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Abstract

Deep neural networks (DNNs) have been widely adopted in daily life with ap-
plications ranging from face recognition to recommender systems. However, the
specialized hardware used to run these systems is vulnerable to errors in computa-
tion that adversely impact accuracy. Conventional error tolerance methods cannot
easily be used here due to their substantial overhead and the need to modify train-
ing algorithms to accommodate error resilience. To address this issue, this paper
presents a novel approach taking advantage of the statistics of neurons’ gradients
with respect to their neighbors to identify and suppress erroneous neuron values.
The approach is modular and is combined with an accurate, low-overhead error
detection mechanism to ensure it is used only when needed, further reducing its
effective cost. Deep learning models can be trained using conventional algorithms
and our error correction module is fit to a trained DNN, achieving comparable or
superior performance relative to baseline error correction methods. Results are
presented with emphasis on scalability with regard to dataset and network size, as
well as different network architectures.

1 Introduction

The increasing use of Deep Neural Networks (DNNs) in safety critical applications such as au-
tonomous driving [1] has drawn attention to their vulnerability to soft errors [2]. To achieve high
accuracy in these tasks, DNNs rely on a large number of Multiply-Accumulate (MAC) and activation
operations for each input [3]. For safety critical systems such as autonomous driving, these operations
are required to be performed with high accuracy in the presence of computation (soft) errors which
change computation output values by inverting bits during computation [4]. These soft errors can be
caused by radiation, voltage transients in device operation and alpha particle strikes. To combat them,
low-overhead, low-impact online methods for error correction must be built to provide resilience
against errors that may impact DNN accuracy [5].

Soft error resilience in DNN activations is addressed in [6]; erroneous activations are identified
using correlations in activities of neighboring neurons and suppressed (by setting to zero), requiring
modification of the DNN training process and specialized hardware for on-line error resilience.
Resilience-aware computation scheduling, exploiting fault-tolerant device parts for sensitive com-
putations has been explored in [7], allowing a flexible tradeoff between reliability and efficiency.
However, this assumes a subset of processing units can be hardened against single-event upsets and
may fail under high error rates. The use of median filtering (median feature selection), involving
training with median filtering layers after each DNN layer computation block has been explored in
[8]. This provides high resilience to soft errors and incurs low computation overhead, but requires
alteration of DNN training to ensure that accuracy is unaffected by the median filter layers.
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Figure 1: Proposed error resilience framework: Concurrent error detection is performed using
encoded checks on DNN operation, and the presence of an error triggers the suppression system.
Neurons with anomalous gradients (determined by a statistical test based on trained DNN outputs on
training data) have their values set to zero before DNN computation continues.

Recent work using an opportunistic parity bit achieves high coverage detection and suppression
of bit errors in DNN weights with zero storage overhead, but can be masked and does not cover
activation errors [9]. Ranger [10] uses selective range restriction of DNN layer computations with
restriction ranges derived from DNN performance on training data. This reduces the severity of
critical faults that affect significant bits in DNN operation with low overhead. However, Ranger
incurs a tradeoff between resilience and error-free accuracy that systems involving error detection
followed by correction (such as our proposed approach) do not.

In contrast to prior work, extending work done in [11], this paper uses the difference of neuron
outputs with respect to their neighbors (neuron outputs’ gradients with respect to their neighbors) to
localize and suppress errors. The proposed approach achieves comparable or superior performance
to state of the art methods such as Ranger [10] on benchmark DNNs. Unlike prior work [6], [8], the
proposed approach does not require modification of DNN training or hardware and can be combined
with error detection mechanisms [12] to reduce the effective computational overhead. Extending [11],
this paper proves the scalability of the presented method and tests it against more recent baselines
such as [10]. We examine the effects of (a) scaling dataset sizes, (b) different network architectures,
(c) scaling network sizes and (d) increasing the number of classes within an identically sized dataset.
As with prior work, we consider error resilience in image classification DNNs.

2 Approach Overview

The presented error resilience framework (shown in Fig. 1) is composed of two steps: (1) Error
detection, which is used to trigger (2) Error Suppression when an error is detected. This reduces
the memory access and compute overhead compared with an "always-on" error resilience approach.
This section begins with a brief overview of the error detection setup followed by an overview of the
error suppression system that forms the main contribution of this research. In Fig. 1, layer operations
produce an output f(X) from the layer input X and the activations (assumed ReLU) produce a final
output Y . These are used for concurrent error detection and suppression.

Error detection in DNN layer computations is performed in two phases, shown in Blocks 1 and 2 of
Fig. 1. First, for the MAC computations (weight-bias multiplication or convolution) of a DNN layer,
encoding methods similar to [13] (Block 1 of Fig. 1) are used for error detection. These methods
produce a checksum value (CR in Fig. 1) by encoding the DNN weight matrices or convolutional
kernels. This is compared against the weighted sum of the layer outputs (CL), which by design is
equal to CR under error-free operation. If the absolute value of CL − CR exceeds a threshold, an
error is flagged. The second step (Block-2) involves error detection in DNN activations (in this work
assumed to be ReLU). The ReLU formulation is y = max(0, x). Under ideal conditions the ReLU
output y is perfectly divisible by x. If y is not perfectly divisible by the activation input x (leaves a
remainder R ̸= 0 exceeding a threshold) an error is flagged in DNN activation.

