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ABSTRACT

Generative model ecosystems increasingly operate as competitive multi-platform
markets, where platforms strategically select models from a shared pool and users
with heterogeneous preferences choose among them. Understanding how plat-
forms interact, when market equilibria exist, how outcomes are shaped by model-
providers, platforms, and user behavior, and how social welfare is affected is crit-
ical for fostering a beneficial market environment. In this paper, we formalize a
three-layer model-platform-user market game and identify conditions for the exis-
tence of pure Nash equilibrium. Our analysis shows that market structure, whether
platforms converge on similar models or differentiate by selecting distinct ones,
depends not only on models’ global average performance but also on their local-
ized attraction to user groups. We further examine welfare outcomes and show
that expanding the model pool does not necessarily increase user welfare or mar-
ket diversity. Finally, we design novel best-response training schemes that allow
model providers to strategically introduce new models into competitive markets.

1 INTRODUCTION

Generative models are no longer developed in isolation. They now operate within competitive,
multi-platform markets, where platforms strategically deploy models to attract heterogeneous user
groups and compete for market share. For example, Microsoft Azure and Amazon Bedrock compete
to license foundation models to enterprises (Staff, 2024; Janakiram, 2023), Canva and Adobe Fire-
fly compete to attract designers by integrating state-of-the-art generative models (Newsroom, 2024;
Vincent, 2024), and platforms like Midjourney and Stability AI compete directly for end users seek-
ing creative tools (Staff, 2025a;b). Understanding the behavior of such markets is crucial for guiding
governance, policy, and the design of trustworthy AI ecosystems.

Prior work has largely focused on a two-layer market, where model developers also operate the de-
livery platforms and offer services directly to users (Einav & Rosenfeld, 2025; Jagadeesan et al.,
2023b; Raghavan, 2024; Taitler & Ben-Porat, 2025). Within this setting, a substantial body of
literature examines discriminative scenarios in which (binary) classifiers are trained and used by
end users. For instance, Einav & Rosenfeld (2025) show that platforms often prioritize capturing
user share over maximizing predictive accuracy, leading to equilibrium states that deviate from so-
cially optimal outcomes. Similarly, Jagadeesan et al. (2023b) demonstrate that even when individual
classifiers achieve lower Bayes risk, competition can perversely reduce overall social welfare. By
contrast, the literature on generative model markets remains sparse, with only a few recent studies
analyzing how competition shapes overall welfare outcomes (Taitler & Ben-Porat, 2025; Raghavan,
2024). Specifically, Taitler & Ben-Porat (2025) identify a counterintuitive phenomenon: adding
more models can paradoxically decrease user welfare. More recently, Raghavan (2024) find that
competitive pressures often reduce diversity, though stronger competition can partially mitigate ho-
mogenization, and that models performing well in isolation may fail in competitive environments.
Collectively, these studies highlight that, in generative markets, improvements in individual model
performance do not necessarily translate into greater welfare or diversity.

However, the generative ecosystem is increasingly structured as a three-layer market (Fallah et al.,
2024): model providers develop models and license them to platforms, which in turn deliver services
to end users. Unlike the two-layer setting, where model developers both build and operate the deliv-
ery platforms, in the three-layer market, platforms act as intermediaries: they decide which models
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to adopt and deploy, ultimately shaping how users experience generative AI. For instance, Azure
OpenAI Service (Azure, 2025) supplies GPT-family models through Microsoft Azure, enabling en-
terprise clients to embed them into a wide range of applications; Cohere (Cohere, 2025) provides
large language models as APIs for enterprises, serving platforms rather than end users directly; and
Canva (Canva, 2025) integrates external models such as Stable Diffusion and Leonardo Phoenix into
its design suite, allowing millions of users to access generative capabilities without ever selecting
the underlying model themselves. In all these cases, platforms are the direct consumers of models,
while users experience only the models that platforms choose.

In this work, we formalize the market as a three-layer model-platform-user game, in which hetero-
geneous users choose the platform that best aligns with their preferences, while platforms strategi-
cally adopt the models from providers that maximize their market share (Fig. 1). We then conduct a
rigorous analysis of how platform-level competition influences user welfare, diversity, and equilib-
rium outcomes. Our main contributions and findings are summarized below:

1. In Section 2, we formalize the model-platform-user game and show that when users make hard
selections on platforms, the resulting game among platforms may not admit pure Nash equilibria.

2. In Section 3, we identify conditions for the existence of pure Nash equilibria. Crucially, we
analyze market structure at equilibrium and derive conditions for both fully differentiated equi-
libria (all platforms choose distinct models) and homogeneous equilibria (all platforms converge
on the same model). We show that market structure is determined not only by models’ average
performance but also by their deviation advantage to heterogeneous users.

3. In Section 4, we analyze market diversity and user welfare. We show that equilibrium may not
achieve the socially optimal outcome that maximizes user welfare, and that increasing competi-
tion (e.g., adding more platforms or models) does not necessarily improve user welfare or market
diversity. This finding aligns with recent observations of growing homogenization in generative
model markets (Zhang et al., 2025; Wu et al., 2025).

4. In Section 6, we take the model providers’ perspective and design best-response training schemes
that allow a provider to introduce a new model effectively into the competitive market.

5. In Section 7, we conduct experiments on both synthetic and real data to validate our theorems.

Figure 1: The three-layer model-platform-user market structure. Model providers develop genera-
tive models, platforms select models to deploy, and heterogeneous users choose platforms.

2 PROBLEM MODEL

Consider a three-layer generative model service market as shown in Fig. 1, which consists of:

• Model Layer: A set of generative models G = {g1, . . . , gM} trained by M model providers.
Each model gi, i ∈M = {1, . . . ,M} is characterized as a data distribution over domain X .

• Platform Layer: A set of platform-players I = {1, . . . , N}. From the provider, each platform i
selects a model fi ∈M to serve its users. Denote the platform selection as f = (f1, . . . , fN ).

• User Layer: A population of heterogeneous users categorized into types Θ = {θ1, . . . ,θK} ⊆
Rd with distribution {πθ}θ∈Θ such that

∑
θ∈Θ πθ = 1. For each user type θk, let rθk

(x) be the
underlying reward function indicating their preference over generated content x ∈ X .
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User’s choice of platform. Given platform selections, users of type θ choose platforms to interact
based on the generation ability of selected models. Let Sj(θ) := Ex∼gj [rθ(x)] be score measuring
the quality of contents generated by model gj for user type θ; higher Sj(θ) indicates better alignment
with user preferences. Then, the probability for users of type θ selecting platform i is given by:

pi(θ) :=

0 if fi /∈ argmaxi′∈[N ] Sf ′
i
(θ)

1∣∣∣argmaxi′∈[N] Sf′
i
(θ)

∣∣∣ if fi ∈ argmaxi′∈[N ] Sf ′
i
(θ) (1)

That is, users select the platform with the highest score, breaking ties uniformly at random. This
hardmax choice model is a standard simplification commonly used in prior work on platform or
model selection (Jagadeesan et al., 2023b;a; Mansour et al., 2018). In Section 5, we discuss how our
analysis and results can be extended to the softmax user choice model.

Platform’s choice of models. Each platform i ∈ [N ] strategically selects a model f∗
i from the

model-provider to compete for market share, in response to other platforms’ selections:

f∗
i = arg max

fi∈M
Ui(fi;f

∗
−i) (2)

where Ui(fi;f−i) :=
∑

θ∈Θ πθ · pi(θ) · Sfi(θ) is the utility function capturing the market share of
platform. Denote profile f = (f1, · · · , fN ) as the strategies of all platforms, and f−i strategies of
all excluding the platform i. We consider a normal-form game G(G, I,Θ) in which each platform
chooses a model to maximize its utility.

Definition 2.1 (Nash Equilibrium). We say a strategy profile f∗ = (f∗
1 , · · · , f∗

N ) is a pure Nash
equilibrium (PNE) if no platform can improve its utility by unilaterally deviating, i.e., Ui(f

∗
i ;f

∗
−i) ≥

Ui(fi;f
∗
−i), ∀i. A pure Nash equilibrium is fully differentiated equilibrium if all platforms choose

distinct models: |{f∗
1 , · · · , f∗

N}| = N . A pure Nash equilibrium is homogeneous equilibrium if
all platforms choose the same model: |{f∗

1 , · · · , f∗
N}| = 1.

By Nash’s classical theorem, every finite game admits at least one mixed-strategy Nash equilibrium,
where each player i randomizes over actions according to a probability distribution (Monderer &
Shapley, 1996). However, when users make deterministic selections as in Eq. 1, we show in Propo-
sition 2.2 that a pure Nash equilibrium may not exist.

Proposition 2.2. [Nonexistence of PNE] Consider the game G(G, I,Θ) with finite sets of platforms
I, models G, and user types Θ, where each platform i chooses a model fi ∈M based on Eq. 1. The
game may not admit a pure-strategy Nash equilibrium f∗.

To prove Proposition 2.2, we provide a counterexample in Appendix C.1. The existence of a pure
Nash equilibrium can be examined via best-response dynamics: starting from any profile f , plat-
forms sequentially update their strategies as best responses to the current strategies of others. When
a pure equilibrium does not exist, this process fails to converge and instead enters cycles.

Definition 2.3 (Best-Response Cycle). A best-response cycle is a finite sequence of strategy pro-
files f (1),f (2), . . . ,f (L) in best-response dynamics such that: (i) at each step t, only one platform
changes its strategy, and it does so as a best response to f (t), and (ii) the sequence eventually returns
to the initial profile, i.e., f (L+1) = f (1).

User welfare & market diversity. Next, we introduce metrics we will use for analyzing the market.

Definition 2.4 (Coverage Value). For a strategy profile f = (f1, . . . , fN ) with fi ∈ M. define
the coverage value of f as V (f) :=

∑
θ∈Θ πθ max1≤i≤N Sfi(θ), i.e., the expected quality users

receive from their best available platforms.

Definition 2.5 (User Welfare). Define user welfare W as W := V (f∗) if the game G(G, I,Θ)

admits a pure Nash equilibrium f∗; and W := 1
L

∑L
t=1 V (f (t)) if it enters best-response cycle.

Definition 2.6 (Social Optimum Welfare). The social optimum welfare is defined as the highest
coverage value achievable by any strategy profile. That is, Wopt := maxf∈MN V (f).

