
CUBE: Collaborative Multi-Agent Block-Pushing
Environment for Collective Planning with LLM Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce CUBE (Collaborative Multi-Agent Block-Pushing Environment), a1

lightweight yet expressive testbed for studying embodied cooperation in multi-2

agent systems. While traditional reinforcement learning benchmarks emphasize3

low-level action spaces and scalar rewards, and symbolic planning domains empha-4

size logical reasoning under deterministic transitions, neither alone provides the5

combination of embodiment, uncertainty, and symbolic structure needed to evaluate6

emerging embodied LLM-based agents. CUBE addresses this gap by implement-7

ing primitive block-pushing actions that are then wrapped into a symbolic action8

vocabulary, enabling interpretable and compositional strategies for coordination.9

In addition, CUBE makes a rich set of symbolic concepts available, supporting10

the generation of customized feedback at both the per-agent and collective lev-11

els. These features allow the same environment to support both reinforcement12

learning-based agents, which operate on grid-based observations with scalar re-13

wards, and LLM-based agents, which act through symbolic state representations14

and customized feedback. CUBE is a scalable environment in which the number of15

agents, grid size, and block distributions can all be varied to adjust task complexity.16

For ease of comparison across experiments, we introduce a single parameter n that17

specifies a fixed configuration, with larger values yielding progressively more chal-18

lenging settings. This design provides a transparent and interpretable curriculum19

that spans from minimal to large-scale coordination. CUBE thus offers a flexible20

platform for the scalable evaluation of algorithms that integrate symbolic reasoning21

with embodied multi-agent interaction. We will release our code upon acceptance.22

1 Introduction23

As large language models (LLMs) take on a growing role as planners and decision-makers, the24

environments used to study them must adapt to evaluate these capabilities. Traditional benchmarks,25

built with reinforcement learning agents in mind [Chevalier-Boisvert et al., 2018, Juliani et al., 2020,26

Samvelyan et al., 2021], emphasize low-level action spaces and scalar rewards. These signals are27

effective for gradient-based training but provide little support for symbolic reasoning, interpretability,28

or debugging. For LLM agents, producing long strings of primitive moves and waiting for numerical29

rewards is both unnatural and inefficient. Recent work has highlighted that large language models30

struggle to plan reliably without structured support [Valmeekam et al., 2022], though methods such31

as policy sketches [Andreas et al., 2017] and program-induction prompting [Singh et al., 2022] point32

to ways of bridging symbolic and learned reasoning.33

Symbolic planning domains define actions through explicit preconditions and effects, which makes34

them clear and interpretable [Ghallab et al., 2004]. However, they typically assume deterministic35

transitions, simplifying away many of the uncertainties that characterize real environments [Boddy,36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

2003, Bai et al., 2024]. In addition, they rarely capture embodied dynamics such as collisions,37

congestion, or force accumulation, meaning that agents cannot directly influence one another’s38

states through physical interaction. As a result, while symbolic domains provide strong abstractions39

for logical reasoning, they remain limited in representing the interactive constraints of multi-agent40

physical tasks.41

Figure 1: Left: Illustration of CUBE’s scaling mechanism. A single parameter n jointly determines
the number of agents, the number and weights of blocks, and the grid size. Increasing n expands
the agent population, the block spectrum, and the grid dimensions. Right: an example instance with
n = 5 shows five agents and a set of blocks with varying weights placed on the grid, with the goal
zone indicated in green, where blocks must be delivered through coordinated pushes.

Human reasoning, in contrast, blends both symbolic and embodied perspectives. We rarely operate42

purely at the level of raw motor actions or purely at the level of logical abstractions. Instead,43

people often form symbolic prototypes, mental models of what should happen [Johnson-Laird, 1983,44

Barsalou, 1999], but rely on feedback from acting in the physical world to refine those prototypes.45

We act based on what we expect to see, recognize when outcomes deviate, and adjust our strategies46

accordingly. In the language of perceptual control theory by Powers [1973], behavior can be47

understood as a continuous feedback process, where agents act to minimize the discrepancy between48

expected and perceived outcomes. This iterative loop of symbolic reasoning and embodied correction,49

forming, testing, and updating hypotheses, is central to how humans learn to coordinate and adapt.50