Error suppression is invoked if the error detection systems flag an error and forms the core contribution
of this work. In Fig. 1 this is the block where CL − CR and R are compared with their respective
thresholds to check for errors. If no error is present, the DNN computations continue by passing the
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layer output Y to the following layer (Block 6a). If an error is present, error suppression begins by
processing Y in Block-3. Here the gradient of each neuron’s output value (each value in the output Y )
with respect to the corresponding value of neighboring neurons is computed. Neighboring neurons of
a given neuron are defined as adjacent neurons in a circularly ordered list of neurons in the same layer
defined in the model’s code. For dense layers, the gradient is the difference between neighboring
neuron outputs. For convolutional layers, it is the difference between corresponding pixel values in
the convolutional kernel output. This gives a set of values of the same dimension as the DNN layer
output, which are sent to Block-4 for diagnosing erroneous neuron outputs. The gradient values are
compared with predetermined thresholds for diagnosis (via Student’s t test [14]). These thresholds
are obtained from the trained DNN across the training dataset, using Welford’s algorithm [15] to
calculate a running mean and standard deviation for the inter-neuron gradients (differences).

Due to the 1-D convolutional kernel used to calculate the gradient (here a length-3 kernel [−1, 1, 0]),
potentially erroneous values occur in groups for each error. The first element of this group will be the
gradient of the erroneous value with respect to its clean neighbors. Anomalous gradients deemed
to take place from compute errors in the corresponding neuron are corrected by setting that neuron
value (or pixel value, for convolution outputs) to zero in Block-5, producing a modified layer output
Y2 that is sent on for the following layers in Block 6b. This method can be applied to all but the last
DNN layer, similar to [8] and [10]. The use of gradient values allows more flexible thresholds that
accommodate a larger range of values of neuron outputs than the use of just neuron values. This
approach is validated below.

3 Experimental Results

Figure 2: Results of error injection experiments on
ResNet-34 trained on the Tiny-ImageNet dataset.
The gradient approach achieves superior results to
the other approaches, maintaining accuracy under
high error rates.

Error injection experiments into PyTorch [16]
operations in CUDA were conducted using the
PyTorchFI tool [17]. PyTorch fault injection was
conducted on two major image classification ar-
chitectures: ResNet [18] and VGG [19]. To
test the effects of scaling the number of classes,
ResNet-18 and VGG-16 were both tested for
error injection using the CIFAR-10 and CIFAR-
100 datasets [20]. To test the effects of net-
work size scaling, we conducted error injection
simulations into ResNet-34 trained on the Tiny-
ImageNet [21] dataset. The proposed framework
is compared against the baseline of Ranger (out-
put range restriction) [10] as well as the case of
a network with no error correction mechanisms.

Error resilience is measured using the test accu-
racy of the DNN under soft errors injected into
the output values of neuron MAC computations.
Each neuron in the DNN has a given probability of error for each inference, referred to as the error
rate. Errors are injected using Ranger, using the proposed framework and using no error correction
method. These soft errors are modeled as bitflips in 32-bit floating point DNN computations. In
ResNet this was simulated by flipping a random six bits in the computation output. Soft errors are
injected as word errors in VGG-16, where a one or more bits centered around a random position
flip together. Word errors are injected such that every bit adjacent to an erroneous bit has a high
probability (here 75%) to flip and be erroneous, potentially resulting in multiple erroneous bits.

Error Injection Experiments: Error injection in ResNet-18 on the CIFAR-10 and CIFAR-100
datasets is shown in Figures 3a and 3b respectively, while similar error injection experiments for
VGG-16 on the CIFAR-10 and CIFAR-100 datasets are shown in Figures 4a and 4b respectively.
We can see that the gradient-based error suppression approach presented here achieves slightly
superior (VGG-16) and much better (ResNet-18) results on both datasets compared to the baseline
(Ranger) and the network without error correction. VGG-16 shows more resilience to errors and better
performance using Ranger due to the network architecture allowing a narrower range of values for
each neuron. Ranger forcing values to clamp to threshold values thus does not cause misclassification.
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(a) Results of error injection for the CIFAR-10 dataset. (b) Error injection experimental results for CIFAR-100.

Figure 3: Results of error injection experiments on ResNet-18. The gradient approach achieves
superior results to Ranger and maintains network performance under error.

(a) Results of error injection for the CIFAR-10 dataset. (b) Error injection experimental results for CIFAR-100.

Figure 4: Results of error injection experiments on VGG-16. The gradient approach achieves slightly
superior results to Ranger and maintains network performance under error.

ResNet-18 allows a wider range of values for neuron outputs, and errors forced to clamp by range
restriction can still cause misclassification, while gradient-based error suppression prevents this. It
was found that gradient based error suppression was most effective at a t-test threshold large enough
to approach the maximum gradient value.

Scaling Network and Dataset Size: Figure 2 shows results for similar error injection experiments
on ResNet-34 trained on the Tiny ImageNet dataset, a larger dataset (200 classes, 100k training
images) compared to the CIFAR10 and CIFAR100 (10 and 100 classes respectively) datasets. ResNet-
34 is also a larger network in the same family as the ResNet-18 used in Figures 3a and 3b. We can see
that while Ranger shows worse performance and the network without error correction mechanisms
sees noticeable degradation at an order of magnitude lower error rate than the case in Figure 3b, the
gradient based suppression system is able to maintain accuracy for rising error rates.

Scaling Number of Classes: Similarly, we can see from Figures 3a and 3b for the ResNet family
and Figures 4a and 4b for the VGG family that raising the number of classes from 10 to 100 while
keeping the number of training images fixed at 50K has little effect on the effectiveness of the
proposed gradient-based zeroing approach.

4 Conclusion

This work presented an approach to DNN error resilience that enables safe operation under high error
rates in hardware that outperforms the baseline while not requiring alterations to DNN training or
hardware. In future we plan to implement this approach for benchmark DNNs on FPGA hardware,
providing accurate measurements of hardware-level overhead, and study the effects of pruning, with
its associated loss of network redundancy, on the gradient-based zeroing approach.
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