Definition 2.7 (Herfindahl-Hirschman Index (HHI) Diversity). For strategy f = (f1, . . . , fN ) with
fi ∈ M, let (µ1, µ2, . . . , µN ) be the market share vector of platforms, where µi =

∑
θ∈Θ πθpi(θ).

HHI diversity is defined as DHHI(f) :=
∑N

i=1 µ
2
i .
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HHI diversity measures how evenly users are distributed across platforms. Its value lies in [ 1N , 1],
taking value 1

N when users are evenly split across all platforms (maximum diversity) and 1 when all
users concentrate on a single platform (no diversity).
Definition 2.8 (Support Diversity). For strategy f = (f1, . . . , fN ) with fi ∈ M, the support diver-
sity is defined as Dsupp(f) := |{m ∈M | ∃i ∈ I, fi = m}|

Support diversity measures the number of distinct models adopted by platforms, taking integer val-
ues between 1 and N . Larger values indicate that more models are represented in the market,
reflecting greater model diversity.

Objectives. With the platform selection game and evaluation metrics in place, the remainder of this
paper aims to address the following key questions about competitive generative model markets:

• Under what conditions do pure Nash equilibria (PNE) arise, and when do platforms converge to
differentiated versus homogeneous structures?

• How does the user welfare depend on the number of platforms and models, and how does it
compare to the social optimum?

• From the model-provider’s perspective, how to design new generative models that can successfully
enter the market and be strategically adopted by competing platforms?

3 EQUILIBRIUM ANALYSIS AND MARKET STRUCTURE

Proposition 2.2 showed that a pure Nash equilibrium (PNE) may not exist in the platform selection
game. We now investigate the conditions under which a PNE does exist. To facilitate the analysis,
we first introduce some basic notations.
Definition 3.1 (Average Score). Let average score of model gj be defined as Tj :=

∑
θ∈Θ πθ ·Sj(θ)

Definition 3.2 (Attraction Term and Deviation Advantage). For a strategy profile f = (f1, . . . , fN )
with fi ∈ M, define Af (θ) := argmax1≤i≤N Sfi(θ) as the set of maximizers for a user type θ,
and let Af (θ) := |Af (θ)| be the number of platforms tied for the maximum. Then, the attraction
term for fi in strategy f is defined as

Zfi(θ;f) :=


N −Af (θ)

Af (θ)
Sfi(θ) if fi ∈ Af (θ)

−Sfi(θ), otherwise
(3)

The deviation advantage for fi under strategy f is defined as

δfi(f) :=
∑
θ∈Θ

πθ · Zfi(θ;f) (4)

Intuitively, the attraction term Zfi(θ;f) quantifies how much fi benefits when it is among the
winners for type θ, and how much it loses otherwise. Aggregated across all user types, the deviation
advantage δfi(f) represents the net gain of fi relative to its competitors under the current strategy.
Proposition 3.3. [Utility Decomposition.] The expected utility Ui (fi;f−i) of platform i in Eq. 2
can be decomposed into Tfi and δfi(f) as:

Ui (fi;f−i) =
1

N
(Tfi + δfi(f)) . (5)

Lemma 3.4. [Existence of Equilibrium] Consider the game G(G, I,Θ) with finite user types Θ, and
N platforms choosing from M models G, where M ≥ N . A fully differentiated equilibrium f∗ =
(f∗

1 , . . . , f
∗
N ) exists if and only if for every platform i and every alternative model fi ∈ G \ {f∗

i },

Tf∗
i
− Tfi ≥ δfi(f

∗
−i ∪ fi)− δf∗

i
(f∗) (6)

A homogeneous equilibrium f∗ = (f∗
1 , . . . , f

∗
N ), f∗

i = m exists if and only if for some m ∈M,

Tm − Tfi ≥ δfi(f
∗
−m ∪ fi)− δm(f∗) (7)

4
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Scenario A: fully differentiated equilibrium
πθA

= πθB
= 0.5

S1(θ) S2(θ)
θA 0.90 0.85
θB 0.35 0.80

f∗ = (g1, g2)

Scenario B: homogeneous equilibrium
πθA

= πθB
= 0.5

S1(θ) S2(θ)
θA 0.60 0.70
θB 0.65 0.95

f∗ = (g2, g2)

Figure 2: Two scenarios with the same average score gap |T2 − T1| = 0.20 but different deviation
advantage (δ1, δ2) for N = 2 and M = 2, resulting in opposite equilibrium outcomes. In Scenario
A, although g1 has a lower average score (T1 < T2), it is still chosen in equilibrium because its strong
advantage on the high-weight type θA satisfies the differentiation condition. Removing this type-
specific advantage in Scenario B breaks the condition, leading to a homogeneous equilibrium on g2.
These scenarios demonstrate that market structure is not determined solely by average performance;
a strong local advantage in high-weight user segments can sustain a model’s presence in equilibrium.
Full calculation details are provided in Section C.4.

The proof is given in Section C.3. Lemma 3.4 shows that market structure is determined by the
balance between average performance T and the deviation advantage δ. When average performance
is uniformly strong across models, platforms tend to converge on the single best model, where
performance alone cannot sustain multi-model entry. In contrast, when models differ in whom they
serve best, even uniformly weak models can secure adoption as platforms specialize, yielding a
differentiated market. To illustrate this, we provide an example in Fig. 2.

Lemma 3.4 also implies that market structure depends on the user distribution. Building on this,
Corollary 3.5 shows that when the user distribution is centralized, i.e., a single user type constitutes
a large fraction of the population, the market tends to converge to a homogeneous structure.

Corollary 3.5 (High User Centralization ⇒ Homogeneous Equilibrium). Assume there exists a
dominant user type θ⋆ with fraction π⋆

θ and a model m satisfying: ∀j ̸= m, Sm(θ⋆) − Sj(θ
⋆) ≥

ρ > 0 and ∀θ ̸= θ⋆, j ̸= m, |Sj(θ)− Sm(θ)| ≤ Γ. If π⋆
θ is sufficiently large and satisfies

π⋆
θ ≥ 1− 1

1 + 2Γ
ρ

then the homogeneous strategy f∗ = (m, . . . ,m) is a pure-strategy Nash equilibrium.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

 

Figure 3: π⋆
θ versus Γ

ρ .

Intuitively, ρ measures strength of the “majority advantage” of
model, Γ measures the maximum performance difference outside
the majority group, and Γ

ρ measures the “relative strength of minor-
ity variation to majority advantage.” From Corollary 3.5, increasing
π⋆
θ effectively lowers the threshold of ρ needed for homogeneous

equilibrium. So even a small quality advantage ρ on the domi-
nant user type can outweigh potential gains from minority types
(bounded by Γ), allowing a single model to dominate the entire mar-
ket. To illustrate the parameter regime in which Corollary 3.5 ap-
plies, Fig. 3 plots the π⋆

θ against Γ
ρ , the shaded region shows the pa-

rameter range where the homogeneous strategy f∗ = (m, . . . ,m)
is a PNE.

4 USER WELFARE AND MARKET DIVERSITY

Proposition 4.1. [Coverage Value Calculation] Given a strategy profile f = (f1, . . . , fN ), the
coverage value in Definition 2.4 can be written as:

V (f) =
1

N

N∑
i=1

(Tfi + δfi(f))

where T and δ are defined in Definitions 3.1 and 3.2, respectively.

5
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Scenario A: fully differentiated equilibrium
πθA

= πθB
= 0.5

S1(θ) S2(θ)
θA 0.90 0.85
θB 0.35 0.80

W = V (f∗) = V (1, 2) = 0.85

Scenario B: Add a new model g3
πθA

= πθB
= 0.5

S1(θ) S2(θ) S3(θ)
θA 0.90 0.85 0.91
θB 0.35 0.80 0.77
W = V (f∗) = V (3, 3) = 0.84

Figure 4: An example where enlarging the model pool decreases welfare. In Scenario A, with
models g1 and d2 , the equilibrium is fully differentiated with the welfare W = 0.85. Adding a new
model g3 in Scenario B shifts the equilibrium to the homogeneous (g3, g3), where welfare decreases
to W = 0.84. It pulls both platforms toward homogenization, thereby sacrificing the welfare of
minority types. The calculation details are provided in Section C.9.

Proposition 4.1 with proof in Section C.6 provides a closed-form expression for the coverage value
of any strategy profile f , showing that the sum of individual platform utilities equals the coverage
value, i.e., V (f) =

∑N
i=1 Ui(f). However, under competition, self-interested platforms that each

maximize their own utility Ui do not necessarily achieve optimal user welfare, as discussed below.

Lemma 4.2. Let W denote the user welfare (Definition 2.5) achieved under the game G(G, I,Θ),
and Wopt the social optimum welfare (Definition 2.6). Then, it always holds that W ≤Wopt.

Note that the equality in Lemma 4.2 holds only in the degenerate cases: when f∗ ∈ argmaxf V (f)

or when every f (t) in the best-response cycle attains the maximum welfare value. Such situations
rarely occur in competitive markets, highlighting the misalignment between platform incentives and
user welfare as the social objective. We provide an example in Section C.8.

Next, we examine the impact of the number of models and platforms on the market. Intuitively,
enlarging the model pool G or increasing the number of platforms N might be expected to promote
competition and enhance user welfare and market diversity. However, our counterexamples show
that neither approach is reliably effective. As illustrated in Fig. 4, expanding the model pool can
introduce a uniformly strong model, pulling the market toward homogenization and reducing welfare
for minority users, as shown in Corollary 3.5. Similarly, adding platforms can be counterproductive:
strategic interactions may induce best-response cycles or lead platforms to adopt weaker models to
avoid competition, thereby lowering welfare. These results demonstrate that welfare and diversity
are not monotone in competition intensity. Nonetheless, we can identify sufficient conditions under
which platform entry does not reduce welfare or diversity, as detailed in Proposition 4.3.

Proposition 4.3. Consider a game G(G, I,Θ) with an equilibrium f∗. Let Ĝ(G, I′ := I ∪ {i+},Θ)
be another game with one additional platform added. Suppose there exists a model h ∈ G and an
incumbent equilibrium strategy f̂ from f∗ such that the extended profile f̂ := (f∗, h) satisfies the
best-response conditions: (i) the best response to f∗ is h; (ii) no incumbent platform has a profitable
deviation against f̂ . Then f̂ is an equilibrium of the game Ĝ. Furthermore, the user welfare and
market diversity in Ĝ are at least as high as in G, i.e., Ŵ ≥W and D̂supp ≥ Dsupp.

