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Abstract: Current multi-task reinforcement learning (MTRL) methods have the1

ability to perform a large number of tasks with a single policy. However when2

attempting to interact with a new domain, the MTRL agent would need to be re-3

trained due to differences in domain dynamics and structure. Because of these4

limitations, we are forced to train multiple policies even though tasks may have5

shared dynamics, leading to needing more samples and is thus sample inefficient.6

In this work, we explore the ability of MTRL agents to learn in various domains7

with various dynamics by simultaneously learning in multiple domains, without8

the need to fine-tune extra policies. In doing so we find that a MTRL agent trained9

in multiple domains induces an increase in sample efficiency of up to 70% while10

maintaining the overall success rate of the MTRL agent.11

Keywords: Multi-Task Reinforcement Learning, Morphology-Agnostic Policies12

1 Introduction13

Reinforcement learning (RL) has shown remarkable success in its application to many different14

scenarios including game playing [1], controlling stratospheric balloons [2], and controlling fusion15

reactors [3]. In order to scale RL to accomplish multiple tasks with a single policy, multi-task16

RL learns across multiple tasks which may accelerate learning in additional tasks which improves17

sample efficiency. However, current online multi-task RL algorithms are unable to learn across tasks18

that have different state and action spaces, and different semantics.19

To overcome this gap in the reuse of RL policies in tasks and domains, this paper aims to study the20

design decisions and training protocols required for training a single policy across multiple domains,21

and evaluates their performance in robotic manipulation domains in different domains. For a RL22

agent to have generalized skills, the RL agent must be able to leverage it’s previous experiences23

in new tasks. An example of this would be a RL agent that can pick up a frying pan in a kitchen24

domain and can also pick up a remote control in a living room domain. Various approaches have25

been proposed to address the challenge of transferring skills across different domains and robot26

morphologies. Recent works have leveraged offline reinforcement learning where a large dataset of27

trajectories are used to enable effective learning on different robots [4][5][6][7][8]. However, these28

policies are trained using datasets of successful trajectories limiting their ability to acquire new29

skills. Alternatively, online RL approaches generally either receive joint specific observations [9] or30

attempt to infer robot morphology from the reinforcement learning objective [10]. We differ from31

these lines of work as we perform all learning in an online fashion while utilizing an architecture that32

can handle varying state and action spaces without requiring joint-specific observations or explicit33

morphology inference. Our approach, which we call SAL (Shared, domain-Agnostic, Latent space),34

enables effective skill transfer across different domains and robot morphologies in an online setting.35

To address these challenges, SAL employs a unique architecture designed to overcome the limita-36

tions of varying state and action spaces. A central challenge impeding training a single policy across37
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domains is the difference in state and action space sizes that prevents any direct reuse of a trained38

policy, as the policy can have different input and output sizes for each specific domain. This work39

aims to enable the transfer of skills between domains with different robotic morphologies, where40

both the dimensions and semantic meanings of state and action spaces differ. This domain-agnostic41

transfer is enabled by learning the appropriate latent representations through state and action transla-42

tion layers, which map the states to a latent state space and then extract an action from latent space to43

an domain-specific action space, respectively. This architecture is an extension of the multi-headed44

architecture from [11] and [12]. We demonstrate the effectiveness of these layers in continuous45

control tasks that transfer high-level manipulation concepts between the domains. Our experiments46

show that learning a policy in a shared, domain-agnostic latent space by translating states to this47

SAL space and decoding latent skills into actions from the SAL space yields sample efficiency gains48

anywhere from 7% to 72% compared to training on a single domain’s tasks alone.49

The proposed method, and thus the efficient skill transfer across domains, can be achieved through50

minimal modifications to existing RL algorithms. We demonstrate skill transfer between the Meta-51

World [11] and Franka Kitchen [13] domains, and show how SAL can be applied to state of the art52

algorithms, such as Soft-Actor Critic (SAC) [14].53

Our contributions are as follows:54

• We propose the shared, domain-agnostic, latent policy architecture, which enables multi-55

task reinforcement learning across domains with different state and action spaces by using56

a single policy in Section 3.57

• We show that learning with our proposed architecture can accelerate learning by up to 72%58

in Section 4.4.59

• We provide insights into how the latent space of the SAL architecture is organized to better60

understand the limitations and future work associated with learning across differing state61

and action spaces in Section 4.6.62

• We provide an open-source implementation to apply SAL on existing RL algorithms.63