We take inspiration from this perspective in designing our environment. CUBE (Collaborative51

Multi-Agent Block-Pushing Environment) is a lightweight yet expressive testbed designed with these52

needs in mind. The environment integrates the structure of symbolic actions with the uncertainty53

and interaction of an embodied multi-agent world. Agents in CUBE must coordinate to push54

weighted blocks into a goal zone. Success depends on quorum, force, and spatial alignment, making55

cooperation both necessary and measurable. CUBE retains the accessibility and straightforward56

structure of grid-based environments but introduces two distinctive features to support this style57

of reasoning. First, it provides a symbolic action vocabulary designed to leverage the strengths of58

symbolic reasoning, compositionality, interpretability, and explicit coordination. Second, it returns59

explicit feedback at two complementary levels, covering both the outcomes of individual symbolic60

actions and the progress of the overall task. These design choices make CUBE amenable to different61

types of agents, from conventional reinforcement learners to LLM-based planners.62

For RL agents operating in CUBE, tasks are framed through grid-based tensor observations and63

scalar rewards, consistent with existing benchmarks. For LLM agents, which are our primary focus,64

the same underlying state is presented in symbolic form, and outcomes are communicated through65

explicit success–failure signals with minimal textual explanations. These agents share the same66

primitive moves as RL agents, but the availability of symbolic actions and structured feedback allows67

them to abstract away some of the low-level motor details when forming and revising plans. This68

dual formulation supports low-level numerical training as well as higher-level symbolic planning,69

allowing the environment to serve as both a standard RL benchmark and a platform for studying70

agents that operate through symbolic reasoning and language within a single framework.71

2

A secondary design consideration was to reduce the burden of fine-grained environment engineering72

for researchers while retaining enough flexibility to study cooperation across a wide range of73

algorithms and tasks. CUBE supports scalability and adjustable difficulty through a single governing74

parameter n that controls both the scale of cooperation and the variety of tasks. The environment75

initializes with n agents on a grid of size n2, along with block weights distributed according to n.76

Larger values of n increase both the number and weight of blocks, which in turn raise the quorum77

of agents required to move them, since each agent contributes only one unit of force. At the same78

time, more agents are introduced into the grid, expanding cooperation from pairwise pushes to larger79

coalitions. When many agents converge on heavy blocks, local congestion and collisions naturally80

emerge, further complicating coordination. By contrast, small n produces straightforward cases that81

can be solved in fewer coordinated steps.82

Although configurations can be customized for special cases, the coupled scaling defined by n83

provides a natural and interpretable curriculum. Because the relation between block weight and the84

required quorum of agents is deterministic, task difficulty progresses in a transparent and controllable85

way. This allows systematic study of cooperation from minimal setups to large-scale embodied86

planning tasks that require synchronization, collision avoidance, and even sub-team organization.87

2 Environment Design88

At its base level, CUBE is a grid-world environment built on PettingZoo’s parallel API [Terry et al.,89

2021], where agents must cooperate to push square blocks into a designated goal region. The90

environment consists of agents and movable blocks placed on a grid. We denote the set of agents91

by A and the set of blocks available at the start of an episode by B. At step t, B(t) ⊆ B denotes92

the subset of blocks that have not yet been delivered. Each block Bj ∈ B has an integer weight93

w(Bj) ≥ 1 and occupies a contiguous square of side length w(Bj), so its physical size grows in94

direct proportion to its weight. This proportionality ensures consistency, as larger blocks both span95

more grid cells and require a greater quorum of agents to move. Each agent Ai ∈ A occupies a single96

grid cell, with position denoted xt
i at step t. Episodes terminate successfully when all blocks have97

been delivered. Episodes truncate if the max_steps is reached without delivering all blocks.98

2.1 Episode Initialization99

At the beginning of each episode, the environment samples a k × k grid configuration, either100

from user-specified settings or from a single parameter n. By default the grid side length is set to101

k = max(20, n), with n agents placed on the board. The block set is derived from n by starting102

with a heavy block of weight ⌊n/2⌋+ 1 and introducing progressively lighter ones until reaching103

weight one, with lighter blocks appearing in greater numbers. This distribution is chosen to ensure104

that episodes remain neither trivial nor overcrowded across scales. For small values of n, blocks and105

agents occupy only a small fraction of the grid, leaving most cells open. In larger instances, close106

to half of the grid is covered by blocks, a small fraction by agents, and the remainder left empty,107

creating space for movement while still requiring coordination around congested regions.108

