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ABSTRACT

3D image analysis is crucial in fields such as autonomous driving and biomed-
ical research. However, existing 3D point cloud classification models lack in-
terpretability, limiting trust and usability in safety-critical applications. To ad-
dress this, we propose POINTMIL, an inherently locally interpretable point cloud
classifier using Multiple Instance Learning (MIL). POINTMIL offers local inter-
pretability, providing fine-grained point-specific explanations to point-based mod-
els without the need for post-hoc methods, addressing the limitations of global or
imprecise interpretability approaches. We applied POINTMIL to four popular
point cloud classifiers, PointNet, DGCNN, CurveNet, PointMLP and PointNeXt,
and proposed a transformer-based backbone to extract high-quality point-specific
features. POINTMIL made these models inherently interpretable while increasing
predictive performance on standard benchmarks (ModelNet40, ShapeNetPart) and
achieving state-of-the-art mACC (97.3%) and F1 (97.5%) on the IntrA biomedical
data set, and another dataset of biological cells. To our knowledge, this is the first
work to apply MIL to interpretable point cloud classification.

Figure 1: Current point cloud classifiers usually only provide predictive probabilities. We propose
POINTMIL to inherently incorporate interpretability and improve predictive performance into point-
based architectures.

1 INTRODUCTION

Three-dimensional (3D) imaging data is prevalent in various fields, including autonomous driving,
augmented reality, robotics, and biology. In autonomous driving, 3D point clouds enable vehicles to
perceive and navigate their surroundings safely, identifying obstacles and road features. In biology,
the 3D shape of cells has provided insight into the underlying cell state (Viana et al., 2023), enabling
advances in diagnostics (Song et al., 2024) and drug discovery.

Significant progress has been made in the processing of point clouds representations of 3D shapes
for classification and segmentation tasks (Guo et al., 2020). However, most methods do not explain
their decision-making, which limits adoption in real world scenarios due to concerns about safety
and trustworthiness (Rudin, 2019; Rudin et al., 2022). Despite significant advancements in the
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interpretability of machine learning models in 2D image analysis (Zhang et al., 2021; Wang et al.,
2023; Hu et al., 2024; Paul et al., 2024), there has been a lack of research on the interpretability
of 3D point cloud models. More so, of those proposed, the majority are either post-hoc, meaning
that an extra modelling step is required to obtain interpretations, or they are globally interpretable,
meaning that they lack the ability to offer fine-grained, point-specific explanations.

To address these challenges and elucidate the model’s decision-making process, we propose POINT-
MIL, an inherently interpretable classification framework for point clouds that offers fine-grained,
local and class-specific interpretations using Multiple Instance Learning (MIL; Dietterich et al.
(1997)). Given its ability to handle data organised into bags of instances, MIL is well suited for
point cloud analysis, especially in bioimaging domains, where each point in a point cloud is as-
signed the same label, but only certain points are discriminatory (Yang et al., 2020). Building on
this foundation, we present a model that leverages the strengths of MIL to offer robust performance
and interpretability in point cloud classification. Furthermore, we introduce a contextual attention
mechanism, which incorporates neighbourhood information into the attention calculation, address-
ing the sparsity of traditional attention methods and enabling smoother, more coherent attention
distributions. This adaptation ensures that the model can better capture local geometric relation-
ships within the point cloud, improving both classification performance and interpretability. Our
main contributions are as follows:

1. We propose POINTMIL, a point-based classification pipeline based on MIL, to offer inher-
ent local interpretability and enhanced classification performance to existing point-based
feature extractors.

2. We adapt and introduce a new transformer-based model to extract high-quality point-
specific features from a point cloud.

3. We incorporate contextual attention to address sparsity in attention weights, improving
interpretability and classification performance by leveraging local neighbourhood informa-
tion.

4. We show the generality of POINTMIL on de-facto public benchmarks (ModelNet40 (Wu
et al., 2015) and ShapeNetPart (Yi et al., 2016)) and biomedical imaging datasets, achieving
the state-of-the-art (SOTA) on IntrA (Yang et al., 2020).

2 RELATED WORK

Point cloud analysis: One of the first methods that used unordered point clouds directly for classifi-
cation and segmentation was PointNet (Qi et al., 2017a). PointNet, however, ignored local relation-
ships between points. Subsequently, PointNet++ (Qi et al., 2017b) introduced hierarchical feature
learning to capture locality recursively. Many modern algorithms are built on the design philosophy
of PointNet++, including convolutional kernel-based (Li et al., 2018b; Thomas et al., 2019; Wu et al.,
2019), graph-based (Wang et al., 2019a;b; Xu et al., 2020), MLP-based (Choe et al., 2022; Ma et al.,
2022), and transformer-based methods (Zhang et al., 2020; Zhao et al., 2021; Guo et al., 2021; Yu
et al., 2021; Cheng et al., 2022; Akwensi et al., 2024). Although significant progress has been made
in advancing classification and segmentation accuracy, little work has focused on interpretability.