2 Problem Statement64

Reinforcement learning is formulated using a Markov decision process (MDP) [15], where an MDP65

M is a tuple of (S,A, P, r, γ, p), where S is the state space, A is the action space, the probability66

transition function P : S × A → [0, 1]|s|, r : S × A → R the reward function, γ in [0, 1) is the67

discount factor, and p is the initial state distribution.68

At each time step, the agent observes the state at time t, chooses an action sampled according to69

some policy π : S → A based on st, receives a reward for landing in-state st+1, and observes state70

st+1. The goal of the agent is to find a policy that maximizes expected returns for the current task71

E[R(τ)] where R(τ) is the sum of discounted rewards along the trajectory induced by following the72

policy π.73

In the multitask reinforcement learning problem, a task distribution must be chosen where N tasks74

are sampled from a task set T according to t ∼ n(t). Each task can be viewed as having its own75

MDP: (S,A, Pi, ri, γ, pi) where the state space, action space, and discount factors are held constant76

across tasks while the probability transition function, reward function, and initial state distribution77

are specific to each task ti. The goal of the multitask reinforcement learning agent is to maximize the78

expected sum of discounted rewards across each task Et∼p(t)[Eτ∼π[R(τ)]] using policy πη(a|s, z),79

where z is the task identifier and η are learnable parameters of the policy.80

In this paper, the problem we consider is extending multitask RL to multiple domains that don’t81

share the same state and action spaces. Let E be a set of M domains, where each domain m ∈ E82

has a set of Tm distinct tasks. Each task tm ∈ Tm in each domain m has an MDP M
(m)
t for each83

task t. Therefore, the MDP M
(i)
j is now comprised of the tuple (S(i), A(i), P

(i)
j , r

(i)
j , γ, p

(i)
j ), where84

the elements in the tuple can change with respect to the domain.85
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The domain and the task can be jointly sampled from a joint distribution m, t ∼ n(m, t). Since the86

state space S(m) and action space A(m) are domain-dependent, traditional multitask reinforcement87

learning algorithms cannot be applied to share policy parameters πη between tasks because the input88

state and output actions can vary in dimensions. In order to overcome this problem, we propose using89

translation layers to the input and action heads for the output of the policy. The input translation90

layer maps varied state representations to a common latent state space, while the output action heads91

decodes actions from this latent space back to domain-specific action spaces. This approach allows92

us to maintain a consistent internal representation for the policy, regardless of the specific domain93

it’s operating in.94

To aid the reader in understanding the difference between domains and tasks, we use the follow-95

ing definition of domains and tasks. In Meta-World, we leverage MT10 which contains 10 tasks96

available in Meta-World. Each task t in MT10 are distinct tasks for the MTRL agent to accomplish97

such as: opening a window, closing a drawer, grasping an object and moving it to a goal. Thus the98

domain is Meta-World, where the tasks are the individual tasks available in MT10. Similarly, for99

the Franka Kitchen domain, there are several tasks for the MTRL agent to accomplish such as slide100

a cabinet, open the microwave, grasp a kettle by the handle and move it to a goal location. Thus101

in the Franka Kitchen domain, there are several tasks available for the MTRL agent to accomplish.102

Additional information on the Meta-World and Franka Kitchen domains can be found in Appendix103

B.2 and B.3.104

With the use of translation layers and action heads, our goals are two-fold. The first goal is to105

determine if we can demonstrate skills transfer across domains. The second goal is to find the best106

training approach to learn a single policy π that can act in all domains, in terms of mean success rate107

and sample complexity.108

3 Enabling Skill Transfer109

In this section, we introduce our method for enabling the sharing of parameters across differing state110

and action spaces. In order to train using this multi-task algorithm we must first overcome the issue111

of differing state and action spaces.112

3.1 Translation Layers113

In order to overcome the difference in state spaces between domains, we propose the use of trans-114

lation layers. A translation layer fθi is parameterized by parameters θi where i is the index of an115

domain. The translation layer fθi receives the state-vector S(i)
t from domain i and encodes the state-116

vector into the shared latent space of the SAL architecture. This allows for the translation layer fθi117

to process the state-vector for domain specific features before embedding the features into the shared118

latent space. By using these translation layers, we have overcome the issue of differing state spaces119