When respawning agents and blocks, agents are placed along the wall opposite the goal region, with109

the guarantee that the grid side length k ≥ n. Blocks are positioned under constraints that prevent110

them from spawning adjacent to walls or other blocks. This is necessary because only pushing is111

allowed. If a block were placed in a corner, agents would have no way to move it.112

2.2 Environment Dynamics113

CUBE is a grid-world where agents and blocks move according to simple rules. Agents can step in114

the four directions or stay in place, while blocks move only when pushed by enough agents. These115

dynamics create coordination challenges through collisions, congestion, and enforced collaboration.116

2.2.1 Pushing and force chains117

Let a block Bj ∈ B of weight w(Bj) sit at location (r, c). A push in direction d ∈ {↑, ↓,←,→}118

requires a line of agents immediately adjacent to the block’s face or aligned collinearly in direction d.119

Each aligned agent that issues action d contributes unit force; agents can stack behind one another to120

form a pushing line.121

3

(a) Successful chain (b) Failed chain

Figure 2: Illustration of block chains: A chain can succeed or
fail depending on whether the number of available agents meets
the block’s weight requirement and the maximum force that can
be exerted in the environment.

Block motion. Block Bj moves122

one cell in direction d if and only123

if the total simultaneous force at124

its pushing face is ≥ w(Bj) and125

the frontmost destination cell for126

the resulting block chain is free127

and in-bounds.128

Block chains. If another block129

Bk ∈ B sits directly in front of Bj130

along d, the environment forms a131

chain and tests whether the entire132

chain can move forward by one133

cell. The frontmost destination134

cell must be unoccupied by blocks135

or agents and lie within bounds.136

On success, all blocks in the chain advance by one cell, updated starting from the frontmost block137

and proceeding backward, so that no two blocks ever overlap during the move.138

2.2.2 Agent Movement and Collisions139

Each agent Ai ∈ A issues an action ui ∈ U , which specifies a target cell on the k × k grid. A move140

is valid only if the target cell lies within bounds and is not occupied by a block (including newly141

moved blocks); choosing STAY is always valid. If multiple agents attempt to move into the same cell,142

or if one tries to enter a cell occupied by a stationary agent, the move fails and all agents involved143

remain in place. Otherwise, the agent advances to its target cell. This rule ensures that agents cannot144

overlap with blocks or stack in the same cell.145

2.2.3 Rewards146

We use rs for the step cost (default 0.01) and rd for the delivery reward (default 1.0). The per-step
reward for agent Ai is

r
(t)
i = −rs +

D(t)

|A|
, with D(t) =

∑
B∈delivered

rd · w(B),

where D(t) = 0 if no block is delivered. Delivered blocks are removed immediately, and if multiple147

blocks reach the goal in the same step their rewards are summed.148

2.3 Observation Space149

CUBE provides two observation modalities: a symbolic observation and a multi-channel observa-150

tion. This dual interface supports diverse agent architectures, enabling reinforcement learning agents151

to rely on grid-based encodings, LLM-based agents to operate over symbolic state descriptions, or152

novel approaches that combine both.153

2.3.1 Symbolic Observation154

At each step t, every agent Ai receives a symbolic dictionary describing the current state. This155

includes global environment information (grid size, positions of all agents) as well as a compact156

summary for each block (block ID, weight, position, and distance to the goal column). The dictionary157

also records the agent’s own task status, such as assigned block, current and previous tasks, execution158

phase, and plan progress. This structured interface enables one to think directly about concepts such159

as ’which blocks remain’, ’how far they are from the goal’ and ’where teammates are’, supporting160

high-level planning and coordination.161

2.3.2 Multi-channel Observation162

In addition, a five-channel grid encoding agent locations, block weights, the goal column, a channel163

marking which agent occupies each cell, and a channel marking which block occupies each cell. This164

