© © N O O A~ W N =

24
25
26
27
28
29
30
31
32
33

34
35
36

CUBE: Collaborative Multi-Agent Block-Pushing
Environment for Collective Planning with LLM Agents

Anonymous Author(s)
Affiliation
Address

email

Abstract

We introduce CUBE (Collaborative Multi-Agent Block-Pushing Environment), a
lightweight yet expressive testbed for studying embodied cooperation in multi-
agent systems. While traditional reinforcement learning benchmarks emphasize
low-level action spaces and scalar rewards, and symbolic planning domains empha-
size logical reasoning under deterministic transitions, neither alone provides the
combination of embodiment, uncertainty, and symbolic structure needed to evaluate
emerging embodied LLM-based agents. CUBE addresses this gap by implement-
ing primitive block-pushing actions that are then wrapped into a symbolic action
vocabulary, enabling interpretable and compositional strategies for coordination.
In addition, CUBE makes a rich set of symbolic concepts available, supporting
the generation of customized feedback at both the per-agent and collective lev-
els. These features allow the same environment to support both reinforcement
learning-based agents, which operate on grid-based observations with scalar re-
wards, and LLM-based agents, which act through symbolic state representations
and customized feedback. CUBE is a scalable environment in which the number of
agents, grid size, and block distributions can all be varied to adjust task complexity.
For ease of comparison across experiments, we introduce a single parameter n that
specifies a fixed configuration, with larger values yielding progressively more chal-
lenging settings. This design provides a transparent and interpretable curriculum
that spans from minimal to large-scale coordination. CUBE thus offers a flexible
platform for the scalable evaluation of algorithms that integrate symbolic reasoning
with embodied multi-agent interaction. We will release our code upon acceptance.

1 Introduction

As large language models (LLMs) take on a growing role as planners and decision-makers, the
environments used to study them must adapt to evaluate these capabilities. Traditional benchmarks,
built with reinforcement learning agents in mind [s s R R

,], emphasize low-level action spaces and scalar rewards. These signals are
effective for gradient-based training but provide little support for symbolic reasoning, interpretability,
or debugging. For LLM agents, producing long strings of primitive moves and waiting for numerical
rewards is both unnatural and inefficient. Recent work has highlighted that large language models
struggle to plan reliably without structured support [,], though methods such
as policy sketches [,] and program-induction prompting [,] point
to ways of bridging symbolic and learned reasoning.

Symbolic planning domains define actions through explicit preconditions and effects, which makes
them clear and interpretable [,]. However, they typically assume deterministic
transitions, simplifying away many of the uncertainties that characterize real environments [,

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

,]. In addition, they rarely capture embodied dynamics such as collisions,
congestlon or force accumulation, meaning that agents cannot directly influence one another’s
states through physical interaction. As a result, while symbolic domains provide strong abstractions
for logical reasoning, they remain limited in representing the interactive constraints of multi-agent
physical tasks.

Box count Agent count

mox box size

B

Grid size

Figure 1: Left: Illustration of CUBE’s scaling mechanism. A single parameter n jointly determines
the number of agents, the number and weights of blocks, and the grid size. Increasing n expands
the agent population, the block spectrum, and the grid dimensions. Right: an example instance with
n = 5 shows five agents and a set of blocks with varying weights placed on the grid, with the goal
zone indicated in green, where blocks must be delivered through coordinated pushes.

Human reasoning, in contrast, blends both symbolic and embodied perspectives. We rarely operate
purely at the level of raw motor actions or purely at the level of logical abstractions. Instead,
people often form symbolic prototypes, mental models of what should happen [, ,
,], but rely on feedback from acting in the physical world to refine those prototypes.
We act based on what we expect to see, recognize when outcomes deviate, and adjust our strategies
accordingly. In the language of perceptual control theory by [], behavior can be
understood as a continuous feedback process, where agents act to minimize the discrepancy between
expected and perceived outcomes. This iterative loop of symbolic reasoning and embodied correction,
forming, testing, and updating hypotheses, is central to how humans learn to coordinate and adapt.