5 FROM HARDMAX TO SOFTMAX USER CHOICE

Our main analysis adopts the hardmax user choice rule in Eq. 1, where each user deterministically
selects the platform whose model achieves the highest score Sfi(θ) for their type θ, breaking ties
uniformly. This assumption makes the analysis of strategic interactions more straightforward. In
practice, however, users exhibit noisy and heterogeneous behavior rather than perfectly rational best
responses. A natural extension is a softmax choice model. Given a profile f = (f1, . . . , fN ) and a
user type θ, we define

psoft
i (θ) :=

eSfi
(θ)/τ∑N

k=1 e
Sfk

(θ)/τ
(8)

where τ ≥ 0 is a temperature parameter controlling the level of randomness in user choice. When
τ → ∞, users are nearly indifferent and split across platforms almost uniformly. As τ decreases,

6
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users concentrate more on higher-scoring platforms, and in the limit τ → 0 the softmax model
converges to the hardmax rule.

Indeed, our negative result on the existence of equilibrium (Proposition 2.2) extends to the softmax
user choice model. The platform game under Eq. 8 remains a finite normal-form game, and pure
Nash equilibria may not exist. Proposition C.7 in Appendix C.10 shows that any instance with no
PNE under the hardmax choice model remains without a PNE for all sufficiently small temperatures
τ in the softmax model. We also provide an example in Appendix C.10 demonstrating that, for a
fixed τ > 0, the softmax model still admits no pure Nash equilibrium.

The utility decomposition (Proposition 3.3) and the existence of fully differentiated and homo-
geneous equilibrium (Lemma 3.4) also extend beyond the hardmax model. As shown in Ap-
pendix C.10, an analogous decomposition holds under softmax choice once the deviation term is
redefined as δsoft

fi
(f) in Eq. 21. With this modified deviation, Lemma 3.4 carries over directly: the

equilibrium conditions retain the same form and can still be expressed as inequalities involving Tfi

and δsoft
fi

(f). This highlights that that market segmentation is not determined by average model per-
formance alone; a model with lower average performance may support a differentiated equilibrium
if it performs particularly well for certain user types.

Finally, our notion of welfare is largely independent of the choice rule. The only change is in the
relation between coverage V (f) and platform utilities: under hardmax,

∑
i Ui(f) = V (f), whereas

under softmax
∑

i U
soft
i (f) ≤ V (f), typically with strict inequality, which further increases the

misalignment between platform incentives and user welfare. Nevertheless, since the definition of
coverage and welfare is determined only by the available models and their scores, all comparisons
between V (f) and Wopt, including Lemma 4.2 and its Proposition 4.3, remain valid.

6 DESIGNING COMPETITIVE MODELS FOR PLATFORM ADOPTION

In this section, we shift focus to model providers. Consider a single provider aiming to learn pa-
rameters ϕ for an entrant model gϕ that will be adopted by rational platforms. The provider seeks to
maximize an adoption-weighted quality objective:

max F (ϕ) :=
∑
θ∈Θ

πθσθSϕ(θ)

where σθ ∈ [0, 1] represents the adoption probability that users of type θ would choose gϕ when it
competes against incumbents, and Sϕ(θ) = Ex∼gϕ [rθ(x)] is the expected quality that user type θ
receives from gϕ.

To calculate σθ, suppose we can estimate the user distribution {πθ}θ∈Θ and the score Si(θ) of
incumbent i ∈ M. Let S̄(θ) := maxj∈M Sj(θ) be the best opponent score for user type θ. A hard
adoption rule would set σθ = 1 when Sϕ(θ) > S̄(θ) and 0 otherwise. As this is non-differentiable
and unsuitable for gradient-based optimization, we adopt a Bradley-Terry Bradley & Terry (1952)
soft gate on the margin ∆θ := Sϕ(θ)− S̄(θ) and define the adoption probability of type θ attracted
by the new model as σθ = σ (β∆θ), where σ(z) = 1

1+e−z . Here, β controls the softness, as β → 0,
σθ approaches the hard adoption.

We provide two solutions to solving the above optimization: 1) training data resampling; and 2)
direct-gradient optimization.

Training Data Resampling. We first adopt a resampling-based scheme that biases the training
data distribution toward user types with higher payoff weights αθ := πθ (σθ)

γ · S̄(θ), where γ ≥ 0
emphasizes user types for which the entrant is more likely to outperform incumbents. Each data
point x is then assigned a sampling probability ŵ(x), normalized from w(x) ∝

∑
θ∈Θ αθvθ(x),

where vθ(x) ∈ [0, 1] measures how strongly x is preferred by users of type θ. Specifically:

• Structured data: Each x has an attribute (e.g., class, domain, style) u(x) ∈ U, and type θ
specifies a distribution qθ(u). We set vθ(x) = qθ(u(x)), i.e., the probability that x matches type
θ’s preferred attribute. Sampling then proceeds by first drawing u ∼ ŵ(u) ∝

∑
θ αθqθ(u), and

then sampling x ∼ D(· | u).
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• Unstructured data: We use the reward itself vθ = normalize(rθ(x)), so data points yielding
higher expected rewards for type θ are sampled more frequently.

In this method, type weights are computed based on σθ and S̄(θ), and the model gϕ is trained on
data resampled according to these weights. This method alters the data distribution but not the loss
function, making it compatible with standard training pipelines while effectively biasing training
toward strategically valuable user types. The detailed procedure is provided in Algorithm 1.

Direct-Gradient Optimization. We train the model to directly improve both its generation quality
and its competitive attractiveness against fixed opponents. Specifically, the training objective is:

argmin
ϕ

L(ϕ) := L(ϕ)− λF (ϕ) (9)

where L(ϕ) is the standard loss ensuring that the model maintains overall sample quality, and F (ϕ)
is the adoption-weighted quality objective that promotes competitiveness. The trade-off parameter
λ ≥ 0 balances quality and competitiveness.The main challenge in optimizing this objective via
gradient descent lies in computing the gradient of F (ϕ). Note that the only term depending on ϕ in
F (ϕ) =

∑
θ∈Θ πθσθSϕ(θ) is Sϕ(θ) = Ex∼gϕ [rθ(x)]. By the chain rule, we have:

∇ϕF (ϕ) =
∑
θ∈Θ

πθ [σθ + βσθ (1− σθ)Sϕ(θ)] · ∇ϕSϕ(θ)

We next present two estimators for ∇ϕSϕ(θ). The detailed procedure is shown in Algorithm 2.

• Pathwise gradient: This estimator applies when both the reward function rθ(x) (e.g., classi-
fier score, probability output) and the generative model (e.g., GAN (Goodfellow et al., 2014),
DDPM (Ho et al., 2020), SGM (Song & Ermon, 2019)) are differentiable. The model samples
x = gϕ(ξ), where ξ ∼ p0(ξ) is drawn from a fixed prior p0 and gϕ is a deterministic transforma-
tion of the noise ξ, then

∇ϕSϕ(θ) = Eξ

[
∇xrθ(x)

∣∣∣
x=gϕ(ξ)

· Jϕgϕ(ξ)
]

where Jϕgϕ(ξ) is the Jacobian of gϕ(ξ) with respect to ϕ.
• REINFORCE gradient (Williams, 1992): This estimator applies when either the reward function
rθ(x) (e.g., discrete 0/1 feedback) or the generative process (e.g., SeqGAN (Yu et al., 2017),
MaliGAN (Che et al., 2017))is non-differentiable. With a moving-average baseline bθ to reduce
gradient variance and let pϕ(x) is the model distribution, then

∇ϕSϕ(θ) = Ex∼pϕ
[(rθ(x)− bθ)∇ϕ log(pϕ(x))]

7 EXPERIMENTS

In this section, we conduct experiments on both synthetic (Section D) and real-world data to provide
a reproducible prototype for validating the theory.

Model Pool. We adopt a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) trained
on the full CIFAR-10 dataset (Krizhevsky, 2009), contains 60,000 images from 10 classes C =
{airplne := 0, automobile := 1, bird := 2, cat := 3, deer := 4, dog := 5, frog := 6, horse :=
7, ship := 8, truck := 9}, as the base model. To construct preference-oriented variants, we apply
Low-Rank Adaptation (LoRA) (Hu et al., 2022) fine-tuning with different class-specific subsets.
The choice of class groups and LoRA hyperparameters for each variant is summarized in Table 1.
Each variant captures preferences aligned with a subset of CIFAR-10 classes.

User Group. We partition the user population into six groups, each characterized by heteroge-
neous preferences over CIFAR-10 classes. Formally, for user group θ, we specify a distribution of
weights θ = {θc}c∈C,

∑
c∈C θc = 1, the details are given in Table 2.

Reward Function. We employ pretrained ResNet20 model (He et al., 2016) with the 92.60%
Top-1 accuary trained on CIFAR-10 and held fixed during experiments, assume pacc(c | x) is the
posterior class probability computed by this model for class c. Then the reward of v for user type θ
is calculated by rθ(x) =

∑
c∈C θc ·pacc(c | x). For every calculation of S, we sample 2000 samples.

8
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Table 1: Model Pool

# classes d αℓ ηℓ

M1 airplane, auto 4 16 1.0
M2 ship, truck 4 16 1.0
M3 bird, cat 4 16 1.0
M4 cat, dog 8 32 1.5
M5 cat, dog 4 16 1.0

Notes: d denotes the LoRA rank, αℓ is the
LoRA scaling factor, and ηℓ is the external
scale applied during fine-tuning.

Table 2: User Groups

#(θ) preferences(class(θc)) π(θ)

A cat (0.6), dog (0.4) 0.18
B dog (0.7) cat (0.3) 0.17
C airplane (0.5), ship (0.3), auto (0.2) 0.16
D auto (0.6), truck (0.4) 0.16

E bird (0.4), deer (0.3), 0.17frog (0.2), horse (0.1)

F cat (0.2), dog (0.2), airplane (0.15), 0.16auto (0.15), ship (0.1), truck (0.2)

Discrete Best-Response Simulation. The average performance of the five models Ti and their
user-specific performance Si(θ) are shown in Fig. 8 in Section E.1, where we conduct a discrete
best-response simulation by progressively enlarging the model pool (from 1 to 5 models with 3
players) and increasing the number of platforms (from 1 to 6 players with 5 models). At each round,
platforms update their strategies by choosing the best response among the available models, given
the current distribution of opponents’ choices. For each game, we perform three independent runs
and track diversity DHHI and coverage value V (f) at every step t of best-response dynamics.
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Figure 5: When enlarging either the model pool (a,b) with 3 players or the number of platforms
(d,e) with 5 models, the change of HHI diversity ((a,d), where larger values indicate more homoge-
nization) and coverage value ((b,e), where larger values are better). (c,f) provide examples of utility
trajectories across best-response steps, where filled markers denote the player taking the action at
each step. (c) shows best-response cycle and (d) shows an equilibrium.

