
000 MARKET GAMES FOR GENERATIVE MODELS: EQUI- 001 LIBRIA, WELFARE, AND STRATEGIC ENTRY 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review
007
008
009

ABSTRACT

011 Generative model ecosystems increasingly operate as competitive multi-platform
012 markets, where platforms strategically select models from a shared pool and users
013 with heterogeneous preferences choose among them. Understanding how plat-
014 forms interact, when market equilibria exist, how outcomes are shaped by model-
015 providers, platforms, and user behavior, and how social welfare is affected is crit-
016 ical for fostering a beneficial market environment. In this paper, we formalize a
017 three-layer *model-platform-user* market game and identify conditions for the exis-
018 tence of pure Nash equilibrium. Our analysis shows that market structure, whether
019 platforms converge on similar models or differentiate by selecting distinct ones,
020 depends not only on models' global average performance but also on their local-
021 ized attraction to user groups. We further examine welfare outcomes and show
022 that expanding the model pool does not necessarily increase user welfare or mar-
023 ket diversity. Finally, we design novel best-response training schemes that allow
024 model providers to strategically introduce new models into competitive markets.
025

1 INTRODUCTION

028 Generative models are no longer developed in isolation. They now operate within competitive,
029 multi-platform markets, where platforms strategically deploy models to attract heterogeneous user
030 groups and compete for market share. For example, Microsoft Azure and Amazon Bedrock compete
031 to license foundation models to enterprises (Staff, 2024; Janakiram, 2023), Canva and Adobe Fire-
032 fly compete to attract designers by integrating state-of-the-art generative models (Newsroom, 2024;
033 Vincent, 2024), and platforms like Midjourney and Stability AI compete directly for end users seek-
034 ing creative tools (Staff, 2025a;b). Understanding the behavior of such markets is crucial for guiding
035 governance, policy, and the design of trustworthy AI ecosystems.

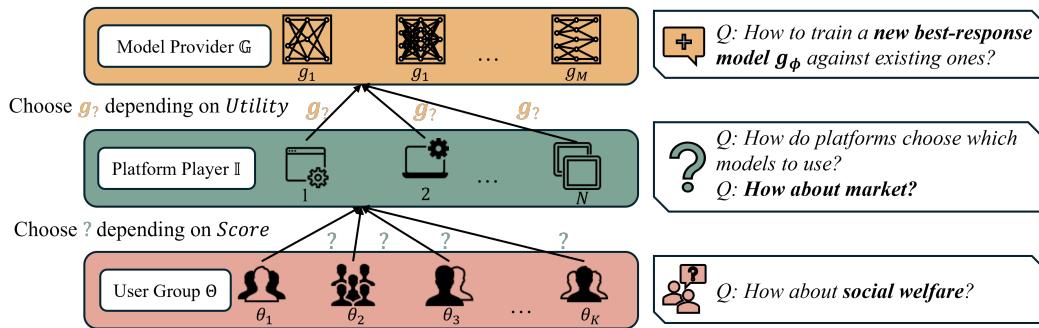
036 Prior work has largely focused on a two-layer market, where model developers also operate the de-
037 livery platforms and offer services directly to users (Einav & Rosenfeld, 2025; Jagadeesan et al.,
038 2023b; Raghavan, 2024; Taitler & Ben-Porat, 2025). Within this setting, a substantial body of
039 literature examines discriminative scenarios in which (binary) classifiers are trained and used by
040 end users. For instance, Einav & Rosenfeld (2025) show that platforms often prioritize capturing
041 user share over maximizing predictive accuracy, leading to equilibrium states that deviate from so-
042 cially optimal outcomes. Similarly, Jagadeesan et al. (2023b) demonstrate that even when individual
043 classifiers achieve lower Bayes risk, competition can perversely reduce overall social welfare. By
044 contrast, the literature on generative model markets remains sparse, with only a few recent studies
045 analyzing how competition shapes overall welfare outcomes (Taitler & Ben-Porat, 2025; Raghavan,
046 2024). Specifically, Taitler & Ben-Porat (2025) identify a counterintuitive phenomenon: adding
047 more models can paradoxically decrease user welfare. More recently, Raghavan (2024) find that
048 competitive pressures often reduce diversity, though stronger competition can partially mitigate ho-
049 mogénéization, and that models performing well in isolation may fail in competitive environments.
050 Collectively, these studies highlight that, in generative markets, improvements in individual model
051 performance do not necessarily translate into greater welfare or diversity.

052 However, the generative ecosystem is increasingly structured as a three-layer market (Fallah et al.,
053 2024): model providers develop models and license them to platforms, which in turn deliver services
054 to end users. Unlike the two-layer setting, where model developers both build and operate the deliv-
055 ery platforms, in the three-layer market, platforms act as intermediaries: they decide which models

054 to adopt and deploy, ultimately shaping how users experience generative AI. For instance, Azure
 055 OpenAI Service (Azure, 2025) supplies GPT-family models through Microsoft Azure, enabling
 056 enterprise clients to embed them into a wide range of applications; Cohere (Cohere, 2025) provides
 057 large language models as APIs for enterprises, serving platforms rather than end users directly; and
 058 Canva (Canva, 2025) integrates external models such as Stable Diffusion and Leonardo Phoenix into
 059 its design suite, allowing millions of users to access generative capabilities without ever selecting
 060 the underlying model themselves. In all these cases, platforms are the direct consumers of models,
 061 while users experience only the models that platforms choose.

062 In this work, we formalize the market as a three-layer **model-platform-user** game, in which heterogeneous
 063 users choose the platform that best aligns with their preferences, while platforms strategically
 064 adopt the models from providers that maximize their market share (Fig. 1). We then conduct a
 065 rigorous analysis of how platform-level competition influences user welfare, diversity, and equilib-
 066 rium outcomes. Our main contributions and findings are summarized below:

- 067 1. In Section 2, we formalize the model-platform-user game and show that when users make hard
 068 selections on platforms, the resulting game among platforms may not admit pure Nash equilibria.
- 069 2. In Section 3, we identify conditions for the existence of pure Nash equilibria. Crucially, we
 070 analyze market structure at equilibrium and derive conditions for both fully differentiated equi-
 071 libria (all platforms choose distinct models) and homogeneous equilibria (all platforms converge
 072 on the same model). We show that market structure is determined not only by models’ average
 073 performance but also by their deviation advantage to heterogeneous users.
- 074 3. In Section 4, we analyze market diversity and user welfare. We show that equilibrium may not
 075 achieve the socially optimal outcome that maximizes user welfare, and that increasing competi-
 076 tion (e.g., adding more platforms or models) does not necessarily improve user welfare or market
 077 diversity. This finding aligns with recent observations of growing homogenization in generative
 078 model markets (Zhang et al., 2025; Wu et al., 2025).
- 079 4. In Section 6, we take the model providers’ perspective and design best-response training schemes
 080 that allow a provider to introduce a new model effectively into the competitive market.
- 081 5. In Section 7, we conduct experiments on both synthetic and real data to validate our theorems.



094 Figure 1: The three-layer model-platform-user market structure. Model providers develop genera-
 095 tive models, platforms select models to deploy, and heterogeneous users choose platforms.

097 2 PROBLEM MODEL

100 Consider a three-layer generative model service market as shown in Fig. 1, which consists of:

- 101 • **Model Layer:** A set of generative models $\mathbb{G} = \{g_1, \dots, g_M\}$ trained by M model providers.
 102 Each model $g_i, i \in \mathbb{M} = \{1, \dots, M\}$ is characterized as a data distribution over domain \mathcal{X} .
- 103 • **Platform Layer:** A set of platform-players $\mathbb{I} = \{1, \dots, N\}$. From the provider, each platform i
 104 selects a model $f_i \in \mathbb{M}$ to serve its users. Denote the platform selection as $\mathbf{f} = (f_1, \dots, f_N)$.
- 105 • **User Layer:** A population of heterogeneous users categorized into types $\Theta = \{\theta_1, \dots, \theta_K\} \subseteq \mathbb{R}^d$ with distribution $\{\pi_\theta\}_{\theta \in \Theta}$ such that $\sum_{\theta \in \Theta} \pi_\theta = 1$. For each user type θ_k , let $r_{\theta_k}(x)$ be the
 106 underlying reward function indicating their preference over generated content $x \in \mathcal{X}$.

108 **User's choice of platform.** Given platform selections, users of type θ choose platforms to interact
109 based on the generation ability of selected models. Let $S_j(\theta) := \mathbb{E}_{x \sim g_j}[r_\theta(x)]$ be *score* measuring
110 the quality of contents generated by model g_j for user type θ ; higher $S_j(\theta)$ indicates better alignment
111 with user preferences. Then, the probability for users of type θ selecting platform i is given by:

$$113 \quad p_i(\theta) := \begin{cases} 0 & \text{if } f_i \notin \arg \max_{i' \in [N]} S_{f_i'}(\theta) \\ 114 \quad \frac{1}{|\arg \max_{i' \in [N]} S_{f_i'}(\theta)|} & \text{if } f_i \in \arg \max_{i' \in [N]} S_{f_i'}(\theta) \end{cases} \quad (1)$$

116 That is, users select the platform with the highest score, breaking ties uniformly at random. **This**
117 **hardmax choice model is a standard simplification commonly used in prior work on platform or**
118 **model selection (Jagadeesan et al., 2023b;a; Mansour et al., 2018).** In Section 5, we discuss how our
119 **analysis and results can be extended to the softmax user choice model.**

120 **Platform's choice of models.** Each platform $i \in [N]$ strategically selects a model f_i^* from the
121 model-provider to compete for market share, in response to other platforms' selections:

$$123 \quad f_i^* = \arg \max_{f_i \in \mathbb{M}} U_i(f_i; \mathbf{f}_{-i}^*) \quad (2)$$

125 where $U_i(f_i; \mathbf{f}_{-i}) := \sum_{\theta \in \Theta} \pi_\theta \cdot p_i(\theta) \cdot S_{f_i}(\theta)$ is the utility function capturing the market share of
126 platform. Denote profile $\mathbf{f} = (f_1, \dots, f_N)$ as the strategies of all platforms, and \mathbf{f}_{-i} strategies of
127 all excluding the platform i . We consider a normal-form game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ in which each platform
128 chooses a model to maximize its utility.

129 **Definition 2.1** (Nash Equilibrium). We say a strategy profile $\mathbf{f}^* = (f_1^*, \dots, f_N^*)$ is a *pure Nash*
130 *equilibrium* (PNE) if no platform can improve its utility by unilaterally deviating, i.e., $U_i(f_i^*; \mathbf{f}_{-i}^*) \geq$
131 $U_i(f_i; \mathbf{f}_{-i}^*), \forall i$. A pure Nash equilibrium is **fully differentiated equilibrium** if all platforms choose
132 distinct models: $|\{f_1^*, \dots, f_N^*\}| = N$. A pure Nash equilibrium is **homogeneous equilibrium** if
133 all platforms choose the same model: $|\{f_1^*, \dots, f_N^*\}| = 1$.

134 By Nash's classical theorem, every finite game admits at least one *mixed-strategy* Nash equilibrium,
135 where each player i randomizes over actions according to a probability distribution (Monderer &
136 Shapley, 1996). However, when users make deterministic selections as in Eq. 1, we show in Propo-
137 sition 2.2 that a pure Nash equilibrium may not exist.

138 **Proposition 2.2.** [Nonexistence of PNE] Consider the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with finite sets of platforms
139 \mathbb{I} , models \mathbb{G} , and user types Θ , where each platform i chooses a model $f_i \in \mathbb{M}$ based on Eq. 1. The
140 game may not admit a pure-strategy Nash equilibrium \mathbf{f}^* .

142 To prove Proposition 2.2, we provide a counterexample in Appendix C.1. The existence of a pure
143 Nash equilibrium can be examined via *best-response dynamics*: starting from any profile \mathbf{f} , plat-
144 forms sequentially update their strategies as best responses to the current strategies of others. When
145 a pure equilibrium does not exist, this process fails to converge and instead enters cycles.

146 **Definition 2.3** (Best-Response Cycle). A *best-response cycle* is a finite sequence of strategy pro-
147 files $\mathbf{f}^{(1)}, \mathbf{f}^{(2)}, \dots, \mathbf{f}^{(L)}$ in best-response dynamics such that: (i) at each step t , only one platform
148 changes its strategy, and it does so as a best response to $\mathbf{f}^{(t)}$, and (ii) the sequence eventually returns
149 to the initial profile, i.e., $\mathbf{f}^{(L+1)} = \mathbf{f}^{(1)}$.

150 **User welfare & market diversity.** Next, we introduce metrics we will use for analyzing the market.

152 **Definition 2.4** (Coverage Value). For a strategy profile $\mathbf{f} = (f_1, \dots, f_N)$ with $f_i \in \mathbb{M}$, define
153 the *coverage value* of \mathbf{f} as $V(\mathbf{f}) := \sum_{\theta \in \Theta} \pi_\theta \max_{1 \leq i \leq N} S_{f_i}(\theta)$, i.e., the expected quality users
154 receive from their best available platforms.

155 **Definition 2.5** (User Welfare). Define *user welfare* W as $W := V(\mathbf{f}^*)$ if the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$
156 admits a pure Nash equilibrium \mathbf{f}^* ; and $W := \frac{1}{L} \sum_{t=1}^L V(\mathbf{f}^{(t)})$ if it enters best-response cycle.

157 **Definition 2.6** (Social Optimum Welfare). The *social optimum welfare* is defined as the highest
158 coverage value achievable by any strategy profile. That is, $W_{\text{opt}} := \max_{\mathbf{f} \in \mathbb{M}^N} V(\mathbf{f})$.

159 **Definition 2.7** (Herfindahl-Hirschman Index (HHI) Diversity). For strategy $\mathbf{f} = (f_1, \dots, f_N)$ with
160 $f_i \in \mathbb{M}$, let $(\mu_1, \mu_2, \dots, \mu_N)$ be the *market share vector* of platforms, where $\mu_i = \sum_{\theta \in \Theta} \pi_\theta p_i(\theta)$.
161 *HHI diversity* is defined as $D_{\text{HHI}}(\mathbf{f}) := \sum_{i=1}^N \mu_i^2$.

162 HHI diversity measures how evenly users are distributed across platforms. Its value lies in $[\frac{1}{N}, 1]$,
 163 taking value $\frac{1}{N}$ when users are evenly split across all platforms (maximum diversity) and 1 when all
 164 users concentrate on a single platform (no diversity).

165 **Definition 2.8** (Support Diversity). For strategy $\mathbf{f} = (f_1, \dots, f_N)$ with $f_i \in \mathbb{M}$, the *support diversity*
 166 is defined as $D_{\text{supp}}(\mathbf{f}) := |\{m \in \mathbb{M} \mid \exists i \in \mathbb{I}, f_i = m\}|$

168 Support diversity measures the number of distinct models adopted by platforms, taking integer val-
 169 ues between 1 and N . Larger values indicate that more models are represented in the market,
 170 reflecting greater model diversity.

171 **Objectives.** With the platform selection game and evaluation metrics in place, the remainder of this
 172 paper aims to address the following key questions about competitive generative model markets:

- 174 • Under what conditions do pure Nash equilibria (PNE) arise, and when do platforms converge to
 175 differentiated versus homogeneous structures?
- 176 • How does the user welfare depend on the number of platforms and models, and how does it
 177 compare to the social optimum?
- 178 • From the model-provider's perspective, how to design new generative models that can successfully
 179 enter the market and be strategically adopted by competing platforms?

181 3 EQUILIBRIUM ANALYSIS AND MARKET STRUCTURE

183 Proposition 2.2 showed that a pure Nash equilibrium (PNE) may not exist in the platform selection
 184 game. We now investigate the conditions under which a PNE does exist. To facilitate the analysis,
 185 we first introduce some basic notations.

186 **Definition 3.1** (Average Score). Let *average score* of model g_j be defined as $T_j := \sum_{\theta \in \Theta} \pi_{\theta} \cdot S_j(\theta)$

188 **Definition 3.2** (Attraction Term and Deviation Advantage). For a strategy profile $\mathbf{f} = (f_1, \dots, f_N)$
 189 with $f_i \in \mathbb{M}$, define $\mathbb{A}_{\mathbf{f}}(\theta) := \arg \max_{1 \leq i \leq N} S_{f_i}(\theta)$ as the set of maximizers for a user type θ ,
 190 and let $A_{\mathbf{f}}(\theta) := |\mathbb{A}_{\mathbf{f}}(\theta)|$ be the number of platforms tied for the maximum. Then, the *attraction*
 191 *term* for f_i in strategy \mathbf{f} is defined as

$$192 \quad Z_{f_i}(\theta; \mathbf{f}) := \begin{cases} \frac{N - A_{\mathbf{f}}(\theta)}{A_{\mathbf{f}}(\theta)} S_{f_i}(\theta) & \text{if } f_i \in \mathbb{A}_{\mathbf{f}}(\theta) \\ -S_{f_i}(\theta), & \text{otherwise} \end{cases} \quad (3)$$

196 The *deviation advantage* for f_i under strategy \mathbf{f} is defined as

$$197 \quad \delta_{f_i}(\mathbf{f}) := \sum_{\theta \in \Theta} \pi_{\theta} \cdot Z_{f_i}(\theta; \mathbf{f}) \quad (4)$$

200 Intuitively, the attraction term $Z_{f_i}(\theta; \mathbf{f})$ quantifies how much f_i benefits when it is among the
 201 winners for type θ , and how much it loses otherwise. Aggregated across all user types, the deviation
 202 advantage $\delta_{f_i}(\mathbf{f})$ represents the net gain of f_i relative to its competitors under the current strategy.