Interpretability on point clouds: Interpretability methods can be classified along two key dimen-
sions: (1) the stage at which interpretability is introduced and (2) the scope of the explanations
provided. Regarding the stage, methods are either post-hoc or inherently interpretable. Post-hoc
methods generate explanations after the model has made its predictions, often through additional
analysis, approximation techniques, or assessing gradients with respect to the input (Zhou et al.,
2016). In contrast, inherently interpretable methods are designed to integrate interpretability into
the model itself, producing explanations as part of the prediction process. With respect to scope,
methods are categorised as either local or global. Local approaches focus on explaining individual
predictions, offering insights specific to a single input. Global approaches aim to provide a holis-
tic understanding of the model’s behaviour across all inputs. Since PointNet ++ (Qi et al., 2017b),
many point-based models have used some form of sampling and grouping (Guo et al., 2021; Zhao
et al., 2021; Xiang et al., 2021; Ma et al., 2022), thus losing point-level information in the classifica-
tion stage. Therefore, most local interpretability methods for point cloud classification are post-hoc,
including gradient-based (Zhang et al., 2019; Huang et al., 2020) and surrogate models (Tan & Kot-
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thaus, 2022) based on LIME (Ribeiro et al., 2016). Zhang et al. (2019) and Huang et al. (2020)
developed explainability methods for PointNet using global average pooling (GAP) and class acti-
vation maps. Taghanaki et al. (2020) introduced a module into point set encoders that masked points
with negligible contributions, leaving only informative points in the classification layer. Similarly,
Zheng et al. (2019) obtained saliency maps by shifting points to the object centroid and calculat-
ing the corresponding loss gradient with respect to the shifted points. However, post hoc methods
have been shown to be deceptive and often troublesome (Laugel et al., 2019; Rudin et al., 2021;
Feng et al., 2024). For example, the interpretations of post hoc methods can differ depending on the
interpretability methods (Li et al., 2018a), leading to convincing but conflicting interpretations for
the same classification. Post-hoc methods also involve an additional modelling step, raising further
concerns about the precision of their interpretations Fan et al. (2021). Few inherently interpretable
methods for point cloud classifications have been proposed, and of these, most are global. Arnold
et al. (2023) developed XPCC, a prototype-based interpretable model that used point cloud rep-
resentation distributions to learn class-specific prototypes. Similarly, Feng et al. (2024) developed
Interpretable3D, a prototype-based global interpretability model that can be used in conjunction with
other model architectures for classification and segmentation. However, none of these inherently in-
terpretable methods offers local interpretations on a point-level basis. While global interpretability
provides valuable insights into the overall behaviour of a model, local methods can be especially
beneficial when understanding specific, individual predictions is crucial, offering more granular and
context-sensitive explanations. To our knowledge, no one has yet offered an inherently locally inter-
pretable model for point cloud classification. POINTMIL utilises MIL to offer an inherently locally
interpretable model.

Multiple instance learning: In the typical binary MIL problem, a bag is labelled positive if and
only if at least one of its instances is labelled positive (Dietterich et al., 1997); however, there is
no access to individual instances during training. MIL algorithms then attempt to classify entire
bags of instances and often pinpoint important or class conditional discriminatory instances as inter-
pretability output. Many MIL methods have been proposed for drug activity prediction (Dietterich
et al., 1997), video image analysis (Ali & Shah, 2010), and cancer detection and sub-typing (Ilse
et al., 2018; Shao et al., 2021; Lu et al., 2021; Fourkioti et al., 2024). Recently, Early et al. (2024)
extended MIL to time series classification in an interpretable plug-and-play framework. However,
to our knowledge, no one has used MIL for interpretable point cloud classification.

3 METHODS

Given a point cloud P ∈ RN×3 = {pi|i = 1, . . . , N}, consisting of N points in Cartesian space
(x, y, z), and their associated d-dimensional point features (often point normals, however, these
can be the point coordinates if no point-level features exist) F ∈ RN×din = {fi|i = 1, . . . , N},
traditional point-based methods use a point-based encoder fenc to learn a global representation z ∈
Rd for P by aggregating the points with equal weighting (often through adaptive pooling), followed
by a classification head fclf .

We propose a new approach by learning a representation zi ∈ Rd for each point pi for i ∈
{1, . . . , N}, and then applying MIL pooling for simultaneous classification and interpretability. Our
framework consists of a point-based feature extractor fenc and a MIL pooling module fMIL.

3.1 FEATURE EXTRACTOR

To develop a point-level feature extractor, we follow much of the Transformer block from Yu et al.
(2021). However, unlike Yu et al. (2021), we did not use point sampling strategies. Furthermore,
we did not use their multi-graph reasoning. This feature extractor aimed to incorporate contextual
information into the point cloud features by: (1) grouping points with k-Nearest Neighbours (k-
NN), (2) including relative positional embeddings, and (3) refining point-level features through an
attention mechanism. These are detailed in Appendix A.

We also presented analysis on PointNet (Qi et al., 2017a), DGCNN (Wang et al., 2019b), CurveNet
(Xiang et al., 2021), PointMLP (Ma et al., 2022), and PointNeXt (Qian et al., 2022) feature extrac-
tors. For PointNet and DGCNN we replaced the classification heads of these architectures with MIL
pooling described in Section 3.2. CurveNet and PointMLP downsample the original point cloud. In
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order to retain point-level features for every point, we slightly adapted these architectures to remove
point sampling. We show the affect of this adaptation on classification results so that any differ-
ence in performance can then be attributed to the MIL pooling instead of this adaptation. We used
PointMLPElite for our analysis. For PointNeXt-S, we slightly adapted the architecture such that
point-level features from the first layer were concatenated with global features from the last layer
before input into our MIL pooling. These adaptations are discussed further in Appendix A. Each
feature extractor produced d-dimensional point-level features Z ∈ RN×d = fenc(P), for N points
which were fed into different MIL pooling algorithms.

3.2 MIL POOLING

After obtaining feature representations zi for each point pi, we evaluated four MIL pooling methods
that offer inherent interpretability, Instance (Wang et al., 2018), Attention (Ilse et al., 2018),
Additive (Javed et al., 2022), and Conjunctive (Early et al., 2024).

Instance pooling predicts the label of each point through an instance classifier and then pools the
predictions by taking the mean:

ŷi ∈ Rc = fclf (zi) ; Ŷ =
1

N

N∑
i=1

(ŷi) , (1)

where c is the number of classes.

