by gender and diverse in age and ethnicity. All scans are aligned to a template
3D model using non-rigid Iterative Closest Point (ICP) registration for consistency.

H3DS 2.0. [52,9] It contains 60 high-quality 3D full-head scans, including hair and shoulders, paired
with posed RGB images. Each image includes a foreground mask and calibrated camera parameters.

3DFAW. [47] This dataset provides videos recorded as well as mid-resolution 3D ground truth of the
facial region. We select 5 male and 5 female scenes and use them to evaluate only the facial region.

CelebA-HQ. [27] This dataset comprises 30k high-quality images at 1024x1024 resolution, derived
from the original CelebA dataset. We selected a subset of 6 subjects for our qualitative evaluation.

4.1 3D Face estimation

We conducted a comprehensive comparison of our method with several 3DMM-based reconstruction
works, including MVFNet [2], DENRMVS [69], DECA [[17], MICA [81]], FaceScape [80], FaceVerse
[66], HRN [30], 3DDFA-v3 [68] and VHAP [48]]. Additionally, we compared our approach to the
model-free methods PIFU [S7]], JIFF [7], RAFaRe[22], H3D-Net [52]] SIRA++ [9] and hybrid method
LVD [11]. We used the unidirectional Chamfer distance for the quantitative evaluation, measuring the
surface error from the ground truth to the predictions. The results of this comparison are summarized
in Table[I] Qualitative results for 3DFAW subjects are presented in Figure [ for the single view and
in Figure 5] for the multiview setting. Results on H3DS are presented in Figure[3] We show in Figure
the estimated 3D face and the guiding keypoints.

GLVD demonstrates consistently strong performance across 3DFAW and H3DS evaluations. It
leverages the structured topology of 3DMMs while explicitly addressing the constraint of shape
representation to a predefined model space and the resulting bias toward average mean shape.
As a result, GLVD outperforms 3DMM-based approaches, particularly in the single-view setting
(Figure[). In comparison to model-free single forward pass methods such as PIFU, JIFF and RAFaRe,
it demonstrates superior performance in surface reconstruction, yielding surfaces with reduced errors
and a more realistic shape appearance.

Optimization-based methods are considered state-of-the-art for face reconstruction, particularly in
multi-view settings where the problem becomes less ill-posed. However, their high computational
cost remains a key limitation. In contrast, GLVD achieves comparable accuracy with over two orders
of magnitude faster inference and without requiring postprocessing or template registration. Inference
times are reported in Figure [6] with 10 iterative update steps.



4.2 Ablation

We conduct detailed ablation study on 3DFAW and H3DS 2.0 datasets to assess the impact of key
design choices and demonstrate the effectiveness of the proposed method.

Table2]reports quantitative results using various subsets of
3D keypoints to guide GLVD . While the method is agnos-
tic to landmark topology and supports flexible selection,
we evaluate the impact of using different subsets derived
from the template 3DMM. The specific landmark sets used
are detailed in the supplementary material. Notably, results
show that a small set of well-chosen keypoints provides
effective global structural guidance, though limited cover-

Table 2: Reconstruction quality compari-
son using a single view with varying numbers
of keypoints. Chamfer distance is reported in
millimeters (mm).

| 3DFAW] H3DS|

. . a . GLVD -4 1.92 1.51
age can introduce noise. While increasing the number of GLVD -6 1.85 1.36
keypoints improves performance, gains in reconstruction GLVD - 12 1.57 1.42
accuracy diminish beyond a certain point. We attribute this GLVD - 18 1.25 1.36
to the fact that the keypoints are estimated. Higher-quality GLVD - 24 1.58 1.33

landmark supervision could further enhance reconstruc-
tion fidelity. In Figure[/| we provide face reconstruction
results with the selected keypoints indicated for reference.