by using domain specific modules.120

3.2 Action Heads121

To overcome the difference in action spaces, we propose the use of a shared space to generate122

actions inspired by [8], and then decode these shared action representations via domain specific123

action heads. Once the translation layer fθi processes the state-vector S
(i)
t from domain i, the124

shared, domain-agnostic latent space ash = πη(fθi(S
(i)
t )) encodes the features into a shared latent125

action space where ash is the output of the final parameters of the shared domain agnostic latent126

space πη . Once the features are embedded into the shared action representation, the domain specific127

action heads decode this action into domain specific actions gϕi
(ash) where the action head i is128

parameterized by a set of parameters ϕi to generate action a
(i)
t .129
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Figure 1: Control architecture for multi-task learning. The shared, domain-agnostic, latent (SAL)
policy.

Figure 2: Mean success rate plots across all tasks from MT10 and Franka Kitchen. Blue plot is a
network with padded inputs, and action heads. Orange plot is padded inputs, and outputting actions
in the larger action space & only using needed action dimensions. Green plot uses translation layers
and actions in the larger action space, like Orange. Red is the SAL architecture. Shaded regions
indicate the minimum and maximum success rates.

3.3 Shared, domain-agnostic, latent (SAL) policy130

To have an domain-agnostic policy that can learn in new domains while sharing parameters across131

diverse domains, we propose the SAL policy found in Figure 1. For some domain i to produce132

an action a
(i)
t at time step t, a forward pass must be completed as gϕi

(
πη

(
fθi(s

(i)
t )

))
. These133

parameters are then optimized using the loss of the RL algorithm. In this paper we use Soft Actor134

Critic [14] for each domain but any RL algorithm can be used. The optimizer for each domain i is135

operating on the translation layer fθi , the action head gϕi
, and the shared policy parameters πη . The136

SAL policy is designed and optimized in a way that shares parameters across diverse domains in137

the policy layers πη allowing for relevant similarities across domains to be encoded in the Shared,138

domain-Agnostic, Latent policy space.139

4 How to train a SAL policy140

In order to learn the dynamics of multiple domains within a shared parameter space, we propose to141

use the SAL policy architecture. We use the domains of Meta-World [11] and Franka Kitchen [13].142

Further information about these domains can be found in Appendix B.2 and B.3. The following sub-143
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sections outline the process of searching for the best performance when using the SAL architecture144

and some of the current limitations of the method.145

4.1 Issues when training on multiple domains146

Due to the static nature of feed-forward neural network input and output dimensions, they cannot147

handle inputs or outputs of various sizes. One approach to overcome this issue would be to pad the148

state and action spaces with zeros to ensure that input and output dimensions are the same across149

domains similar to the approach in [4]. In these experiments we semantically align common state150

features, such as goal and task IDs, and pad missing dimensions with zeros. In order to overcome151

the issue of differing action spaces, we have our policy output actions the size of the largest action152

space, and then only use the appropriate action size for any domain that has a smaller action space.153

In Figure 2 we find that performance of a multi-task RL algorithm using this method is extremely154

limited. In order to learn multiple sets of dynamics in a single policy network, we propose the use of155

SAL which aims to separate domain specific parameters into the translation layers and action heads,156

while sharing common features of domain dynamics in the shared parameters.157

4.2 Training a SAL policy158

In Figure 2 we show the performance of SAL in reference to the padded state and action space159

baseline approaches. The difference in performance is about 10%, showing the benefit of extracting160

domain relevant features in the translation layers & action heads while also sharing some features in161

the shared parameters. One of the limitations of this current iteration of SAL is that it’s difficult for162

the SAL shared parameters πη to align task relevant features across domains. For example if task X163

in domain i is similar to task Y in domain j, there isn’t a mechanism to enforce similarity between164

learned features for those tasks X and Y .165

4.3 Task alignment166

One approach to relate one task to another could be to do what we call task alignment on the task167

IDs that are input to the translation layers. This alignment process would enable re-use of policy168

parameters for similar tasks, leading to more sample efficient learning of similar tasks. To the best169

of the authors knowledge, there is no method for determining this alignment a priori to training a170

policy. Thus we explore random alignments of task IDs in order to see if there are any similar tasks171

that can be learned across domains. In Figure 3 we show the success rates of different alignments of172

tasks across multiple random seeds. We can see that there does seem to be some grouping in Figure173