Attention pooling calculates the attention weights of the point features through an MLP, cal-
culates a weighted average feature representation for the point cloud using those weights and then
classifies that features using an MLP:

ai ∈ [0, 1] = fattn (zi) ; Ŷ = fclf

(
1

N

N∑
i=1

aizi

)
. (2)

Additive pooling calculates attention weights for each point feature, then classifies each point
according to its weighted feature vector, and finally produces a bag classification from the mean of
all weighted instance classifications:

ai ∈ [0, 1] = fattn (zi) ; ŷi = fclf (aizi) ; Ŷ =
1

N

N∑
i=1

(ŷi) . (3)

Conjunctive pooling trains the point attention and point classification heads independently so
that attention weights and point predictions are computed on the features alone. The final point cloud
classification is given by the weighted sum of the point classifications weighted by the attention
weights:

ai ∈ [0, 1] = fattn (zi) ; ŷi = fclf (zi) ; Ŷ =
1

N

N∑
i=1

(aiŷi) . (4)

3.3 CONTEXTUAL ATTENTION

As Early et al. (2024) showed that these pooling operations often produced sparse explanations
which occasionally did not cover the entire discriminatory regions, we propose injecting a con-
textual prior into our calculation of attention, following ideas similar to Fourkioti et al. (2024).
For attention-based pooling methods, Attention, Additive, and Conjunctive, attention
weights for each point are calculated as:

ai ∈ [0, 1] = fattn(zi), (5)

where fattn is an MLP and zi is a feature vector for each point pi. We propose updating these
attention weights according to the attention weights of the nearest neighbours of each point i, such
that:

anew
i ∈ [0, 1] =

1

k

∑
j∈N (pi)

aj , (6)
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Table 1: Interpretability results in terms of AOPCR and NDCG@n (AOPCR/NDCG@n) on IntrA.
The best results are given for each method in bold.

PointNet DGCNN CurveNet PointNeXt Transformer

PSM 0.579/0.243 0.916/0.248 1.371/0.218 0.092/0.272 6.518/0.320
CLAIM 0.967/0.187 6.033/0.480 1.363/0.252 0.226/0.294 14.023/0.593

Add. 0.792/0.254 4.486/0.482 0.615/0.266 1.259/0.300 18.162/0.613
Att. 0.005/0.222 −0.031/0.223 1.520/0.260 0.044/0.235 14.541/0.539
Conj. 0.741/0.208 4.828/0.467 2.660/0.207 1.531/0.310 16.305/0.610
Inst. 0.973/0.225 5.212/0.462 1.709/0.236 2.160/0.285 16.166/0.587

where N (pi) represents the set of points in the neighbourhood of pi. This update mechanism
smooths the attention weights by incorporating the information from the local neighbourhood, thus
addressing the sparsity of the original attention mechanism and providing a more context-aware
attention distribution across the point cloud.

3.4 INTERPRETABILITY

Interpretations were derived through MIL pooling. The Instance pooling strategy classifies each
point individually before pooling, yielding point-level predictions: {ŷi|i = 1, . . . , N}. Additive
and Conjunctive also make point-level predictions; however, the interpretations are scaled by
attention weights: {aiŷi|i = 1, . . . , N}. For each of these pooling algorithms, we applied a softmax
operation over the class dimension and took the index of the class for which we wished to obtain
interpretations, so that we obtained a scalar for each point in the point cloud. For the Attention
pooling strategy, we used the attention weights: a ∈ R1×N = {ai|i = 1, . . . , N}, which were
interpreted as a measure of general importance for each point in the point cloud and were not class-
specific.

4 EXPERIMENTS

We compared the interpretability of POINTMIL with other locally interpretable point cloud classifi-
cation methods including class attentive interpretable mapping (CLAIM; Huang et al. (2020)), and
point cloud saliency maps (PSM; Zheng et al. (2019)). Similarly to class activation maps (CAM;
Zhou et al. (2016)), CLAIM uses global average pooling (GAP) after point-level feature extractors
(the original paper focused on PointNet) and projects the weights of the classifier after GAP on the
features of each point to obtain interpretations for each point. PSM assigns scores to each point
based on its contribution to the classification loss. This is done by shifting the points towards the
centroid of the point cloud and then calculating the gradient of the loss with respect to each point

Figure 2: POINTMIL, CLAIM and PSM interpretability visualisations and corresponding perturba-
tion curves using the Transformer backbonfor example cells from the IntrA dataset.
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Figure 3: Interpretability visualisation (top row) and corresponding perturbation (bottom row)
curves for different RBC shapes.

in spherical coordinates. We then compared POINTMIL to several other point-based architectures
in terms of classification performance and assessed how the MIL pooling affected the results of the
original backbones in segmentation tasks.

4.1 EVALUATION METRICS

We used the area over the perturbation curve to random (AOPCR; Samek et al. (2017)) and nor-
malised discounted cumulative gain at n (NDCG@n) to quantitatively evaluate interpretability
(Early et al., 2022; 2024). Please see Appendix B for more details. For classification, we used
the overall accuracy (oACC), mean class accuracy per class (mACC), and the F1 score. For segmen-
tation, we used the average class intersection of union (IoU) and the instance IoU.

4.2 DATASETS

We evaluated POINTMIL on several open source datasets, including two real-world datasets of 3D
cell shapes (IntrA (Yang et al., 2020) and 3D red blood cell (RBC) dataset (Simionato et al., 2021))
and two of everyday objects (ModelNet40 (Wu et al., 2015) and ShapeNetPart (Yi et al., 2016)). See
Appendix C for more details.