Keypoints encoding. In the original LVD formulation, global structure is not explicitly modeled, as
point trajectories are predicted independently, with structural coherence learned implicitly through 2D
feature volumes. This results in ambiguity, as the model must resolve all possible correspondences per
query without clear global guidance. In GLVD , we address this by introducing a landmark ensemble
that serves as a compact global prior. These keypoints act as spatial anchors that guide vertex
displacements, reducing ambiguity and promoting consistent topology. We ablate various encoding
strategies in Table[3] Replacing the per-vertex head with a global attention layer (k) introduces noise
and instability, presumably due to long context. Inspired by the concept of skinning weights, we
model vertex-to-keypoint relations via learnable attention (j), achieving performance on par with
the standard encoding (1). Concatenation (h) and distance-based encoding (i) offer no gains, while
removing absolute positions and using only relative encoding (g) leads to a performance drop.

Architecture analysis. The GLVD
architecture (Sec.[3) incorporates tWo  Table 3: Comparison of reconstruction quality for different number
core design choices: it estimates key- of keypoints. Chamfer distance in mm.

points progressively during optimiza-
tion and encodes vertices relative
to these dynamically predicted key-

| 3DFAW]  H3DS 2.0,

. . (a) LVD 1.58 1.39
poirts. Table 3| presents an ?‘blat‘é’“ (b) GLVD w/o loss (Eq 127 1.39
of different training strategies. Us- ’ ’ ’

. . o ¢) GLVD w/o HRNet 1.52 1.39
1ng an L2 loss with c'llppmg, follow- Edg GLVD w/o training Noise 1.31 1.42
ing [L1] (b), results in unstable gra- .y 51 vy /o binary dropout | 1.27 1.38
dients and weak directional supervi- GLVD w/ al 1' 5] 1' 5
sion. Incorporating a pre-trained HR- (f) GLVD w/ canonical space : :

Net for facial landmark prediction (¢)  (g) GLVD w/o vertex pos. 1.55 1.67
highly improves performance in both ~ (h) GLVD w/ concat Enc. 1.27 1.36
vertex reconstruction and keypoint (i) GLVD w/ norm Enc. 1.26 1.37
estimation. Injecting noise during  (j) GLVD w/ attention Enc. 1.27 1.36
training (d) to model the encoding (k) GLVD w/ attention layer 1.85 1.97
as a stochastic variable improves ro- (1) GLVD 1.25 1.36

bustness and test-time stability in the
presence of uncertainty. Applying

binary dropout to the 2D features during training (e) encourages reliance on the geometry-aware
encoding and leads to better accuracy. Finally, optimizing in canonical space (f), as done in [52} 9} [18]],
introduces a bias towards the mean shape. In the single-view setting, we use camera coordinates as
the reference space, which removes the need for a calibrated camera at test time. We also investigate
directly predicting the position of a specific vertex. We augment each query point with an identity
feature derived from a Fourier embedding of the vertex’s 3D coordinates in the canonical face tem-
plate. At test time, each sampled vertex is assigned a unique target identifier, and the model predicts
displacements toward all possible targets, after which the displacement corresponding to the specified



3 views

Figure 7: Qualitative results for one and three input images. Images are from CelebA-HQ (left),
H3DS2.0 (right top), and 3DFAW (right bottom). At the last iteration step, we show the predicted
template and the 3D keypoints in red.

identifier is selected. However, we empirically found it to be more stable and to yield better results
by encoding trajectories implicitly as done in GLVD.

5 Discussion

Limitations and Future Work: While GLVD demonstrates strong performance in few-shot 3D face
reconstruction, it remains sensitive to occlusions and relies on the accuracy of keypoint predictions,
which may degrade under challenging visual conditions. The focus of our method is the reconstruction
of the face area by combining a hybrid method for fast and accurate prediction. Therefore, adding
facial expressions is an interesting future direction. Future work may explore temporal consistency
for video-based reconstruction and topology-adaptive strategies to better capture complex geometry.