From the Fig. 5a, enlarging the model pool does not automatically increase diversity. Only when the
newly introduced models are sufficiently distinct (add M2 or M3) can they enhance diversity. By
contrast, strong entrants that are merely close substitutes for existing leaders tend to homogenize the
market (add M5), as platforms converge toward the same high-performing options. This reproduces
the convergence phenomenon widely observed in today’s generative model markets. Increasing the
number of platforms in Fig. 5d, however, expands adoption opportunities and thus promotes diver-
sity. In terms of welfare, adding more platforms as Fig. 5e (which enables greater choice) improves
user welfare and accelerates its growth. However, welfare never reaches the social optimum. The
trajectory examples in Fig. 5c and Fig. 5f further reveal that early movers often select the “best”
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model, but are later forced to share its benefits with subsequent players, leaving their utilities subop-
timal. In contrast, players who move later sometimes adopt models that are less attractive globally
but provide relative advantages when not shared, resulting in higher individual utilities.

In Section D, we systematically vary the model pool size, the number of platform players, and the
user group distributions on synthetic data, with detailed results and figures provided.

Algorithmic Best-Response Entry. The hyperparameters and full algorithmic details are pro-
vided in the Section. E.2.1. Section E.2.2 reports a systematic hyperparameter tuning for both meth-
ods. Both algorithms are initialized on the full CIFAR-10 dataset. The result is shown in Fig. 6.
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Figure 6: Performance of new models generated by the direct-gradient method Mgrad and the resam-
pling method Msamp. (a) Left: equilibrium outcomes and utilities of three players when competing
over the original pool, after introducing Mgrad and Msamp. (b) Middle: diversity DHHI and welfare
Weq under the three equilibrium. (c) Right: comparison between the best original model M5 and
the new entrants Mgrad, Msamp on user scores.

The direct-gradient method achieves stronger performance: it successfully replaces the best model
in the original pool, dominates the market, and yields higher welfare and diversity. Moreover, it con-
verges with fewer iterations (≈ 20). However, it requires modifying the model’s internal objective,
and the diversity of sample classes is decreased as shown in Fig. 9.

The resampling method suffers from higher variance due to stochasticity. It only approaches the best
model in the original pool, while reducing welfare. It is also more computationally demanding (≈
10 resampling with 50 iterations each). However, the method has the practical advantage of being
plug-and-play: it can be applied to any model without altering its loss function.

8 CONCLUSION

In this paper, we formalize generative AI markets as a three-layer model-platform-user game. From
the platform perspective, we characterize conditions for both fully differentiated and homogeneous
equilibria, showing that the market is jointly shaped by average model performance and user-specific
deviation advantages. From the user perspective, we demonstrate that enlarging the model pool
or increasing the number of platforms does not necessarily translate into higher welfare. From
the model provider perspective, we propose training schemes that strategically facilitate entry into
competitive markets. Together, these findings highlight inherent paradoxes in generative AI markets
and point to design principles for more socially aligned ecosystems.

ETHICS STATEMENT

This work analyzes competitive generative model markets using both theoretical modeling and em-
pirical experiments. Our analysis is abstracted from specific settings and does not involve sensitive
personal data, human subjects, or system manipulations. Our findings raise broader ethical impli-
cations. The results show that competition among generative models may reduce diversity and user
welfare, highlighting the need for responsible governance and transparent platform practices. The
proposed training schemes are designed to advance understanding of market dynamics, not to pre-
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scribe adversarial practices. Overall, this work aims to inform policy discussions and support the
design of more socially beneficial generative ecosystems.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by including all definitions, propositions, and proofs, and by detailing
model pool construction, user groups, reward functions, and evaluation metrics. Hyperparameters
and training procedures are documented in the appendix, and code will be released to support repli-
cation and extension of our results.
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A RELATED WORK

Recent advances in machine learning have created markets where multiple models coexist and com-
pete for user adoption. In such competitive environments, the strategic interactions among providers
critically shape both market outcomes and overall social welfare.

Competition among classification models has been extensively studied through the market design
and strategic learning. A key insight is that in competitive markets, maximizing classification ac-
curacy alone does not guarantee higher adoption or improved social welfare. For example, re-
cent work Einav & Rosenfeld (2025) formalizes the accuracy market, where multiple classification
providers compete for users, showing that optimal strategies must account for rivals’ actions rather
than accuracy in isolation. Similarly, Ben-Porat & Tennenholtz (2017) study the learnability of opti-
mal responses in competitive regression, and further establish that pure-strategy equilibria exist and
that competition may induce strategic misprediction (Ben-Porat & Tennenholtz, 2019). Further, Ja-
gadeesan et al. (2023b) demonstrate that even when individual predictors achieve lower Bayes risk,
strategic competition can paradoxically reduce overall social welfare. Extending beyond classifica-
tion and regression, Yao et al. (2023) analyze how top-K recommendation performs under competing
content creators, showing that user welfare losses remain bounded, while Yao et al. (2024b) propose
platform interventions that directly optimize user welfare in such competitive recommendation envi-
ronments. Overall, these results show that accuracy must be assessed in the context of competition,
entry, and social welfare.

As model capabilities improve, research has increasingly focused on competition among generative
models. Raghavan (2024) show that equilibrium under generative AI competition tends toward
content homogeneity, even when models perform well in isolation, while stronger competition can
counteract this effect. Empirical studies further suggest that generative AI usage in areas such as
peer review Ebadi et al. (2025); Kankanhalli (2024), writing Doshi & Hauser (2024), and creative
generation Wu et al. (2025) often associated with reduced output diversity. Beyond model-model
competition, recent work also examines the interplay between humans and generative models: at
the creator level, Yao et al. (2024a) model competition between human creators and generative AI
using a generalized contest framework, showing conditions for coexistence, conflict, or even the
absence of stable equilibria; while at the platform level, Taitler & Ben-Porat (2025) demonstrate
that generative AI can paradoxically reduce overall welfare in human-driven platforms, echoing
Braess’s paradox.

Unlike prior studies that focus on two-layer market, our work formalizes a three-layer model-
platform-user game. Under the assumption of deterministic user choice, we show that pure Nash
equilibria may fail to exist. Building on this observation, we characterize the conditions under which
equilibria arise and analyze how the resulting market structures shape welfare and diversity as the
set of available models becomes richer. Moreover, we depart from prior work by adopting the per-
spective of model providers, and propose best-response entry training schemes that allow entrants
to strategically introduce new models, which is an angle largely absent in the existing literature on
model competition.

B DISCUSSION

Platforms with Multiple Models. For tractability, the current framework assumes that each plat-
form selects a single model. However, it can be extended naturally to accommodate multiple models
per platform. In this setting, each platform’s strategy would be a set of models Mi, and user choice
could depend on the highest-performing model in that set for their type, Ŝi(θ) = maxj∈Mi Sj(θ),
or an expected score Ŝi(θ) = Ej∈Mi

Sj(θ). The three-layer market formalization remains as before,
with platform payoffs computed using Ŝi(θ) instead of Si(θ), and best responses now taken over
model mixtures rather than single models. Then, many of the existing analysis, such as the utility
decomposition, equilibrium characterization, and welfare analysis, can be generalized to this setting.

Partially Overlapping Markets. Our framework is designed for settings where platforms offer
comparable services and draw from a shared pool of models M . In such markets, platforms face
similar types of demand (e.g., overlapping mixes of coding and translation tasks), and their strategic
decision is which model from this common pool to deploy in order to attract groups. By contrast,
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if different platforms specialize in largely disjoint services (e.g., one focuses almost exclusively on
coding while another focuses almost exclusively on translation), then their effective model pools
may overlap only partially or not at all. In that case, they are not competing for the same user base
in the sense of our model: a user might naturally use both services for different tasks, and platforms
no longer face a shared competitive environment. Extending the framework to this multi-market or
partially overlapping-market environments is an interesting direction for future work.

Dynamic Interactions. Our analysis focuses on first-round interactions in a static, complete-
information setting. In practice, user behavior and platform strategies evolve gradually: the data
distribution shifts under repeated deployments, and models are retrained iteratively. Incorporating
these multi-round feedback effects into our three-layer framework is left for future work.

C PROOFS

C.1 PROOF OF PROPOSITION 2.2

Proposition 2.2. [Nonexistence of PNE] Consider the game G(G, I,Θ) with finite sets of platforms
I, models G, and user types Θ, where each platform i chooses a model fi ∈M based on Eq. 1. The
game may not admit a pure-strategy Nash equilibrium f∗.

Proof. We provide a constructive counterexample here. Let Θ = {θA,θB ,θc} with uniform
weights π(θk) = 1

3 . Let G = {g1, g2, g3} and define scores:

S1(θ) S2(θ) S3(θ)
θA 0.2 0.1 0
θB 0 0.2 0.1
θC 0.1 0 0.2

Then when there are two players, the payoff matrix is :

f = (f1, f2) g1 g2 g3
g1 (0.05, 0.05) (0.1, 0.067) (0.067, 0.1)
g2 (0.067, 0.1) (0.05, 0.05) (0.1, 0.067)
g3 (0.1, 0.067) (0.067, 0.1) (0.05, 0.05)

On the diagonal (gk, gk) each platform gets 0.05. Against gk, the unique best response is the model
that yields 0.10, so any diagonal profile is profitably deviated from. Off the diagonal, the player
receiving 0.067 can switch to the third model and improve to 0.10. Hence no profile is a mutual best
response; therefore no PNE exists.

C.2 PROOFS OF PROPOSITION 3.3

To illustrate the intuition, we first consider the case with two platforms N = 2.