204 **Proposition 3.3.** [Utility Decomposition.] The expected utility $U_i(f_i; \mathbf{f}_{-i})$ of platform i in Eq. 2
 205 can be decomposed into T_{f_i} and $\delta_{f_i}(\mathbf{f})$ as:

$$206 \quad U_i(f_i; \mathbf{f}_{-i}) = \frac{1}{N} (T_{f_i} + \delta_{f_i}(\mathbf{f})). \quad (5)$$

209 **Lemma 3.4.** [Existence of Equilibrium] Consider the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with finite user types Θ , and
 210 N platforms choosing from M models \mathbb{G} , where $M \geq N$. A **fully differentiated equilibrium** $\mathbf{f}^* =$
 211 (f_1^*, \dots, f_N^*) exists if and only if for every platform i and every alternative model $f_i \in \mathbb{G} \setminus \{f_i^*\}$,

$$212 \quad T_{f_i^*} - T_{f_i} \geq \delta_{f_i}(\mathbf{f}_{-i}^* \cup f_i) - \delta_{f_i^*}(\mathbf{f}^*) \quad (6)$$

214 A **homogeneous equilibrium** $\mathbf{f}^* = (f_1^*, \dots, f_N^*)$, $f_i^* = m$ exists if and only if for some $m \in \mathbb{M}$,

$$215 \quad T_m - T_{f_i} \geq \delta_{f_i}(\mathbf{f}_{-m}^* \cup f_i) - \delta_m(\mathbf{f}^*) \quad (7)$$

216 **Scenario A:** fully differentiated equilibrium

$\pi_{\theta_A} = \pi_{\theta_B} = 0.5$		
θ_A	$S_1(\theta)$	$S_2(\theta)$
0.90	0.85	
θ_B	0.35	0.80

$f^* = (g_1, g_2)$

217 **Scenario B:** homogeneous equilibrium

$\pi_{\theta_A} = \pi_{\theta_B} = 0.5$		
θ_A	$S_1(\theta)$	$S_2(\theta)$
0.60	0.70	

θ_B

$f^* = (g_2, g_2)$

223 Figure 2: Two scenarios with the same average score gap $|T_2 - T_1| = 0.20$ but different deviation
224 advantage (δ_1, δ_2) for $N = 2$ and $M = 2$, resulting in opposite equilibrium outcomes. In Scenario
225 A, although g_1 has a lower average score ($T_1 < T_2$), it is still chosen in equilibrium because its strong
226 advantage on the high-weight type θ_A satisfies the differentiation condition. Removing this type-
227 specific advantage in Scenario B breaks the condition, leading to a homogeneous equilibrium on g_2 .
228 These scenarios demonstrate that market structure is not determined solely by average performance;
229 a strong local advantage in high-weight user segments can sustain a model's presence in equilibrium.
230 Full calculation details are provided in Section C.4.

232 The proof is given in Section C.3. Lemma 3.4 shows that market structure is determined by the
233 balance between average performance T and the deviation advantage δ . When average performance
234 is uniformly strong across models, platforms tend to converge on the single best model, where
235 performance alone cannot sustain multi-model entry. In contrast, when models differ in whom they
236 serve best, even uniformly weak models can secure adoption as platforms specialize, yielding a
237 differentiated market. To illustrate this, we provide an example in Fig. 2.

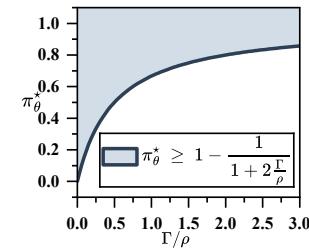
238 Lemma 3.4 also implies that market structure depends on the user distribution. Building on this,
239 Corollary 3.5 shows that when the user distribution is centralized, i.e., a single user type constitutes
240 a large fraction of the population, the market tends to converge to a homogeneous structure.

241 **Corollary 3.5** (High User Centralization \Rightarrow Homogeneous Equilibrium). *Assume there exists a
242 dominant user type θ^* with fraction π_{θ}^* and a model m satisfying: $\forall j \neq m, S_m(\theta^*) - S_j(\theta^*) \geq
243 \rho > 0$ and $\forall \theta \neq \theta^*, j \neq m, |S_j(\theta) - S_m(\theta)| \leq \Gamma$. If π_{θ}^* is sufficiently large and satisfies*

$$\pi_{\theta}^* \geq 1 - \frac{1}{1 + 2\frac{\Gamma}{\rho}}$$

247 then the homogeneous strategy $f^* = (m, \dots, m)$ is a pure-strategy Nash equilibrium.

249 Intuitively, ρ measures strength of the “majority advantage” of
250 model, Γ measures the maximum performance difference outside
251 the majority group, and $\frac{\Gamma}{\rho}$ measures the “relative strength of minority
252 variation to majority advantage.” From Corollary 3.5, increasing
253 π_{θ}^* effectively lowers the threshold of ρ needed for homogeneous
254 equilibrium. So even a small quality advantage ρ on the domi-
255 nant user type can outweigh potential gains from minority types
256 (bounded by Γ), allowing a single model to dominate the entire market.
257 To illustrate the parameter regime in which Corollary 3.5 ap-
258 plies, Fig. 3 plots the π_{θ}^* against $\frac{\Gamma}{\rho}$, the shaded region shows the pa-
259 rameter range where the homogeneous strategy $f^* = (m, \dots, m)$
260 is a PNE.



261 Figure 3: π_{θ}^* versus $\frac{\Gamma}{\rho}$.

262 4 USER WELFARE AND MARKET DIVERSITY

264 **Proposition 4.1.** [Coverage Value Calculation] Given a strategy profile $f = (f_1, \dots, f_N)$, the
265 coverage value in Definition 2.4 can be written as:

$$266 \quad 267 \quad 268 \quad 269 \quad V(f) = \frac{1}{N} \sum_{i=1}^N (T_{f_i} + \delta_{f_i}(f))$$

where T and δ are defined in Definitions 3.1 and 3.2, respectively.

270 **Scenario A:** fully differentiated equilibrium

	$\pi_{\theta_A} = \pi_{\theta_B} = 0.5$
	$S_1(\theta)$
θ_A	0.90
θ_B	0.35

$W = V(\mathbf{f}^*) = V(1, 2) = 0.85$

271 **Scenario B:** Add a new model g_3

	$\pi_{\theta_A} = \pi_{\theta_B} = 0.5$
	$S_1(\theta)$
θ_A	0.90
θ_B	0.35

$W = V(\mathbf{f}^*) = V(3, 3) = 0.84$

272 Figure 4: An example where enlarging the model pool decreases welfare. In Scenario A, with
273 models g_1 and g_2 , the equilibrium is fully differentiated with the welfare $W = 0.85$. Adding a new
274 model g_3 in Scenario B shifts the equilibrium to the homogeneous (g_3, g_3) , where welfare decreases
275 to $W = 0.84$. It pulls both platforms toward homogenization, thereby sacrificing the welfare of
276 minority types. The calculation details are provided in Section C.9.

277 Proposition 4.1 with proof in Section C.6 provides a closed-form expression for the coverage value
278 of any strategy profile \mathbf{f} , showing that the sum of individual platform utilities equals the coverage
279 value, i.e., $V(\mathbf{f}) = \sum_{i=1}^N U_i(\mathbf{f})$. However, under competition, self-interested platforms that each
280 maximize their own utility U_i do not necessarily achieve optimal user welfare, as discussed below.

281 **Lemma 4.2.** *Let W denote the user welfare (Definition 2.5) achieved under the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$,
282 and W_{opt} the social optimum welfare (Definition 2.6). Then, it always holds that $W \leq W_{\text{opt}}$.*

283 Note that the equality in Lemma 4.2 holds only in the degenerate cases: when $\mathbf{f}^* \in \arg \max_{\mathbf{f}} V(\mathbf{f})$
284 or when every $\mathbf{f}^{(t)}$ in the best-response cycle attains the maximum welfare value. Such situations
285 rarely occur in competitive markets, highlighting the misalignment between platform incentives and
286 user welfare as the social objective. We provide an example in Section C.8.

287 Next, we examine the impact of the number of models and platforms on the market. Intuitively,
288 enlarging the model pool \mathbb{G} or increasing the number of platforms N might be expected to promote
289 competition and enhance user welfare and market diversity. However, our counterexamples show
290 that neither approach is reliably effective. As illustrated in Fig. 4, expanding the model pool can
291 introduce a uniformly strong model, pulling the market toward homogenization and reducing welfare
292 for minority users, as shown in Corollary 3.5. Similarly, adding platforms can be counterproductive:
293 strategic interactions may induce best-response cycles or lead platforms to adopt weaker models to
294 avoid competition, thereby lowering welfare. These results demonstrate that welfare and diversity
295 are not monotone in competition intensity. Nonetheless, we can identify sufficient conditions under
296 which platform entry does not reduce welfare or diversity, as detailed in Proposition 4.3.

297 **Proposition 4.3.** *Consider a game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with an equilibrium \mathbf{f}^* . Let $\widehat{\mathcal{G}}(\mathbb{G}, \mathbb{I}' := \mathbb{I} \cup \{i^+\}, \Theta)$
298 be another game with one additional platform added. Suppose there exists a model $h \in \mathbb{G}$ and an
299 incumbent equilibrium strategy $\widehat{\mathbf{f}}$ from \mathbf{f}^* such that the extended profile $\widehat{\mathbf{f}} := (\mathbf{f}^*, h)$ satisfies the
300 best-response conditions: (i) the best response to \mathbf{f}^* is h ; (ii) no incumbent platform has a profitable
301 deviation against $\widehat{\mathbf{f}}$. Then $\widehat{\mathbf{f}}$ is an equilibrium of the game $\widehat{\mathcal{G}}$. Furthermore, the user welfare and
302 market diversity in $\widehat{\mathcal{G}}$ are at least as high as in \mathcal{G} , i.e., $\widehat{W} \geq W$ and $\widehat{D}_{\text{supp}} \geq D_{\text{supp}}$.*

311 5 FROM HARDMAX TO SOFTMAX USER CHOICE

312 Our main analysis adopts the hardmax user choice rule in Eq. 1, where each user deterministically
313 selects the platform whose model achieves the highest score $S_{f_i}(\theta)$ for their type θ , breaking ties
314 uniformly. This assumption makes the analysis of strategic interactions more straightforward. In
315 practice, however, users exhibit noisy and heterogeneous behavior rather than perfectly rational best
316 responses. A natural extension is a softmax choice model. Given a profile $\mathbf{f} = (f_1, \dots, f_N)$ and a
317 user type θ , we define

$$318 p_i^{\text{soft}}(\theta) := \frac{e^{S_{f_i}(\theta)/\tau}}{\sum_{k=1}^N e^{S_{f_k}(\theta)/\tau}} \quad (8)$$

319 where $\tau \geq 0$ is a temperature parameter controlling the level of randomness in user choice. When
320 $\tau \rightarrow \infty$, users are nearly indifferent and split across platforms almost uniformly. As τ decreases,

324 users concentrate more on higher-scoring platforms, and in the limit $\tau \rightarrow 0$ the softmax model
325 converges to the hardmax rule.

326
327 Indeed, our negative result on the existence of equilibrium (Proposition 2.2) extends to the softmax
328 user choice model. The platform game under Eq. 8 remains a finite normal-form game, and pure
329 Nash equilibria may not exist. Proposition C.7 in Appendix C.10 shows that any instance with no
330 PNE under the hardmax choice model remains without a PNE for all sufficiently small temperatures
331 τ in the softmax model. We also provide an example in Appendix C.10 demonstrating that, for a
332 fixed $\tau > 0$, the softmax model still admits no pure Nash equilibrium.
333

334 The utility decomposition (Proposition 3.3) and the existence of fully differentiated and homo-
335 geneous equilibrium (Lemma 3.4) also extend beyond the hardmax model. As shown in Ap-
336 pendix C.10, an analogous decomposition holds under softmax choice once the deviation term is
337 redefined as $\delta_{f_i}^{\text{soft}}(\mathbf{f})$ in Eq. 21. With this modified deviation, Lemma 3.4 carries over directly: the
338 equilibrium conditions retain the same form and can still be expressed as inequalities involving T_{f_i}
339 and $\delta_{f_i}^{\text{soft}}(\mathbf{f})$. This highlights that that market segmentation is not determined by average model per-
340 formance alone; a model with lower average performance may support a differentiated equilibrium
341 if it performs particularly well for certain user types.
342

343 Finally, our notion of welfare is largely independent of the choice rule. The only change is in the
344 relation between coverage $V(\mathbf{f})$ and platform utilities: under hardmax, $\sum_i U_i(\mathbf{f}) = V(\mathbf{f})$, whereas
345 under softmax $\sum_i U_i^{\text{soft}}(\mathbf{f}) \leq V(\mathbf{f})$, typically with strict inequality, which further increases the
346 misalignment between platform incentives and user welfare. Nevertheless, since the definition of
347 coverage and welfare is determined only by the available models and their scores, all comparisons
348 between $V(\mathbf{f})$ and W_{opt} , including Lemma 4.2 and its Proposition 4.3, remain valid.
349

350 6 DESIGNING COMPETITIVE MODELS FOR PLATFORM ADOPTION

351 In this section, we shift focus to model providers. Consider a single provider aiming to learn pa-
352 rameters ϕ for an entrant model g_ϕ that will be adopted by rational platforms. The provider seeks to
353 maximize an adoption-weighted quality objective:

$$354 \max F(\phi) := \sum_{\theta \in \Theta} \pi_\theta \sigma_\theta S_\phi(\theta)$$

355

356 where $\sigma_\theta \in [0, 1]$ represents the adoption probability that users of type θ would choose g_ϕ when it
357 competes against incumbents, and $S_\phi(\theta) = \mathbb{E}_{x \sim g_\phi} [r_\theta(x)]$ is the expected quality that user type θ
358 receives from g_ϕ .
359

360 To calculate σ_θ , suppose we can estimate the user distribution $\{\pi_\theta\}_{\theta \in \Theta}$ and the score $S_i(\theta)$ of
361 incumbent $i \in \mathbb{M}$. Let $\bar{S}(\theta) := \max_{j \in \mathbb{M}} S_j(\theta)$ be the best opponent score for user type θ . A hard
362 adoption rule would set $\sigma_\theta = 1$ when $S_\phi(\theta) > \bar{S}(\theta)$ and 0 otherwise. As this is non-differentiable
363 and unsuitable for gradient-based optimization, we adopt a Bradley-Terry Bradley & Terry (1952)
364 soft gate on the margin $\Delta_\theta := S_\phi(\theta) - \bar{S}(\theta)$ and define the adoption probability of type θ attracted
365 by the new model as $\sigma_\theta = \sigma(\beta \Delta_\theta)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$. Here, β controls the softness, as $\beta \rightarrow 0$,
366 σ_θ approaches the hard adoption.
367

368 We provide two solutions to solving the above optimization: 1) training data resampling; and 2)
369 direct-gradient optimization.

370 **Training Data Resampling.** We first adopt a resampling-based scheme that biases the training
371 data distribution toward user types with higher payoff weights $\alpha_\theta := \pi_\theta (\sigma_\theta)^\gamma \cdot \bar{S}(\theta)$, where $\gamma \geq 0$
372 emphasizes user types for which the entrant is more likely to outperform incumbents. Each data
373 point x is then assigned a sampling probability $\hat{w}(x)$, normalized from $w(x) \propto \sum_{\theta \in \Theta} \alpha_\theta v_\theta(x)$,
374 where $v_\theta(x) \in [0, 1]$ measures how strongly x is preferred by users of type θ . Specifically:

- 375 • **Structured data:** Each x has an attribute (e.g., class, domain, style) $u(x) \in \mathbb{U}$, and type θ
376 specifies a distribution $q_\theta(u)$. We set $v_\theta(x) = q_\theta(u(x))$, i.e., the probability that x matches type
377 θ 's preferred attribute. Sampling then proceeds by first drawing $u \sim \hat{w}(u) \propto \sum_\theta \alpha_\theta q_\theta(u)$, and
378 then sampling $x \sim D(\cdot | u)$.

378 • **Unstructured data:** We use the reward itself $v_\theta = \text{normalize}(r_\theta(x))$, so data points yielding
 379 higher expected rewards for type θ are sampled more frequently.
 380

381 In this method, type weights are computed based on σ_θ and $\bar{S}(\theta)$, and the model g_ϕ is trained on
 382 data resampled according to these weights. This method alters the data distribution but not the loss
 383 function, making it compatible with standard training pipelines while effectively biasing training
 384 toward strategically valuable user types. The detailed procedure is provided in Algorithm 1.