Conclusions. In this paper, we have introduced GLVD , a hybrid approach for high-fidelity 3D face
reconstruction from few-shot images. Our method introduces a novel combination of per-vertex
neural fields and dynamically predicted 3D keypoints to provide both local accuracy and global
structural guidance. By encoding vertex displacements relative to a sparse set of learned keypoints,
our method refines mesh geometry iteratively without requiring parametric shape priors. The thorough
evaluation demonstrated that our method achieves state-of-the-art performance in single-view settings
and remains highly competitive in multi-view scenarios, all while substantially reducing inference
time.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We propose an optimization method, GLVD, that archives competitive results for the task
of 3D face reconstruction. We encode global awareness through iterative 3D landmarks prediction.
All experiments showed in the paper are designed to evaluate the main claims.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the
paper.

- The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

- The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

- Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main document has a limitation and future work section. We also add extra
experiments violating some of the assumptions that are added in the supplementary material.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

- The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

- While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer:
Justification: No theoretical results.
Guidelines:

- The answer NA means that the paper does not include theoretical results.
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- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

- All assumptions should be clearly stated or referenced in the statement of any theorems.

- The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

- Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed explanation of the proposed model as well as how it has been
trained.

Guidelines:

- The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

- If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

- Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

- While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:

Justification: Due to legal constraints, we are unable to release the training data. However, we will
publish the code along with detailed instructions on how to prepare compatible datasets for training.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.

- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

- While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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- The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

- The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

- The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

- Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Implementation details are explained in the supplementary material.
Guidelines:

- The answer NA means that the paper does not include experiments.

- The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

- The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:

Justification: While not all prior works report statistical significance, we ensure rigorous evaluation
by testing our methods across diverse datasets and varying numbers of input views. We also include
qualitative comparisons to visually assess reconstruction quality.

Guidelines:

- The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

- Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

- For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

- If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Implementation details as well as training recipe is explained in the supplementary
details.

Guidelines:

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

9.

10.

11.

- The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

- The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

- If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We provide societal impact discussion in the appendix.
Guidelines:

- The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

- If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: Access to the models and data is available upon request and subject to the completion of
a formal questionnaire and the signing of a legal agreement in advance.

Guidelines:

- The answer NA means that the paper poses no such risks.
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- Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

- Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

- We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We provide proper citation for all prior work on which our approach is based.
Guidelines:

- The answer NA means that the paper does not use existing assets.

- The authors should cite the original paper that produced the code package or dataset.

- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
Answer: [Yes]

Justification: We release the full codebase on GitHub, including model implementation, training, and
evaluation scripts (to be made public upon publication).

Guidelines:

- The answer NA means that the paper does not release new assets.

- Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

- The paper should discuss whether and how consent was obtained from people whose asset is
used.

- At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Although our research involves facial data, we did not collect new human data nor
conduct any additional data acquisition for this work.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

- Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
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16.

- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]
Justification: We followed the ethical guidelines established by NeurIPS.
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA|
Justification: LLMs are not involved as any important, original components.
Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Appendix: Guided Learned Vertex Descend

In this appendix, we provide further technical details on

- Experimental setup

- Different Keypoints configuration
- Implementation Details

- Additional qualitative results

- Failure Cases

For video results, including visual comparison to prior work, we refer to our supplementary video. This video
includes a demonstration of GLVD for different input images.

A.1 Experimental Setup

GLVD adapts its reference space based on the number of input views during training and inference. For
single-view 3D reconstruction, it operates in the camera coordinate frame, eliminating the need for camera
parameter estimation at test time. In the multi-view setting, we canonicalize the 3D reconstruction and train a
camera pose estimator on the same dataset used for training GLVD to enable prediction at inference time.

To ensure a fair comparison, PIFU, JIFF, LVD, and SIRA++ are trained using the same data used to train GLVD
. While PIFU, LVD, and JIFF were initially designed for full-body reconstruction, we modified their training
to align with the data used by GLVD . To enhance robustness during training, we applied data augmentation
techniques, including adjustments to brightness, contrast, hue, and saturation, as well as image jittering, blurring,
and zooming. These augmentations are applied to the input images used for feature extraction. Additionally, we
employed scene symmetrization, doubling the number of training scenes.