The strategy profile is f = (fi, fj), in this case, the attraction term in Definition 3.2 simplifies to:

Zij(θ) :=


Sfi(θ) if Sfi(θ) > Sfj (θ)

0 if tie
−Sfi(θ) if Sfi(θ) < Sfj (θ)

(10)

which measures how much user type θ strictly prefers fi over fj . Accordingly, the deviation advan-
tage is:

δij :=
∑
θ∈Θ

π(θ) · Zij(θ) (11)

Proposition C.1 (Utility Decomposition for two platforms.). Suppose N = 2, let i, j ∈ I be the two
players who choose model fi and fj under strategy f . Then the expected utility is

Ui (fi, fj) =

{
1
2Tfi if fi = fj
1
2 (Tfi + δij) if fi ̸= fj

(12)
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Proof. Consider the case with two platforms (N = 2) and strategy profile f = (fi, fj), let Wini =
{θ : Sfi(θ) > Sfj (θ)}, Tie = {θ : Sfi(θ) = Sfj (θ)}, Loseri = {θ : Sfi(θ) < Sfj (θ)}.
With Eq. 1, a type θ is fully assigned to the winner, split evenly on a tie, and assigned zero to the
loser. Therefore, the utility of the platform choosing gi is:

Ui(fi,f−i) =
∑
θ∈Θ

πθ · pi(θ) · Sfi(θ) =
∑

θ∈Wini

π(θ)Sfi(θ) +
1

2

∑
θ∈Tie

π(θ)Sfi(θ)

By definition,

Ti =
∑
θ∈Θ

π(θ)Sfi(θ) =
∑

θ∈Wini

π(θ)Sfi(θ) +
∑

θ∈Tie

π(θ)Sfi(θ) +
∑

θ∈Loseri

π(θ)Sfi(θ)

δij =
∑
θ∈Θ

π(θ)Zij(θ) =
∑

θ∈Wini

π(θ)Sfi(θ)−
∑

θ∈Loseri

π(θ)Sfi(θ)

Adding these two:

Tfi + δij = 2
∑

θ∈Wini

π(θ)Sfi(θ) +
∑

θ∈Tie

π(θ)Sfi(θ)

Then
1

2
(Tfi + δij) =

∑
Wini

π(θ)Sfi(θ) +
1

2

∑
T

π(θ)Sfi(θ) = ui

If both platforms choose the same model, then all users are split evenly, so

ui = uj =
1

2

∑
θ

π(θ)Sfi(θ) =
1

2
Tfi .

Therefore, for N = 2:

Ui (fi, fj) =

{
1
2Tfi if fi = fj
1
2 (Tfi + δij) if fi ̸= fj

Proposition 3.3. [Utility Decomposition.] The expected utility Ui (fi;f−i) of platform i in Eq. 2
can be decomposed into Tfi and δfi(f) as:

Ui (fi;f−i) =
1

N
(Tfi + δfi(f)) . (5)

Proof. Fix a strategy profile f = (f1, . . . , fN ) and a model fi chosen by player i. Recall that let
M(f) = {f1, . . . , fN} denote the set of models used in this strategy. For a user type θ, define the
set of maximizers Af (θ) := argmaxk∈M(f) Sk(θ) and let Af (θ) := |Af (θ)| be the number of
models tied for the maximum.

Under the rule, the share of type θ that is allocated to a platform using fi is

pi(θ;f) :=

{
1

Af (θ)
fi ∈ Af (θ)

0 fi /∈ Af (θ).

Hence the expected utility of player i equals

Ui(fi,f−i) =
∑
θ∈Θ

π(θ)pi(θ;f)Sfi(θ).

We now prove the following per-type identity:

N · pj(θ;f) · Sfj (θ) = Sfj (θ) + Zj(θ;f) ∀θ ∈ Θ (13)
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where Zj(θ;f) is defined in Definition 3.2.

Case 1: fj /∈ Af (θ). Then pj(θ;f) = 0, so the left-hand side of Eq. 13 is 0. By Definition 3.2,
Zj(θ;f) = −Sfj (θ), hence Sfj (θ) + Zj(θ;f) = Sfj (θ)− Sfj (θ) = 0. Thus Eq. 13 holds.

Case 2: j ∈ Af (θ)). Then pj(θ;f) =
1

Af (θ)
. Again by Definition 3.2

Zj(θ;f) =
N −Af (θ)

Af (θ)
Sfj (θ)

Therefore

Sfj (θ) + Zj(θ;f) =

(
1 +

N −Af (θ)

Af (θ)

)
Sfj (θ) =

N

Af (θ)
Sfj (θ) = N pj(θ;f)Sfj (θ)

So Eq. 13 also holds.

When we have Eq. 13, sum both sides over θ with weights π(θ) and divide by N :∑
θ∈Θ

π(θ)pj(θ;f)Sfj (θ) =
1

N

∑
θ∈Θ

π(θ)
(
Sfj (θ) + Zj(θ;f)

)
=

1

N

(
Tfj + δfj (f)

)
where δj(f) :=

∑
θ π(θ)Zj(θ;f).

Since Ui(fi,f−i) =
∑

θ∈Θ π(θ)pi(θ;f)Sfi(θ), we obtain:

Ui(fi,f−i) =
1

N
(Tfi + δfi(f))

C.3 PROOFS OF LEMMA 3.4

We first consider the case with N = 2.
Lemma C.2 (Conditions for Equilibrium for two platforms). Consider a game with N = 2 platform
players choosing between M models G with a finite users’ type space Θ with weights π(θ) ≥ 0,∑

θ∈Θ π(θ) = 1. The utility of each player is defined in Eq. 2. A strategy f∗ = (f∗
1 = gi, f

∗
2 = gj)

with i ̸= j is a fully differentiated equilibrium iff{
Ti + δij ≥ max{Tj ,maxk ̸=j{Tk + δkj}}
Tj + δji ≥ max{Ti,maxk ̸=i{Tk + δki}}

(14)

When M = 2, the condition becomes

−δij ≤ Ti − Tj ≤ δji (15)

A strategy f∗ = (f∗
1 , f

∗
2 ) is a homogeneous equilibrium where all f∗

i = m for some m ∈M iff

∃m ∈M s.t. Tm − Tk ≥ δkm ∀k ∈M \ {m} (16)

When M = 2, the condition becomes

Tj − Ti > δij or Ti − Tj > δji (17)

Proof. First, let’s consider that there is only two models, N = 2 and M = 2. Using Proposition C.1,
we obtain the utility of each model, from which the payoff matrix can be derived.

f gi gj
gi

(
1
2Ti,

1
2Ti

) (
1
2 (Ti + δij),

1
2 (Tj + δji)

)
gj

(
1
2 (Tj + δji),

1
2 (Ti + δij)

) (
1
2Tj ,

1
2Tj

)
Suppose players choose different models. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate, that is:{

1
2 (Ti + δij) ≥ 1

2Tj
1
2 (Tj + δji) ≥ 1

2Ti
⇐⇒

{
Ti + δij ≥ Tj

Tj + δji ≥ Ti
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Then the condition is:
−δij ≤ Ti − Tj ≤ δij

Suppose players choose the same model. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate:

1

2
(Tj + δji) <

1

2
Ti ⇐⇒ Tj + δji < Ti

or
1

2
(Ti + δij) <

1

2
Tj ⇐⇒ Ti + δij < Tj

Then the condition is:
Tj − Ti > δij or Ti − Tj > δji

Second, let’s consider that there is more than two models. The payoff matrix is:

f gi gj · · · gk
gi

(
1
2Ti,

1
2Ti

) (
1
2 (Ti + δij),

1
2 (Tj + δji)

)
· · ·

(
1
2 (Ti + δik),

1
2 (Tk + δki)

)
gj

(
1
2 (Tj + δji),

1
2 (Ti + δij)

) (
1
2Tj ,

1
2Tj

)
· · ·

(
1
2 (Tj + δjk),

1
2 (Tk + δkj)

)
· · · · · · · · · · · · · · ·
gk

(
1
2 (Tk + δki),

1
2 (Ti + δij)

) (
1
2 (Tk + δkj),

1
2 (Tj + δjk)

)
· · ·

(
1
2Tk,

1
2Tk

)
Suppose players choose different models i, j. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate, that is:

1
2 (Ti + δij) ≥ 1

2Tj
1
2 (Ti + δij) ≥ 1

2 (Tk + δkj) ∀k ∈M
1
2 (Tj + δji) ≥ 1

2Ti
1
2 (Tj + δji) ≥ 1

2 (Tk + δik) ∀k ∈M

⇐⇒
{
Ti + δij ≥ Tj

Tj + δji ≥ Ti

Then the condition is:

∃i ̸= j ∈M s.t.
{
Ti + δij ≥ max{Tj ,maxk ̸=j{Tk + δkj}}
Tj + δji ≥ max{Ti,maxk ̸=i{Tk + δki}}

Suppose players choose different models m. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate:

1

2
(Tj + δji) <

1

2
Ti ⇐⇒ Tj + δji < Ti ∀i ̸= j

Then the condition is:

∃m ∈M s.t. Tm − Tk ≥ δkm ∀k ∈M \ {m}

Lemma 3.4. [Existence of Equilibrium] Consider the game G(G, I,Θ) with finite user types Θ, and
N platforms choosing from M models G, where M ≥ N . A fully differentiated equilibrium f∗ =
(f∗

1 , . . . , f
∗
N ) exists if and only if for every platform i and every alternative model fi ∈ G \ {f∗

i },

Tf∗
i
− Tfi ≥ δfi(f

∗
−i ∪ fi)− δf∗

i
(f∗) (6)

A homogeneous equilibrium f∗ = (f∗
1 , . . . , f

∗
N ), f∗

i = m exists if and only if for some m ∈M,

Tm − Tfi ≥ δfi(f
∗
−m ∪ fi)− δm(f∗) (7)
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Proof. Fix a candidate profile f∗ = (f∗
1 , . . . , f

∗
N ). For any player i and any deviation g ∈ G\{f∗

i },
let f ′ = (f∗

1 , . . . , f
∗
i−1, g, f

∗
i+1, . . . , f

∗
N ) = f∗

−i ∪ {g}.
By definition of a pure Nash equilibrium, f∗ is a PNE iff for all i and all such g,

Ui(f
∗) ≥ Ui(f

′)

Using Proposition 3.3, we have
N · Ui(f

∗) = Tf∗
i
+ δf∗

i
(f∗) N · Ui(f

′) = Tg + δg(f
′)

Therefore:
Tf∗

i
+ δf∗

i
(f∗) ≥ Tg + δg(f

′)

Conversely, if it holds for all i and all g ̸= f∗
i , then the above inequality reverses to Ui(f

∗) ≥ Ui(f
′)

for every deviation, so no player profits from deviating and f∗ is a PNE. This completes the proof
of the fully differentiated case.