We take inspiration from this perspective in designing our environment. CUBE (Collaborative
Multi-Agent Block-Pushing Environment) is a lightweight yet expressive testbed designed with these
needs in mind. The environment integrates the structure of symbolic actions with the uncertainty
and interaction of an embodied multi-agent world. Agents in CUBE must coordinate to push
weighted blocks into a goal zone. Success depends on quorum, force, and spatial alignment, making
cooperation both necessary and measurable. CUBE retains the accessibility and straightforward
structure of grid-based environments but introduces two distinctive features to support this style
of reasoning. First, it provides a symbolic action vocabulary designed to leverage the strengths of
symbolic reasoning, compositionality, interpretability, and explicit coordination. Second, it returns
explicit feedback at two complementary levels, covering both the outcomes of individual symbolic
actions and the progress of the overall task. These design choices make CUBE amenable to different
types of agents, from conventional reinforcement learners to LLM-based planners.

For RL agents operating in CUBE, tasks are framed through grid-based tensor observations and
scalar rewards, consistent with existing benchmarks. For LLM agents, which are our primary focus,
the same underlying state is presented in symbolic form, and outcomes are communicated through
explicit success—failure signals with minimal textual explanations. These agents share the same
primitive moves as RL agents, but the availability of symbolic actions and structured feedback allows
them to abstract away some of the low-level motor details when forming and revising plans. This
dual formulation supports low-level numerical training as well as higher-level symbolic planning,
allowing the environment to serve as both a standard RL benchmark and a platform for studying
agents that operate through symbolic reasoning and language within a single framework.

72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87

88

89
90

92
93
94
95
96
97
98

99

100
101
102
103
104

106
107
108

109
110
111
112

113

114
115
116

117

118
119
120
121

A secondary design consideration was to reduce the burden of fine-grained environment engineering
for researchers while retaining enough flexibility to study cooperation across a wide range of
algorithms and tasks. CUBE supports scalability and adjustable difficulty through a single governing
parameter n that controls both the scale of cooperation and the variety of tasks. The environment
initializes with n agents on a grid of size n2, along with block weights distributed according to n.
Larger values of n increase both the number and weight of blocks, which in turn raise the quorum
of agents required to move them, since each agent contributes only one unit of force. At the same
time, more agents are introduced into the grid, expanding cooperation from pairwise pushes to larger
coalitions. When many agents converge on heavy blocks, local congestion and collisions naturally
emerge, further complicating coordination. By contrast, small n produces straightforward cases that
can be solved in fewer coordinated steps.

Although configurations can be customized for special cases, the coupled scaling defined by n
provides a natural and interpretable curriculum. Because the relation between block weight and the
required quorum of agents is deterministic, task difficulty progresses in a transparent and controllable
way. This allows systematic study of cooperation from minimal setups to large-scale embodied
planning tasks that require synchronization, collision avoidance, and even sub-team organization.

2 Environment Design

At its base level, CUBE is a grid-world environment built on PettingZoo’s parallel API [,

], where agents must cooperate to push square blocks into a designated goal region. The
environment consists of agents and movable blocks placed on a grid. We denote the set of agents
by A and the set of blocks available at the start of an episode by B. At step ¢, B*) C B denotes
the subset of blocks that have not yet been delivered. Each block B; € B has an integer weight
w(Bj) > 1 and occupies a contiguous square of side length w(B;), so its physical size grows in
direct proportion to its weight. This proportionality ensures consistency, as larger blocks both span
more grid cells and require a greater quorum of agents to move. Each agent A; € A occupies a single
grid cell, with position denoted ! at step ¢. Episodes terminate successfully when all blocks have
been delivered. Episodes truncate if the max_steps is reached without delivering all blocks.