3a or Figure 3b, however it is not present for all tasks limiting the overall success rate of the agent174

when attempting to align all of the tasks present.175

4.4 Manual task alignment176

In order to better leverage the information gained from the random task alignments, we implement177

what we refer to as the manual task alignment. In this alignment technique we leverage the grouping178

information of the random task alignment experiments in Section 4.3, while also introducing some179

human bias towards similar tasks by manually choosing tasks that are similar across domains. For180

example, the pick place task in Meta-World is similar to the kettle task in Franka Kitchen as both181

tasks require the agent to grasp and object and move it to a goal location. Therefore we align those182

task IDs to have the same value. For any tasks that do not have a similar task in another domain,183

we give these tasks unique task IDs. In Figure 3c we can see that by leveraging this manual task184

alignment method we have a substantial increase in success rate compared to the results found in185

Section 4.2 or 4.3. However, we also find that the sample complexity for learning tasks has wors-186

ened using this manual task alignment compared to learning the tasks individually. In Table 1 we187

find that by using the SAL architecture we increase the amount of samples the policy network needs188

to be trained on to learn tasks. While the manual task alignment shows promise in improving overall189

success rates, the increased sample complexity highlights a new challenge: balancing the learning190
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(a) (b)

(c)

Figure 3: Figure 3a & 3b: success rates across 2 random task alignments, over 3 random seeds
each. Additional seeds are included in Section 6. Figure 3c: mean success rate from the manual
task alignment. Results indicate that SAL can learn an effective policy. Shaded regions indicate the
minimum and maximum success rates.

across multiple domains efficiently. This trade-off between improved task generalization and in-191

creased sample requirements suggests that further refinement of our learning approach is necessary.192

To address this, we turn our attention to a more nuanced strategy for managing the learning process193

across multiple domains.194

4.5 Data manipulation195

While the task alignment approach in Section 4.4 showed some promise, its limitations in consis-196

tently grouping similar tasks across domains highlight the need for alternative strategies to enhance197

SAL’s learning capabilities. One key challenge in multi-domain learning is balancing the exposure198

to different tasks to achieve efficient and robust learning. To address this, we propose a dynamic199

data sampling strategy that gradually shifts the policy’s focus across domains. Initially, we create200

a limited data scenario where the policy uses 90% of the data from domain i and 10% of the data201

from domain j for its update. This imbalanced data ratio allows the policy to first build a strong202

foundation in one domain before gradually incorporating knowledge from the second. As training203
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progresses, we slowly adjust this ratio towards a 50/50 split, enabling the policy to transfer and inte-204

grate knowledge across domains more effectively. This approach aims to build on the improvement205

of the manual task alignment in Section 4.4 by providing a more controlled and gradual exposure206

to multiple tasks. We hypothesize that SAL can develop more robust shared parameters while still207

maintaining domain-specific adaptations through its translation layers and action heads with this208

method.209

Table 1 shows the results of two configurations of this data manipulation method, one where we210

use 90% Franka Kitchen data and 10% Meta-World data in the policy update and one where we211

use 90% Meta-World data and 10% Franka Kitchen data. These configurations are labeled High212

FK and High MW respectively. We find that the High FK induces more sample efficient learning213

across the Meta-World and Franka Kitchen tasks, while the High MW configuration induces some214

more sample efficient learning. These results validate the use of the SAL architecture and the data215

manipulation training configuration, as the goal of training simultaneously in these domains is to216

learn with a relatively high success rate while also learning different tasks in a more sample efficient217

manner. One of the limitations of these methods is the decrease in sample efficiency for non-aligned218

tasks. Table 4 and Table 5 show the number of samples needed to learn all tasks in either Meta-World219

or Franka Kitchen. For the un-aligned tasks, there is a decrease in sample efficiency.220

4.6 SAL Latent Space Analysis221

Finally, to examine the groupings of tasks made by training using the SAL policy architecture we222

plot the outputs of both the translation layers fθi and the output of shared policy layers πη . We use223

T-SNE embeddings [16] to visualize the latent vectors. In Figure 7 we show the T-SNE embeddings224

after the first epoch and after the last epoch. Figure 7c and Figure 7d show the outputs of the225

translation layers, while Figure 7a and Figure 7b show the outputs of the SAL policy layers. The226