The homogeneous case is similar, with f∗
i = m for all i; plugging m into the same inequality we

obtain the desired results.

C.4 CALCULATION OF THE EXAMPLE IN FIG. 2

Scenario A: Two user types Θ = {θA,θB} with equal weights π(θA) = π(θB) = 0.5. The model
scores are:

S1(θ) S2(θ)
θA 0.90 0.85
θB 0.35 0.80

The average scores are:
T1 = 0.625, T2 = 0.825, T2 − T1 = 0.20

The deviation advantages are:
δ12 = 1

2 (+0.90− 0.35) = 0.275, δ21 = 1
2 (−0.85 + 0.80) = −0.025

The differentiation condition −δ12 ≤ T1 − T2 ≤ δ21 becomes:
−0.275 ≤ −0.20 ≤ −0.025

which holds. Hence, by Lemma C.2, the equilibrium is full differentiated: the two platforms select
different models, even though T1 < T2.

The payoff matric of this scenario is:
f g1 g2
g1 (0.3125, 0.3125) (0.45, 0.4)
g2 (0.4, 0.45) (0.4125, 0.4125)

So the equilibrium is (g1, g2) or (g2, g1).

Scenario B: We keep T1 = 0.625, T2 = 0.825, and T2 − T1 = 0.20, but change the type-level
structure to weaken g1’s advantage:

S1(θ) S2(θ)
θA 0.60 0.70
θB 0.65 0.95

The deviation advantages are now:
δ12 = 1

2 (−0.60− 0.65) = −0.625, δ21 = 1
2 (+0.70 + 0.95) = 0.825

The differentiation condition −δ12 ≤ T1 − T2 ≤ δ21 becomes:
0.625 ≤ −0.20 ≤ 0.825

which fails. The consolidation condition T2−T1 > δ12 or T1−T2 > δ21 holds since 0.20 > −0.625;
thus, the equilibrium is homogeneous on g2.

The payoff matric of this scenario is:
f g1 g2
g1 (0.3125, 0.3125) (0, 0.825)
g2 (0.825, 0) (0.4125, 0.4125)

So the equilibrium is (g2, g2).
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C.5 THE PROOF OF COROLLARY 3.5

Corollary 3.5 (High User Centralization ⇒ Homogeneous Equilibrium). Assume there exists a
dominant user type θ⋆ with fraction π⋆

θ and a model m satisfying: ∀j ̸= m, Sm(θ⋆) − Sj(θ
⋆) ≥

ρ > 0 and ∀θ ̸= θ⋆, j ̸= m, |Sj(θ)− Sm(θ)| ≤ Γ. If π⋆
θ is sufficiently large and satisfies

π⋆
θ ≥ 1− 1

1 + 2Γ
ρ

then the homogeneous strategy f∗ = (m, . . . ,m) is a pure-strategy Nash equilibrium.

Proof. We use the utility decomposition Proposition 3.3

N · Ui(f) = Tfi + δfi(f)

Suppose all players currently choose m, consider a deviation by a single platform to some k ̸= m.
Let ∆ denote the utility gain from this deviation, then

∆ = [Tk + δk(f
∗
−i ∪ {k})]− [Tm + δm(f∗)]

The ∆ is consists of three parts:

Loss on the dominant type θ⋆: Under f∗, each platform receives a 1
N share of θ⋆’s contribution

1
N Sm(θ⋆). After deviating to k, the deviator’s share on θ⋆ becomes 0 because m strictly wins there.
Using the margin Sm(θ⋆)− Sk(θ

⋆) ≥ ρ, the utility loss from θ⋆ is at least

∆Uθ⋆ ≥ π⋆
θρ

N

Gain on minority types where k wins: On Θ \ {θ⋆}, the total mass is 1 − π⋆
θ. Wherever k wins

m, the deviator’s share improves from 1
N to 1. Since k’s per-type advantage over m is at most Γ,

the upper bound gain is

∆Uwin ≤
(1− π⋆

θ)Γ

N

Additional loss on minority types where k loses: On those types where m remains superior, the
deviator’s share falls from 1

N to 0. Bounding score levels by the same heterogeneity constant Γ, we
get

∆Ulose ≤ −
(1− π⋆

θ)Γ

N

So the change:

∆ = ∆Uwin −∆Ulose −∆Uθ⋆

=
(1− π⋆

θ)Γ

N
+

(1− π⋆
θ)Γ

N
− π⋆

θρ

N

=
2(1− π⋆

θ)Γ− π⋆
θρ

N

Therefore, if ∆ ≤ 0, 2(1− π⋆
θ)Γ− π⋆

θρ ≤ 0, that is:

π⋆
θ ≥ 1− ρ

ρ+ 2Γ

so no player benefits from deviating and the homogeneous profile f∗ is a Nash equilibrium. So the
condition is:

π⋆
θ ≥ 1− ρ

ρ+ 2Γ
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C.6 PROOF OF PROPOSITION 4.1

Proposition C.3. Consider the case where N = 2 and fix a strategy f = (gi, gj). For each user
type θ ∈ Θ with weight π(θ) ≥ 0, the coverage value of the pair (i, j) is

V (i, j) =
1

2
(Ti + Tj + δij + δji)

Proof. First, for any i ̸= j,

δij + δji =
∑
θ∈Θ

πθ|Si(θ)− Sj(θ)| (18)

Fix a type θ. Consider three cases.

Case 1: Si(θ) > Sj(θ): Then Zij(θ) = Si(θ) and Zji(θ) = −Sj(θ), so Zij(θ) + Zji(θ) =
Si(θ)− Sj(θ) = |Si(θ)− Sj(θ)|.
Case 2: Si(θ) < Sj(θ): Then Zij(θ) = −Si(θ) and Zji(θ) = Sj(θ), so Zij(θ) + Zji(θ) =
Sj(θ)− Si(θ) = |Si(θ)− Sj(θ)|.
Case 3: Si(θ) = Sj(θ): Then Zij(θ) = Zji(θ) = 0, hence the sum is 0 = |Si(θ)− Sj(θ)|.
Multiplying by πθ and summing over θ yields the claim.

Use the pointwise identity: max{a, b} = 1
2 (a+ b+ |a− b|). Applying it with a = Si(θ) and

b = Sj(θ) and summing over θ:

V (i, j) =
∑
θ

π(θ)max{Si(θ), Sj(θ)}

=
1

2

∑
θ

π(θ) (Si(θ) + Sj(θ) + |Si(θ)− Sj(θ)|)

=
1

2

(∑
θ

π(θ)Si(θ)︸ ︷︷ ︸
Ti

+
∑
θ

π(θ)Sj(θ)︸ ︷︷ ︸
Tj

+
∑
θ

π(θ)|Si(θ)− Sj(θ)|︸ ︷︷ ︸
δij+δjiby Eq. 18

)

=
1

2
(Ti + Tj + δij + δji)

Proposition 4.1. [Coverage Value Calculation] Given a strategy profile f = (f1, . . . , fN ), the
coverage value in Definition 2.4 can be written as:

V (f) =
1

N

N∑
i=1

(Tfi + δfi(f))

where T and δ are defined in Definitions 3.1 and 3.2, respectively.

Proof. Fix θ and recall Af (θ) := argmaxk∈M(f) Sk(θ) and Af (θ) = |Af (θ)|. By the definition
of Zj(θ;f): ∑

j∈M(f)

(Sj(θ) + Zj(θ;f)) =
∑

j∈Af (θ)

(
1 +

N −Af (θ)

Af (θ)

)
Sj(θ)

=
N

Af (θ)

∑
j∈Af (θ)

Sj(θ)

= N max
k∈M(f)

Sk(θ)
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Multiply by π(θ), sum over θ, and divide by N to obtain

V (f) =
1

N

∑
j∈M(f)

(∑
θ

π(θ)Sj(θ) +
∑
θ

π(θ)Zj(θ;f)

)

=
1

N

∑
j∈M(f)

(Tj + δj(f))

=
1

N

N∑
i=1

(Tfi + δfi(f))

C.7 PROOF OF LEMMA 4.2

Lemma 4.2. Let W denote the user welfare (Definition 2.5) achieved under the game G(G, I,Θ),
and Wopt the social optimum welfare (Definition 2.6). Then, it always holds that W ≤Wopt.

Proof. If O = f∗ is a PNE, then W (O) = V (f∗) ≤ maxf V (f) = Wopt by definition.

If O is a cycle f (1), . . . ,f (L), then

W (O) = 1

L

L∑
t=1

V (f (t)) ≤ 1

L

L∑
t=1

max
f

V (f) = Wopt

since an arithmetic mean is at most its maximum term.

Therefore, W (O) ≥Wopt

C.8 THE EXAMPLE OF LEMMA 4.2

Example C.4. Consider three user types θA,θB ,θC with weights π(θA) = 0.5, π(θB) = 0.3,
π(θC) = 0.2. Their scores for each of the three models g1, g2, g3 are:

g1 g2 g3
θA 0.434 0.698 0.760
θB 0.828 0.679 0.431
θC 0.343 0.776 0.565

The average scores are:

T1 = 0.534, T2 = 0.7079, T3 = 0.6223.

The pairwise attraction shifts δij are computed as in the model:

δ12 = −0.0372, δ21 = 0.3005, δ13 = −0.0372

δ31 = 0.3637, δ23 = 0.0099, δ32 = 0.1377

The coverage value of a pair (gi, gj) is

V (i, j) =
∑
θ

πθ max{Sθ(gi), Sθ(gj)}

Numerically:
V (1, 2) = 0.7526, V (1, 3) = 0.7414, V (2, 3) = 0.7389

Thus, the socially optimal pair is (g1, g2) with

Wopt = 0.7526.
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The payoff:

f g1 g2 g3
g1 (0.267, 0.267) (0.2484, 0.5042) (0.2484, 0.5112)
g2 (0.5042, 0.2484) (0.35395, 0.35395) (0.3589, 0.38)
g3 (0.5112, 0.2484) (0.38, 0.3589) (0.31115, 0.31115)

Equilibrium check for (g2, g3): the differentiation condition requires:{
T2 + δ23 ≥ max{T3, T1 + δ13}
T3 + δ32 ≥ max{T2, T1 + δ12}

Substituting:

T2 + δ23 = 0.7079 + 0.0099 = 0.7178

max{T3, T1 + δ13} = max{0.6223, 0.534− 0.0372} = 0.6223

T3 + δ32 = 0.6223 + 0.1377 = 0.7600

max{T2, T1 + δ12} = max{0.7079, 0.534− 0.0372} = 0.7079

Both inequalities hold, hence (g2, g3) is a full differentiated equilibrium with welfare

Weq = V (2, 3) = 0.7389.