2.1 Episode Initialization

At the beginning of each episode, the environment samples a & x k grid configuration, either
from user-specified settings or from a single parameter n. By default the grid side length is set to
k = max(20,n), with n agents placed on the board. The block set is derived from n by starting
with a heavy block of weight |n/2] 4 1 and introducing progressively lighter ones until reaching
weight one, with lighter blocks appearing in greater numbers. This distribution is chosen to ensure
that episodes remain neither trivial nor overcrowded across scales. For small values of n, blocks and
agents occupy only a small fraction of the grid, leaving most cells open. In larger instances, close
to half of the grid is covered by blocks, a small fraction by agents, and the remainder left empty,
creating space for movement while still requiring coordination around congested regions.

When respawning agents and blocks, agents are placed along the wall opposite the goal region, with
the guarantee that the grid side length k£ > n. Blocks are positioned under constraints that prevent
them from spawning adjacent to walls or other blocks. This is necessary because only pushing is
allowed. If a block were placed in a corner, agents would have no way to move it.

2.2 Environment Dynamics

CUBE is a grid-world where agents and blocks move according to simple rules. Agents can step in
the four directions or stay in place, while blocks move only when pushed by enough agents. These
dynamics create coordination challenges through collisions, congestion, and enforced collaboration.

2.2.1 Pushing and force chains

Let a block B; € B of weight w(B;) sit at location (7, ¢). A push in direction d € {1,], +, —}
requires a line of agents immediately adjacent to the block’s face or aligned collinearly in direction d.
Each aligned agent that issues action d contributes unit force; agents can stack behind one another to
form a pushing line.

122
123
124
125
126
127
128

129

131
132
133
134
135

137
138

139

140
141
142
143
144
145

146

147
148

149

150
151
152
153

154

155
156
157
158
159
160
161

162

163
164

Block motion. Block B; moves

one cell in direction d if and only Black Chain
if the total simultaneous force at B,
its pushing face is > w(B;) and Y By sil
the frontmost destination cell for O O 5:2 Bg Bi
the resulting block chain is free - =
and in-bounds. Block Choi
in
Block chains. If another block
By, € Bsits directly in front of B J (a) Successful chain (b) Failed chain

along d, the environment forms a

chain and tests whether the entire Figure 2: Illustration of block chains: A chain can succeed or
chain can move forward by one fail depending on whether the number of available agents meets
cell. The frontmost destination the block’s weight requirement and the maximum force that can
cell must be unoccupied by blocks be exerted in the environment.

or agents and lie within bounds.

On success, all blocks in the chain advance by one cell, updated starting from the frontmost block
and proceeding backward, so that no two blocks ever overlap during the move.

2.2.2 Agent Movement and Collisions

Each agent A; € A issues an action u; € U, which specifies a target cell on the k& x k grid. A move
is valid only if the target cell lies within bounds and is not occupied by a block (including newly
moved blocks); choosing STAY is always valid. If multiple agents attempt to move into the same cell,
or if one tries to enter a cell occupied by a stationary agent, the move fails and all agents involved
remain in place. Otherwise, the agent advances to its target cell. This rule ensures that agents cannot
overlap with blocks or stack in the same cell.

2.2.3 Rewards

We use 7, for the step cost (default 0.01) and r4 for the delivery reward (default 1.0). The per-step
reward for agent A; is
D®
Tgt) = —Ts+ 7, with D(t) = Z rd U)(B),
| ‘ B Edelivered

where D) = 0 if no block is delivered. Delivered blocks are removed immediately, and if multiple
blocks reach the goal in the same step their rewards are summed.

2.3 Observation Space

CUBE provides two observation modalities: a symbolic observation and a multi-channel observa-
tion. This dual interface supports diverse agent architectures, enabling reinforcement learning agents
to rely on grid-based encodings, LLM-based agents to operate over symbolic state descriptions, or
novel approaches that combine both.