SAL architecture shows the ability to group related tasks together, however it is still uncertain how227

to handle tasks that don’t have any similar tasks in another domain.228

5 Limitations and Future Work229

We would like to highlight the limitations of the current approaches that were successful as they are230

important for both the future of this work, and important for the field of multi-task reinforcement231

learning.232

5.1 Task Alignment233

In Section 4.3 and Section 4.4 we outlined the methods that we used to align the task IDs of individ-234

ual tasks across the various tasks from Meta-World and Franka Kitchen. However, these alignment235

methods have several limitations. As the number of tasks increases, manually aligning the tasks236

becomes more time-consuming and challenging. By allowing for a human to align the tasks, it’s237

possible that the human will introduce biases that will limit the capabilities of the MTRL algorithm.238

The alignment method may not generalize well to new domains or the introduction of additional239

domains during training. As noted in Section 4.4, the manual alignment method without the data240

manipulation method increased the sample complexity, suggesting that there is a trade-off between241

generalization and learning efficiency. Thus these limitations highlight the need for further research242

into being able to determine how the actions from task i may transfer to task j.243

5.2 Data Manipulation244

In Section 4.5, we outline the method we use to learn in a more sample efficient manner where we245

slowly introduce data from one domain during a policy update. This method may have additional246

issues when transitioning to new domains. The strategy of using 90% data from one domain initially247

may lead to temporarily poor performance in the under-sampled domain. The performance of the248

system may be sensitive to how quickly or slowly the data ratio is adjusted, and finding the opti-249
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mal schedule could be challenging. The optimal starting ratio and adjustment schedule might vary250

significantly between different sets of domains, potentially requiring extensive tuning. Our current251

implementation focuses on balancing between two domains. Extending this to multiple domains252

may introduce additional complexities. In some cases, the data manipulation strategy might force253

the model to learn from less relevant data, potentially leading to negative transfer between tasks.

Table 1: Millions of network updates for each training procedure using the SAL architecture. Bolded
results indicate a decrease in number of network updates for that task to reach 90% success rate.
Single env is the results from training a single multi-task policy on Meta-World or Franka Kitchen.
MW or FK beside the domain names indicate where that task is from. SAL (MTA) indicates the
results of using SAL with the manual task alignment. High FK is the policy update data manipulation
experiment with a ratio of 90% Franka Kitchen data and 10% Meta-World data at the start of training.
High MW is the opposite.

Task Single Env SAL (MTA) High FK High MW
Drawer Close (MW) 6.4 10.7 2.4 (-62.76%) 11.5
Drawer Open (MW) 42.7 211.2 24.8 (-42.0%) 53.9
Reach (MW) 17.1 19.2 12.7 (-25.88%) 27.9
Slide Cabinet (FK) 14.9 19.2 11.5 (-23.0%) 4.3 (-71.0%)
Microwave (FK) 76.8 147.2 38.3 (-50.13%) 71.5 (-6.94%)

254

5.3 Future Work255

In this work we have highlighted several successful methods for training a single policy across256

reinforcement learning domains with differing state and action spaces. However, we have also257

highlighted several limitations of our proposed method, namely the task alignment process and the258

data manipulation experiments.259

In order to align the tasks for training using our SAL policy, we randomly sampled alignments260

and then trained policies using those alignments. As the number of tasks increases this would be261

an unusable method. Instead of this method, it may be possible to learn a set of options [17] and262

compare the trajectories induced by these options across all tasks. If an option induces similar263

trajectories on the task it was trained on and some new task, they may be similar tasks.264

One of the methods that we found increased performance of the SAL policy from both a success265

rate and sample efficiency perspective was the manipulation of data ratios in the SAL policy update.266

However, it’s possible that this method would only work when the included domains are robotic267

manipulation tasks. A useful future work could be to explore the usefulness of training on multiple268

domain tasks types, such as robotic manipulation, navigation, and other continuous control domains269

similar to [8].270

6 Conclusion271

In this paper we explored the problem of applying multi-task reinforcement learning algorithms272

to domains with differing state and action space sizes, in addition to the state and action spaces273

having differing semantic meaning. We propose the Shared, Domain-Agnostic, Latent (SAL) policy274

to overcome these issues which leverage separate input translation layers and output action heads275

for each domain. We explored the usefulness of SAL and the methods that are needed to train an276

effective policy. We found that by applying these methods, we can increase the sample efficiency of277

learning in Meta-World and Franka Kitchen domains by up to 70%. We also highlighted some of278

the limitations and future directions for this work, including a method of determining if two tasks279

are similar and an investigation into training on multiple tasks with potentially different input types.280