4

representation resembles standard RL observations and is primarily included for compatibility with165

reinforcement learning pipelines and for visualization.166

2.4 Action Space167

CUBE supports two sets of action spaces. The primitive action space provides low-level grid168

movements, enabling agents to interact directly with the environment through discrete directional169

moves. The symbolic action space abstracts these primitives into higher-level cooperative strategies,170

such as aligning on a block face, synchronizing for a push, or waiting for teammates. Together, these171

two levels allow experiments to target both reinforcement learning agents, which operate naturally172

over primitive actions, and LLM-based agents, which benefit from reasoning over symbolic actions.173

2.4.1 Primitive Action Space174

Each agent selects from a discrete 5-action set175

U = {STAY = 0, UP = 1, DOWN = 2, LEFT = 3, RIGHT = 4}.
At time t, agent i issues an action ut

i indicating a direction, and all agents act in parallel. Moves176

succeed only if the target cell is free; collisions with walls, agents, or insufficiently supported blocks177

cause the agent to remain in place. A push succeeds if the aligned agents’ combined force exceeds178

the total weight of the aligned blocks and the destination cell is free, in which case both the blocks179

and agents advance one step.180

2.4.2 Symbolic Actions181

Beyond primitive grid movements, CUBE provides a library of symbolic actions that capture higher-182

level coordination patterns such as aligning on a block face, synchronizing for a push, or waiting for183

teammates. Each symbolic action is grounded in the underlying transition dynamics, with execution184

compiling into the necessary sequence of primitive moves until the specified condition is met. For185

instance, PUSH compiles into primitive moves where each aligned agent repeatedly issues the action186

directed into the block face. Similarly, a MOVETOBLOCK unfolds into a path of primitive moves that187

positions the agent on the specified face of the block.188

Action Preconditions Effects

MOVETOBLOCK(Bj , f, t) Bj not delivered, some cell on face f
is free

Ai becomes aligned to Bj on face f

RENDEZVOUS(Bj , f, β, t) Bj not delivered, at least β cells exist
on face f

Agents in A(j) 1 aligned on face f of
Bj

PUSH(Bj , s, f, t) Bj not delivered, all A(j) aligned on
face f , |A(j)| ≥ w(Bj), front cell (for
any chain) clear

Bj advances by s cells along f , agents
in A(j) advance with the block

YIELDFACE(Bj , s, f, t) Ai on face f of Bj , at least one adjacent
cell free

Ai takes s steps away (L-shaped), free-
ing space on face f

WAIT(t) None Ai idles for t timesteps
WAITAGENTS(β, t) WM present, fewer than β agents are

idle
wait until at least β agents are idle 2

Table 1: Symbolic actions with arguments, preconditions, and effects. “Front cell” is the cell(s)
immediately ahead of the block or block chain in the PUSH direction.

Although the symbolic action is compact, the inclusion of arguments such as block identifiers,189

sides, timeouts, and step counts allows each action to be instantiated in many different ways. This190

parameterization substantially expands the effective planning and action space, making it far richer191

and more expressive than initially appears. Within this space, agents must determine how to align with192

a block, synchronize with teammates, wait for collaborators, or yield when obstructing others, even193

while already executing a plan. For example, MOVETOBLOCK is often composed with RENDEZVOUS194

to ensure that sufficient agents are placed on the same block face before executing PUSH. Such195

combinations illustrate how flexible use of symbolic actions can produce complex interaction patterns196

and challenging collaboration dynamics in multi-agent settings.197

5

The following summary lists each symbolic action with its arguments, preconditions, and effects.198

The executing agent is implicit and denoted Ai in the logic, since each agent can execute its own199

symbolic actions. Some actions require multiple agents to participate simultaneously. For these, we200

denote by A(j) the set of agents currently working on block Bj . Execution timeouts are represented201

by t, ensuring that no agent remains indefinitely stuck in an unfinished symbolic action.202

By exposing a shared vocabulary of strategies, CUBE enables LLM-based agents to reason, commu-203

nicate, and adapt at the level of meaningful cooperative behaviors rather than isolated unit steps.204