2.3.1 Symbolic Observation

At each step ¢, every agent A; receives a symbolic dictionary describing the current state. This
includes global environment information (grid size, positions of all agents) as well as a compact
summary for each block (block ID, weight, position, and distance to the goal column). The dictionary
also records the agent’s own task status, such as assigned block, current and previous tasks, execution
phase, and plan progress. This structured interface enables one to think directly about concepts such
as "which blocks remain’, how far they are from the goal’ and *where teammates are’, supporting
high-level planning and coordination.

2.3.2 Multi-channel Observation

In addition, a five-channel grid encoding agent locations, block weights, the goal column, a channel
marking which agent occupies each cell, and a channel marking which block occupies each cell. This

165
166

167

168
169
170
171
172
173

174

175

176
177
178
179
180

181

182
183
184
185
186
187
188

190
191
192
193
194
195
196
197

representation resembles standard RL observations and is primarily included for compatibility with
reinforcement learning pipelines and for visualization.

2.4 Action Space

CUBE supports two sets of action spaces. The primitive action space provides low-level grid
movements, enabling agents to interact directly with the environment through discrete directional
moves. The symbolic action space abstracts these primitives into higher-level cooperative strategies,
such as aligning on a block face, synchronizing for a push, or waiting for teammates. Together, these
two levels allow experiments to target both reinforcement learning agents, which operate naturally
over primitive actions, and LLM-based agents, which benefit from reasoning over symbolic actions.

2.4.1 Primitive Action Space

Each agent selects from a discrete 5-action set
U = {STAY = 0, UP = 1, DOWN = 2, LEFT = 3, RIGHT = 4}.

At time ¢, agent 7 issues an action u! indicating a direction, and all agents act in parallel. Moves
succeed only if the target cell is free; collisions with walls, agents, or insufficiently supported blocks
cause the agent to remain in place. A push succeeds if the aligned agents’ combined force exceeds
the total weight of the aligned blocks and the destination cell is free, in which case both the blocks
and agents advance one step.

2.4.2 Symbolic Actions

Beyond primitive grid movements, CUBE provides a library of symbolic actions that capture higher-
level coordination patterns such as aligning on a block face, synchronizing for a push, or waiting for
teammates. Each symbolic action is grounded in the underlying transition dynamics, with execution
compiling into the necessary sequence of primitive moves until the specified condition is met. For
instance, PUSH compiles into primitive moves where each aligned agent repeatedly issues the action
directed into the block face. Similarly, a MOVETOBLOCK unfolds into a path of primitive moves that
positions the agent on the specified face of the block.

Action

Preconditions

Effects

MoVETOBLOCK(By, f,t)
RENDEZVOUS(B;, f, 3,t)

PUSH(BJ7 s, f, t)

YIELDFACE(Bj, s, f, 1)

Bj not delivered, some cell on face f
is free

Bj; not delivered, at least /3 cells exist
on face f

Bj; not delivered, all AY) aligned on
face f, | AY)| > w(B;), front cell (for
any chain) clear

A; on face f of B, atleast one adjacent
cell free

A; becomes aligned to B; on face f

Agents in AW aligned on face f of
B

Bj; advances by s cells along f, agents
in A advance with the block

A; takes s steps away (L-shaped), free-
ing space on face f

WAIT(t) None A; idles for ¢ timesteps
WAITAGENTS (3, t) WM present, fewer than 3 agents are wait until at least 3 agents are idle >
idle

Table 1: Symbolic actions with arguments, preconditions, and effects. “Front cell” is the cell(s)
immediately ahead of the block or block chain in the PUSH direction.

Although the symbolic action is compact, the inclusion of arguments such as block identifiers,
sides, timeouts, and step counts allows each action to be instantiated in many different ways. This
parameterization substantially expands the effective planning and action space, making it far richer
and more expressive than initially appears. Within this space, agents must determine how to align with
a block, synchronize with teammates, wait for collaborators, or yield when obstructing others, even
while already executing a plan. For example, MOVETOBLOCK is often composed with RENDEZVOUS
to ensure that sufficient agents are placed on the same block face before executing PUSH. Such
combinations illustrate how flexible use of symbolic actions can produce complex interaction patterns
and challenging collaboration dynamics in multi-agent settings.