385 **Direct-Gradient Optimization.** We train the model to directly improve both its generation quality
 386 and its competitive attractiveness against fixed opponents. Specifically, the training objective is:
 387

$$\arg \min_{\phi} L(\phi) := \mathcal{L}(\phi) - \lambda F(\phi) \quad (9)$$

388 where $\mathcal{L}(\phi)$ is the standard loss ensuring that the model maintains overall sample quality, and $F(\phi)$
 389 is the adoption-weighted quality objective that promotes competitiveness. The trade-off parameter
 390 $\lambda \geq 0$ balances quality and competitiveness. The main challenge in optimizing this objective via
 391 gradient descent lies in computing the gradient of $F(\phi)$. Note that the only term depending on ϕ in
 392 $F(\phi) = \sum_{\theta \in \Theta} \pi_\theta \sigma_\theta S_\phi(\theta)$ is $S_\phi(\theta) = \mathbb{E}_{x \sim g_\phi} [r_\theta(x)]$. By the chain rule, we have:
 393

$$\nabla_\phi F(\phi) = \sum_{\theta \in \Theta} \pi_\theta [\sigma_\theta + \beta \sigma_\theta (1 - \sigma_\theta) S_\phi(\theta)] \cdot \nabla_\phi S_\phi(\theta)$$

394 We next present two estimators for $\nabla_\phi S_\phi(\theta)$. The detailed procedure is shown in Algorithm 2.
 395

396 • **Pathwise gradient:** This estimator applies when both the reward function $r_\theta(x)$ (e.g., classifier
 397 score, probability output) and the generative model (e.g., GAN (Goodfellow et al., 2014),
 398 DDPM (Ho et al., 2020), SGM (Song & Ermon, 2019)) are differentiable. The model samples
 399 $x = g_\phi(\xi)$, where $\xi \sim p_0(\xi)$ is drawn from a fixed prior p_0 and g_ϕ is a deterministic transforma-
 400 tion of the noise ξ , then
 401

$$\nabla_\phi S_\phi(\theta) = \mathbb{E}_\xi \left[\nabla_x r_\theta(x) \Big|_{x=g_\phi(\xi)} \cdot J_\phi g_\phi(\xi) \right]$$

402 where $J_\phi g_\phi(\xi)$ is the Jacobian of $g_\phi(\xi)$ with respect to ϕ .
 403

404 • **REINFORCE gradient** (Williams, 1992): This estimator applies when either the reward function
 405 $r_\theta(x)$ (e.g., discrete 0/1 feedback) or the generative process (e.g., SeqGAN (Yu et al., 2017),
 406 MaliGAN (Che et al., 2017)) is non-differentiable. With a moving-average baseline b_θ to reduce
 407 gradient variance and let $p_\phi(x)$ is the model distribution, then
 408

$$\nabla_\phi S_\phi(\theta) = \mathbb{E}_{x \sim p_\phi} [(r_\theta(x) - b_\theta) \nabla_\phi \log(p_\phi(x))]$$

412 7 EXPERIMENTS

413 In this section, we conduct experiments on both synthetic (Section D) and real-world data to provide
 414 a reproducible prototype for validating the theory.
 415

416 **Model Pool.** We adopt a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) trained
 417 on the full CIFAR-10 dataset (Krizhevsky, 2009), contains 60,000 images from 10 classes $\mathbb{C} =$
 418 $\{\text{airplane} := 0, \text{automobile} := 1, \text{bird} := 2, \text{cat} := 3, \text{deer} := 4, \text{dog} := 5, \text{frog} := 6, \text{horse} :=$
 419 $7, \text{ship} := 8, \text{truck} := 9\}$, as the base model. To construct preference-oriented variants, we apply
 420 Low-Rank Adaptation (LoRA) (Hu et al., 2022) fine-tuning with different class-specific subsets.
 421 The choice of class groups and LoRA hyperparameters for each variant is summarized in Table 1.
 422 Each variant captures preferences aligned with a subset of CIFAR-10 classes.
 423

424 **User Group.** We partition the user population into six groups, each characterized by heteroge-
 425 neous preferences over CIFAR-10 classes. Formally, for user group θ , we specify a distribution of
 426 weights $\theta = \{\theta_c\}_{c \in \mathbb{C}}$, $\sum_{c \in \mathbb{C}} \theta_c = 1$, the details are given in Table 2.
 427

428 **Reward Function.** We employ pretrained ResNet20 model (He et al., 2016) with the 92.60%
 429 Top-1 accuracy trained on CIFAR-10 and held fixed during experiments, assume $p_{\text{acc}}(c | x)$ is the
 430 posterior class probability computed by this model for class c . Then the reward of v for user type θ
 431 is calculated by $r_\theta(x) = \sum_{c \in \mathbb{C}} \theta_c \cdot p_{\text{acc}}(c | x)$. For every calculation of S , we sample 2000 samples.
 432

432
433

Table 1: Model Pool

434
435
436
437
438
439
440
441
442
443

#	classes	d	α_ℓ	η_ℓ
M1	airplane, auto	4	16	1.0
M2	ship, truck	4	16	1.0
M3	bird, cat	4	16	1.0
M4	cat, dog	8	32	1.5
M5	cat, dog	4	16	1.0

Notes: d denotes the LoRA rank, α_ℓ is the LoRA scaling factor, and η_ℓ is the external scale applied during fine-tuning.

444
445
446
447
448
449
450

Discrete Best-Response Simulation. The average performance of the five models T_i and their user-specific performance $S_i(\theta)$ are shown in Fig. 8 in Section E.1, where we conduct a discrete best-response simulation by progressively enlarging the model pool (from 1 to 5 models with 3 players) and increasing the number of platforms (from 1 to 6 players with 5 models). At each round, platforms update their strategies by choosing the best response among the available models, given the current distribution of opponents' choices. For each game, we perform three independent runs and track diversity D_{HHI} and coverage value $V(\mathbf{f})$ at every step t of best-response dynamics.

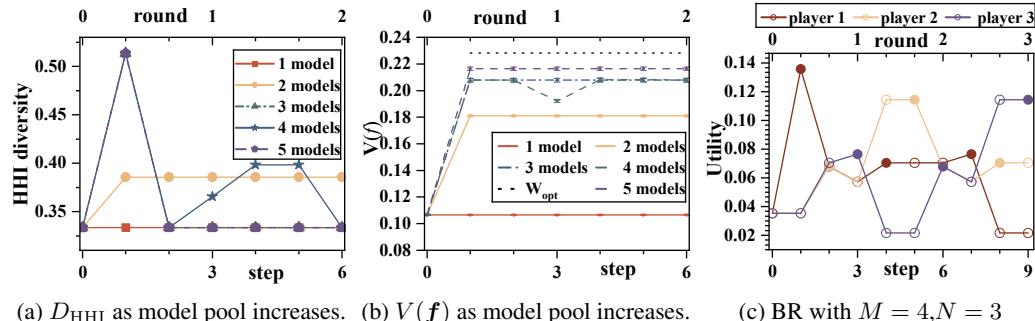
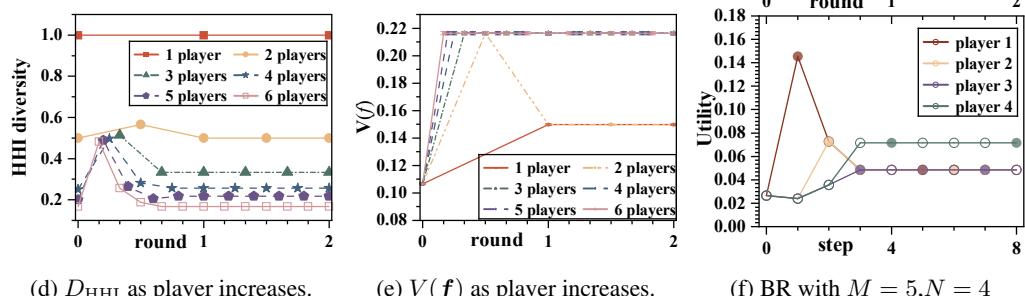
451
452
453
454
455
456
457
458
459
460461
462
463
464
465
466
467
468
469
470471
472
473
474
475
476
477

Figure 5: When enlarging either the model pool (a,b) with 3 players or the number of platforms (d,e) with 5 models, the change of HHI diversity ((a,d), where larger values indicate more homogenization) and coverage value ((b,e), where larger values are better). (c,f) provide examples of utility trajectories across best-response steps, where filled markers denote the player taking the action at each step. (c) shows best-response cycle and (d) shows an equilibrium.

478
479
480
481
482
483
484
485

From the Fig. 5a, enlarging the model pool does not automatically increase diversity. Only when the newly introduced models are sufficiently distinct (add M2 or M3) can they enhance diversity. By contrast, strong entrants that are merely close substitutes for existing leaders tend to homogenize the market (add M5), as platforms converge toward the same high-performing options. This reproduces the convergence phenomenon widely observed in today's generative model markets. Increasing the number of platforms in Fig. 5d, however, expands adoption opportunities and thus promotes diversity. In terms of welfare, adding more platforms as Fig. 5e (which enables greater choice) improves user welfare and accelerates its growth. However, welfare never reaches the social optimum. The trajectory examples in Fig. 5c and Fig. 5f further reveal that early movers often select the "best"

model, but are later forced to share its benefits with subsequent players, leaving their utilities suboptimal. In contrast, players who move later sometimes adopt models that are less attractive globally but provide relative advantages when not shared, resulting in higher individual utilities.

In Section D, we systematically vary the model pool size, the number of platform players, and the user group distributions on synthetic data, with detailed results and figures provided.

Algorithmic Best-Response Entry. The hyperparameters and full algorithmic details are provided in the Section E.2.1. Section E.2.2 reports a systematic hyperparameter tuning for both methods. Both algorithms are initialized on the full CIFAR-10 dataset. The result is shown in Fig. 6.

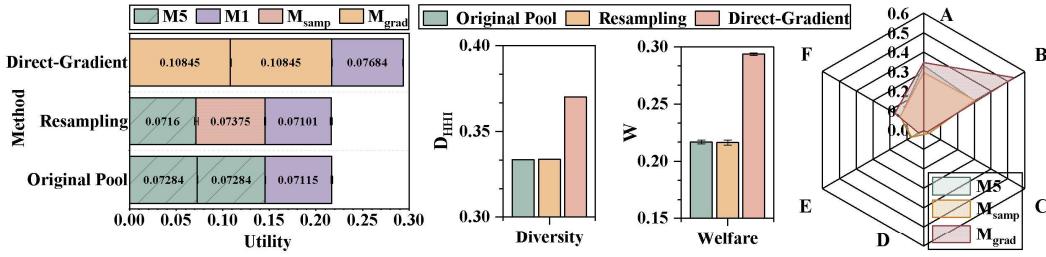


Figure 6: Performance of new models generated by the direct-gradient method M_{grad} and the resampling method M_{samp} . (a) Left: equilibrium outcomes and utilities of three players when competing over the original pool, after introducing M_{grad} and M_{samp} . (b) Middle: diversity D_{HHI} and welfare W_{eq} under the three equilibrium. (c) Right: comparison between the best original model M_5 and the new entrants M_{grad} , M_{samp} on user scores.

The direct-gradient method achieves stronger performance: it successfully replaces the best model in the original pool, dominates the market, and yields higher welfare and diversity. Moreover, it converges with fewer iterations (≈ 20). However, it requires modifying the model’s internal objective, and the diversity of sample classes is decreased as shown in Fig. 9.

The resampling method suffers from higher variance due to stochasticity. It only approaches the best model in the original pool, while reducing welfare. It is also more computationally demanding (≈ 10 resampling with 50 iterations each). However, the method has the practical advantage of being plug-and-play: it can be applied to any model without altering its loss function.

8 CONCLUSION

In this paper, we formalize generative AI markets as a three-layer model-platform-user game. From the platform perspective, we characterize conditions for both fully differentiated and homogeneous equilibria, showing that the market is jointly shaped by average model performance and user-specific deviation advantages. From the user perspective, we demonstrate that enlarging the model pool or increasing the number of platforms does not necessarily translate into higher welfare. From the model provider perspective, we propose training schemes that strategically facilitate entry into competitive markets. Together, these findings highlight inherent paradoxes in generative AI markets and point to design principles for more socially aligned ecosystems.

ETHICS STATEMENT

This work analyzes competitive generative model markets using both theoretical modeling and empirical experiments. Our analysis is abstracted from specific settings and does not involve sensitive personal data, human subjects, or system manipulations. Our findings raise broader ethical implications. The results show that competition among generative models may reduce diversity and user welfare, highlighting the need for responsible governance and transparent platform practices. The proposed training schemes are designed to advance understanding of market dynamics, not to pre-

540 scribe adversarial practices. Overall, this work aims to inform policy discussions and support the
541 design of more socially beneficial generative ecosystems.
542

543 **REPRODUCIBILITY STATEMENT**
544

545 We ensure reproducibility by including all definitions, propositions, and proofs, and by detailing
546 model pool construction, user groups, reward functions, and evaluation metrics. Hyperparameters
547 and training procedures are documented in the appendix, and code will be released to support repli-
548 cation and extension of our results.
549

550 **REFERENCES**
551

552 Microsoft Azure. Azure OpenAI in foundry models. <https://azure.microsoft.com/en-us/products/ai-foundry/models/openai>, 2025. Accessed: 2025-09.
553

554 Omer Ben-Porat and Moshe Tennenholtz. Best response regression. In *Advances in Neural Infor-
555 mation Processing Systems*, volume 30. Curran Associates, Inc., 2017.
556

557 Omer Ben-Porat and Moshe Tennenholtz. Regression equilibrium. In *Proceedings of the 2019
558 ACM Conference on Economics and Computation*, pp. 173–191, New York, NY, USA, 2019.
559 Association for Computing Machinery. ISBN 9781450367929.
560

561 BigCode. Bigcode models leaderboard. <https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard>, 2023.
562

563 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
564 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
565

566 D.S. Broomhead and David Lowe. Multivariable functional. interpolation and adaptative networks.
567 *Complex Systems*, 2:321–355, 1988.
568

569 Canva. Canva: Visual suite for everyone. <https://www.canva.com>, 2025. Accessed: 2025-
09.
570

571 Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
572 Bengio. Maximum-likelihood augmented discrete generative adversarial networks, 2017. URL
573 <https://arxiv.org/abs/1702.07983>.
574

575 Cohere. Enterprise AI: Private, secure, customizable. <https://cohere.com>, 2025. Accessed:
2025-09.
576

577 Anil R. Doshi and Oliver P. Hauser. Generative AI enhances individual creativity but reduces the
578 collective diversity of novel content. *Science Advances*, 10(28):eadn5290, 2024.
579

580 Saman Ebadi, Hassan Nejadghanbar, Ahmed Rawdhan Salman, and Hassan Khosravi. Exploring
581 the impact of generative AI on peer review: Insights from journal reviewers. *Journal of Academic
582 Ethics*, 23(3):1383–1397, September 2025.
583

584 Ohad Einav and Nir Rosenfeld. A market for accuracy: Classification under competition. In *Forty-
585 second International Conference on Machine Learning*, 2025.
586

587 Alireza Fallah, Michael I. Jordan, Ali Makhdoomi, and Azarakhsh Malekian. On three-layer data
588 markets, 2024. URL <https://arxiv.org/abs/2402.09697>.
589

590 Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
591 lilm leaderboard v2. https://huggingface.co/spaces/open-lilm-leaderboard/open_lilm_leaderboard, 2024.
592

593 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
594 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Proceedings of the 28th
595 International Conference on Neural Information Processing Systems*, pp. 2672–2680, Cambridge,
596 MA, USA, 2014. MIT Press.

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
595 nition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778,
596 2016.

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceed-
598 ings of the 34th International Conference on Neural Information Processing Systems*, Red Hook,
599 NY, USA, 2020. Curran Associates Inc.

600 Noah Hong, Jiwoo andLee and James Thorne. ORPO: Monolithic preference optimization with-
601 out reference model. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
602 Language Processing*, pp. 11170–11189, Miami, Florida, USA, November 2024.

603 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
604 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
605 ference on Learning Representations*, 2022. URL [https://openreview.net/forum?
606 id=nZeVKeFYf9](https://openreview.net/forum?id=nZeVKeFYf9).

607 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
608 Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
609 2024.

610 Meena Jagadeesan, Nikhil Garg, and Jacob Steinhardt. Supply-side equilibria in recommender sys-
611 tems. In *Advances in Neural Information Processing Systems*, volume 36, pp. 14597–14608.
612 Curran Associates, Inc., 2023a.

613 Meena Jagadeesan, Michael Jordan, Jacob Steinhardt, and Nika Haghtalab. Improved bayes risk
614 can yield reduced social welfare under competition. In *Thirty-seventh Conference on Neural
615 Information Processing Systems*, 2023b.

616 MSV Janakiram. AWS and Hugging Face partner to offer an alternative to Microsoft’s Azure Ope-
617 nAI service, 2023. URL <https://www.forbes.com/sites/janakirammsv/2023/02/22/aws-and-hugging-face-partner-to-offer-an-alternative-to-microsofts-azure-openai-service/>. Forbes.

618 Atreyi Kankanhalli. Peer review in the age of generative AI. *Journal of the Association for Infor-
619 mation Systems*, 25(1):76–84, 2024.

620 Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

621 Yishay Mansour, Aleksandrs Slivkins, and Zhiwei Steven Wu. Competing bandits: Learning under
622 competition. In *9th Innovations in Theoretical Computer Science Conference (ITCS 2018)*, vol-
623 ume 94 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pp. 48:1–48:27, Dagstuhl,
624 Germany, 2018.

625 Dov Monderer and Lloyd S. Shapley. Potential games. *Games and Economic Behavior*, 14(1):
626 124–143, 1996. ISSN 0899-8256. doi: <https://doi.org/10.1006/game.1996.0044>.

627 Heise Online Newsroom. Design App: Leonardo image generator for Canva visual suite,
628 2024. URL <https://www.heise.de/en/news/Design-app-Leonardo-image-generator-for-Canva-Visual-Suite-9990188.html>. Heise Online.

629 Manish Raghavan. Competition and diversity in generative AI, 2024. URL <https://arxiv.org/abs/2412.08610>.

630 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
631 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, Ivan Ev-
632 timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
633 Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
634 Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
635 URL <https://arxiv.org/abs/2308.12950>.