Although (g2, g3) is a valid differentiated equilibrium, it yields lower welfare than the optimal pair
(g1, g2):

Weq = 0.7389 < Wopt = 0.7526

This demonstrates that a differentiated equilibrium does not necessarily coincide with socially opti-
mal differentiation.

C.9 PROOF OF PROPOSITION 4.3

Proposition 4.3. Consider a game G(G, I,Θ) with an equilibrium f∗. Let Ĝ(G, I′ := I ∪ {i+},Θ)
be another game with one additional platform added. Suppose there exists a model h ∈ G and an
incumbent equilibrium strategy f̂ from f∗ such that the extended profile f̂ := (f∗, h) satisfies the
best-response conditions: (i) the best response to f∗ is h; (ii) no incumbent platform has a profitable
deviation against f̂ . Then f̂ is an equilibrium of the game Ĝ. Furthermore, the user welfare and
market diversity in Ĝ are at least as high as in G, i.e., Ŵ ≥W and D̂supp ≥ Dsupp.

Proof. Best-response conditions (i) and (ii) imply f̂ is a PNE. If f̂ belongs to a cycle, appending h
yields a one-step extension that meets the same no-improvement conditions for that period, so the
induced outcome is an equilibrium.

For welfare, by the Proposition 4.1, since M(f̂) = M(f∗) ∪ {h}, for every type θ we have

max
k∈M(f̂)

Sk(θ) ≥ max
k∈M(f∗)

Sk(θ)

Summing with weights π(θ): V (f̂) ≥ V (f∗).

If h /∈M(f∗) and improves some type strictly, then the inequality is strict.

Example C.5 (counterexample: two ⇀ three models). Two user types Θ = {θA,θB} with equal
weights π(θA) = π(θB) = 0.5.

Scenario A: The model scores are:
S1(θ) S2(θ)

θA 0.90 0.85
θB 0.35 0.80

The average scores are:
T1 = 0.625, T2 = 0.825
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The deviation advantages are:

δ12 = 1
2 (+0.90− 0.35) = 0.275, δ21 = 1

2 (−0.85 + 0.80) = −0.025

The payoff matric of this scenario is:

f g1 g2
g1 (0.3125, 0.3125) (0.45, 0.4)
g2 (0.4, 0.45) (0.4125, 0.4125)

So the equilibrium is (g1, g2) or (g2, g1), and W (O) = V (1, 2) = 0.85

Scenario B: Add a new model g3 with S3(θA) = 0.91,S3(θB) = 0.77 Then T3 = 0.84 The
deviation advantages are now:

δ12 = 1
2 (+0.90−0.35) = 0.275, δ21 = 1

2 (−0.85+0.80) = −0.025 δ13 = 1
2 (−0.90−0.35) = −0.625

δ31 = 1
2 (+0.91+0.77) = 1.68, δ23 = 1

2 (−0.85+0.80) = −0.025, δ32 = 1
2 (+0.91−0.77) = 0.07

The payoff matric of this scenario is:

f g1 g2 g3
g1 (0.3125, 0.3125) (0.45, 0.4) (0, 0.84)
g2 (0.45, 0.4) (0.4125, 0.4125) (0.4, 0.455)
g3 (0.84, 0) (0.455, 0.4) (0.42, 0.42)

So the equilibrium is (g3, g3), and W (O) = V (3, 3) = 0.84.

Here, 0.84 < 0.85

Example C.6 (counterexample: two ⇀ three players). Consider user types π(θA) = 0.18, π(θB) =
0.17, π(θC) = 0.16, π(θD) = 0.16, π(θE) = 0.17, π(θF ) = 0.16

The model scores are:

S1(θ) S2(θ) S3(θ) S4(θ) S5(θ) S6(θ)
θA 0.030658748 0.208093837 0.32744655 0.298774868 0.154842913 0.020151094
θB 0.021978186 0.149636775 0.298145086 0.274754494 0.092761844 0.014372437
θC 0.266589463 0.035725005 0.019578686 0.029395873 0.04788997 0.182804301
θD 0.171553999 0.007992042 0.007932614 0.019235272 0.067757338 0.160182327
θE 0.039888468 0.145473659 0.077957489 0.078738138 0.110034101 0.019024562
θF 0.131100401 0.089481771 0.136355415 0.132456332 0.095638528 0.136379898

Scenario A: With only two platform: the equilibrium is (g3, g6) with user welfare W ≈ 0.2148

Scenario B: With three platforms: the cycle is (g3, g3, g1) → (g3, g3, g6) → (g1, g3, g6) →
(g1, g3, g3) and W = (V (g3, g3, g1) + V (g3, g3, g6) + V (g1, g3, g6)) /3 ≈ (0.2147 + 0.2148 +
0.199571)/3 = 0.2097

Since 0.214 > 0.210, adding a platform may not increase the user welfare.

C.10 EXTENSION TO SOFTMAX USER CHOICE MODEL

Proposition C.7 (Robust nonexistence of PNE under softmax choice). Consider a fixed instance
(Θ, π, {Sj(θ)}j). Let Uhard

i (f) denote platform utilities under the hardmax user choice rule Eq. 1,
and suppose that the induced platform game admits no pure Nash equilibrium, in the following strict
sense: there exists ∆ > 0 such that for every profile f there is a platform i and a deviation f ′

i with:

Uhard
i (f ′

i ,f−i) ≥ Uhard
i (fi,f−i) + ∆ (19)

Let U soft
i (f ; τ) be the utilities under the softmax user choice rule Eq. 8 with τ > 0. Then there

exists τ0 > 0 such that for ∀ 0 < τ ≤ τ0, the softmax game (U soft
i (·; τ)) also admits no pure Nash

equilibrium.
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Proof. Fix a profile f and a type θ. Under hardmax, a type θ user only considers platforms whose
model achieves the highest score maxk Sfk(θ), assigns equal probability to those platforms, and
assigns zero probability to all others. Under the softmax rule Eq. 8

psoft
i (θ) :=

eSfi
(θ)/τ∑N

k=1 e
Sfk

(θ)/τ

as τ → 0, the largest-score terms dominate the denominator, so psofti (θ; τ)→ phardi (θ).

Platform utilities are finite weighted sums of these probabilities:

U soft
i (f) =

∑
θ

πθp
soft
i (θ)Sfi(θ)

hence U soft
i (f)→ Uhard

i (f) as τ → 0.

Because the strategy space is finite, this convergence is uniform over all profiles f : for any ε > 0
there exists τ0 > 0 such that for all 0 < τ ≤ τ0, all platforms i, and all profiles f ,∣∣U soft

i (f)− Uhard
i (f)

∣∣ ≤ ε

Consider any profile f . By the strict no NE condition Eq. 19, there exist i and f ′
i with

Uhard
i (f ′

i ;f−i)− Uhard
i (fi;f−i) ≥ ∆

Choose ε = ∆/4 and the corresponding τ0. For any 0 < τ ≤ τ0,

U soft
i (f ′

i ;f−i)− U soft
i (fi;f−i) ≥

[
Uhard
i (f ′

i ;f−i)− ε
]
−
[
Uhard
i (fi;f−i) + ε

]
≥ ∆− 2ε = ∆/2 > 0

Thus f cannot be a best response strategy in the softmax user choice. Since f was arbitrary, the
softmax game has no pure Nash equilibrium for any 0 < τ ≤ τ0.

Example C.8. We provide a constructive counterexample here. Let Θ = {θA,θB} with uniform
weights π(θk) = 0.5. Let G = {g1, g2, g3} and define scores

S1(θ) S2(θ) S3(θ)
θA 0.734 0.148 0.934
θB 0.833 0.935 0.534

If the softmax user choice is used with τ = 0.1, then when there are two players, the payoff matrix
is:

f = (f1, f2) g1 g2 g3
g1 (0.39175, 0.39175) (0.47634, 0.34381) (0.43853, 0.42549)
g2 (0.34381, 0.4763) (0.27075, 0.27075) (0.45843, 0.47210)
g3 (0.42549, 0.43853) (0.47210, 0.45843) (0.36925, 0.36925)

Here, the cycle is (g3, g1),(g3, g2),(g1, g2),(g1, g3),(g2, g3),(g2, g1).

The Wopt = 0.9345, but W = (0.8835 + 0.9345 + 0.835)/3 = 0.87067

We now show that the T + δ decomposition extends to the softmax user choice rule in Eq. 8. We
keep Definition 3.1 for the average score Tf unchanged, and adapt the attraction term and deviation
advantage as follows:
Definition C.9 (Attraction Term and Deviation Advantage of softmax). For a strategy profile f =
(f1, . . . , fN ) with fi ∈M, the attraction term for fi in strategy f is defined as

Zsoft
fi (θ;f) :=

(N − 1)eSfi
(θ)/τ −

∑
k ̸=i e

Sfk
(θ)/τ∑N

k=1 e
Sfk

(θ)/τ
Sfi(θ) (20)

The deviation advantage for fi under strategy f is defined as

δsoft
fi (f) :=

∑
θ∈Θ

πθ · Zsoft
fi (θ;f) (21)
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With this definition, the utility decomposition in Proposition 3.3 continues to hold under softmax
choice:

U soft
i (fi;f−i) =

1

N

(
Tfi + δsoft

fi (f)
)

(22)

Proof. We use ef to denote
∑

fj∈f eSfj
(θ)/τ .