198
199
200
201
202

204

205

206
207

209

210
211
212
213

214

215
216
217
218
219
220
221
222

The following summary lists each symbolic action with its arguments, preconditions, and effects.
The executing agent is implicit and denoted A; in the logic, since each agent can execute its own
symbolic actions. Some actions require multiple agents to participate simultaneously. For these, we
denote by A the set of agents currently working on block B;. Execution timeouts are represented
by t, ensuring that no agent remains indefinitely stuck in an unfinished symbolic action.

By exposing a shared vocabulary of strategies, CUBE enables LLM-based agents to reason, commu-
nicate, and adapt at the level of meaningful cooperative behaviors rather than isolated unit steps.

2.4.3 Symbolic Concepts for Customized Feedback

In addition to symbolic actions, CUBE exposes a library of symbolic concepts that capture the
geometric and relational properties of the environment. These concepts do not prescribe feedback
directly; instead, they provide a flexible vocabulary that researchers can combine to design their own
feedback functions, progress metrics, or coordination signals.

Table 2 summarizes the available concepts implemented in the environment. They include utilities
for querying blocks, computing distances, reasoning about alignment, inferring push directions,
and pathfinding. Together, these concepts make it possible to define higher-level evaluative criteria
without modifying the environment’s core mechanics.

Concept Arguments Description / Output

get_distance (entity:, entity2) Manhattan distance between two entities (agent, block, or
position).

is_aligned_with_block (block, side) Boolean indicating whether an agent is aligned with the
given block face.

count_aligned_agents (block, side) Number of agents aligned with a given block face.

all_aligned_positions (block, side) Set of all valid alignment positions for a block face.

block_progress (block) Distance of the block to the goal.

delivered (block) Boolean indicating whether the block has been delivered.

quorum_status (block, side) Boolean indicating whether aligned agents meet or exceed
block weight.

quorum_deficit (block, side) Number of additional agents required to push the block.

blocked (block, side) Boolean indicating whether a block face is blocked by wall,

block, or agent.

Table 2: Symbolic concepts available in CUBE. Each concept is expressed as a function returning a
property or relation, providing reusable primitives for defining customized feedback or evaluation
signals.

3 Evaluation

In our evaluation, we empirically demonstrate the scalability of CUBE, showing that the environment
sustains high performance with negligible computational overhead even when scaled to hundreds of
agents. We further evaluate the integration of different classes of agents, illustrating how LLM-based
agents can operate effectively within the environment. The performance bottleneck is dominated by
LLM inference time rather than simulation, confirming that CUBE itself remains highly scalable. The
environment is implemented in native Python, accelerated with Numba for efficiency, and executes
entirely on a single CPU core without requiring GPU resources. It is designed to be lightweight,
portable, and easily customizable, and operates independently of the broader LLM infrastructure.

!Contains at least § agents. 3 is at least equal the block’s weight w(B;), since each agent contributes one
unit of force.

2WM denotes the world model used to count aligned or available agents; if absent, WAITAGENTS degrades
to WAIT.

223

224
225
226

227
228
229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246
247
248

249
250
251
252

254
255
256
257
258

260
261

3.1 Scalability and Computational Footprint
We evaluate CUBE by examining how well different classes of agents leverage its dual interfaces to

solve cooperative block-pushing tasks. Our experiments are designed to highlight scalability with
respect to n.