648 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
649 In *Proceedings of the 33rd International Conference on Neural Information Processing Systems*,
650 Red Hook, NY, USA, 2019. Curran Associates Inc.

651

652 Digital Trends Staff. Stable Diffusion vs Midjourney - which is the best A art tool? *Digital Trends*, 2025a. URL <https://www.digitaltrends.com/computing/stable-diffusion-vs-midjourney/>.

653

654

655 EWeek Staff. Midjourney vs Stable Diffusion: 2025's creative clash. *EWeek*, 2025b.
656 URL <https://www.ewEEK.com/artificial-intelligence/midjourney-vs-stable-diffusion/>.

657

658

659 Investopedia Staff. Aws brings Claude 3 opus to Amazon bedrock, increasing competitiveness,
660 2024. URL <https://www.investopedia.com/aws-brings-claude-3-opus-to-amazon-bedrock-increasing-competitiveness-8634254>. Investopedia.

661

662 Boaz Taitler and Omer Ben-Porat. Braess's paradox of generative AI. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(13):14139–14147, 2025.

663

664 James Vincent. Canva adds a new generative AI platform to its growing creative empire, 2024. URL <https://www.theverge.com/2024/7/30/24209421/canva-leonardo-generative-ai-platform-acquisition-design-software>. The Verge.

665

666

667

668 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 8(3):229–256, May 1992. ISSN 1573-0565.

669

670

671 Fan Wu, Emily Black, and Varun Chandrasekaran. Generative monoculture in Large Language Models. In *International Conference on Representation Learning*, volume 2025, pp. 33068–33107, 2025.

672

673

674

675 Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, and Haifeng Xu. How bad is Top- k recommendation under competing content creators? In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 39674–39701. PMLR, 23–29 Jul 2023.

676

677

678

679 Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, and Haifeng Xu. Human vs. generative AI in content creation competition: Symbiosis or conflict? In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 56885–56913. PMLR, 21–27 Jul 2024a.

680

681

682

683 Fan Yao, Yiming Liao, Mingzhe Wu, Chuanhao Li, Yan Zhu, James Yang, Jingzhou Liu, Qifan Wang, Haifeng Xu, and Hongning Wang. User welfare optimization in recommender systems with competing content creators. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3874–3885, New York, NY, USA, 2024b. Association for Computing Machinery.

684

685

686

687

688

689 Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: sequence generative adversarial nets with policy gradient. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence*, pp. 2852–2858. AAAI Press, 2017.

690

691

692 Simone Zhang, Janet Xu, and AJ Alvero. Generative AI meets open-ended survey responses: Research participant use of AI and homogenization. *Sociological Methods & Research*, 53(3):1197–1242, 2025.

693

694

695

696

697

698

699

700

701

702 **A RELATED WORK**

703
704 Recent advances in machine learning have created markets where multiple models coexist and com-
705 pete for user adoption. In such competitive environments, the strategic interactions among providers
706 critically shape both market outcomes and overall social welfare.

707 Competition among classification models has been extensively studied through the market design
708 and strategic learning. A key insight is that in competitive markets, maximizing classification ac-
709 curacy alone does not guarantee higher adoption or improved social welfare. For example, re-
710 cent work Einav & Rosenfeld (2025) formalizes the accuracy market, where multiple classification
711 providers compete for users, showing that optimal strategies must account for rivals' actions rather
712 than accuracy in isolation. Similarly, Ben-Porat & Tennenholz (2017) study the learnability of opti-
713 mal responses in competitive regression, and further establish that pure-strategy equilibria exist and
714 that competition may induce strategic misprediction (Ben-Porat & Tennenholz, 2019). Further, Ja-
715 gadeesan et al. (2023b) demonstrate that even when individual predictors achieve lower Bayes risk,
716 strategic competition can paradoxically reduce overall social welfare. Extending beyond classifica-
717 tion and regression, Yao et al. (2023) analyze how top-K recommendation performs under competing
718 content creators, showing that user welfare losses remain bounded, while Yao et al. (2024b) propose
719 platform interventions that directly optimize user welfare in such competitive recommendation envi-
720 ronments. Overall, these results show that accuracy must be assessed in the context of competition,
721 entry, and social welfare.

722 As model capabilities improve, research has increasingly focused on competition among generative
723 models. Raghavan (2024) show that equilibrium under generative AI competition tends toward
724 content homogeneity, even when models perform well in isolation, while stronger competition can
725 counteract this effect. Empirical studies further suggest that generative AI usage in areas such as
726 peer review Ebadi et al. (2025); Kankanhalli (2024), writing Doshi & Hauser (2024), and creative
727 generation Wu et al. (2025) often associated with reduced output diversity. Beyond model-model
728 competition, recent work also examines the interplay between humans and generative models: at
729 the creator level, Yao et al. (2024a) model competition between human creators and generative AI
730 using a generalized contest framework, showing conditions for coexistence, conflict, or even the
731 absence of stable equilibria; while at the platform level, Taitler & Ben-Porat (2025) demonstrate
732 that generative AI can paradoxically reduce overall welfare in human-driven platforms, echoing
733 Braess's paradox.

734 Unlike prior studies that focus on two-layer market, our work formalizes a three-layer model-
735 platform-user game. Under the assumption of deterministic user choice, we show that pure Nash
736 equilibria may fail to exist. Building on this observation, we characterize the conditions under which
737 equilibria arise and analyze how the resulting market structures shape welfare and diversity as the
738 set of available models becomes richer. Moreover, we depart from prior work by adopting the per-
739 spective of model providers, and propose best-response entry training schemes that allow entrants
740 to strategically introduce new models, which is an angle largely absent in the existing literature on
model competition.

741
742 **B DISCUSSION**

743
744 **Platforms with Multiple Models.** For tractability, the current framework assumes that each plat-
745 form selects a single model. However, it can be extended naturally to accommodate multiple models
746 per platform. In this setting, each platform's strategy would be a set of models M_i , and user choice
747 could depend on the highest-performing model in that set for their type, $\hat{S}_i(\theta) = \max_{j \in M_i} S_j(\theta)$,
748 or an expected score $\hat{S}_i(\theta) = \mathbb{E}_{j \in M_i} S_j(\theta)$. The three-layer market formalization remains as before,
749 with platform payoffs computed using $\hat{S}_i(\theta)$ instead of $S_i(\theta)$, and best responses now taken over
750 model mixtures rather than single models. Then, many of the existing analysis, such as the utility
751 decomposition, equilibrium characterization, and welfare analysis, can be generalized to this setting.

752
753 **Partially Overlapping Markets.** Our framework is designed for settings where platforms offer
754 comparable services and draw from a shared pool of models M . In such markets, platforms face
755 similar types of demand (e.g., overlapping mixes of coding and translation tasks), and their strategic
decision is which model from this common pool to deploy in order to attract groups. By contrast,

756 if different platforms specialize in largely disjoint services (e.g., one focuses almost exclusively on
757 coding while another focuses almost exclusively on translation), then their effective model pools
758 may overlap only partially or not at all. In that case, they are not competing for the same user base
759 in the sense of our model: a user might naturally use both services for different tasks, and platforms
760 no longer face a shared competitive environment. Extending the framework to this multi-market or
761 partially overlapping-market environments is an interesting direction for future work.

762
763 **Dynamic Interactions.** Our analysis focuses on first-round interactions in a static, complete-
764 information setting. In practice, user behavior and platform strategies evolve gradually: the data
765 distribution shifts under repeated deployments, and models are retrained iteratively. Incorporating
766 these multi-round feedback effects into our three-layer framework is left for future work.

768 C PROOFS

770 C.1 PROOF OF PROPOSITION 2.2

772 **Proposition 2.2.** [Nonexistence of PNE] Consider the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with finite sets of platforms
773 \mathbb{I} , models \mathbb{G} , and user types Θ , where each platform i chooses a model $f_i \in \mathbb{M}$ based on Eq. 1. The
774 game may not admit a pure-strategy Nash equilibrium \mathbf{f}^* .

775 *Proof.* We provide a constructive counterexample here. Let $\Theta = \{\boldsymbol{\theta}_A, \boldsymbol{\theta}_B, \boldsymbol{\theta}_C\}$ with uniform
776 weights $\pi(\boldsymbol{\theta}_k) = \frac{1}{3}$. Let $\mathbb{G} = \{g_1, g_2, g_3\}$ and define scores:

	$S_1(\boldsymbol{\theta})$	$S_2(\boldsymbol{\theta})$	$S_3(\boldsymbol{\theta})$
$\boldsymbol{\theta}_A$	0.2	0.1	0
$\boldsymbol{\theta}_B$	0	0.2	0.1
$\boldsymbol{\theta}_C$	0.1	0	0.2

782 Then when there are two players, the payoff matrix is :

$\mathbf{f} = (f_1, f_2)$	g_1	g_2	g_3
g_1	(0.05, 0.05)	(0.1, 0.067)	(0.067, 0.1)
g_2	(0.067, 0.1)	(0.05, 0.05)	(0.1, 0.067)
g_3	(0.1, 0.067)	(0.067, 0.1)	(0.05, 0.05)

783 On the diagonal (g_k, g_k) each platform gets 0.05. Against g_k , the unique best response is the model
784 that yields 0.10, so any diagonal profile is profitably deviated from. Off the diagonal, the player
785 receiving 0.067 can switch to the third model and improve to 0.10. Hence no profile is a mutual best
786 response; therefore no PNE exists. \square

793 C.2 PROOFS OF PROPOSITION 3.3

795 To illustrate the intuition, we first consider the case with two platforms $N = 2$.

796 The strategy profile is $\mathbf{f} = (f_i, f_j)$, in this case, the attraction term in Definition 3.2 simplifies to:

$$797 \quad Z_{ij}(\boldsymbol{\theta}) := \begin{cases} S_{f_i}(\boldsymbol{\theta}) & \text{if } S_{f_i}(\boldsymbol{\theta}) > S_{f_j}(\boldsymbol{\theta}) \\ 0 & \text{if tie} \\ -S_{f_i}(\boldsymbol{\theta}) & \text{if } S_{f_i}(\boldsymbol{\theta}) < S_{f_j}(\boldsymbol{\theta}) \end{cases} \quad (10)$$

802 which measures how much user type $\boldsymbol{\theta}$ strictly prefers f_i over f_j . Accordingly, the deviation advan-
803 tage is:

$$804 \quad \delta_{ij} := \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) \cdot Z_{ij}(\boldsymbol{\theta}) \quad (11)$$

806 **Proposition C.1** (Utility Decomposition for two platforms.). Suppose $N = 2$, let $i, j \in \mathbb{I}$ be the two
807 players who choose model f_i and f_j under strategy \mathbf{f} . Then the expected utility is

$$809 \quad U_i(f_i, f_j) = \begin{cases} \frac{1}{2}T_{f_i} & \text{if } f_i = f_j \\ \frac{1}{2}(T_{f_i} + \delta_{ij}) & \text{if } f_i \neq f_j \end{cases} \quad (12)$$

810 *Proof.* Consider the case with two platforms ($N = 2$) and strategy profile $\mathbf{f} = (f_i, f_j)$, let $Win_i =$
 811 $\{\boldsymbol{\theta} : S_{f_i}(\boldsymbol{\theta}) > S_{f_j}(\boldsymbol{\theta})\}$, $Tie = \{\boldsymbol{\theta} : S_{f_i}(\boldsymbol{\theta}) = S_{f_j}(\boldsymbol{\theta})\}$, $Loser_i = \{\boldsymbol{\theta} : S_{f_i}(\boldsymbol{\theta}) < S_{f_j}(\boldsymbol{\theta})\}$.
 812

813 With Eq. 1, a type $\boldsymbol{\theta}$ is fully assigned to the winner, split evenly on a tie, and assigned zero to the
 814 loser. Therefore, the utility of the platform choosing g_i is:

$$815 \quad U_i(f_i, \mathbf{f}_{-i}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi_{\boldsymbol{\theta}} \cdot p_i(\boldsymbol{\theta}) \cdot S_{f_i}(\boldsymbol{\theta}) = \sum_{\boldsymbol{\theta} \in Win_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) + \frac{1}{2} \sum_{\boldsymbol{\theta} \in Tie} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta})$$

818 By definition,

$$820 \quad T_i = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) = \sum_{\boldsymbol{\theta} \in Win_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) + \sum_{\boldsymbol{\theta} \in Tie} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) + \sum_{\boldsymbol{\theta} \in Loser_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta})$$

$$823 \quad \delta_{ij} = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) Z_{ij}(\boldsymbol{\theta}) = \sum_{\boldsymbol{\theta} \in Win_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) - \sum_{\boldsymbol{\theta} \in Loser_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta})$$

825 Adding these two:

$$827 \quad T_{f_i} + \delta_{ij} = 2 \sum_{\boldsymbol{\theta} \in Win_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) + \sum_{\boldsymbol{\theta} \in Tie} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta})$$

830 Then

$$831 \quad \frac{1}{2} (T_{f_i} + \delta_{ij}) = \sum_{\boldsymbol{\theta} \in Win_i} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) + \frac{1}{2} \sum_{\boldsymbol{\theta} \in Tie} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) = u_i$$

834 If both platforms choose the same model, then all users are split evenly, so

$$835 \quad u_i = u_j = \frac{1}{2} \sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) = \frac{1}{2} T_{f_i}.$$

838 Therefore, for $N = 2$:

$$840 \quad U_i(f_i, f_j) = \begin{cases} \frac{1}{2} T_{f_i} & \text{if } f_i = f_j \\ \frac{1}{2} (T_{f_i} + \delta_{ij}) & \text{if } f_i \neq f_j \end{cases}$$

842 \square

844 **Proposition 3.3.** [Utility Decomposition.] The expected utility $U_i(f_i; \mathbf{f}_{-i})$ of platform i in Eq. 2
 845 can be decomposed into T_{f_i} and $\delta_{f_i}(\mathbf{f})$ as:

$$846 \quad U_i(f_i; \mathbf{f}_{-i}) = \frac{1}{N} (T_{f_i} + \delta_{f_i}(\mathbf{f})). \quad (5)$$

849 *Proof.* Fix a strategy profile $\mathbf{f} = (f_1, \dots, f_N)$ and a model f_i chosen by player i . Recall that let
 850 $\mathbb{M}(\mathbf{f}) = \{f_1, \dots, f_N\}$ denote the set of models used in this strategy. For a user type $\boldsymbol{\theta}$, define the
 851 set of maximizers $\mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta}) := \arg \max_{k \in \mathbb{M}(\mathbf{f})} S_k(\boldsymbol{\theta})$ and let $A_{\mathbf{f}}(\boldsymbol{\theta}) := |\mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta})|$ be the number of
 852 models tied for the maximum.

853 Under the rule, the share of type $\boldsymbol{\theta}$ that is allocated to a platform using f_i is

$$855 \quad p_i(\boldsymbol{\theta}; \mathbf{f}) := \begin{cases} \frac{1}{A_{\mathbf{f}}(\boldsymbol{\theta})} & f_i \in \mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta}) \\ 0 & f_i \notin \mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta}). \end{cases}$$

857 Hence the expected utility of player i equals

$$859 \quad U_i(f_i, \mathbf{f}_{-i}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) p_i(\boldsymbol{\theta}; \mathbf{f}) S_{f_i}(\boldsymbol{\theta}).$$

862 We now prove the following per-type identity:

$$863 \quad N \cdot p_j(\boldsymbol{\theta}; \mathbf{f}) \cdot S_{f_j}(\boldsymbol{\theta}) = S_{f_j}(\boldsymbol{\theta}) + Z_j(\boldsymbol{\theta}; \mathbf{f}) \quad \forall \boldsymbol{\theta} \in \Theta \quad (13)$$

864 where $Z_j(\boldsymbol{\theta}; \mathbf{f})$ is defined in Definition 3.2.
865

866 **Case 1:** $f_j \notin \mathbb{A}_f(\boldsymbol{\theta})$. Then $p_j(\boldsymbol{\theta}; \mathbf{f}) = 0$, so the left-hand side of Eq. 13 is 0. By Definition 3.2,
867 $Z_j(\boldsymbol{\theta}; \mathbf{f}) = -S_{f_j}(\boldsymbol{\theta})$, hence $S_{f_j}(\boldsymbol{\theta}) + Z_j(\boldsymbol{\theta}; \mathbf{f}) = S_{f_j}(\boldsymbol{\theta}) - S_{f_j}(\boldsymbol{\theta}) = 0$. Thus Eq. 13 holds.