This work serves as a foundation for further exploration into flexible learning architectures that can281

bridge the gap between diverse task domains and robot configurations.282
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A Related Work375

One of the first comprehensive benchmarks for testing in the multitask RL domain was Meta-World376

[11]. The benefit of using the Meta-World benchmark is that it has a high degree of shared do-377

main and control structure which allows for efficient learning of distinct but related tasks [11].378

Another benefit of Meta-World is the dense reward function available for each individual task. [11]379

propose several benchmark algorithms for multitask reinforcement learning including Multi-Task380

Multi-Head Soft Actor Critic (MTMHSAC). The MTMHSAC algorithm modifies the base Soft-381

Actor Critic algorithm by adding an entropy head for each task, allowing for different levels of382

exploration per task [11]. In Yu et al. [11] the states are augmented with a one-hot vector that in-383

dicates which domain the state belongs to. Other recent approaches include Soft-Modularization384

which uses the one-hot vector as input to a routing network that outputs probabilities for how data385

is routed through the policy network [18], Yu et al. [19] developed a method of projecting con-386

flicting gradients onto the same plane thus making network optimization more efficient, Cho et al.387

[20] developed a variational based method as well as a measure of negative transfer. Recently, He388

et al. [21] have shown diffusion models to be effective planners and data synthesizer in multitask389

reinforcement learning settings.390

Gupta et al. [13] originally designed Franka Kitchen as a benchmark for algorithms that can solve391

long-horizon, multitask problems. Franka Kitchen was then modified by [22]. The robotic arm in392

Franka Kitchen is a 9-DOF Franka robot that is placed in a kitchen domain with many different393

household kitchen objects. The goal of the domain is to achieve some desired configuration of the394

objects through manipulation [13].395

We formulate our problem with the context of agent-agnostic reinforcement learning. There has been396

numerous works that take different perspectives on learning policies that can be applied, or quickly397

adapted, for running on robotics hardware with a different morphology than the policy was trained398

on. There are two main approaches to these works. The first line of work is interested in leveraging399

large datasets, with or without actions, and learning how to extract useful skill information from the400

dataset. [6] uses a dataset of successful trajectories to learn a prior over robotic tasks that can then401

be applied to unseen new tasks. [7] learns a latent variable model that is able to segment unlabelled402

trajectories into subtasks used across all tasks in the dataset, with these learned subtasks being403

transferrable to physical robotics manipulations tasks. Similarly, [23] learns a dictionary of skill404

priors from expert demonstrations and then trains a policy conditioned on these skill priors enabling405

effective long-horizon model-free reinforcement learning. XSkill [24] has been proposed for cross406

embodiment skill discovery, where a dataset of videos across multiple embodiments are used to407

discover skills, and then the learned skills are transferred to the current embodiment and aligned408

with the current tasks for downstream skill-conditioned visuomotor policy learning. Lastly [25]409

trained a single, goal-conditioned, policy across manipulation, navigation, and driving datasets with410

various embodiments. [25] found that there was an increase in goal completion when combining411

the manipulation and navigation data, while postulating that the policy must understand where the412

current state is with respect to it’s goal, as well as understanding how to navigate cluttered spaces.413

We differ from each of these previous works as we aim to do reinforcement learning without any414

priors, and completely in an online fashion.415

In addition to the work that learns on large datasets, there is also a line of work that aims to con-416

dition the policy learning on a vector representation that captures task and/or robotic morphology417

information. [26] was one of the first works to learn a representation of tasks, which allowed for418

interpolation between learned embeddings for zero-shot transfer of skills. However, when applied to419

Meta-World, the performance of this method degrades significantly [11]. In order to facilitate cross420

embodiment learning, [27] proposed to learn a modular policy for each component of an agent’s421

morphology that passes messages from module to module. [28] leverages a transformer architecture422

to combat the inefficiencies in graph neural networks for incompatible MTRL by injecting explicit423

morphological information into the model. [10] proposes to infer robot morphology using the re-424

inforcement learning objective directly, instead of a representation learning objective. Recently,425