CPU Utilization vs Agents

006 — Mean Time per Step vs Agents Process Memory Usage vs Agents

Average Usage (GB)
CPU Utilization (%)

®>~

8 _
= o001 fa=3

o 50 100 150 200 250 o 50
Number of Agents

200 250 0 50 200 250

100 50
Number of Agents

(c) CPU Utilization

10 50
Number of Agents

(a) Mean Time per Step (b) Memory Usage

Figure 3: Scalability analysis of primitive actions as the number of agents increases. (a) Mean time
per step grows smoothly with 2, remaining negligible at small scales and rising gradually as agent
count increases. (b) Memory usage follows an approximately linear trend, reaching under 1 GB at
n = 256, with overhead in the tens of MB for small n. (¢c) CPU utilization increases steadily with n
and remains below 90% with 256 agents operating simultaneously.

Scalability of Primitive Actions. To eval-
uate the computational footprint of our envi- 101
ronment, we measured runtime and system
resource usage’ as a function of the number
of agents (n), using randomly acting agents to
isolate the overhead of the environment from
the complexity of the policy. Each setting was

Runtime vs Number of Agents by Action Type

YieldFace
MoveToBlock
Wait
Rendezvous
Push

Mean Runtime (s)
5

run five times to account for variability (see
Figure 3). Mean time per step grows roughly

WaitAgents

0 50 100 150 200 250
Number of Agents

linearly with the number of agents, remaining
sub-millisecond for small teams and reaching
roughly 0.05s at 256 agents. Process memory
usage also increases approximately linearly

(a) Mean runtime per symbolic action

MoveToBlock - 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.0008 LI ‘

-
with n, from tens of MB at small n to 0.9 & Push -ooms oot o0 I ° -
GB at 256 agents. CPU utilization rises grad- 'f Rendezvous - ecem ecvor ocvor feect) (R H m °
ually at first, then steepens around mid-scale -8 Wait - 00000 0001 00001 00001 0001 (00002 0000 ‘ S0
team sizes, approaching ~ 90% by 256 agents. < =

WaitAgents - 0.0001 00000 00001 00001 00002 0.0004 KIHE o.ooza [
0.0015

Overall, the environment stays lightweight for VieldFace - a0 some oo Dl I J 107
small and moderate teams and scales to a few L b b 15 3 ee s ate
hundred agents on a single-core processor; the Number of Agents

main pressure at high n is CPU, while memory

remains below 1 GB. (b) Runtime breakdown per symbolic action

Figure 4: Scalability analysis of symbolic actions
as the number of agents increases. Lighter actions
(e.g. YIELDFACE), remain inexpensive across scales,
while heavier actions involving multi-agent synchro-
nization, (e.g. PUSH) dominate runtime at larger n.

Scalability of Symbolic Actions. We pro-
file per-action runtime as a function of the
number of scripted agents, with all agents
hard-coded to follow the same symbolic ac-
tion sequence. These measurements capture
the additional overhead of symbolic mediation, which is checking preconditions and decomposing
into primitive steps, relative to directly executing primitive actions. We note that some symbolic
actions are easier to optimize for performance than others. For example, MOVETOBLOCK can be
efficiently accelerated with Numba, while actions more tightly coupled to Python class logic are less
amenable to such optimization. Both the line plot and the heatmap exhibit the same trend. Most
symbolic actions remain inexpensive across scales, around 10~4-1073 seconds even at n = 256,
and stay close to the primitive baseline. In contrast, symbolic actions that require accessing Python
objects to perform multi-agent checks, such as RENDEZVOUS, WAITAGENTS, and PUSH, grow

262
263

264

265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285

287
288
289
290
291
292

294
295
296
297

298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314

progressively more expensive. Nevertheless, even the most expensive actions remain lightweight,
with per-action overhead under 0.05 seconds.

3.2 Agent Performance in the Environment

By

s:1

Bg
s:1

3.2.1 Baselines
7
Heuristic. We implement a heuristic baseline
that follows a greedy strategy: at each step,
the block closest to the goal is selected, and
all agents are assigned to move it. Once a tar-
get block is chosen, each agent is given a step-
by-step plan expressed as symbolic instructions
such as MOVETOBLOCK, RENDEZVOUS, and
PuUsH. These instructions are repeated until
the block is delivered, after which the process
restarts for the next closest block. The base-
line therefore produces valid cooperative behav-
ior but does not attempt to optimize efficiency,
parallelize work across blocks, or resolve con-
gestion. It provides a straightforward point of
comparison for more advanced approaches.