868 **Case 2:** $j \in \mathbb{A}_f(\boldsymbol{\theta})$. Then $p_j(\boldsymbol{\theta}; \mathbf{f}) = \frac{1}{A_f(\boldsymbol{\theta})}$. Again by Definition 3.2
869

$$870 \quad 871 \quad Z_j(\boldsymbol{\theta}; \mathbf{f}) = \frac{N - A_f(\boldsymbol{\theta})}{A_f(\boldsymbol{\theta})} S_{f_j}(\boldsymbol{\theta})$$

872 Therefore
873

$$874 \quad S_{f_j}(\boldsymbol{\theta}) + Z_j(\boldsymbol{\theta}; \mathbf{f}) = \left(1 + \frac{N - A_f(\boldsymbol{\theta})}{A_f(\boldsymbol{\theta})}\right) S_{f_j}(\boldsymbol{\theta}) = \frac{N}{A_f(\boldsymbol{\theta})} S_{f_j}(\boldsymbol{\theta}) = N p_j(\boldsymbol{\theta}; \mathbf{f}) S_{f_j}(\boldsymbol{\theta})$$

876 So Eq. 13 also holds.
877

878 When we have Eq. 13, sum both sides over $\boldsymbol{\theta}$ with weights $\pi(\boldsymbol{\theta})$ and divide by N :
879

$$880 \quad \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) p_j(\boldsymbol{\theta}; \mathbf{f}) S_{f_j}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) (S_{f_j}(\boldsymbol{\theta}) + Z_j(\boldsymbol{\theta}; \mathbf{f})) = \frac{1}{N} (T_{f_j} + \delta_{f_j}(\mathbf{f}))$$

881 where $\delta_j(\mathbf{f}) := \sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) Z_j(\boldsymbol{\theta}; \mathbf{f})$.
882

883 Since $U_i(f_i, \mathbf{f}_{-i}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) p_i(\boldsymbol{\theta}; \mathbf{f}) S_{f_i}(\boldsymbol{\theta})$, we obtain:
884

$$885 \quad 886 \quad U_i(f_i, \mathbf{f}_{-i}) = \frac{1}{N} (T_{f_i} + \delta_{f_i}(\mathbf{f}))$$

887 \square
888

889 C.3 PROOFS OF LEMMA 3.4 890

891 We first consider the case with $N = 2$.
892

893 **Lemma C.2** (Conditions for Equilibrium for two platforms). *Consider a game with $N = 2$ platform
894 players choosing between M models \mathbb{G} with a finite users' type space Θ with weights $\pi(\boldsymbol{\theta}) \geq 0$,
895 $\sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) = 1$. The utility of each player is defined in Eq. 2. A strategy $\mathbf{f}^* = (f_1^* = g_i, f_2^* = g_j)$
896 with $i \neq j$ is a **fully differentiated equilibrium** iff*

$$897 \quad \begin{cases} T_i + \delta_{ij} \geq \max\{T_j, \max_{k \neq j} \{T_k + \delta_{kj}\}\} \\ T_j + \delta_{ji} \geq \max\{T_i, \max_{k \neq i} \{T_k + \delta_{ki}\}\} \end{cases} \quad (14)$$

898 When $M = 2$, the condition becomes
899

$$900 \quad -\delta_{ij} \leq T_i - T_j \leq \delta_{ji} \quad (15)$$

901 A strategy $\mathbf{f}^* = (f_1^*, f_2^*)$ is a **homogeneous equilibrium** where all $f_i^* = m$ for some $m \in \mathbb{M}$ iff
902

$$903 \quad \exists m \in M \text{ s.t. } T_m - T_k \geq \delta_{km} \quad \forall k \in \mathbb{M} \setminus \{m\} \quad (16)$$

904 When $M = 2$, the condition becomes
905

$$906 \quad T_j - T_i > \delta_{ij} \quad \text{or} \quad T_i - T_j > \delta_{ji} \quad (17)$$

907 *Proof.* First, let's consider that there is only two models, $N = 2$ and $M = 2$. Using Proposition C.1,
908 we obtain the utility of each model, from which the payoff matrix can be derived.
909

\mathbf{f}	g_i	g_j
g_i	$(\frac{1}{2}T_i, \frac{1}{2}T_i)$	$(\frac{1}{2}(T_i + \delta_{ij}), \frac{1}{2}(T_j + \delta_{ji}))$
g_j	$(\frac{1}{2}(T_j + \delta_{ji}), \frac{1}{2}(T_i + \delta_{ij}))$	$(\frac{1}{2}T_j, \frac{1}{2}T_j)$

910 Suppose players choose different models. This is a pure strategy Nash equilibrium if and only if
911 neither player wants to deviate, that is:
912

$$913 \quad \begin{cases} \frac{1}{2}(T_i + \delta_{ij}) \geq \frac{1}{2}T_j \\ \frac{1}{2}(T_j + \delta_{ji}) \geq \frac{1}{2}T_i \end{cases} \iff \begin{cases} T_i + \delta_{ij} \geq T_j \\ T_j + \delta_{ji} \geq T_i \end{cases}$$

918 Then the condition is:

$$-\delta_{ij} \leq T_i - T_j \leq \delta_{ij}$$

921 Suppose players choose the same model. This is a pure strategy Nash equilibrium if and only if
922 neither player wants to deviate:
923

$$\frac{1}{2}(T_j + \delta_{ji}) < \frac{1}{2}T_i \iff T_j + \delta_{ji} < T_i$$

926 or

$$\frac{1}{2}(T_i + \delta_{ij}) < \frac{1}{2}T_j \iff T_i + \delta_{ij} < T_j$$

930 Then the condition is:

$$T_j - T_i > \delta_{ij} \quad \text{or} \quad T_i - T_j > \delta_{ji}$$

933 Second, let's consider that there is more than two models. The payoff matrix is:
934

\mathbf{f}	g_i	g_j	\dots	g_k
g_i	$(\frac{1}{2}T_i, \frac{1}{2}T_i)$	$(\frac{1}{2}(T_i + \delta_{ij}), \frac{1}{2}(T_j + \delta_{ji}))$	\dots	$(\frac{1}{2}(T_i + \delta_{ik}), \frac{1}{2}(T_k + \delta_{ki}))$
g_j	$(\frac{1}{2}(T_j + \delta_{ji}), \frac{1}{2}(T_i + \delta_{ij}))$	$(\frac{1}{2}T_j, \frac{1}{2}T_j)$	\dots	$(\frac{1}{2}(T_j + \delta_{jk}), \frac{1}{2}(T_k + \delta_{kj}))$
\dots	\dots	\dots	\dots	\dots
g_k	$(\frac{1}{2}(T_k + \delta_{ki}), \frac{1}{2}(T_i + \delta_{ij}))$	$(\frac{1}{2}(T_k + \delta_{kj}), \frac{1}{2}(T_j + \delta_{jk}))$	\dots	$(\frac{1}{2}T_k, \frac{1}{2}T_k)$

941 Suppose players choose different models i, j . This is a pure strategy Nash equilibrium if and only if
942 neither player wants to deviate, that is:

$$\begin{cases} \frac{1}{2}(T_i + \delta_{ij}) \geq \frac{1}{2}T_j \\ \frac{1}{2}(T_i + \delta_{ij}) \geq \frac{1}{2}(T_k + \delta_{kj}) \quad \forall k \in M \\ \frac{1}{2}(T_j + \delta_{ji}) \geq \frac{1}{2}T_i \\ \frac{1}{2}(T_j + \delta_{ji}) \geq \frac{1}{2}(T_k + \delta_{ik}) \quad \forall k \in M \end{cases} \iff \begin{cases} T_i + \delta_{ij} \geq T_j \\ T_j + \delta_{ji} \geq T_i \end{cases}$$

948 Then the condition is:

$$\exists i \neq j \in M \text{ s.t. } \begin{cases} T_i + \delta_{ij} \geq \max\{T_j, \max_{k \neq j} \{T_k + \delta_{kj}\}\} \\ T_j + \delta_{ji} \geq \max\{T_i, \max_{k \neq i} \{T_k + \delta_{ki}\}\} \end{cases}$$

954 Suppose players choose different models m . This is a pure strategy Nash equilibrium if and only if
955 neither player wants to deviate:

$$\frac{1}{2}(T_j + \delta_{ji}) < \frac{1}{2}T_i \iff T_j + \delta_{ji} < T_i \quad \forall i \neq j$$

956 Then the condition is:

$$\exists m \in M \text{ s.t. } T_m - T_k \geq \delta_{km} \quad \forall k \in M \setminus \{m\}$$

957 \square

958 **Lemma 3.4. [Existence of Equilibrium]** Consider the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with finite user types Θ , and
959 N platforms choosing from M models \mathbb{G} , where $M \geq N$. A **fully differentiated equilibrium** $\mathbf{f}^* = (f_1^*, \dots, f_N^*)$ exists if and only if for every platform i and every alternative model $f_i \in \mathbb{G} \setminus \{f_i^*\}$,

$$T_{f_i^*} - T_{f_i} \geq \delta_{f_i}(\mathbf{f}_{-i}^* \cup f_i) - \delta_{f_i^*}(\mathbf{f}^*) \quad (6)$$

960 A **homogeneous equilibrium** $\mathbf{f}^* = (f_1^*, \dots, f_N^*)$, $f_i^* = m$ exists if and only if for some $m \in \mathbb{M}$,

$$T_m - T_{f_i} \geq \delta_{f_i}(\mathbf{f}_{-m}^* \cup f_i) - \delta_m(\mathbf{f}^*) \quad (7)$$

972 *Proof.* Fix a candidate profile $\mathbf{f}^* = (f_1^*, \dots, f_N^*)$. For any player i and any deviation $g \in \mathbb{G} \setminus \{f_i^*\}$,
 973 let $\mathbf{f}' = (f_1^*, \dots, f_{i-1}^*, g, f_{i+1}^*, \dots, f_N^*) = \mathbf{f}_{-i}^* \cup \{g\}$.
 974

975 By definition of a pure Nash equilibrium, \mathbf{f}^* is a PNE iff for all i and all such g ,

$$976 \quad U_i(\mathbf{f}^*) \geq U_i(\mathbf{f}')$$

977 Using Proposition 3.3, we have

$$978 \quad N \cdot U_i(\mathbf{f}^*) = T_{f_i^*} + \delta_{f_i^*}(\mathbf{f}^*) \quad N \cdot U_i(\mathbf{f}') = T_g + \delta_g(\mathbf{f}')$$

979 Therefore:

$$980 \quad T_{f_i^*} + \delta_{f_i^*}(\mathbf{f}^*) \geq T_g + \delta_g(\mathbf{f}')$$

981 Conversely, if it holds for all i and all $g \neq f_i^*$, then the above inequality reverses to $U_i(\mathbf{f}^*) \geq U_i(\mathbf{f}')$
 982 for every deviation, so no player profits from deviating and \mathbf{f}^* is a PNE. This completes the proof
 983 of the fully differentiated case.

984 The homogeneous case is similar, with $f_i^* = m$ for all i ; plugging m into the same inequality we
 985 obtain the desired results. \square
 986

987 C.4 CALCULATION OF THE EXAMPLE IN FIG. 2

989 **Scenario A:** Two user types $\Theta = \{\theta_A, \theta_B\}$ with equal weights $\pi(\theta_A) = \pi(\theta_B) = 0.5$. The model
 990 scores are:

	$S_1(\theta)$	$S_2(\theta)$
θ_A	0.90	0.85
θ_B	0.35	0.80

991 The average scores are:

$$992 \quad T_1 = 0.625, \quad T_2 = 0.825, \quad T_2 - T_1 = 0.20$$

993 The deviation advantages are:

$$994 \quad \delta_{12} = \frac{1}{2}(+0.90 - 0.35) = 0.275, \quad \delta_{21} = \frac{1}{2}(-0.85 + 0.80) = -0.025$$

995 The differentiation condition $-\delta_{12} \leq T_1 - T_2 \leq \delta_{21}$ becomes:

$$996 \quad -0.275 \leq -0.20 \leq -0.025$$

997 which holds. Hence, by Lemma C.2, the equilibrium is **full differentiated**: the two platforms select
 998 different models, even though $T_1 < T_2$.
 999

1000 The payoff matrix of this scenario is:

\mathbf{f}	g_1	g_2
g_1	(0.3125, 0.3125)	(0.45, 0.4)
g_2	(0.4, 0.45)	(0.4125, 0.4125)

1001 So the equilibrium is (g_1, g_2) or (g_2, g_1) .
 1002

1003 **Scenario B:** We keep $T_1 = 0.625$, $T_2 = 0.825$, and $T_2 - T_1 = 0.20$, but change the type-level
 1004 structure to weaken g_1 's advantage:

\mathbf{f}	g_1	g_2
g_1	(0.3125, 0.3125)	(0.45, 0.4)
g_2	(0.4, 0.45)	(0.4125, 0.4125)

1005 The deviation advantages are now:

$$1006 \quad \delta_{12} = \frac{1}{2}(-0.60 - 0.65) = -0.625, \quad \delta_{21} = \frac{1}{2}(+0.70 + 0.95) = 0.825$$

1007 The differentiation condition $-\delta_{12} \leq T_1 - T_2 \leq \delta_{21}$ becomes:

$$1008 \quad -0.625 \leq -0.20 \leq 0.825$$

1009 which fails. The consolidation condition $T_2 - T_1 > \delta_{12}$ or $T_1 - T_2 > \delta_{21}$ holds since $0.20 > -0.625$;
 1010 thus, the equilibrium is **homogeneous** on g_2 .
 1011

1012 The payoff matrix of this scenario is:

\mathbf{f}	g_1	g_2
g_1	(0.3125, 0.3125)	(0, 0.825)
g_2	(0.825, 0)	(0.4125, 0.4125)

1013 So the equilibrium is (g_2, g_2) .
 1014

1026 C.5 THE PROOF OF COROLLARY 3.5
1027

1028 **Corollary 3.5** (High User Centralization \Rightarrow Homogeneous Equilibrium). *Assume there exists a*
1029 *dominant user type θ^* with fraction π_{θ}^* and a model m satisfying: $\forall j \neq m, S_m(\theta^*) - S_j(\theta^*) \geq$*
1030 *$\rho > 0$ and $\forall \theta \neq \theta^*, j \neq m, |S_j(\theta) - S_m(\theta)| \leq \Gamma$. If π_{θ}^* is sufficiently large and satisfies*

$$\pi_{\theta}^* \geq 1 - \frac{1}{1 + 2\frac{\Gamma}{\rho}}$$

1034 *then the homogeneous strategy $\mathbf{f}^* = (m, \dots, m)$ is a pure-strategy Nash equilibrium.*

1036 *Proof.* We use the utility decomposition Proposition 3.3

$$N \cdot U_i(\mathbf{f}) = T_{f_i} + \delta_{f_i}(\mathbf{f})$$

1040 Suppose all players currently choose m , consider a deviation by a single platform to some $k \neq m$.
1041 Let Δ denote the utility gain from this deviation, then

$$\Delta = [T_k + \delta_k(\mathbf{f}_{-i}^* \cup \{k\})] - [T_m + \delta_m(\mathbf{f}^*)]$$

1044 The Δ is consists of three parts:

1046 **Loss on the dominant type θ^* :** Under \mathbf{f}^* , each platform receives a $\frac{1}{N}$ share of θ^* 's contribution
1047 $\frac{1}{N} S_m(\theta^*)$. After deviating to k , the deviator's share on θ^* becomes 0 because m strictly wins there.
1048 Using the margin $S_m(\theta^*) - S_k(\theta^*) \geq \rho$, the utility loss from θ^* is at least

$$\Delta U_{\theta^*} \geq \frac{\pi_{\theta}^* \rho}{N}$$

1052 **Gain on minority types where k wins:** On $\Theta \setminus \{\theta^*\}$, the total mass is $1 - \pi_{\theta}^*$. Wherever k wins
1053 m , the deviator's share improves from $\frac{1}{N}$ to 1. Since k 's per-type advantage over m is at most Γ ,
1054 the upper bound gain is

$$\Delta U_{\text{win}} \leq \frac{(1 - \pi_{\theta}^*) \Gamma}{N}$$

1058 **Additional loss on minority types where k loses:** On those types where m remains superior, the
1059 deviator's share falls from $\frac{1}{N}$ to 0. Bounding score levels by the same heterogeneity constant Γ , we
1060 get

$$\Delta U_{\text{lose}} \leq -\frac{(1 - \pi_{\theta}^*) \Gamma}{N}$$

1063 So the change:

$$\begin{aligned} \Delta &= \Delta U_{\text{win}} - \Delta U_{\text{lose}} - \Delta U_{\theta^*} \\ &= \frac{(1 - \pi_{\theta}^*) \Gamma}{N} + \frac{(1 - \pi_{\theta}^*) \Gamma}{N} - \frac{\pi_{\theta}^* \rho}{N} \\ &= \frac{2(1 - \pi_{\theta}^*) \Gamma - \pi_{\theta}^* \rho}{N} \end{aligned}$$

1071 Therefore, if $\Delta \leq 0$, $2(1 - \pi_{\theta}^*) \Gamma - \pi_{\theta}^* \rho \leq 0$, that is:

$$\pi_{\theta}^* \geq 1 - \frac{\rho}{\rho + 2\Gamma}$$

1075 so no player benefits from deviating and the homogeneous profile \mathbf{f}^* is a Nash equilibrium. So the
1076 condition is:

$$\boxed{\pi_{\theta}^* \geq 1 - \frac{\rho}{\rho + 2\Gamma}}$$

□

1080 C.6 PROOF OF PROPOSITION 4.1
1081

1082 **Proposition C.3.** Consider the case where $N = 2$ and fix a strategy $\mathbf{f} = (g_i, g_j)$. For each user
1083 type $\boldsymbol{\theta} \in \Theta$ with weight $\pi(\boldsymbol{\theta}) \geq 0$, the coverage value of the pair (i, j) is
1084

1085
$$V(i, j) = \frac{1}{2} (T_i + T_j + \delta_{ij} + \delta_{ji})$$
1086

1087 *Proof.* First, for any $i \neq j$,
1088

1089
$$\delta_{ij} + \delta_{ji} = \sum_{\boldsymbol{\theta} \in \Theta} \pi_{\boldsymbol{\theta}} |S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})| \quad (18)$$
1090