5 RESULTS

5.1 INTERPRETABILITY

Table 1 shows the interpretability results on the IntrA dataset for PointNet, DGCNN, CurveNet,
PointNeXt and the Transformer backbone. POINTMIL provided better interpretability performance
than both PSM and CLAIM, overall. Across backbones, POINTMIL had the highest AOPCR and
NDCG@n. The only exception was CLAIM that had a higher AOPCR for the DGCNN backbone.
Among the interpretability methods, the Transformer produced the highest AOPCR and NDCG@n
results. This could be due to the attention mechanisms within the Transformer block that already
enabled the model to focus on informative points, which is further exacerbated by the MIL pooling.
Among all backbones, PointNet performed the worst, suggesting that PointNet is not adequate in

Figure 4: Interpretability outputs of PointMIL for different shape classes from ModelNet40
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Figure 5: Interpretability outputs and perturbation curves of POINTMIL with the Transformer back-
bone for different shape classes from ModelNet40

capturing discriminative morphological cues. For PointNeXt, although the PointMIL versions out-
performed PSM and CLAIM, the lower values when compared to DGCNN and the Transformer
could be attributed to the concatenation of local with global features before the MIL pooling.

Figure 6: Interpretability of POINTMIL with different backbones on
an example Bed (top row) and Plant (midle row) from ModelNet40.
Perturbation curves are shown in the bottom row.

Visualisations of the inter-
pretability for each pool-
ing method on the anno-
tated Aneurysm class us-
ing the Transformer back-
bone are shown in Figure
2. The red points indi-
cate areas deemed signifi-
cant by the model for that
specific class. Aneurysm’s
are presented by the ab-
normal bulging or balloon-
ing of blood vessels. The
first column in Figure 2
shows local annotations of
Aneurysms, with each other
column presenting inter-
pretations for the Aneurysm class using the different methods. The last columns show the per-
turbation curves. These show the decay in the logit of the predicted class after removing the most
important points. A larger decay suggests that those points are indeed discriminative for the class.
POINTMIL is clearly able to localise on informative regions better than other methods as seen by
the visualisation as well as a larger decay in logits shown by the perturbation curve.

Among all MIL pooling methods, Additive and Conjunctive performed best on the IntrA
dataset. This superior performance of Additive and Conjunctive pooling can be attributed
to their ability to better aggregate point-level importance scores. Additive pooling scales point
features with their importance weights, preserving detailed information while focusing on relevant
points before being passed into a point-level classifier. Conjunctive pooling further enhances this
by independently computing attention weights and class-specific contributions, explicitly aligning
the model’s focus with the predicted class. In contrast, Instance pooling lacks this importance
weighting, and Attention pooling does not offer class-specific explanations and rather provides
a general measure of importance across classes, which limits their interpretability.

We also present local interpretations for other datasets lacking ground truth annotations. Fig-
ure 3 illustrates the visual interpretations of POINTMIL with the Transformer backone for
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six of the nine classes of RBC with their corresponding perturbation curves. This demon-
strates that POINTMIL successfully localises on biologically relevant structural areas. For ex-
ample, Discocytes are characterised by their biconcave shapes, with interpretations for this
class focussing on regions identified around the central concavity. In the case of Acantho-
cytes, which exhibit several spicules of varying sizes that project from their surfaces at ir-
regular intervals, POINTMIL similarly focused on these projections for identifying this class.
For Knizocytes, which have a triangular morphology, the model highlighted the areas where
the lobes converge. Additionally, POINTMIL pinpointed the spiky projections of Echinocytes
and Keratocytes, as well as the interaction zones where two cells meet in Cell Clusters.

Figure 7: Interpretability visualisations of incorrect classi-
fications from POINTMIL with Transformer backbone on
ModelNet40.

POINTMIL is a versatile tool that is
not limited to specific domains, mak-
ing it suitable for a wide range of
3D shape classification tasks. Figure
4 presents the visual interpretations
of POINTMIL applied to the Model-
Net40 dataset, showcasing a subset of
classes. For instance, when classify-
ing a Piano, the model focused pri-
marily on the keys, while the it em-
phasised on the branches and foliage
of a Plant. The Bookshelf displayed

red points along the shelves. Similarly, for the Chair, crucial features included the seat and legs,
while the wings and fuselage were highlighted for Airplane. More examples are given in Appendix
E.

Figure 5 shows the effect of removing the top 10% to 50% of important points on a Piano and
Chair on the logits of those classes. The perturbation curves illustrate that when the points identi-
fied as most informative for classifying a Piano are removed, POINTMIL misclassifies the object as
a Night Stand. Similarly, when the points identified as the most informative for classifying a Chair
are removed, POINTMIL misclassifies the object as a TV stand. These interpretations reveal how
POINTMIL effectively identified and localised relevant features across various object categories,
enhancing our understanding of the model’s decision-making process. Figure 6 presents the inter-
pretability results for different backbones when classifying a Bed with Additive pooling (top
row) and a Plant with Conjunctive pooling (middle row) from the ModelNet40 dataset. The
perturbation curves are shown in the bottom row. Interestingly, DGCNN, CurveNet, PointMLP, and
Transformer backbones consistently highlight similar regions of importance on the Bed, particularly
focusing on the frame and headboard of the bed, which are key features distinguishing it from other
objects. All backbones focussed on the leaves in the Plant as opposed to the pot. This consistency
across backbones demonstrates the robustness of POINTMIL in identifying informative regions.
Additionally, the agreement among backbones suggests that POINTMIL effectively leverages the
feature representations generated by each model, ensuring the interpretability results are meaningful
and aligned with the task. Finally, we demonstrated how POINTMIL could be used to assess where
the model went wrong. For example, Figure 7 shows example confusion plots in which the attention
of the predicted class is shown in red. Interestingly, for classifying plants, the model only focused
on the plant, although when classifying flower pots, the model focused on both the flower and the
pot.