@)

s:2
(a) Blocked block

7

Bs

s:1 s:1

@

(b) Agents block each other

At first glance, one might expect such a heuristic
to solve the task reliably. In a purely symbolic
environment, it likely would. However, inanem- __,
bodied environment like CUBE, spatio-temporal Figure 5 Heuristic failure cases. (a) Failure case
dynamics and movement constraints mimicking 1; (b) Failure case 2.

physical limitations introduce uncertainty into execution. As shown in Fig. 5a, agents Ay and A,
attempt to position themselves to the left of block Bg. With no free cells in that region, they remain
in place and unintentionally block both the blocks and the passageway, preventing progress. This
deadlock is an emergent coordination failure: local heuristics lead to globally undesirable behavior.
Symbolic planning domains struggle to capture such failures, which arise from spatial constraints
and congestion in embodied execution. A similar issue appears in Fig. 5b, where agents Ag and A
attempt to move to the left side of block Bg to prepare for a push. Their approach paths overlap,
and they end up blocking each other. Neither agent yields, leaving the block undeliverable despite
feasible joint progress. These failures highlight how coordination can collapse when agents pursue
individually rational heuristics without accounting for the dynamics of their teammates. At the same
time, they also expose a rich collaboration space where more sophisticated strategies could overcome
such deadlocks.

Naive Language Agent. As a language-
based baseline, we use OpenAl’s gpt-4o0 and
gpt-4o-mini models in a zero-shot setting.
Each agent repeatedly generates short plans
from the prompt based on symbolic observation.
The prompt encodes a simple strategy similar to
the heuristic agent, always targeting the block

Number of Completed Blocks vs Number of Agents by Model

Total Blocks: 6

gpt-4o
gpt-4o-mini
heuristic

Total Blocks: 3

Number of Completed Blocks

ok N W & U o

I | Total Blocks: 1

closest to the goal zone, but expressed in natu- n
2?)1 dl:nguage rather than instantiated directly in Figure 6: Number of completed blocks versus

Figures 6 and 7 present a comparison of three
baselines. The heuristic planner provides con-
sistent cooperative behavior through a simple
strategy. Naive LLM agents (gpt-4o and
gpt-4o-mini) show that pretrained language
models can generate executable symbolic plans,
but their performance is inconsistent and brittle,

agent count n for gpt-4o, gpt-4o0-mini, and the
heuristic baseline. Red dashed lines indicate the
total number of blocks present at each n (1, 3, 3, 6).
The heuristic baseline consistently completes all
available blocks. gpt-4o matches this except at
n = 6. gpt-4o-mini not only underperforms but
also exhibits high variance, indicating instability
across runs.

3Experiments were run on Apple M2 (8-core CPU, 10-core GPU, 16GB unified memory).

315
316
317
318
319
320
321
322
323

324

325
326
327
328
329
330
331

332
333
334
335
336
337
338
339

340

341
342

344

345

346
347

348
349
350

particularly when coordination across multiple agents is required. They succeed on simpler instances
but degrade when plans involve other agents. Notably, gpt-4o0 generates longer and higher-quality
plans than gpt-4o0-mini, which is reflected in Fig. 6: gpt-4o-mini never completes an episode
once n > 2 and also incurs longer runtimes, suggesting it replans more often. This gap is further re-
flected in lower completion rates, longer execution traces, and higher variance relative to the heuristic
baseline. Taken together, these baselines are not intended as competitive solutions but as reference
points that highlight the potential of studying embodied cooperation in CUBE. While general-purpose
LLMs can produce nontrivial symbolic behaviors, they fall short of robust cooperative performance
on their own, particularly as n scales.