1091 Fix a type $\boldsymbol{\theta}$. Consider three cases.
1092

1093 **Case 1:** $S_i(\boldsymbol{\theta}) > S_j(\boldsymbol{\theta})$: Then $Z_{ij}(\boldsymbol{\theta}) = S_i(\boldsymbol{\theta})$ and $Z_{ji}(\boldsymbol{\theta}) = -S_j(\boldsymbol{\theta})$, so $Z_{ij}(\boldsymbol{\theta}) + Z_{ji}(\boldsymbol{\theta}) = S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta}) = |S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})|$.
1094

1095 **Case 2:** $S_i(\boldsymbol{\theta}) < S_j(\boldsymbol{\theta})$: Then $Z_{ij}(\boldsymbol{\theta}) = -S_i(\boldsymbol{\theta})$ and $Z_{ji}(\boldsymbol{\theta}) = S_j(\boldsymbol{\theta})$, so $Z_{ij}(\boldsymbol{\theta}) + Z_{ji}(\boldsymbol{\theta}) = S_j(\boldsymbol{\theta}) - S_i(\boldsymbol{\theta}) = |S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})|$.
1096

1097 **Case 3:** $S_i(\boldsymbol{\theta}) = S_j(\boldsymbol{\theta})$: Then $Z_{ij}(\boldsymbol{\theta}) = Z_{ji}(\boldsymbol{\theta}) = 0$, hence the sum is 0 = $|S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})|$.
1098

1099 Multiplying by $\pi_{\boldsymbol{\theta}}$ and summing over $\boldsymbol{\theta}$ yields the claim.
1100

1101 Use the pointwise identity: $\max\{a, b\} = \frac{1}{2} (a + b + |a - b|)$. Applying it with $a = S_i(\boldsymbol{\theta})$ and
1102 $b = S_j(\boldsymbol{\theta})$ and summing over $\boldsymbol{\theta}$:
1103

1104
$$\begin{aligned} V(i, j) &= \sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) \max\{S_i(\boldsymbol{\theta}), S_j(\boldsymbol{\theta})\} \\ &= \frac{1}{2} \sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) (S_i(\boldsymbol{\theta}) + S_j(\boldsymbol{\theta}) + |S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})|) \\ &= \frac{1}{2} \left(\underbrace{\sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) S_i(\boldsymbol{\theta})}_{T_i} + \underbrace{\sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) S_j(\boldsymbol{\theta})}_{T_j} + \underbrace{\sum_{\boldsymbol{\theta}} \pi(\boldsymbol{\theta}) |S_i(\boldsymbol{\theta}) - S_j(\boldsymbol{\theta})|}_{\delta_{ij} + \delta_{ji} \text{ by Eq. 18}} \right) \\ &= \frac{1}{2} (T_i + T_j + \delta_{ij} + \delta_{ji}) \end{aligned}$$
1115

1116 \square

1117 **Proposition 4.1.** [Coverage Value Calculation] Given a strategy profile $\mathbf{f} = (f_1, \dots, f_N)$, the
1118 coverage value in Definition 2.4 can be written as:
1119

1120
$$V(\mathbf{f}) = \frac{1}{N} \sum_{i=1}^N (T_{f_i} + \delta_{f_i}(\mathbf{f}))$$
1121

1122 where T and δ are defined in Definitions 3.1 and 3.2, respectively.
1123

1124
1125 *Proof.* Fix $\boldsymbol{\theta}$ and recall $\mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta}) := \arg \max_{k \in \mathbb{M}(\mathbf{f})} S_k(\boldsymbol{\theta})$ and $A_{\mathbf{f}}(\boldsymbol{\theta}) = |\mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta})|$. By the definition
1126 of $Z_j(\boldsymbol{\theta}; \mathbf{f})$:
1127

1128
$$\begin{aligned} \sum_{j \in \mathbb{M}(\mathbf{f})} (S_j(\boldsymbol{\theta}) + Z_j(\boldsymbol{\theta}; \mathbf{f})) &= \sum_{j \in \mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta})} \left(1 + \frac{N - A_{\mathbf{f}}(\boldsymbol{\theta})}{A_{\mathbf{f}}(\boldsymbol{\theta})} \right) S_j(\boldsymbol{\theta}) \\ &= \frac{N}{A_{\mathbf{f}}(\boldsymbol{\theta})} \sum_{j \in \mathbb{A}_{\mathbf{f}}(\boldsymbol{\theta})} S_j(\boldsymbol{\theta}) \\ &= N \max_{k \in \mathbb{M}(\mathbf{f})} S_k(\boldsymbol{\theta}) \end{aligned}$$
1133

Multiply by $\pi(\theta)$, sum over θ , and divide by N to obtain

$$\begin{aligned}
 V(\mathbf{f}) &= \frac{1}{N} \sum_{j \in \mathbb{M}(\mathbf{f})} \left(\sum_{\theta} \pi(\theta) S_j(\theta) + \sum_{\theta} \pi(\theta) Z_j(\theta; \mathbf{f}) \right) \\
 &= \frac{1}{N} \sum_{j \in \mathbb{M}(\mathbf{f})} (T_j + \delta_j(\mathbf{f})) \\
 &= \frac{1}{N} \sum_{i=1}^N (T_{f_i} + \delta_{f_i}(\mathbf{f}))
 \end{aligned}$$

□

C.7 PROOF OF LEMMA 4.2

Lemma 4.2. *Let W denote the user welfare (Definition 2.5) achieved under the game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$, and W_{opt} the social optimum welfare (Definition 2.6). Then, it always holds that $W \leq W_{\text{opt}}$.*

Proof. If $\mathcal{O} = \mathbf{f}^*$ is a PNE, then $W(\mathcal{O}) = V(\mathbf{f}^*) \leq \max_{\mathbf{f}} V(\mathbf{f}) = W_{\text{opt}}$ by definition.

If \mathcal{O} is a cycle $\mathbf{f}^{(1)}, \dots, \mathbf{f}^{(L)}$, then

$$W(\mathcal{O}) = \frac{1}{L} \sum_{t=1}^L V(\mathbf{f}^{(t)}) \leq \frac{1}{L} \sum_{t=1}^L \max_{\mathbf{f}} V(\mathbf{f}) = W_{\text{opt}}$$

since an arithmetic mean is at most its maximum term.

Therefore, $W(\mathcal{O}) \geq W_{\text{opt}}$

□

C.8 THE EXAMPLE OF LEMMA 4.2

Example C.4. Consider three user types $\theta_A, \theta_B, \theta_C$ with weights $\pi(\theta_A) = 0.5$, $\pi(\theta_B) = 0.3$, $\pi(\theta_C) = 0.2$. Their scores for each of the three models g_1, g_2, g_3 are:

	g_1	g_2	g_3
θ_A	0.434	0.698	0.760
θ_B	0.828	0.679	0.431
θ_C	0.343	0.776	0.565

The average scores are:

$$T_1 = 0.534, \quad T_2 = 0.7079, \quad T_3 = 0.6223.$$

The pairwise attraction shifts δ_{ij} are computed as in the model:

$$\delta_{12} = -0.0372, \quad \delta_{21} = 0.3005, \quad \delta_{13} = -0.0372$$

$$\delta_{31} = 0.3637, \quad \delta_{23} = 0.0099, \quad \delta_{32} = 0.1377$$

The coverage value of a pair (g_i, g_j) is

$$V(i, j) = \sum_{\theta} \pi_{\theta} \max\{S_{\theta}(g_i), S_{\theta}(g_j)\}$$

Numerically:

$$V(1, 2) = 0.7526, \quad V(1, 3) = 0.7414, \quad V(2, 3) = 0.7389$$

Thus, the socially optimal pair is (g_1, g_2) with

$$W_{\text{opt}} = 0.7526.$$

1188 The payoff:

\mathbf{f}	g_1	g_2	g_3
g_1	(0.267, 0.267)	(0.2484, 0.5042)	(0.2484, 0.5112)
g_2	(0.5042, 0.2484)	(0.35395, 0.35395)	(0.3589, 0.38)
g_3	(0.5112, 0.2484)	(0.38, 0.3589)	(0.31115, 0.31115)

1194 Equilibrium check for (g_2, g_3) : the differentiation condition requires:

$$\begin{cases} T_2 + \delta_{23} \geq \max\{T_3, T_1 + \delta_{13}\} \\ T_3 + \delta_{32} \geq \max\{T_2, T_1 + \delta_{12}\} \end{cases}$$

1198 Substituting:

$$\begin{aligned} T_2 + \delta_{23} &= 0.7079 + 0.0099 = 0.7178 \\ \max\{T_3, T_1 + \delta_{13}\} &= \max\{0.6223, 0.534 - 0.0372\} = 0.6223 \\ T_3 + \delta_{32} &= 0.6223 + 0.1377 = 0.7600 \\ \max\{T_2, T_1 + \delta_{12}\} &= \max\{0.7079, 0.534 - 0.0372\} = 0.7079 \end{aligned}$$

1204 Both inequalities hold, hence (g_2, g_3) is a full differentiated equilibrium with welfare

$$W_{\text{eq}} = V(2, 3) = 0.7389.$$

1208 Although (g_2, g_3) is a valid differentiated equilibrium, it yields lower welfare than the optimal pair
1209 (g_1, g_2) :

$$W_{\text{eq}} = 0.7389 < W_{\text{opt}} = 0.7526$$

1211 This demonstrates that a differentiated equilibrium does not necessarily coincide with socially optimal differentiation.

1214 C.9 PROOF OF PROPOSITION 4.3

1216 **Proposition 4.3.** Consider a game $\mathcal{G}(\mathbb{G}, \mathbb{I}, \Theta)$ with an equilibrium \mathbf{f}^* . Let $\widehat{\mathcal{G}}(\mathbb{G}, \mathbb{I}' := \mathbb{I} \cup \{i^+\}, \Theta)$
1217 be another game with one additional platform added. Suppose there exists a model $h \in \mathbb{G}$ and an
1218 incumbent equilibrium strategy $\widehat{\mathbf{f}}$ from \mathbf{f}^* such that the extended profile $\widehat{\mathbf{f}} := (\mathbf{f}^*, h)$ satisfies the
1219 best-response conditions: (i) the best response to \mathbf{f}^* is h ; (ii) no incumbent platform has a profitable
1220 deviation against $\widehat{\mathbf{f}}$. Then $\widehat{\mathbf{f}}$ is an equilibrium of the game $\widehat{\mathcal{G}}$. Furthermore, the user welfare and
1221 market diversity in $\widehat{\mathcal{G}}$ are at least as high as in \mathcal{G} , i.e., $\widehat{W} \geq W$ and $\widehat{D}_{\text{supp}} \geq D_{\text{supp}}$.

1223 *Proof.* Best-response conditions (i) and (ii) imply $\widehat{\mathbf{f}}$ is a PNE. If $\widehat{\mathbf{f}}$ belongs to a cycle, appending h
1224 yields a one-step extension that meets the same no-improvement conditions for that period, so the
1225 induced outcome is an equilibrium.

1226 For welfare, by the Proposition 4.1, since $\mathbb{M}(\widehat{\mathbf{f}}) = \mathbb{M}(\mathbf{f}^*) \cup \{h\}$, for every type $\boldsymbol{\theta}$ we have

$$\max_{k \in \mathbb{M}(\widehat{\mathbf{f}})} S_k(\boldsymbol{\theta}) \geq \max_{k \in \mathbb{M}(\mathbf{f}^*)} S_k(\boldsymbol{\theta})$$

1230 Summing with weights $\pi(\boldsymbol{\theta})$: $V(\widehat{\mathbf{f}}) \geq V(\mathbf{f}^*)$.

1232 If $h \notin \mathbb{M}(\mathbf{f}^*)$ and improves some type strictly, then the inequality is strict. \square

1233 *Example C.5* (counterexample: two \rightarrow three models). Two user types $\Theta = \{\boldsymbol{\theta}_A, \boldsymbol{\theta}_B\}$ with equal
1234 weights $\pi(\boldsymbol{\theta}_A) = \pi(\boldsymbol{\theta}_B) = 0.5$.

1236 **Scenario A:** The model scores are:

	$S_1(\boldsymbol{\theta})$	$S_2(\boldsymbol{\theta})$
$\boldsymbol{\theta}_A$	0.90	0.85
$\boldsymbol{\theta}_B$	0.35	0.80

1240 The average scores are:

$$T_1 = 0.625, \quad T_2 = 0.825$$

1242 The deviation advantages are:
1243

$$1244 \quad \delta_{12} = \frac{1}{2}(+0.90 - 0.35) = 0.275, \quad \delta_{21} = \frac{1}{2}(-0.85 + 0.80) = -0.025$$

1245 The payoff matrix of this scenario is:
1246

\mathbf{f}	g_1	g_2
g_1	(0.3125, 0.3125)	(0.45, 0.4)
g_2	(0.4, 0.45)	(0.4125, 0.4125)

1247 So the equilibrium is (g_1, g_2) or (g_2, g_1) , and $W(\mathcal{O}) = V(1, 2) = 0.85$

1248 **Scenario B:** Add a new model g_3 with $S_3(\boldsymbol{\theta}_A) = 0.91, S_3(\boldsymbol{\theta}_B) = 0.77$ Then $T_3 = 0.84$ The
1249 deviation advantages are now:
1250

$$1251 \quad \delta_{12} = \frac{1}{2}(+0.90 - 0.35) = 0.275, \quad \delta_{21} = \frac{1}{2}(-0.85 + 0.80) = -0.025 \quad \delta_{13} = \frac{1}{2}(-0.90 - 0.35) = -0.625$$

$$1252 \quad \delta_{31} = \frac{1}{2}(+0.91 + 0.77) = 1.68, \quad \delta_{23} = \frac{1}{2}(-0.85 + 0.80) = -0.025, \quad \delta_{32} = \frac{1}{2}(+0.91 - 0.77) = 0.07$$

1253 The payoff matrix of this scenario is:
1254

\mathbf{f}	g_1	g_2	g_3
g_1	(0.3125, 0.3125)	(0.45, 0.4)	(0, 0.84)
g_2	(0.45, 0.4)	(0.4125, 0.4125)	(0.4, 0.455)
g_3	(0.84, 0)	(0.455, 0.4)	(0.42, 0.42)

1255 So the equilibrium is (g_3, g_3) , and $W(\mathcal{O}) = V(3, 3) = 0.84$.
1256

1257 Here, $0.84 < 0.85$

1258 *Example C.6* (counterexample: two → three players). Consider user types $\pi(\boldsymbol{\theta}_A) = 0.18, \pi(\boldsymbol{\theta}_B) = 0.17, \pi(\boldsymbol{\theta}_C) = 0.16, \pi(\boldsymbol{\theta}_D) = 0.16, \pi(\boldsymbol{\theta}_E) = 0.17, \pi(\boldsymbol{\theta}_F) = 0.16$

1259 The model scores are:
1260

	$S_1(\boldsymbol{\theta})$	$S_2(\boldsymbol{\theta})$	$S_3(\boldsymbol{\theta})$	$S_4(\boldsymbol{\theta})$	$S_5(\boldsymbol{\theta})$	$S_6(\boldsymbol{\theta})$
$\boldsymbol{\theta}_A$	0.030658748	0.208093837	0.32744655	0.298774868	0.154842913	0.020151094
$\boldsymbol{\theta}_B$	0.021978186	0.149636775	0.298145086	0.274754494	0.092761844	0.014372437
$\boldsymbol{\theta}_C$	0.266589463	0.035725005	0.019578686	0.029395873	0.04788997	0.182804301
$\boldsymbol{\theta}_D$	0.171553999	0.007992042	0.007932614	0.019235272	0.067757338	0.160182327
$\boldsymbol{\theta}_E$	0.039888468	0.145473659	0.077957489	0.078738138	0.110034101	0.019024562
$\boldsymbol{\theta}_F$	0.131100401	0.089481771	0.136355415	0.132456332	0.095638528	0.136379898

1261 **Scenario A:** With only two platform: the equilibrium is (g_3, g_6) with user welfare $W \approx 0.2148$

1262 **Scenario B:** With three platforms: the cycle is $(g_3, g_3, g_1) \rightarrow (g_3, g_3, g_6) \rightarrow (g_1, g_3, g_6) \rightarrow (g_1, g_3, g_3)$ and $W = (V(g_3, g_3, g_1) + V(g_3, g_3, g_6) + V(g_1, g_3, g_6)) / 3 \approx (0.2147 + 0.2148 + 0.199571) / 3 = 0.2097$

1263 Since $0.214 > 0.210$, adding a platform may not increase the user welfare.
1264

1285 C.10 EXTENSION TO SOFTMAX USER CHOICE MODEL

1286 **Proposition C.7** (Robust nonexistence of PNE under softmax choice). *Consider a fixed instance*
1287 *$(\Theta, \pi, \{S_j(\boldsymbol{\theta})\}_j)$. Let $U_i^{\text{hard}}(\mathbf{f})$ denote platform utilities under the hardmax user choice rule Eq. 1,*
1288 *and suppose that the induced platform game admits no pure Nash equilibrium, in the following strict*
1289 *sense: there exists $\Delta > 0$ such that for every profile \mathbf{f} there is a platform i and a deviation f'_i with:*

$$1291 \quad U_i^{\text{hard}}(f'_i, \mathbf{f}_{-i}) \geq U_i^{\text{hard}}(f_i, \mathbf{f}_{-i}) + \Delta \quad (19)$$