5.2 CLASSIFICATION

Interpretability should promote classification accuracy and not hinder it. To showcase this, we per-
formed classification on three separate datasets, two 3D biological cell-shape datasets, IntrA , and
RBC, and the 3D shape classification benchmark ModelNet40. The results are shown in Table 2.
POINTMIL outperformed all methods on IntrA and RBC in terms of mACC and F1 score by a
considerable margin of at least 4.5% and 3.3% respectively. POINTMIL achieved SOTA on IntrA
with an mACC of 97.3% and an F1 of 97.5% using Conjunctive pooling with the Transformer
backbone. Importantly, POINTMIL increased the performance of all backbones on all datasets by
up to 11.3% in terms of mACC on RBC (shown in violet in Table 2). While POINTMIL was out-
performed by recent SOTA methods like PointMLP (Ma et al., 2022), the original CurveNet (Xiang
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Table 2: Classification results on IntrA, RBC, and ModelNet40. All results are shown without voting
strategy on 1024 points. The highest results are shown in bold. Differences between backbones and
POINTMIL are shown in violet. Adapted architectures without farthest point sampling results are
shown with a †.

IntrA RBC ModelNet40

Method mACC(↑) F1(↑) mACC(↑) F1(↑) mACC (↑) oACC(↑)

PointNet(Qi et al., 2017a) 81.8 82.4 67.7 67.1 86.2 89.2
PointNet++(Qi et al., 2017b) 92.7 94.2 86.2 87.1 - 91.9
PointConv(Wu et al., 2019) 83.0 82.1 68.1 67.9 - 92.5
DGCNNWang et al. (2019b) 90.6 91.8 84.8 85.1 90.2 92.9
PCT(Guo et al., 2021) 69.2 68.9 68.7 69.2 - 93.2
CurveNet(Xiang et al., 2021) 88.3 89.8 88.3 87.8 - 93.8
CurveNet† 87.8 87.8 85.8 85.7 90.6 93.4
PointMLP(Ma et al., 2022) 88.4 88.8 91.8 92.2 91.3 94.1
PointMLPElite - - - - 90.9 93.6
PointMLPElite† - - - - 90.1 92.6
PointNeXt(Qian et al., 2022) 91.8 94.7 86.1 87.1 90.8 93.2
3DMedPT(Yu et al., 2021) 92.2 93.3 81.3 83.2 - 93.4

POINTMIL(PointNet) 82.0+0.2 82.4+0.0 69.0+1.3 69.1+2.0 87.1+0.9 90.7+1.5

POINTMIL(DGCNN) 95.2 +3.2 94.6+2.8 92.4+7.6 92.4+7.3 90.8+0.6 93.1+0.2

POINTMIL(CurveNet†) 91.3+3.5 89.9+2.1 91.2+5.4 90.5+4.8 91.0+0.4 93.5+0.1

POINTMIL(PointMLPElite†) - - - - 90.5+0.4 93.5+0.9

POINTMIL(PointNeXt) 94.6+2.8 96.2+1.5 87.6+1.5 88.2+0.4 90.5−0.3 93.3+0.1

POINTMIL(Trans.) 97.3+5.1 97.5+4.2 92.6 +11.3 92.2+9.0 89.0 92.7−0.7

et al., 2021) and PCT (Guo et al., 2021) on Modelnet40, POINTMIL outperformed these methods
by considerable margins on IntrA and RBC. POINTMIL offered interpretability without harming
and often improving classification performance.

5.3 ABLATION STUDIES

We evaluated the effect of including contextual attention in our attention-based pooling mechanisms:
Additive, Attention, and Conjunctive and the impact of varying the value of k (Figure
8). A value of k = 0 represented no contextual attention. Including contextual attention consistently
offered advantages across all pooling methods and metrics compared to not using it. In terms of F1
and mACC contextual attention led to improved performance, particularly with the Conjunctive
and Attention mechanisms, which consistently outperformed the Additive method as k in-
creased. All pooling methods produced F1 and mACC scores of > 97% after including contextual
attention. For AOPCR, contextual attention was found to be most beneficial when using a value of
k = 12. Lastly, considering NDCG@n, increasing k provided the most benefit to Attention
pooling, while offering slight improvements to Additive and Conjunctive. Additive
and Conjunctive pooling outperformed Attention pooling across interpretability met-
rics, whether or not contextual attention was used. Although contextual pooling improved classifi-
cation and interpretation methods, there is a trade-off in computation since the time complexity for

Figure 8: Ablation studies on the value of k in our contextual attention on F1, mACC, AOPCR, and
NDCG@n using the transformer backbone.
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Figure 9: Interpretability visualisations of POINTMIL on a Airlane from ModelNet40 after adding
a number (shown on the heading) of noisy points. POINTMIL is able to still focus on salient shape
motifs ignoring noise.

k-NN graph search is O(N2) for the N number of points. The graph construction time complexity
is also O(Nk), therefore, as k increases, this process takes longer. We additionally demonstrate
POINTMIL’s robustness to noise. Figure 9 shows how, even when noisy points are added to objects,
POINTMIL is still able to focus on salient 3D shape motifs. Further analysis is shown in Appendix
F

5.4 SEGMENTATION

Table 3: Segmentation results on IntrA and ShapeNetPart
in terms of Class (Cls.) and Instance (Inst.) mIoU. The
highest metrics are shown in bold.