2.4.3 Symbolic Concepts for Customized Feedback205

In addition to symbolic actions, CUBE exposes a library of symbolic concepts that capture the206

geometric and relational properties of the environment. These concepts do not prescribe feedback207

directly; instead, they provide a flexible vocabulary that researchers can combine to design their own208

feedback functions, progress metrics, or coordination signals.209

Table 2 summarizes the available concepts implemented in the environment. They include utilities210

for querying blocks, computing distances, reasoning about alignment, inferring push directions,211

and pathfinding. Together, these concepts make it possible to define higher-level evaluative criteria212

without modifying the environment’s core mechanics.213

Concept Arguments Description / Output

get_distance (entity1, entity2) Manhattan distance between two entities (agent, block, or
position).

is_aligned_with_block (block, side) Boolean indicating whether an agent is aligned with the
given block face.

count_aligned_agents (block, side) Number of agents aligned with a given block face.
all_aligned_positions (block, side) Set of all valid alignment positions for a block face.
block_progress (block) Distance of the block to the goal.
delivered (block) Boolean indicating whether the block has been delivered.
quorum_status (block, side) Boolean indicating whether aligned agents meet or exceed

block weight.
quorum_deficit (block, side) Number of additional agents required to push the block.
blocked (block, side) Boolean indicating whether a block face is blocked by wall,

block, or agent.

Table 2: Symbolic concepts available in CUBE. Each concept is expressed as a function returning a
property or relation, providing reusable primitives for defining customized feedback or evaluation
signals.

3 Evaluation214

In our evaluation, we empirically demonstrate the scalability of CUBE, showing that the environment215

sustains high performance with negligible computational overhead even when scaled to hundreds of216

agents. We further evaluate the integration of different classes of agents, illustrating how LLM-based217

agents can operate effectively within the environment. The performance bottleneck is dominated by218

LLM inference time rather than simulation, confirming that CUBE itself remains highly scalable. The219

environment is implemented in native Python, accelerated with Numba for efficiency, and executes220

entirely on a single CPU core without requiring GPU resources. It is designed to be lightweight,221

portable, and easily customizable, and operates independently of the broader LLM infrastructure.222

1Contains at least β agents. β is at least equal the block’s weight w(Bj), since each agent contributes one
unit of force.

2WM denotes the world model used to count aligned or available agents; if absent, WAITAGENTS degrades
to WAIT.

6

3.1 Scalability and Computational Footprint223

We evaluate CUBE by examining how well different classes of agents leverage its dual interfaces to224

solve cooperative block-pushing tasks. Our experiments are designed to highlight scalability with225

respect to n.226

(a) Mean Time per Step (b) Memory Usage (c) CPU Utilization

Figure 3: Scalability analysis of primitive actions as the number of agents increases. (a) Mean time
per step grows smoothly with n, remaining negligible at small scales and rising gradually as agent
count increases. (b) Memory usage follows an approximately linear trend, reaching under 1 GB at
n = 256, with overhead in the tens of MB for small n. (c) CPU utilization increases steadily with n
and remains below 90% with 256 agents operating simultaneously.

(a) Mean runtime per symbolic action

(b) Runtime breakdown per symbolic action

Figure 4: Scalability analysis of symbolic actions
as the number of agents increases. Lighter actions
(e.g.YIELDFACE), remain inexpensive across scales,
while heavier actions involving multi-agent synchro-
nization, (e.g. PUSH) dominate runtime at larger n.

Scalability of Primitive Actions. To eval-227

uate the computational footprint of our envi-228

ronment, we measured runtime and system229

resource usage3 as a function of the number230

of agents (n), using randomly acting agents to231

isolate the overhead of the environment from232

the complexity of the policy. Each setting was233

run five times to account for variability (see234

Figure 3). Mean time per step grows roughly235

linearly with the number of agents, remaining236

sub-millisecond for small teams and reaching237

roughly 0.05s at 256 agents. Process memory238

usage also increases approximately linearly239

with n, from tens of MB at small n to 0.9240

GB at 256 agents. CPU utilization rises grad-241

ually at first, then steepens around mid-scale242

team sizes, approaching∼ 90% by 256 agents.243

Overall, the environment stays lightweight for244

small and moderate teams and scales to a few245

hundred agents on a single-core processor; the246

main pressure at high n is CPU, while memory247

remains below 1 GB.248

Scalability of Symbolic Actions. We pro-249

file per-action runtime as a function of the250

number of scripted agents, with all agents251

hard-coded to follow the same symbolic ac-252

tion sequence. These measurements capture253

the additional overhead of symbolic mediation, which is checking preconditions and decomposing254