1292 Let $U_i^{\text{soft}}(\mathbf{f}; \tau)$ be the utilities under the softmax user choice rule Eq. 8 with $\tau > 0$. Then there
1293 exists $\tau_0 > 0$ such that for $\forall 0 < \tau \leq \tau_0$, the softmax game $(U_i^{\text{soft}}(\cdot; \tau))$ also admits no pure Nash
1294 equilibrium.
1295

1296 *Proof.* Fix a profile \mathbf{f} and a type $\boldsymbol{\theta}$. Under hardmax, a type $\boldsymbol{\theta}$ user only considers platforms whose
1297 model achieves the highest score $\max_k S_{f_k}(\boldsymbol{\theta})$, assigns equal probability to those platforms, and
1298 assigns zero probability to all others. Under the softmax rule Eq. 8

$$1300 \quad p_i^{\text{soft}}(\boldsymbol{\theta}) := \frac{e^{S_{f_i}(\boldsymbol{\theta})/\tau}}{\sum_{k=1}^N e^{S_{f_k}(\boldsymbol{\theta})/\tau}}$$

1302 as $\tau \rightarrow 0$, the largest-score terms dominate the denominator, so $p_i^{\text{soft}}(\boldsymbol{\theta}; \tau) \rightarrow p_i^{\text{hard}}(\boldsymbol{\theta})$.
1303

1304 Platform utilities are finite weighted sums of these probabilities:

$$1306 \quad U_i^{\text{soft}}(\mathbf{f}) = \sum_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} p_i^{\text{soft}}(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta})$$

1308 hence $U_i^{\text{soft}}(\mathbf{f}) \rightarrow U_i^{\text{hard}}(\mathbf{f})$ as $\tau \rightarrow 0$.
1309

1310 Because the strategy space is finite, this convergence is uniform over all profiles \mathbf{f} : for any $\varepsilon > 0$
1311 there exists $\tau_0 > 0$ such that for all $0 < \tau \leq \tau_0$, all platforms i , and all profiles \mathbf{f} ,

$$1312 \quad |U_i^{\text{soft}}(\mathbf{f}) - U_i^{\text{hard}}(\mathbf{f})| \leq \varepsilon$$

1314 Consider any profile \mathbf{f} . By the strict no NE condition Eq. 19, there exist i and f'_i with
1315

$$1316 \quad U_i^{\text{hard}}(f'_i; \mathbf{f}_{-i}) - U_i^{\text{hard}}(f_i; \mathbf{f}_{-i}) \geq \Delta$$

1318 Choose $\varepsilon = \Delta/4$ and the corresponding τ_0 . For any $0 < \tau \leq \tau_0$,

$$1319 \quad U_i^{\text{soft}}(f'_i; \mathbf{f}_{-i}) - U_i^{\text{soft}}(f_i; \mathbf{f}_{-i}) \geq [U_i^{\text{hard}}(f'_i; \mathbf{f}_{-i}) - \varepsilon] - [U_i^{\text{hard}}(f_i; \mathbf{f}_{-i}) + \varepsilon] \\ 1320 \quad \geq \Delta - 2\varepsilon = \Delta/2 > 0$$

1322 Thus \mathbf{f} cannot be a best response strategy in the softmax user choice. Since \mathbf{f} was arbitrary, the
1323 softmax game has no pure Nash equilibrium for any $0 < \tau \leq \tau_0$. \square

1324 *Example C.8.* We provide a constructive counterexample here. Let $\Theta = \{\boldsymbol{\theta}_A, \boldsymbol{\theta}_B\}$ with uniform
1325 weights $\pi(\boldsymbol{\theta}_k) = 0.5$. Let $\mathbb{G} = \{g_1, g_2, g_3\}$ and define scores

	$S_1(\boldsymbol{\theta})$	$S_2(\boldsymbol{\theta})$	$S_3(\boldsymbol{\theta})$
$\boldsymbol{\theta}_A$	0.734	0.148	0.934
$\boldsymbol{\theta}_B$	0.833	0.935	0.534

1330 If the softmax user choice is used with $\tau = 0.1$, then when there are two players, the payoff matrix
1331 is:

$\mathbf{f} = (f_1, f_2)$	g_1	g_2	g_3
g_1	(0.39175, 0.39175)	(0.47634, 0.34381)	(0.43853, 0.42549)
g_2	(0.34381, 0.4763)	(0.27075, 0.27075)	(0.45843, 0.47210)
g_3	(0.42549, 0.43853)	(0.47210, 0.45843)	(0.36925, 0.36925)

1336 Here, the cycle is $(g_3, g_1), (g_3, g_2), (g_1, g_2), (g_1, g_3), (g_2, g_3), (g_2, g_1)$.

1337 The $W_{\text{opt}} = 0.9345$, but $W = (0.8835 + 0.9345 + 0.835)/3 = 0.87067$

1339 We now show that the $T + \delta$ decomposition extends to the softmax user choice rule in Eq. 8. We
1340 keep Definition 3.1 for the average score T_f unchanged, and adapt the attraction term and deviation
1341 advantage as follows:

1342 **Definition C.9** (Attraction Term and Deviation Advantage of softmax). For a strategy profile $\mathbf{f} =$
1343 (f_1, \dots, f_N) with $f_i \in \mathbb{M}$, the *attraction term* for f_i in strategy \mathbf{f} is defined as

$$1345 \quad Z_{f_i}^{\text{soft}}(\boldsymbol{\theta}; \mathbf{f}) := \frac{(N-1)e^{S_{f_i}(\boldsymbol{\theta})/\tau} - \sum_{k \neq i} e^{S_{f_k}(\boldsymbol{\theta})/\tau}}{\sum_{k=1}^N e^{S_{f_k}(\boldsymbol{\theta})/\tau}} S_{f_i}(\boldsymbol{\theta}) \quad (20)$$

1347 The *deviation advantage* for f_i under strategy \mathbf{f} is defined as

$$1349 \quad \delta_{f_i}^{\text{soft}}(\mathbf{f}) := \sum_{\boldsymbol{\theta} \in \Theta} \pi_{\boldsymbol{\theta}} \cdot Z_{f_i}^{\text{soft}}(\boldsymbol{\theta}; \mathbf{f}) \quad (21)$$

1350 With this definition, the utility decomposition in Proposition 3.3 continues to hold under softmax
1351 choice:

$$1352 \quad 1353 \quad 1354 \quad U_i^{\text{soft}}(f_i; \mathbf{f}_{-i}) = \frac{1}{N} (T_{f_i} + \delta_{f_i}^{\text{soft}}(\mathbf{f})) \quad (22)$$

1355 *Proof.* We use $e^{\mathbf{f}}$ to denote $\sum_{f_j \in \mathbf{f}} e^{S_{f_j}(\boldsymbol{\theta})/\tau}$.

1356 We have:

$$1358 \quad 1359 \quad 1360 \quad U_i^{\text{soft}}(f_i, \mathbf{f}_{-i}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) \frac{e^{S_{f_i}(\boldsymbol{\theta})/\tau}}{e^{\mathbf{f}}} S_{f_i}(\boldsymbol{\theta}) \quad (23)$$

$$1361 \quad 1362 \quad 1363 \quad T_{f_i} = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) S_{f_i}(\boldsymbol{\theta}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta}) \frac{e^{S_{f_i}(\boldsymbol{\theta})/\tau} + e^{\mathbf{f}_{-i}}}{e^{\mathbf{f}}} S_{f_i}(\boldsymbol{\theta}) \quad (24)$$

$$1364 \quad 1365 \quad 1366 \quad \delta_{f_i}^{\text{soft}}(\mathbf{f}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi_{\boldsymbol{\theta}} \cdot Z_{f_i}^{\text{soft}}(\boldsymbol{\theta}; \mathbf{f}) = \sum_{\boldsymbol{\theta} \in \Theta} \pi_{\boldsymbol{\theta}} \frac{(N-1)e^{S_{f_i}(\boldsymbol{\theta})/\tau} - e^{\mathbf{f}_{-i}}}{e^{\mathbf{f}}} S_{f_i}(\boldsymbol{\theta}) \quad (25)$$

1367 It is clear that $U_i^{\text{soft}}(f_i, \mathbf{f}_{-i}) = \frac{1}{N} (T_{f_i} + \delta_{f_i}^{\text{soft}}(\mathbf{f}))$ □

1370 D EXPERIMENTS WITH SYNTHETIC DATASET

1372 In this section, we design a controlled simulation environment to study equilibrium outcomes under
1373 different models and user populations.

1375 **Generative Models.** We consider M generative models $\mathbb{G} = \{g_j\}_{j=1}^M$, each parameterized as a
1376 Radial Basis Function (RBF) (Broomhead & Lowe, 1988) mixture:

$$1378 \quad 1379 \quad 1380 \quad g_j(x) = b_j + \sum_{r=1}^{R_j} A_{jr} \cdot \exp\left(-\frac{1}{2\sigma_{jr}^2} \|x - \mu_{jr}\|^2\right)$$

1381 where R_j is the number of kernels for model j , μ_{jr} is the center of the r -th kernel, σ_{jr} is its width,
1382 A_{jr} is its amplitude, and b_j is a bias. Outputs are truncated to $[0, 1]$.

1384 **User Distributions** We represent the user by $\Theta = \{\boldsymbol{\theta}_k\}_{k=1}^K$, where $\boldsymbol{\theta} \in \mathbb{R}^d$ has distribution $\pi_{\boldsymbol{\theta}}$.
1385 The distribution $\pi_{\boldsymbol{\theta}}$ is derived by discretizing a Gaussian Mixture Model (GMM) with Q components,
1386 where each component q is parameterized by weight $w_q \geq 0$ with $\sum_q w_q = 1$, mean vector
1387 μ_q , and covariance matrix Σ_q :

$$1389 \quad 1390 \quad 1391 \quad \pi(u) = \sum_{q=1}^Q w_q \mathcal{N}(u \mid \mu_q(u), \Sigma_q(u)).$$

1392 continuous samples u drawn from this GMM are then mapped to the nearest discrete type $\boldsymbol{\theta}_k$. This
1393 construction yields a finite user distribution $\pi(\boldsymbol{\theta})$ that serves as input to the equilibrium analysis.
1394 The variant user groups are constructed by shifting all component means along the x -axis: $\mu_q(u) \mapsto$
1395 $\mu_q(u) + (dx, 0)$ where dx controls the degree of population shift or by adjust different weight w_q .

1396 **Reward Function.** The expected reward of model j for user type $\boldsymbol{\theta}$ is $S_j(\boldsymbol{\theta}) = \mathbb{E}_{x \sim g_j}[r_{\boldsymbol{\theta}}(x)]$. In
1397 theory, g_j and $r_{\boldsymbol{\theta}}$ are distinct objects, however, in our simulation, we collapse g_j and $r_{\boldsymbol{\theta}}$ into a single
1398 score function implemented as a radial basis function (RBF) mixture.

1400 **Simulation Parameters and Results.** For all simulations, we have a model pool with $M = 6$
1401 models as shown in Table 3 and $K = 12$ user types drawn from the GMMs. The baseline user
1402 distribution uses $Q = 2$ components as shown in Table 4.

1403 We conduct four sets of experiments:

Table 3: Simulation model pool.

Model	b_j	μ_{jr}	A_{jr}	σ_{jr}
1	0.12	(1.5, 0.0)	0.90	1.20
2	0.05	(0.0, 0.0)	1.30	0.35
3	0.08	(3.0, 0.0)	1.00	0.50
4	0.06	(0.0,0.0), (3.0,0.0)	0.70, 0.70	0.70, 0.70
5	0.05	(1.5, 0.6)	1.00	0.40
6	0.05	(1.5,-0.6)	1.00	0.40

Table 4: User distribution parameters.

Weight w_q	Mean μ_q	Covariance Σ_q
0.6	(0.0, 0.0)	[[0.25, 0.0], [0.0, 0.25]]
0.4	(3.0, 0.0)	[[0.25, 0.0], [0.0, 0.25]]

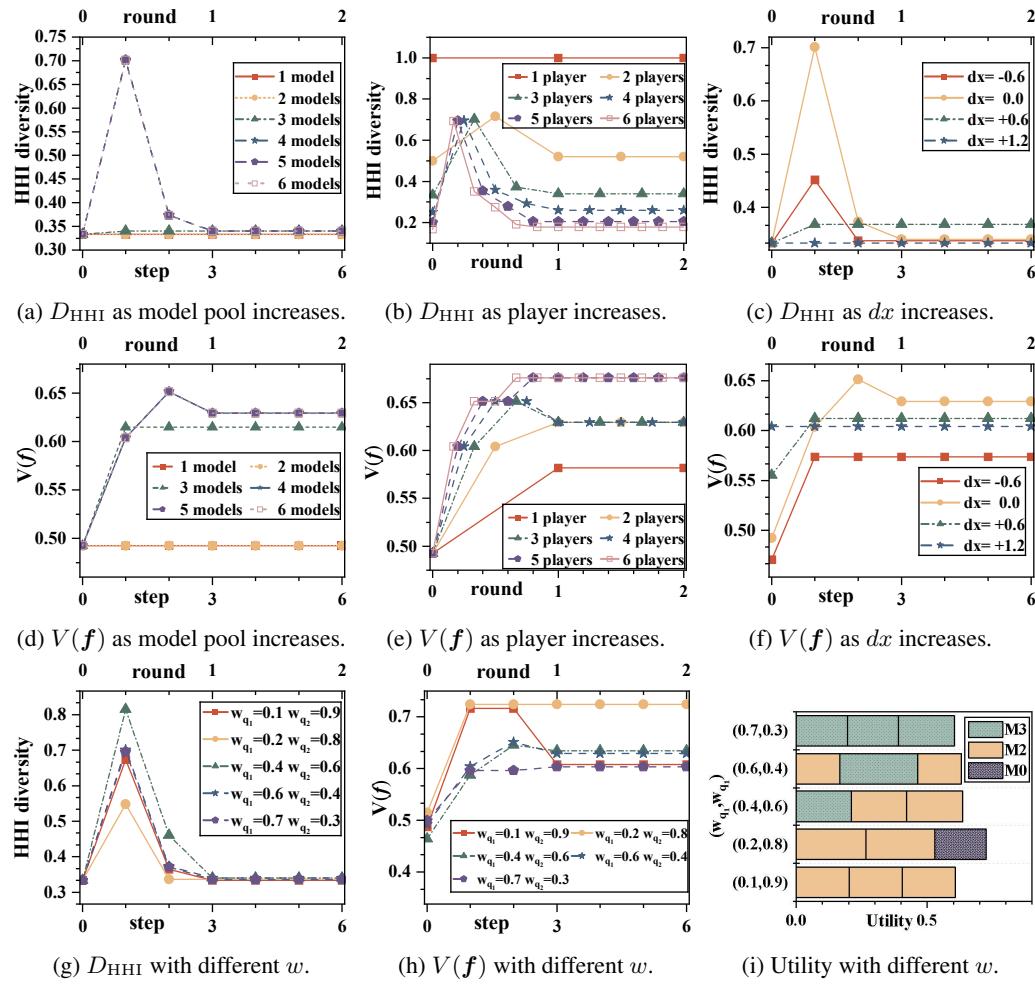


Figure 7: Best-response simulations under different settings.

- Expanding the model pool. With three players fixed, we gradually enlarge the model pool size from 1 to 6. The resulting diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 7a and Fig. 7d, respectively.
- Increasing the number of players. With the full model pool available, we increase the number of players from 1 to 6. The resulting diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 7b and Fig. 7e, respectively.
- Shifting user groups. With the full model pool and three players, we vary the GMM means used to sample user types by setting $dx \in \{-0.6, 0.0, 0.6, 1.2\}$. The diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 7c and Fig. 7f, respectively.
- Changing mixture weights. With the full model pool and three players, we alter the GMM component weights $(w_{q_1}, w_{q_2}) \in \{(0.1, 0.9), (0.2, 0.8), (0.4, 0.6), (0.6, 0.4), (0.7, 0.3)\}$. The results are reported in Fig. 7g, Fig. 7h and Fig. 7i.

We observe that equilibria always exist in this setting, but diversity and welfare vary substantially depending on whether the new models are sufficiently differentiated. Strong but substitutable models lead to market homogenization, while genuinely differentiated entrants promote diversity and increase welfare.

E EXPERIMENTS WITH REAL DATASET

E.1 DISCRETE BEST-RESPONSE SIMULATION

The models in the model pool are constructed by applying different LoRA parameters to the backbone network, each trained on different CIFAR-10 subsets, as summarized in Table 1. The backbone network itself was trained on the full CIFAR-10 dataset for 200 epochs. During training, we used a learning rate of 2×10^{-4} , 1000 diffusion steps, and a batch size of 256.

We first provide the average performance T_i of the five models in model pool and their user-specific performance $S_i(\theta)$ in user groups in Fig. 8.

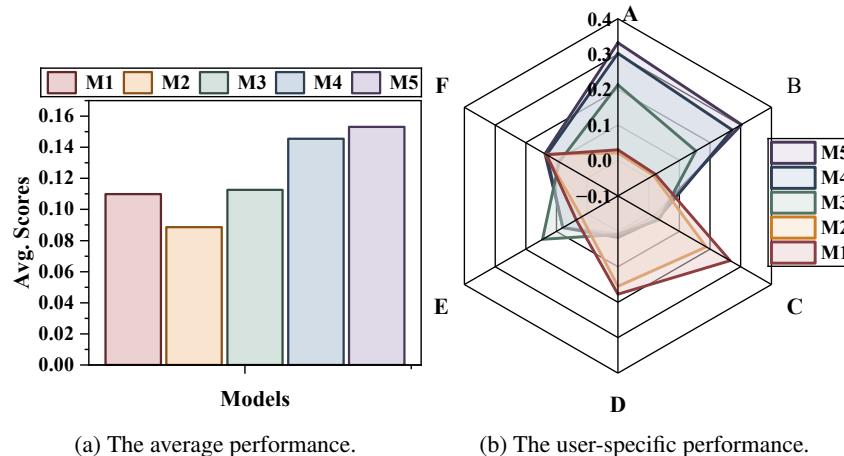


Figure 8: The average performance T_i of the five models in model pool in Table 1 and their user-specific performance $S_i(\theta)$ in Table 2.