A.2 Keypoints configuration

GLVD requires only RGB images as input to predict the 3D surface. Internally, it operates by estimating 3D
keypoints. Figure ] presents visualizations of four proposed landmark subsets. The method is designed to allow
a flexible selection of landmark configurations. In our experiments, we use template vertices registered to the
training scenes. To adapt the method to other parametric models, such as FLAME or SMPL-X, joints can be
selected as keypoints.

4 Landmarks 6 Landmarks 12 Landmarks 18 Landmarks

Figure 8: Qualitative visualization of four keypoints configurations. Images are from H3DS 2.0.
At the last iteration step, we show the predicted template and the 3D keypoints in red.

A.3 Implementation Details

The function f,(-) is a stacked hourglass network [43]] composed of four stacks using group normalization [70].
Feature embeddings have a spatial resolution of 64 x 64, with each containing 64 channels. As a result, each
query point is represented by stacking four feature vectors of size 64 x 4 = 256. We pre-train f,(-) to predict
the signed distance function (SDF) values using the same training data. We set the clipping directional factor to
0.1, being the scene normalized in the centered cube of size 2.

The function f(+) is implemented by a combination of a facial keypoint heatmap estimator HRNet [[65]] and a
single-stack hourglass network [43]]. During training, we keep the weights of the HRNet frozen. To generate Fy,
we extract the first feature map computed with f, () and then concatenate it with the heatmaps predicted by
HRNet. The combination of the features and the image I and the mask M is then fed to the hourglass network.
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Figure 9: Qualitative results for one input image. Images are from 3DFAW (top), and H3DS 2.0
(bottom). At the last iteration step, we show the predicted template and the 3D keypoints in red.

Feature embeddings have a spatial resolution of 64 x 64, with each containing 64 channels. We use a 0.1
clipping factor.

Function g, (-) produces an output tensor of dimension N =
7225 x 3. Given an input surface of size 7225 x 3, it outputs

. Table 4: Total number of parameters.
a tensor of shape 7225 x 7225 x 3. Per-vertex displacements

(7225 x 3) are extracted from the diagonal and applied to update

o | Parameters  Ratio
vertex positions.

o 14.08 M 54.9%
GLVD works for different numbers of input images. When g 8 11.57 M 45 1(7;)
several images are used, we adopt a mean aggregation layer Y ' y
. Total 25.64 M 100%
among features extracted from a multi-view feature encoder. In
particular, we follow a single view forward pass independently of ~ fx(-) (HRNet) 9.65M 67.2%
the number of input images until the second layer of the g,,(-) and ~ fs(-) (Hourglass) 428 M 29.8%
gk (), where we apply a mean operation to aggregate multiview 90 043 M 2.96%
features. Total 1436 M 100%

Function g (-) produces an output tensor of dimension K =

18 x 3. Given an input surface of size 18 X 3, it outputs a tensor

of shape 18 x 18 x 3. Per-vertex displacements (18 x 3) are extracted from the diagonal and applied to update
keypoint positions. Both g, (+) and g (-) are implemented as a 3-Layer MLP with ReLU activation and weight
normalization.

All networks are trained end-to-end using GPU-accelerated hardware (RTX 4090). We use a batch size of 4 and
an initial learning rate of 0.001 for 50 epochs, followed by 200 additional epochs with linear learning rate decay.
For each scene, we sample 1400 vertices as query points. It takes between 1.5 to 6 days of training, depending
on the configuration. We set Ay = Ao = 0.5. Optimization is performed using Adam [29] with 31 = 0.9 and
B2 = 0.999. The total number of parameters is detailed in Tablem

A.4 Aditional results

We provide qualitative results for subjects from 3DFAW and H3DS 2.0 using a single input view in Figure
and for the multi-view setting in Figure[T0] We also show qualitative results in the wild CelebA-HQ dataset in

Figure[7]

Figure [TT] reports the reconstruction error on 3DFAW subjects under varying numbers of update steps and
clipping factor. At test time, the magnitude of the predicted displacement vector is clipped within the range
[0.05, 0.5]. Results indicate that the number of update steps has a limited impact on reconstruction accuracy,
which is strongly influenced by the clipping value used during training. This parameter controls the trade-off
between accuracy and computational cost. Our experiments achieve the best performance with 10 steps and a
clipping factor of 0.1.