[9] proposed a multi-task reinforcement learning method to learn across various quadreped robots.426
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Concurrently to our work, [9] make use of observation and joint specific information to train a sin-427

gle policy across multiple legged robots. Our work differs from [9] in the types of embodiments,428

the tasks, and the types of observations. We don’t supply the SAL policy with information about429

specifics of the joint it is controlling. We differ from this line of work, in general, as we don’t inject430

or infer any embodiment information. We aim to share all overlapping task information within the431

SAL policy network, with the translation layers and action heads handling the cardinalities of the432

state and action spaces.433

B Background information434

B.1 Reinforcement Learning435

In this work, the Reinforcement Learning (RL) algorithm that we use is Soft-Actor Critic (SAC).436

SAC is an off-policy RL algorithm that is based on the maximum entropy learning framework [14].437

This framework leads the agent to maximize both expected rewards and entropy, which leads the438

agent to succeed in the task while acting as randomly as possible [14]. In this work there are three439

sets of parameters to optimize: the soft Q-function Qθ(st, at) with Q parameterized by θ, the policy440

parameters πϕ(at|st) where π is parameterized by ϕ, and the entropy penalty coefficient α [14]. The441

objective for policy optimization is:442

Jπ(ϕ) = Est∼D[α log πϕ(at|st)−Qθ(st, at)] (1)

with α controlling the entropy penalty coefficient. The coefficient α is learned using the objective:443

J(α) = Eat∼πϕ
[−α log πϕ(at|st)− αH̄] (2)

where H̄ is the minimum target entropy.444

Previous work has modified the SAC algorithm to include an entropy term for each of the N tasks to445

guide exploration in each task individually, as well as to introduce replay buffers per task (Yu et al.446

[11], Yang et al. [18]).447

B.2 Meta-World448

The first set of domains used in this work are from Meta-World [11]. Meta-World is a suite of449

multitask RL and meta-RL domains that consist of a number of robotic manipulation tasks. These450

domains are subdivided into different sets with any number of domains and different goals. This451

work focuses on the Multi-Task 10 (MT10) set of domains. In the MT10 set, there are 10 tasks that452

the RL agent can interact with. Some domains are closely related to each other, such as window453

open and window close, while other domains are not as closely related to each other, such as pick454

and place, and window close. This difference in tasks allows for a wide variety of skills to be learned455

across these domains with robust learning happening due to the number of goals available for each456

of the individual tasks[11]. Meta-World also provides a dense and smooth reward function to help457

RL agents learn[11]. The different tasks of the MT10 set of domains can be found in Figure 4.458

B.3 Franka Kitchen459

The Franka Kitchen domain is the other domain to be used in this work. The Franka Kitchen460

domain has typically been used in hierarchical RL where the goal is to complete a number of tasks461

sequentially [13]. This work uses the Franka Kitchen domain in a slightly different manner where462

each of the available tasks in Franka Kitchen are used individually to create a similar set of tasks to463

MT10 from Meta-World. This can be verified in Figure 5. Thus, the agent only needs to solve one464

of the available tasks in a single domain. The default reward function in Franka Kitchen is a sparse465

reward function where the agent only receives a reward for solving the task [13].466
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Figure 4: Meta-World MT10 tasks, image from [11].

Figure 5: Franka Kitchen domain, image from [29].

C Evaluation procedure467

We evaluate the performance and transfer capabilities of the RL agent in two domains: Meta World468

[11] and Franka Kitchen [13](see Section B.2 and B.3). In all experiments, we report the success469

rate across 100 episodes per task with 50,000 gradient steps each to ensure that our results are470

statistically significant. These results are reported across 2 different random seeds. For our multitask471

policy πθ(a|s, t), the task identifier t is a one-hot encoding of the task to inform the agent what task472

it is solving.473

In addition to the success rate, we also report the number of gradient update steps to our policy that474

it takes to learn specific tasks. In order to calculate the number of updates it takes to learn a task, we475

choose a success threshold of 90%, once a policy learns a task past this threshold for the first time476

we can then calculate the number of network gradient updates it took to learn this task. This value is477

calculated by the following formula: C ∗GS ∗BS, where C is the current epoch, GS is the number478

of gradient steps per epoch, and BS is the number of samples of data for this task.479
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Table 2: Dense reward functions used for Franka Kitchen from Meta-World.