into primitive steps, relative to directly executing primitive actions. We note that some symbolic255

actions are easier to optimize for performance than others. For example, MOVETOBLOCK can be256

efficiently accelerated with Numba, while actions more tightly coupled to Python class logic are less257

amenable to such optimization. Both the line plot and the heatmap exhibit the same trend. Most258

symbolic actions remain inexpensive across scales, around 10−4–10−3 seconds even at n = 256,259

and stay close to the primitive baseline. In contrast, symbolic actions that require accessing Python260

objects to perform multi-agent checks, such as RENDEZVOUS, WAITAGENTS, and PUSH, grow261

7

progressively more expensive. Nevertheless, even the most expensive actions remain lightweight,262

with per-action overhead under 0.05 seconds.263

3.2 Agent Performance in the Environment264

3.2.1 Baselines265

(a) Blocked block

(b) Agents block each other

Figure 5: Heuristic failure cases. (a) Failure case
1; (b) Failure case 2.

Heuristic. We implement a heuristic baseline266

that follows a greedy strategy: at each step,267

the block closest to the goal is selected, and268

all agents are assigned to move it. Once a tar-269

get block is chosen, each agent is given a step-270

by-step plan expressed as symbolic instructions271

such as MOVETOBLOCK, RENDEZVOUS, and272

PUSH. These instructions are repeated until273

the block is delivered, after which the process274

restarts for the next closest block. The base-275

line therefore produces valid cooperative behav-276

ior but does not attempt to optimize efficiency,277

parallelize work across blocks, or resolve con-278

gestion. It provides a straightforward point of279

comparison for more advanced approaches.280

At first glance, one might expect such a heuristic281

to solve the task reliably. In a purely symbolic282

environment, it likely would. However, in an em-283

bodied environment like CUBE, spatio-temporal284

dynamics and movement constraints mimicking285

physical limitations introduce uncertainty into execution. As shown in Fig. 5a, agents A0 and A1286

attempt to position themselves to the left of block B6. With no free cells in that region, they remain287

in place and unintentionally block both the blocks and the passageway, preventing progress. This288

deadlock is an emergent coordination failure: local heuristics lead to globally undesirable behavior.289

Symbolic planning domains struggle to capture such failures, which arise from spatial constraints290

and congestion in embodied execution. A similar issue appears in Fig. 5b, where agents A0 and A1291

attempt to move to the left side of block B6 to prepare for a push. Their approach paths overlap,292

and they end up blocking each other. Neither agent yields, leaving the block undeliverable despite293

feasible joint progress. These failures highlight how coordination can collapse when agents pursue294

individually rational heuristics without accounting for the dynamics of their teammates. At the same295

time, they also expose a rich collaboration space where more sophisticated strategies could overcome296

such deadlocks.297

Figure 6: Number of completed blocks versus
agent count n for gpt-4o, gpt-4o-mini, and the
heuristic baseline. Red dashed lines indicate the
total number of blocks present at each n (1, 3, 3, 6).
The heuristic baseline consistently completes all
available blocks. gpt-4o matches this except at
n = 6. gpt-4o-mini not only underperforms but
also exhibits high variance, indicating instability
across runs.

Naive Language Agent. As a language-298

based baseline, we use OpenAI’s gpt-4o and299

gpt-4o-mini models in a zero-shot setting.300

Each agent repeatedly generates short plans301

from the prompt based on symbolic observation.302

The prompt encodes a simple strategy similar to303

the heuristic agent, always targeting the block304

closest to the goal zone, but expressed in natu-305

ral language rather than instantiated directly in306

code.307

Figures 6 and 7 present a comparison of three308

baselines. The heuristic planner provides con-309

sistent cooperative behavior through a simple310

strategy. Naive LLM agents (gpt-4o and311

gpt-4o-mini) show that pretrained language312

models can generate executable symbolic plans,313

but their performance is inconsistent and brittle,314

3Experiments were run on Apple M2 (8-core CPU, 10-core GPU, 16GB unified memory).