We conducted an ablation study evaluating sequential vs parallel update strategies for the vertex and keypoints
refinement modules on the H3DS 2.0 and 3DFAW datasets (Table. The results demonstrate that the iterative
parallel update scheme yields consistently superior performance compared to the sequential alternative, although
the improvement is minor.
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Figure 10: Qualitative results for three input images. Images are from 3DFAW. At the last iteration
step, we show the predicted template and the 3D keypoints in red.

Table 5: Ablation of sequential versus iterative (parallel) update strategies on H3DS 2.0 and 3DFAW.
H3DS 2.0 Dataset lview] 3views| 4views]| 6 views]

LVD 1.55 1.49 1.44 1.42
LVD pre-trained SDF 1.39 1.45 1.39 1.37
GLVD Sequential 1.38 1.36 1.34 1.35
GLVD Iterative 1.36 1.33 1.34 1.34
3DFAW Dataset 1 view | 3 views | —
LVD 1.65 1.52 —
LVD pre-trained SDF 1.58 1.26 —
GLVD Sequential 1.29 1.23 —
GLVD Iterative 1.25 1.22 —

We also demonstrate that pre-training the feature encoder on a 3D reconstruction task, where it is trained to
predict signed distance functions (SDFs), leads to faster convergence and improved performance. In this setting,
(1) we pre-train the feature encoder on the 3D reconstruction task. We represent the surface S as the zero-level
set of a signed distance function f* : (x,I) — s, such that S = {x € R® | f*¥(x, ) = 0}. Our goal is to
estimate f**" through a composition of a feature encoder and a decoder network. The resulting feature encoder is
then used within GLVD. To train on the SDF task, we use non-watertight scans from the same training dataset

and minimize L‘é‘?ﬂ on surface points N and Lgl)( throughout the volume N, :

1 .
Lsui = 5 SO, D], )

= 35 (foern], 1)’

The loss is averaged over the batch. We compare in Table[3]the impact of pretraining. We evaluate LVD with and
without SDF-based pretraining of the feature encoder. Results show that this pretraining is crucial for achieving
strong performance in both LVD and GLVD.
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Figure 11: Reconstruction Error from a Single Input Image. Results report the mean Chamfer
Distance on the 3DFAW dataset.

A.5 Failure Cases

We present failure cases of GLVD under varying numbers of input views. Figure[T2]illustrates qualitative
results in extreme scenarios, while Table [6] reports quantitative performance for different viewing angles in
the single-view setting. The best performance is observed with front-facing input images. As the viewing
angle increases, performance degrades significantly, primarily due to inaccuracies in landmark estimation under
self-occlusion conditions.

1 view / Input Prediction 1 view / Input Prediction

209 207

Figure 12: Reconstruction Error from a Single Input Image. Results report failure cases.

A.6 Social Impact

GLVD advances 3D face modeling with high accuracy, enabling applications in graphics, AR/VR, and biometrics.
However, it also raises concerns about privacy, surveillance, and identity misuse. High-fidelity face reconstruction
can be used without consent or for impersonation, contributing to deepfake risks. To mitigate these issues,
responsible deployment, fairness audits, and privacy safeguards are essential. While GLVD is a technical step
forward, its societal implications must be carefully considered.

Table 6: Quantitative Results for a Single Input Image at varying input angles. Chamfer Distance
is reported in millimeters (mm) on the H3DS 2.0 dataset.

| 1view 0° 1 view 45° 1 view 90°

GLVD | 131 2.07 2.11
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