Franka Kitchen task Meta-World Reward Function

Microwave Door Open
Right Hinge Door Door Open
Left Hinge Door Door Open
Light Switch Sweep
Top Right Burner Dial Turn
Top Left Burner Dial Turn
Bottom Right Burner Dial Turn
Bottom Left Burner Dial Turn
Slide Cabinet Push
Kettle Pick Place

D Reward Function for Franka Kitchen480

The Franka Kitchen domain uses a sparse reward function that gives the agent a reward of 0.3481

for completing the desired task and 0 otherwise. This limits the ability to do online RL as it is482

extremely difficult for the agent to learn the correct sequence of actions to complete any of the tasks.483

To overcome this challenge in creating our baseline approach, we adopt a modified version of the484

dense reward function that is used in Meta-World for Franka Kitchen. Table 2 shows the mapping485

between the Franka Kitchen task to be solved and the reward function used from Meta-World to486

provide dense rewards.487

Some slight modifications are made to the reward functions to use them in Franka Kitchen. Both488

Meta-World and Franka Kitchen were designed using Mujoco. However, the objects that a RL489

agent interacts with in Meta-World are Mujoco bodies, while most of the Franka Kitchen objects490

are attached to bodies. The exception to this in Franka Kitchen is the kettle as it is a body itself. To491

overcome this issue, the reward functions for each task are modified slightly to use different Mujoco492

sites of the object of interest. For example, the microwave reward function uses the handle site as a493

method of determining how open or closed the door is. We refer the interested reader to our public494

implementation for further details on how the reward function was modified to use sites. To denote495

that a task has been completed, we used a threshold of 5 cm.496

Table 3: domains that were aligned across MW and FK are shown. The Button Press Topdown,
Window Close, Peg Insert Side, Reach, Drawer Open, Top Right Burner, Top Left Burner, Bottom
Right Burner, and Bottom Left Burner tasks all received unique one-hot IDs.

Franka Kitchen task(s) Meta-World task(s)

Slide Cabinet Drawer Close
Kettle Pick Place
Left Hinge Door, Right Hinge Door, Microwave Door Open
Light Switch Push

E Implementation and Compute Details497

Code will be open-sourced upon acceptance.498

F Task Alignment499

Figure 6 shows the performance of 3 additional seeds of random task alignment, while Figure 7500

shows the latent vector alignment after 1 epoch of training, and then after a full experiment run.501
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(a) (b)

(c)

Figure 6: Results from 3 additional random seeds of alignment experiments

G Network Updates Data502

Table 4: Millions of network updates for each training procedure on Meta-World tasks. This number
is based on how many network updates it took to get to a 90% success rate. 0’s indicate that the task
was not learned in that training configuration.

Task Single domain FK&MW(50/50) High FK High MW
Door Open 32.0 168.5 46.9 69.1
Drawer Close 6.4 10.7 2.4 11.5
Drawer Open 42.7 211.2 24.8 53.9
Window Open 25.6 185.6 46.9 72.7
Window Close 14.9 155.7 43.7 64.8
Peg Insert Side 0.0 0.0 0.0 0.0
Pick Place 0.0 0.0 0.0 0.0
Push 0.0 0.0 0.0 140.8
Button Press Topdown 49.1 215.5 91.7 110.9
Reach 17.1 19.2 12.7 27.9
Total Network Updates 187.7 966.4 269.1 551.7
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Figure 7: T-SNE embeddings from the translation layers (a + b) and the SAL policy (c + d). We
find that the policy is able to maintain connections for tasks where there is an increase in sample
efficiency.

(a) (b)

(c) (d)

Table 5: Millions of network updates for each training procedure on Franka Kitchen tasks. This
number is based on how many network updates it took to get to a 90% success rate. 0’s indicate that
the task was not learned in that training configuration.

Task Single domain FK&MW(50/50) High FK High MW
Slide Cabinet 14.9 19.2 11.5 4.3
Microwave 76.8 147.2 38.3 71.5
Top Right Hinge Cabinet 0.0 0.0 0.0 0.0
Top Left Hinge Cabinet 125.9 243.2 0.0 0.0
Top Right Burner 19.2 0.0 0.0 0.0
Top Left Burner 185.6 0.0 0.0 0.0
Bottom Right Burner 6.4 0.0 0.0 68.4
Bottom Left Burner 138.7 0.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0
Light Switch 14.9 125.9 110.1 41.2
Total Network Updates 582.4 535.5 159.9 185.4
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