IntrA ShapeNetPart

Method IoU(↑) Cls. IoU(↑) Inst. IoU(↑)

PointNet 72.2 81.7 84.2
DGCNN 76.4 83.6 85.2
3DMedPT 82.4 84.3 -

POINTMIL(PointNet) 72.3 81.5 84.0
POINTMIL(DGCNN) 79.7 84.2 85.6
POINTMIL(Trans) 84.0 82.0 82.1

We evaluated POINTMIL for part seg-
mentation on IntrA and ShapeNetPart
using three of the five backbones. For
IntrA, only the Aneurysm class con-
tains annotations, therefore, we only
reported metrics on this class. We
followed the same settings as from
Qi et al. (2017a) for segmentation on
ShapeNetPart. The class-specific point-
level interpretations were used as seg-
mentation predictions. We assessed the
Conjunctive and Additive MIL
pooling as Instance was the equiva-
lent to the original model’s segmentation
algorithms and Attention does not
produce class-specific point-level classi-
fication as interpretations. Interestingly, the segmentation results did not deteriorate and some-
times improved when using POINTMIL on both datasets. The only exception was 3DMedPT on
ShapeNetPart, where the original 3DMedPT outperformed POINTMIL with the transformer back-
bone by a relatively larger margin.

6 CONCLUSION

In this work, we introduced POINTMIL, the first framework to apply MIL to point cloud classifica-
tion, providing fine-grained point-specific interpretability without post-hoc techniques. We also in-
troduced a contextual attention mechanism to adapt attention-based MIL to point clouds, accounting
for the spatial and structural relationships inherent in 3D data. Using MIL, our approach improved
both interpretability and classification performance on multiple backbones and datasets. POINT-
MIL achieved SOTA F1 and mACC by a significant margin. Future work could extend POINTMIL
to consider using segmentation versions of other point-based models as backbones, as they provide
point-specific features. Furthermore, analysis on more datasets that include point-specific ground-
truth interpretation would help to better evaluate interpretability. The choice of pooling method
should be guided by the specific requirements of the task and dataset characteristics. For tasks pri-
oritising interpretability, Conjunctive pooling with contextual attention is recommended due to
its class-specific focus. For applications prioritising simplicity, Instance pooling offers computa-
tional efficiency. An exploration of MIL pooling techniques specific to point cloud data could also
enhance this work further. In conclusion, POINTMIL is a novel approach that effectively improved
classification performance while providing inherent local interpretability, making it a valuable tool
for 3D point cloud analysis in real-world applications.
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REPRODUCIBILITY STATEMENT

The code for this work was implemented in Python 3.10, with PyTorch and Lightning as the main
machine learning libraries. The anonymous code is available at https://anonymous.4open.
science/r/PointMIL_ICLR-98B2/. Model training was performed using an NVIDIA Tesla
V100 GPU with 32GB of VRAM and CUDA v12.0 to enable GPU support.
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stance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):31–71, 1997. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(96)00034-3. URL https://www.
sciencedirect.com/science/article/pii/S0004370296000343.

Joseph Early, Christine Evers, and SArvapali Ramchurn. Model agnostic interpretability for multiple
instance learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=KSSfF5lMIAg.

Joseph Early, Gavin Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall Twomey. Inherently
interpretable time series classification via multiple instance learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=xriGRsoAza.

Feng-Lei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang. On interpretability of artificial neural
networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–
760, 2021. doi: 10.1109/TRPMS.2021.3066428.

Tuo Feng, Ruijie Quan, Xiaohan Wang, Wenguan Wang, and Yi Yang. Interpretable3d: An ad-hoc
interpretable classifier for 3d point clouds. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(2):1761–1769, Mar. 2024. doi: 10.1609/aaai.v38i2.27944. URL https://
ojs.aaai.org/index.php/AAAI/article/view/27944.

Olga Fourkioti, Matt De Vries, and Chris Bakal. CAMIL: Context-aware multiple instance learning
for cancer detection and subtyping in whole slide images. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
rzBskAEmoc.

11

https://anonymous.4open.science/r/PointMIL_ICLR-98B2/
https://anonymous.4open.science/r/PointMIL_ICLR-98B2/
https://www.sciencedirect.com/science/article/pii/S1569843224000840
https://www.sciencedirect.com/science/article/pii/S1569843224000840
https://doi.org/10.1109/TPAMI.2008.284
https://doi.org/10.1109/TPAMI.2008.284
https://www.sciencedirect.com/science/article/pii/S0004370296000343
https://www.sciencedirect.com/science/article/pii/S0004370296000343
https://openreview.net/forum?id=KSSfF5lMIAg
https://openreview.net/forum?id=KSSfF5lMIAg
https://openreview.net/forum?id=xriGRsoAza
https://openreview.net/forum?id=xriGRsoAza
https://ojs.aaai.org/index.php/AAAI/article/view/27944
https://ojs.aaai.org/index.php/AAAI/article/view/27944
https://openreview.net/forum?id=rzBskAEmoc
https://openreview.net/forum?id=rzBskAEmoc


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R. Martin, and Shi-Min
Hu. Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, Jun 2021.
ISSN 2096-0662. doi: 10.1007/s41095-021-0229-5. URL https://doi.org/10.1007/
s41095-021-0229-5.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence, 2020.

Brian Hu, Paul Tunison, Brandon RichardWebster, and Anthony Hoogs. Xaitk-saliency: An
open source explainable ai toolkit for saliency. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 37(13):15760–15766, Jul. 2024. doi: 10.1609/aaai.v37i13.26871. URL
https://ojs.aaai.org/index.php/AAAI/article/view/26871.

Shikun Huang, Binbin Zhang, Wen Shen, and Zhihua Wei. A claim approach to understanding the
pointnet. In Proceedings of the 2019 2nd International Conference on Algorithms, Computing
and Artificial Intelligence, ACAI ’19, pp. 97–103, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450372619. doi: 10.1145/3377713.3377740. URL https:
//doi.org/10.1145/3377713.3377740.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learn-
ing. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
2127–2136. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
ilse18a.html.

Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and aaditya
prakash. Additive MIL: Intrinsically interpretable multiple instance learning for pathology. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
5dHQyEcYDgA.

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki.
The dangers of post-hoc interpretability: unjustified counterfactual explanations. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp. 2801–2807.
AAAI Press, 2019. ISBN 9780999241141.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: a neural network that explains its predictions. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Arti-
ficial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018a. ISBN 978-1-57735-800-8.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convo-
lution on x-transformed points. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018b. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf.

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and Faisal
Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images.
Nature Biomedical Engineering, 5(6):555–570, 2021.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local geom-
etry in point cloud: A simple residual MLP framework. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3Pbra-_u76D.

Dipanjyoti Paul, Arpita Chowdhury, Xinqi Xiong, Feng-Ju Chang, David Edward Carlyn, Samuel
Stevens, Kaiya L Provost, Anuj Karpatne, Bryan Carstens, Daniel Rubenstein, Charles Stewart,
Tanya Berger-Wolf, Yu Su, and Wei-Lun Chao. A simple interpretable transformer for fine-
grained image classification and analysis. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=bkdWThqE6q.

12

https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1007/s41095-021-0229-5
https://ojs.aaai.org/index.php/AAAI/article/view/26871
https://doi.org/10.1145/3377713.3377740
https://doi.org/10.1145/3377713.3377740
https://proceedings.mlr.press/v80/ilse18a.html
https://proceedings.mlr.press/v80/ilse18a.html
https://openreview.net/forum?id=5dHQyEcYDgA
https://openreview.net/forum?id=5dHQyEcYDgA
https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://openreview.net/forum?id=3Pbra-_u76D
https://openreview.net/forum?id=bkdWThqE6q


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017b. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strate-
gies. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 23192–23204. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9318763d049edf9a1f2779b2a59911d3-Paper-Conference.pdf.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.
2939778. URL https://doi.org/10.1145/2939672.2939778.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019.
ISSN 2522-5839. doi: 10.1038/s42256-019-0048-x. URL https://doi.org/10.1038/
s42256-019-0048-x.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges. CoRR,
abs/2103.11251, 2021. URL https://arxiv.org/abs/2103.11251.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong. In-
terpretable machine learning: Fundamental principles and 10 grand challenges. Statistic Surveys,
16:1–85, 2022.
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A MODEL DETAILS

A.1 TRANSFORMER BLOCK FEATURE EXTRACTOR

A.1.1 GROUP FEATURES THROUGH k-NEAREST NEIGHBOURS:

Formally, we constructed a k-NN graph on P with the graph including a self-loop to point-level
features:

N (pi) = KNN(P, ||pi − pj ||22),pi,pj ∈ P,

f ′i = [(fj − fi), fi]j∈N (pi) ∈ Rk×2din ,
(7)

where KNN(·) is the k-NN function, [·, ·] is concatenation, k is the hyperparameter of the k-NN
graph, N (pi) is the set of neighbours of pi, and f ′i is the point feature augmented with local contex-
tual information.

A.1.2 LEARNED RELATIVE POSITIONAL ENCODING:

To encode spatial configurations per point-cloud neighbourhood we incorporated positional embed-
dings, hi such that:

hi ∈ Rk×dh = ϕpos([pi − pj ]j∈N (pi)), (8)

where ϕpos is an MLP and dh is the output channel dimension of ϕpos. The features were then
further augmented with this positional encoding to give:

f ′′i = [f ′i ,hi]. (9)

Thus, we obtained a new feature set F′′ ∈ RN×k×(2din+dh) = {f ′′i }Ni=1. This is then passed

A.1.3 ATTENTION ON THE AUGMENTED FEATURES:

The resulting features, F′′, were then fed into a transformer with EdgeConv as the query opera-
tion. Recall that EdgeConv (Wang et al., 2019b) computes graph features for each point using the
equation:

ei ∈ Rde = maxj∈N (pi)(ϕedge(pi,pj − pi)), (10)

where ϕedge is an MLP with output dimension de. The F′′ were then transformed using attention
Vaswani et al. (2017):

Q ∈ RN×dk = EdgeConv (F′′)Wq

K ∈ R(N×k)×dk = Flatten (F′′)Wk

V ∈ R(N×k)×dv = Flatten (F′′)Wv,

(11)

where Wq ∈ Rde×dk , Wk ∈ R(2din+dh)×dk and Wv ∈ R(2din+dh)×dv are learnable weight
matrices. Our final point-level output features from the transformer block was then given by:

zi ∈ RN×dv = qi(softmax(ki)
Tvi). (12)

For all experiments, we used two transformer layers such that the final feature vector for each point
was of size 256.

A.2 CURVENET ADAPTATION

CurveNet uses sampling and grouping. Our only adaptation to CurveNet was use the same number
of input points as input into the farthest point sampling algorithm. We kept everything else the
same as the original paper. We replaced the original adaptive max, adaptive mean pooling, and the
classification head with MIL pooling. The final feature vector for each point was of size 1024.
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A.3 POINTNEXT ADAPTATION

PointNeXt uses sampling and grouping. To adapt PointNeXt to POINTMIL, we did not modifying
the architecture itself. Instead, we concatenated the point-level features from the first layer of the
encoder with global features from the final layer of the encoder. This resulted in a final feature vector
for each point of size 544.

A.4 MIL POOLING

A.4.1 CLASSIFICATION HEAD

We tested several different classification heads for each dataset. The final classification heads for
each dataset are summarised in Table 4.