Impact of different user groups. As a complementary experiment, we examine how platform choices vary when facing different user groups. Specifically, we consider three player choosing from the model pool. The user group configurations are provided in Table 5, and the corresponding equilibrium outcomes are summarized in Table 7.

1512
1513 Table 5: Different user pool

User Pool	User type (θ) with $\pi(\theta)$
Pool 1	A (0.2), B (0.2), E (0.2), F (0.2)
Pool 2	A (0.3), C (0.3), E (0.4)
Pool 3	C (0.2), D (0.2), E (0.35), F (0.33)
Pool 4	A (0.6), F (0.4)
Pool 5	A (0.1), B (0.09), C (0.16), D (0.32), E (0.17), F (0.16)
Pool 6	C (0.33), D (0.35), E (0.2), F (0.12)

1514
1515 Table 6: User type with its preference

User type(θ)	Preferences(class(θ_c))
A	cat (0.6), dog (0.4)
B	dog (0.7) cat (0.3)
C	airplane (0.5), ship (0.3), auto (0.2)
D	auto (0.6), truck (0.4)
E	bird (0.4), deer (0.3), frog (0.2), horse (0.1)
F	cat (0.2), dog (0.2), airplane (0.15), auto (0.15), ship (0.1), truck (0.2)

1516
1517 Table 7: Outcomes of a 3-player setting under different user pools.

User Pool	f	D_{supp}	D_{HHI}	W_{eq}
Pool 1	(M5, M5, M5)	1	0.3333	0.2110
Pool 2	(M5, M5, M1)	2	0.3349	0.2117
Pool 3	(M5, M3, M1)	3	0.3335	0.1615
Pool 4	(M5, M5, M5)	1	0.3333	0.2366
Pool 5	(M5, M1, M1)	2	0.3856	0.1932
Pool 6	(M1, M1, M1)	1	0.3333	0.1715

1525
1526 E.2 ALGORITHMIC BEST-RESPONSE ENTRY1527
1528 E.2.1 ALGORITHM DETAILS1529
1530
1531
1532 We provide the implementation details and hyperparameters used in our experiments for evaluating
1533 algorithmic performance. We first describe the specific procedures of the Resampling and Direct-
1534 Gradient methods, followed by the hyperparameters employed in training and evaluation. Unless
1535 otherwise specified, the same base diffusion backbone and optimization settings are applied across
1536 methods for a fair comparison.1537
1538 **Resampling.** The algorithm for resampling method is shown as Algorithm. 1.1539
1540 **Algorithm 1** Training Data Resampling1541
1542 **Require:** Dataset \mathbb{D} ; user types Θ ; fixed opponents $\mathbb{G} = \{g_1, \dots, g_M\}$ with scores $\{S_m(\theta)\}$;
1543 parameters β, γ ; outer rounds T ; inner epochs E ; evaluation budget b .
1544 1: Compute $\bar{S}(\theta) = \max_{j \in \mathbb{M}} S_j(\theta)$ for all θ .
1545 2: **for** $t = 1, \dots, T$ **do**
1546 3: Estimate $S_\phi(\theta) := \mathbb{E}_{x_{1:b} \sim g_\phi} r_\theta(x)$.
1547 4: Compute $\Delta_\theta := S_\phi(\theta) - \bar{S}(\theta)$.
1548 5: Compute $\sigma_\theta = \sigma(\beta \Delta_\theta)$.
1549 6: Type weights $\alpha_\theta = \pi(\theta) (\sigma_\theta)^\gamma \bar{S}(\theta)$.
1550 7: Data weights: $\hat{w}(u) \propto \sum_\theta \alpha_\theta q_\theta(u)$ or $\hat{w}(x) \propto \sum_\theta \alpha_\theta r_\theta(x)$.
1551 8: Sample \mathbb{D} with \hat{w} as $\hat{\mathbb{D}}$.
1552 9: **for** $e = 1, \dots, E$ **do**
1553 10: Update ϕ by minimizing the original loss in $\hat{\mathbb{D}}$.
1554 11: **end for**
1555 12: **end for**
1556 13: **return** ϕ .1557
1558 The specific parameter details for algorithm-level:1559
1560
1561
1562
1563
1564
1565 • Outer round, the time of resample $T = 5$.
• Inner epochs $E = 50$.

1566 • $\beta = 4$.
 1567 • $\gamma = 1$.
 1568 • Use adaptive scaling for σ_θ .
 1569 • LoRA rank 4, LoRA scaling coefficient 16, LoRA runtime multiplier 1.0.
 1570
 1571

1572 **Direct-Gradient.** The algorithm for direct-gradient method is shown as Algorithm. 2.
 1573

1574 **Algorithm 2** Direct-Gradient Optimization

1576 **Require:** Dataset \mathbb{D} ; user types Θ ; fixed opponents $\mathbb{G} = \{g_1, \dots, g_M\}$ with scores $\{S_m(\theta)\}$;
 1577 parameters λ ; Epochs E ;
 1578 1: **for** $e = 1, \dots, E$ **do**
 1579 2: Estimate $S_\phi(\theta) := \mathbb{E}_{x_{1:b} \sim g_\phi} r_\theta(x)$.
 1580 3: Compute $\Delta_\theta := S_\phi(\theta) - \bar{S}(\theta)$.
 1581 4: Compute $\sigma_\theta = \sigma(\beta \Delta_\theta)$
 1582 5: $L \leftarrow l(\phi) - \lambda \sum_{\theta \in \Theta} \pi(\theta) \sigma_\theta S_\phi(\theta)$
 1583 6: $\phi \leftarrow \phi - \eta \nabla L$.
 1584 7: **end for**
 1585 8: **return** ϕ

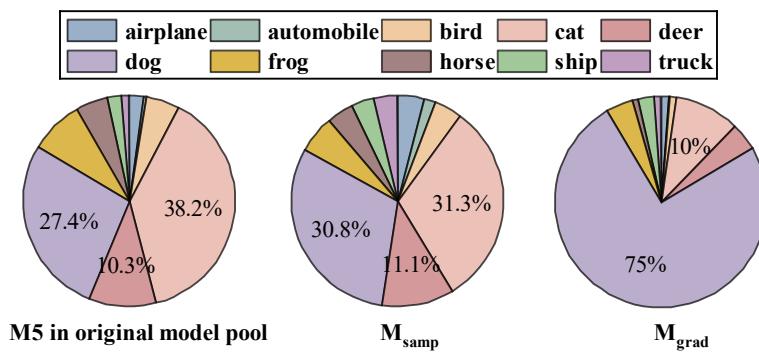
1586
 1587 The specific parameter details for algorithm-level:

1588 • Epochs $E = 20$.
 1589 • $\lambda = 0.4$.
 1590 • Use adaptive scaling for σ_θ .
 1591

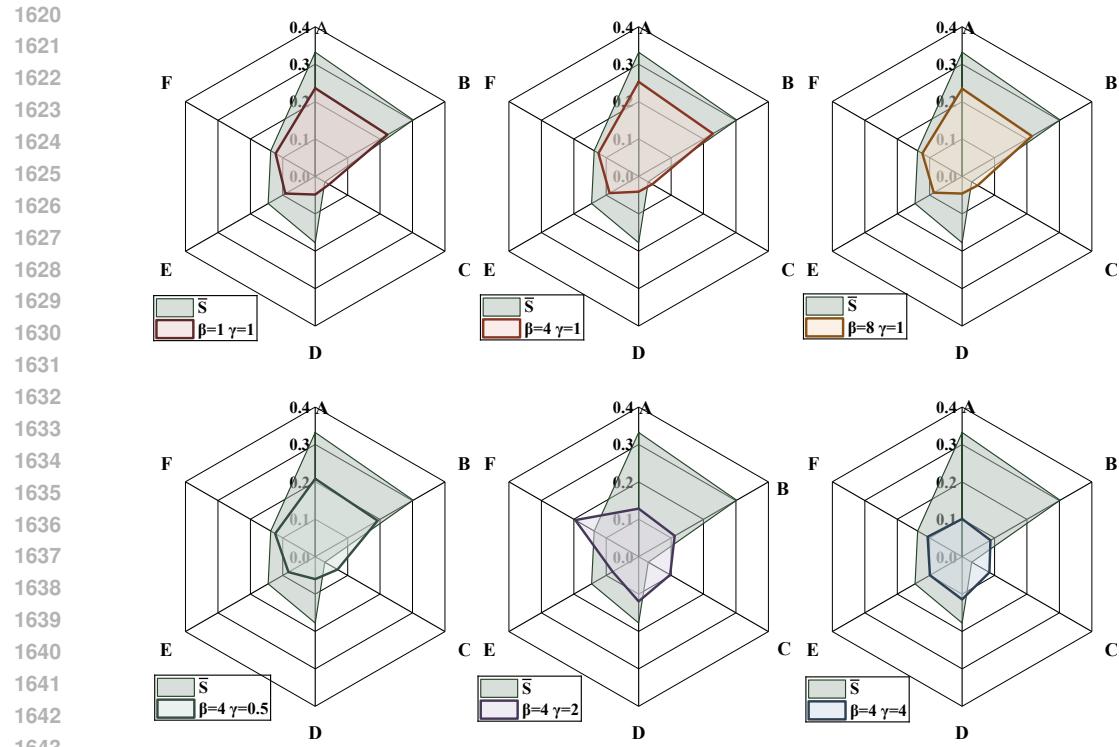
1593 **Shared parameter.** The specific parameter details for shared training parameters:

1595 • The backbone network is trained on the full CIFAR-10 dataset for 200 epochs.
 1596 • Batch size 256.
 1597 • Learning rate 2×10^{-4} (for AdamW optimizer).
 1598 • Diffusion steps 1000.
 1599

1601 **Data Distribution.** As a supplement to Fig. 6 A, we provide the label distributions of 2,000 samples generated by three models, as shown in the Fig. 9.
 1602



1616 Figure 9: Label distributions of 2,000 generated samples from three models: (a) left: M_2 from the
 1617 original model pool (b) middle: M_{samp} by redampling method. (c) right: M_{grad} by direct-gradient
 1618 method.
 1619



1645 Figure 10: Different performance of model scores across user groups under different β and γ compared to each user group's best score \bar{S} .
1646

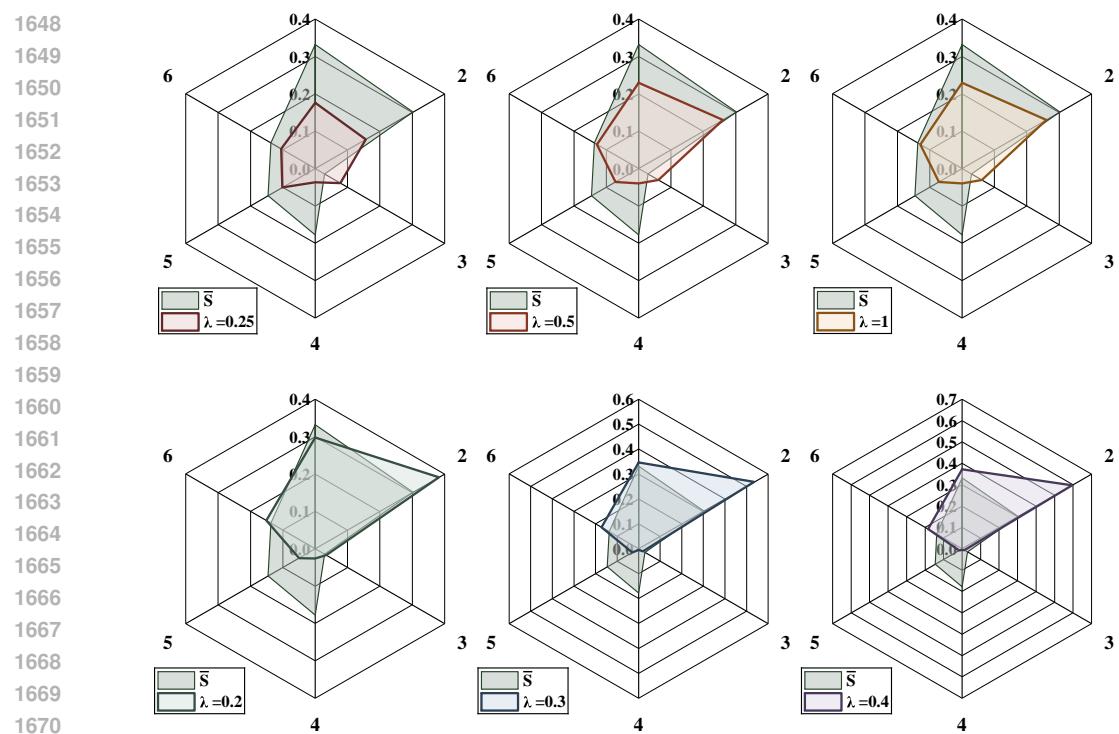


Figure 11: Different performance of model scores across user groups under different λ compared to each user group's best score \bar{S} .

1674
1675 Table 8: Performance of four models on coding and reasoning benchmarks.
1676

Model	HEval	Multi-language	Overall	Math	IFEval
M0: CodeLlama-34B	0.5079	0.4297	0.1721	0.0413	0.4604
M1: Qwen2.5-Coder-32B	0.5710	0.6497	0.3326	0.3089	0.4363
M2: Nxcode-CQ-7B-orpo	0.8723	0.6688	0.1237	0.4007	0.4007
M3: Qwen2.5-Coder-32B-Instruct	0.8320	0.7723	0.3989	0.4955	0.7265

1682
1683 Table 9: Different user pool
1684

User Pool	User type (θ) with $\pi(\theta)$
Pool 1	A (0.2), B (0.2), C(0.2), D(0.2), E (0.2)
Pool 2	A (0.1), B (0.1), C(0.2), D(0.5), E (0.1)
Pool 3	A (0.35), B (0.2), C(0.2), D(0.35), E (0.2))

1685 Table 10: User type with its preference
1686

User type(θ)	Preferences(class(θ_c))
A	HEval (0.6), Overall (0.2), IFEval(0.2)
B	Overall (0.8), IFEval (0.2)
C	HEval (0.8), IFEval (0.2)
D	HEval (0.6), Muti-language (0.5)
E	Math (1.0)

E.2.2 ALGORITHM PARAMETER SENSITIVITY ANALYSIS

1694 For resampling, we investigate the sensitivity of β and γ . The result is shown as Fig. 10. For direct-
1695 gradient optimizaition, We investigate the sensitivity of λ , which controls the trade-off between utility
1696 and the diffusion. The result is shown as Fig. 11.

F EXPERIMENTS ON LANGUAGE MODELS

1700 In this section, we study the three-layer game in a language setting using real large language models.
1701



1723 Figure 12: Best-response simulations under different settings of language tasks.
1724

1725 **Model Pool.** We consider a pool of four publicly available models that appear on both the Big-
1726 Code models leaderboard (BigCode, 2023) and the Open LLM Leaderboard (Fourrier et al., 2024):
1727 CodeLlama-34B (Rozière et al., 2024), Qwen2.5-Coder-32B (Hui et al., 2024), Nxcode-CQ-7B-

Table 11: Outcomes of a 3-player setting under different user pools.

User Pool	f	D_{supp}	D_{HHI}	W_{eq}
Pool 1	$(M3, M3, M3)$	1	0.3333	0.65945
Pool 2	$(M3, M2, M2)$	2	0.375	0.75949
Pool 3	$(M3, M3, M2)$	2	0.33375	0.73080

orpo (Hong & Thorne, 2024) and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024). For each model, we collect its HumanEval-Python score (HEval) and a multi-language coding score (Multi-language, average over Java, JavaScript, and C++) from the BigCode leaderboard, as well as its overall, math-related scores and instruction-following evaluation (IFEval) from the Open LLM Leaderboard. Table 8 summarizes these benchmark results, which we treat as pre-computed performance statistics.

User Group and reward function. We partition the user population into five groups, each characterized by heterogeneous preferences over metric preferences the details are given in Table 10. Then the reward for user type θ is calculated by $r_\theta(x) = \sum_{c \in \mathcal{C}} \theta_c \cdot \text{performance}$.

Simulation and Results. We conduct three sets of experiments:

- Expanding the model pool. With three players fixed, we gradually enlarge the model pool size from 1 to 4 face the user pool 1. The resulting diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 12a and Fig. 12a, respectively.
- Increasing the number of players. With the full model pool available, we increase the number of players from 1 to 6 face the user pool 1. The resulting diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 12b and Fig. 12e, respectively.
- Shifting user groups. With the full model pool and three players, we vary the user pool as shown in Table. 9 . The diversity D_{HHI} and coverage value $V(\mathbf{f})$ are shown in Fig. 12c and Fig. 12f, respectively. The corresponding equilibrium outcomes are summarized in Table. 11.

THE USE OF LARGE LANGUAGE MODELS

We used a large language model to aid in polishing grammar and phrasing. Consistent with ICLR policy, authors remain fully responsible for all content, including parts assisted by an LLM.