8

particularly when coordination across multiple agents is required. They succeed on simpler instances315

but degrade when plans involve other agents. Notably, gpt-4o generates longer and higher-quality316

plans than gpt-4o-mini, which is reflected in Fig. 6: gpt-4o-mini never completes an episode317

once n ≥ 2 and also incurs longer runtimes, suggesting it replans more often. This gap is further re-318

flected in lower completion rates, longer execution traces, and higher variance relative to the heuristic319

baseline. Taken together, these baselines are not intended as competitive solutions but as reference320

points that highlight the potential of studying embodied cooperation in CUBE. While general-purpose321

LLMs can produce nontrivial symbolic behaviors, they fall short of robust cooperative performance322

on their own, particularly as n scales.323

(a) Average steps to completion. (b) Average runtime.

Figure 7: Baseline comparison across increasing numbers of agents (n). The heuristic baseline
consistently produces valid cooperative behavior, while naive LLM agents (gpt-4o, o4-mini)
demonstrate the ability to generate symbolic plans but remain less reliable and less efficient, showing
the gap that our environment is designed to expose.

4 Conclusion324

CUBE introduces symbolic reasoning into an embodied multi-agent environment through a grid-based325

cooperative block-pushing task. By providing both primitive and symbolic actions along with a library326

of symbolic concepts, it offers a dual interface suitable for conventional reinforcement learning agents327

and LLM-based agents. The single scaling parameter n transparently controls task difficulty, spanning328

from simple two-agent pushes to complex multi-agent coordination under congestion. Experiments329

show that the environment scales efficiently on commodity hardware, and baseline comparisons330

demonstrate the importance of structured abstractions for guiding LLM agents.331

Looking forward, CUBE enables the study of a broad range of questions at the intersection of language,332

planning, and multi-agent interaction. Researchers can investigate how symbolic abstractions affect333

emergent cooperation, how feedback functions designed from symbolic concepts shape learning334

and adaptation, and how heterogeneous teams of agents with different reasoning capabilities can335

collaborate. CUBE thus serves as a flexible platform for advancing the study of embodied cooperation336

in the era of LLM agents, and opens avenues for future work on richer task structures, communication337

mechanisms, and hybrid learning approaches that combine reinforcement learning with symbolic338

reasoning.339

References340

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy sketches.341

In International conference on machine learning, pages 166–175. PMLR, 2017.342

David Bai, Ishika Singh, David Traum, and Jesse Thomason. Twostep: Multi-agent task planning using classical343

planners and large language models. arXiv preprint arXiv:2403.17246, 2024.344

Lawrence W Barsalou. Perceptual symbol systems. Behavioral and brain sciences, 22(4):577–660, 1999.345

Mark S Boddy. Imperfect match: Pddl 2.1 and real applications. Journal of Artificial Intelligence Research, 20:346

133–137, 2003.347

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu348

Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language349

learning. arXiv preprint arXiv:1810.08272, 2018.350

9

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice. Elsevier, 2004.351

Philip N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Language, Inference and Conscious-352

ness. Cambridge University Press, Cambridge, UK, 1983.353

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy,354

Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A general platform for intelligent agents.355

arXiv preprint arXiv:1809.02627, 2020. URL https://arxiv.org/pdf/1809.02627.pdf.356

William Treval Powers. Behavior: The control of perception. 1973.357

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio Petroni,358

Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A sandbox for open-ended359

reinforcement learning research. arXiv preprint arXiv:2109.13202, 2021.360

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse361

Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language362

models. arXiv preprint arXiv:2209.11302, 2022.363

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S364

Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for multi-agent365

reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–15043, 2021.366

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language models367

still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS 2022 Foundation368

Models for Decision Making Workshop, 2022.369

10

https://arxiv.org/pdf/1809.02627.pdf

	Introduction
	Environment Design
	Episode Initialization
	Environment Dynamics
	Pushing and force chains
	Agent Movement and Collisions
	Rewards

	Observation Space
	Symbolic Observation
	Multi-channel Observation

	Action Space
	Primitive Action Space
	Symbolic Actions
	Symbolic Concepts for Customized Feedback

	Evaluation
	Scalability and Computational Footprint
	Agent Performance in the Environment
	Baselines

	Conclusion