250 — Steps vs Number of Agents by Model __ 120—Runtime vs Number of Agents by Model

wn
3 100

0 200 T~ -gmass -- g gpt-40

9 = 80 gpt-4o-mini

v 150 S heuristic

[J] Z 60

2 o

© 100 gpt-40 o 40

g gpt-4o0-mini ©

< 50 heuristic g 20

—-== Step Cap (200) << o
0 2 4 8 1 2 4 8
n n
(a) Average steps to completion. (b) Average runtime.

Figure 7: Baseline comparison across increasing numbers of agents (n). The heuristic baseline
consistently produces valid cooperative behavior, while naive LLM agents (gpt-40, o4-mini)
demonstrate the ability to generate symbolic plans but remain less reliable and less efficient, showing
the gap that our environment is designed to expose.

4 Conclusion

CUBE introduces symbolic reasoning into an embodied multi-agent environment through a grid-based
cooperative block-pushing task. By providing both primitive and symbolic actions along with a library
of symbolic concepts, it offers a dual interface suitable for conventional reinforcement learning agents
and LLM-based agents. The single scaling parameter n transparently controls task difficulty, spanning
from simple two-agent pushes to complex multi-agent coordination under congestion. Experiments
show that the environment scales efficiently on commodity hardware, and baseline comparisons
demonstrate the importance of structured abstractions for guiding LLM agents.

Looking forward, CUBE enables the study of a broad range of questions at the intersection of language,
planning, and multi-agent interaction. Researchers can investigate how symbolic abstractions affect
emergent cooperation, how feedback functions designed from symbolic concepts shape learning
and adaptation, and how heterogeneous teams of agents with different reasoning capabilities can
collaborate. CUBE thus serves as a flexible platform for advancing the study of embodied cooperation
in the era of LLM agents, and opens avenues for future work on richer task structures, communication
mechanisms, and hybrid learning approaches that combine reinforcement learning with symbolic
reasoning.

References

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy sketches.
In International conference on machine learning, pages 166-175. PMLR, 2017.

David Bai, Ishika Singh, David Traum, and Jesse Thomason. Twostep: Multi-agent task planning using classical
planners and large language models. arXiv preprint arXiv:2403.17246, 2024.

Lawrence W Barsalou. Perceptual symbol systems. Behavioral and brain sciences, 22(4):577-660, 1999.

Mark S Boddy. Imperfect match: Pddl 2.1 and real applications. Journal of Artificial Intelligence Research, 20:
133-137, 2003.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language
learning. arXiv preprint arXiv:1810.08272, 2018.

351

353

354
355
356

357

358
359
360

361
362
363

364
365
366

368
369

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice. Elsevier, 2004.

Philip N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Language, Inference and Conscious-
ness. Cambridge University Press, Cambridge, UK, 1983.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy,
Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A general platform for intelligent agents.
arXiv preprint arXiv:1809.02627, 2020. URL https://arxiv.org/pdf/1809.02627 .pdf.

William Treval Powers. Behavior: The control of perception. 1973.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio Petroni,
Heinrich Kiittler, Edward Grefenstette, and Tim Rocktidschel. Minihack the planet: A sandbox for open-ended
reinforcement learning research. arXiv preprint arXiv:2109.13202, 2021.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language
models. arXiv preprint arXiv:2209.11302, 2022.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:15032—-15043, 2021.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language models
still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS 2022 Foundation
Models for Decision Making Workshop, 2022.

10

https://arxiv.org/pdf/1809.02627.pdf

	Introduction
	Environment Design
	Episode Initialization
	Environment Dynamics
	Pushing and force chains
	Agent Movement and Collisions
	Rewards

	Observation Space
	Symbolic Observation
	Multi-channel Observation

	Action Space
	Primitive Action Space
	Symbolic Actions
	Symbolic Concepts for Customized Feedback

	Evaluation
	Scalability and Computational Footprint
	Agent Performance in the Environment
	Baselines

	Conclusion