Table 4: Classification head architecture
Type Layer Input Output

IntrA/RBC Linear b× 1×N × d (feature dimension) b× 1×N × c

MN40 Linear + ReLU b× 1×N × d b× 1×N × d//2
Linear + ReLU b× 1×N × d//2 b× 1×N × d//4
Linear b× 1×N × d//4 b× 1×N × c (Point Pred)

A.4.2 ATTENTION HEAD

Table 5: Attention head architecture
Process Layer Input Output

Attention Linear + tanh b× 1×N × d b× 1×N × 8
Linear + sigmoid b× 1×N × 8 b× 1×N × 1 (Attn. Scores)

We used the same attention head for all attention-based pooling. This is summarised in Table 5.

B INTERPRETABILITY METRICS

AOPCR does not require instance labels, whereas NDCG@n does. AOPCR works by removing the
most important instances in sequence and observing the impact on prediction accuracy. The faster
the prediction declines, the better the ordering, as the most influential instances are removed ear-
lier. When point clouds are annotated, NDCG@n evaluates how closely the model’s interpretability
ranking matches the true order. It rewards rankings that prioritise relevant instances, with higher
scores indicating better alignment and interpretability.

C DATASETS

C.1 INTRA

IntrA is an open source dataset of 3D intracranial aneurysm (Yang et al., 2020). The task is to clas-
sify blood vessels as healthy and aneurysm. There is a total of 1909 blood vessel segments, includ-
ing 1694 healthy vessel segments and 215 aneurysm segments for diagnosis. 116 of the aneurysm
segments are expertly annotated. We use IntrA to evaluate interpretability, classification, and seg-
mentation.

C.2 RED BLOOD CELL

We used another dataset of 3D red blood cells (RBC; Simionato et al. (2021)) for classification. This
dataset includes 825 3D red blood cells imaged using confocal microscopy grouped into 9 expertly

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

annotated shape classes. Blood samples were collected from healthy donors and patients using finger
prick blood sampling. For inducing RBC shape transitions, blood from 5 healthy donors was treated
with NaCl solutions of varying concentrations to create different RBC shapes. Specific shape classes
were expertly annotated according to particular motifs. Thus, similar to IntrA, RBC was suitable for
evaluating interpretability by the ability to identify these motifs. Segmentation masks are publicly
available. We converted the segmentation to mesh objects using marching cubes with Laplacian
smoothing, and then sampled points from the vertices of these mesh objects.

C.3 MODELNET40

ModelNet40 (Wu et al., 2015) is the de-facto benchmark for point cloud classification containing
9,843 training and 2,468 testing meshed CAD models belonging to 40 different object classes.

C.4 SHAPENETPART

ShapeNetPart (Yi et al., 2016) consists of 16,881 shapes with 16 classes belonging to 50 parts labels.
We use ShapeNetPart for segmentation.

C.5 TRAINIG SPLITS

For IntrA and RBC, we used a five-fold cross-validation and reported the average test metrics across
folds. For ModelNet40 and ShapeNetPart, we used the provided train and test splits and reported
the test results.

D ADDITIONAL RESULTS

This section contains additional results of individual pooling methods.

D.1 INTERPRETABILITY

Tables 6, 7, and 8 show the IntrA interpretability results for each of the pooling methods using the
Transformer, PointNet, and DGCNN backbones, respectively. The mean and standard deviations on
the test sets across the five folds are shown.

Table 6: Additional POINTMIL interpretability results on IntrA using the transformer backbone.
We also show the effect of the best contextual attention for each attention-based method.

Model NDCG@n AOPCR

Additive 0.6130.033 18.1084.374

Additive + context 12 0.6080.035 18.1623.013

Attention 0.4260.030 10.3361.065

Attention + context 12 0.5390.019 14.5411.821

Conjunctive 0.5920.018 12.5262.960

Conjunctive + context 12 0.6100.024 16.3055.859

Instance 0.5870.022 16.1663.794

Table 7: Additional interpretability results on IntrA using POINTMIL with the PointNet backbone
Model NDCG@n AOPCR

Additive 0.2540.064 0.7920.298

Attention 0.2220.027 0.0050.035

Instance 0.2250.072 0.9730.212

Conjunctive 0.2080.067 0.7410.140
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Table 8: Additional interpretability results on IntrA using POINTMIL with the DGCNN backbone
Model NDCG@n AOPCR

Additive 0.4820.009 4.4860.550

Attention 0.2230.002 −0.0310.070

Conjunctive 0.4670.008 4.8280.617

Instance 0.4620.022 5.2120.547

E VISUAL INTERPRETATION EXAMPLES

Figure 10 shows additional interpretability visualisations on ModelNet40.

Figure 10: Examples of POINTMIL interpretations for correctly classified shapes from ModelNet40.
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F ROBUSTNESS TO NOISE

Figure 11: Robustness evaluation of models to noisy inputs.

Similar to the methods described by
Xiang et al. (2021) and Yan et al.
(2020), we assessed the robustness of
POINTMIL to noisy inputs. Specif-
ically, we measured the F1 score of
models trained on clean (raw) inputs
when subjected to noisy inputs dur-
ing inference. This approach allowed
us to evaluate the model’s ability to
maintain performance in the presence
of input perturbations. The F1 score
(left) and the mACC (right) is plotted against the number of noisy points introduced during inference
for different POINTMIL methods with the DGCNN backbone and the original DGCNN model in
Figure 11. POINTMIL methods demonstrate higher robustness to noise compared to baseline mod-
els, with Additive and Conjunctive maintaining consistently higher F1 and mACC scores
than the original DGCNN without MIL.

G SEGMENTATION

Figure 12 presents segmentation results for POINTMIL with the Transformer backbone in the IntrA
dataset. Clearly, POINTMIL is able to accurately Aneurysm regions with a 3D shape of a diseased
blood vessel.

Figure 12: Segmentation examples for POINTMIL with the Transformer backbone on the IntrA
dataset.

H RENDERING

All renderings of point clouds were made with Mitsuba2.
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