We have:

U soft
i (fi,f−i) =

∑
θ∈Θ

π(θ)
eSfi

(θ)/τ

ef
Sfi(θ) (23)

Tfi =
∑
θ∈Θ

π(θ)Sfi(θ) =
∑
θ∈Θ

π(θ)
eSfi

(θ)/τ + ef−i

ef
Sfi(θ) (24)

δsoft
fi (f) =

∑
θ∈Θ

πθ · Zsoft
fi (θ;f) =

∑
θ∈Θ

πθ
(N − 1)eSfi

(θ)/τ − ef−1

ef
Sfi(θ) (25)

It is clear that U soft
i (fi,f−i) =

1
N

(
Tfi + δsoft

fi
(f)
)

D EXPERIMENTS WITH SYNTHETIC DATASET

In this section, we design a controlled simulation environment to study equilibrium outcomes under
different models and user populations.

Generative Models. We consider M generative models G = {gj}Mj=1, each parameterized as a
Radial Basis Function (RBF) (Broomhead & Lowe, 1988) mixture:

gj(x) = bj +

Rj∑
r=1

Ajr · exp
(
− 1

2σ2
jr
∥x− µjr∥2

)
where Rj is the number of kernels for model j, µjr is the center of the r-th kernel, σjr is its width,
Ajr is its amplitude, and bj is a bias. Outputs are truncated to [0, 1].

User Distributions We represent the user by Θ = {θk}Kk=1, where θ ∈ Rd has distribution πθ.
The distribution πθ is derived by discretizing a Gaussian Mixture Model (GMM) with Q compo-
nents, where each component q is parameterized by weight wq ≥ 0 with

∑
q wq = 1, mean vector

µq , and covariance matrix Σq:

π(u) =

Q∑
q=1

wqN (u | µq(u),Σq(u)).

continuous samples u drawn from this GMM are then mapped to the nearest discrete type θk, This
construction yields a finite user distribution π(θ) that serves as input to the equilibrium analysis.
The variant user groups are constructed by shifting all component means along the x-axis: µq(u) 7→
µq(u) + (dx, 0) where dx controls the degree of population shift or by adjust different weight wq .

Reward Function. The expected reward of model j for user type θ is Sj(θ) = Ex∼gj [rθ(x)]. In
theory, gj and rθ are distinct objects, however, in our simulation, we collapse gj and rθ into a single
score function implemented as a radial basis function (RBF) mixture.

Simulation Parameters and Results. For all simulations, we have a model pool with M = 6
models as shown in Table 3 and K = 12 user types drawn from the GMMs. The baseline user
distribution uses Q = 2 components as shown in Table 4.

We conduct four sets of experiments:
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Table 3: Simulation model pool.

Model bj µjr Ajr σjr

1 0.12 (1.5, 0.0) 0.90 1.20
2 0.05 (0.0, 0.0) 1.30 0.35
3 0.08 (3.0, 0.0) 1.00 0.50
4 0.06 (0.0,0.0), (3.0,0.0) 0.70, 0.70 0.70, 0.70
5 0.05 (1.5, 0.6) 1.00 0.40
6 0.05 (1.5,-0.6) 1.00 0.40

Table 4: User distribution parameters.

Weight wq Mean µq Covariance Σq

0.6 (0.0, 0.0) [[0.25, 0.0], [0.0, 0.25]]
0.4 (3.0, 0.0) [[0.25, 0.0], [0.0, 0.25]])
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Figure 7: Best-response simulations under different settings.
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• Expanding the model pool. With three players fixed, we gradually enlarge the model pool size
from 1 to 6. The resulting diversity DHHI and coverage value V (f) are shown in Fig. 7a and
Fig. 7d, respectively.

• Increasing the number of players. With the full model pool available, we increase the number of
players from 1 to 6. The resulting diversity DHHI and coverage value V (f) are shown in Fig. 7b
and Fig. 7e, respectively.

• Shifting user groups. With the full model pool and three players, we vary the GMM means used to
sample user types by setting dx ∈ {−0.6, 0.0, 0.6, 1.2}. The diversity DHHI and coverage value
V (f) are shown in Fig. 7c and Fig. 7f, respectively.

• Changing mixture weights. With the full model pool and three players, we alter the GMM compo-
nent weights (wq1 , wq2) ∈ {(0.1, 0.9), (0.2, 0.8), (0.4, 0.6), (0.6, 0.4), (0.7, 0.3)} The results are
reported in Fig. 7g, Fig. 7h and Fig. 7i.

We observe that equilibria always exist in this setting, but diversity and welfare vary substantially
depending on whether the new models are sufficiently differentiated. Strong but substitutable mod-
els lead to market homogenization, while genuinely differentiated entrants promote diversity and
increase welfare.

E EXPERIMENTS WITH REAL DATASET

E.1 DISCRETE BEST-RESPONSE SIMULATION

The models in the model pool are constructed by applying different LoRA parameters to the back-
bone network, each trained on different CIFAR-10 subsets, as summarized in Table. 1. The backbone
network itself was trained on the full CIFAR-10 dataset for 200 epochs. During training, we used a
learning rate of 2× 104 , 1000 diffusion steps, and a batch size of 256.

We first provide the average performance Ti of the five models in model pool and their user-specific
performance Si(θ) in user groups in Fig. 8.
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Figure 8: The average performance Ti of the five models in model pool in Table 1 and their user-
specific performance Si(θ) in Table 2.

Impact of different user groups. As a complementary experiment, we examine how platform
choices vary when facing different user groups. Specifically, we consider three player choosing
from the model pool. The user group configurations are provided in Table. 5, and the corresponding
equilibrium outcomes are summarized in Table. 7.
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Table 5: Different user pool

User Pool User type (θ) with π(θ)

Pool 1 A (0.2), B (0.2), E (0.2), F (0.2)
Pool 2 A (0.3), C (0.3), E (0.4)
Pool 3 C (0.2), D (0.2), E (0.35), F (0.33)
Pool 4 A (0.6), F (0.4)

Pool 5 A (0.1), B (0.09), C (0.16),
D (0.32), E (0.17), F (0.16)

Pool 6 C (0.33), D (0.35), E (0.2), F (0.12)

Table 6: User type with its preference

User type(θ) Preferences(class(θc))

A cat (0.6), dog (0.4)
B dog (0.7) cat (0.3)
C airplane (0.5), ship (0.3), auto (0.2)
D auto (0.6), truck (0.4)

E bird (0.4), deer (0.3),
frog (0.2), horse (0.1)

F cat (0.2), dog (0.2), airplane (0.15),
auto (0.15), ship (0.1), truck (0.2)

Table 7: Outcomes of a 3-player setting under different user pools.

User Pool f Dsupp DHHI Weq

Pool 1 (M5,M5,M5) 1 0.3333 0.2110
Pool 2 (M5,M5,M1) 2 0.3349 0.2117
Pool 3 (M5,M3,M1) 3 0.3335 0.1615
Pool 4 (M5,M5,M5) 1 0.3333 0.2366
Pool 5 (M5,M1,M1) 2 0.3856 0.1932
Pool 6 (M1,M1,M1) 1 0.3333 0.1715

E.2 ALGORITHMIC BEST-RESPONSE ENTRY

E.2.1 ALGORITHM DETAILS

We provide the implementation details and hyperparameters used in our experiments for evaluating
algorithmic performance. We first describe the specific procedures of the Resampling and Direct-
Gradient methods, followed by the hyperparameters employed in training and evaluation. Unless
otherwise specified, the same base diffusion backbone and optimization settings are applied across
methods for a fair comparison.

Resampling. The algorithm for resampling method is shown as Algorithm. 1.

Algorithm 1 Training Data Resampling

Require: Dataset D; user types Θ; fixed opponents G = {g1, · · · , gM} with scores {Sm(θ)};
parameters β, γ; outer rounds T ; inner epochs E; evaluation budget b.

1: Compute S̄(θ) = maxj∈M Sj(θ) for all θ.
2: for t = 1, . . . , T do
3: Estimate Sϕ(θ) := Ex1:b∼gϕrθ(x).
4: Compute ∆θ := Sϕ(θ)− S̄(θ).
5: Compute σθ = σ (β∆θ)
6: Type weights αθ = π(θ) (σθ)

γ
S̄(θ).

7: Data weights: ŵ(u) ∝
∑

θ αθqθ(u) or ŵ(x) ∝
∑

θ αθrθ(x).
8: Sample D with ŵ as D̂
9: for e = 1, . . . , E do

10: Update ϕ by minimizing the original loss in D̂.
11: end for
12: end for
13: return ϕ.

The specific parameter details for algorithm-level:

• Outer round, the time of resample T = 5.

• Inner epcohs E = 50.
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• β = 4.

• γ = 1.

• Use adaptive scaling for σθ.

• LoRA rank 4, LoRA scaling coefficient 16, LoRA runtime multiplier 1.0.

Direct-Gradient. The algorithm for direct-gradient method is shown as Algorithm. 2.

Algorithm 2 Direct-Gradient Optimization

Require: Dataset D; user types Θ; fixed opponents G = {g1, · · · , gM} with scores {Sm(θ)};
parameters λ; Epochs E;

1: for e = 1, . . . , E do
2: Estimate Sϕ(θ) := Ex1:b∼gϕrθ(x).
3: Compute ∆θ := Sϕ(θ)− S̄(θ).
4: Compute σθ = σ (β∆θ)
5: L← l(ϕ)− λ

∑
θ∈Θ π(θ)σθSϕ(θ)

6: ϕ← ϕ− η∇L.
7: end for
8: return ϕ

The specific parameter details for algorithm-level:

• Epcohs E = 20.

• λ = 0.4.

• Use adaptive scaling for σθ.

Shared parameter. The specific parameter details for shared training parameters:

• The backbone network is trained on the full CIFAR-10 dataset for 200 epochs.

• Batch size 256.

• Learning rate 2× 10−4 (for AdamW optimizer).

• Diffusion steps 1000.

Data Distribution. As a supplement to Fig. 6 A, we provide the label distributions of 2, 000 sam-
ples generated by three models, as shown in the Fig. 9.
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Figure 9: Label distributions of 2, 000 generated samples from three models: (a) left: M2 from the
original model pool (b) middle: Msamp by redampling method. (c) right: Mgrad by direct-gradient
method.
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Figure 10: Different performance of model scores across user groups under different β and γ com-
pared to each user group’s best score S̄.
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Figure 11: Different performance of model scores across user groups under different λ compared to
each user group’s best score S̄.
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Table 8: Performance of four models on coding and reasoning benchmarks.

Model HEval Multi-language Overall Math IFEval

M0: CodeLlama-34B 0.5079 0.4297 0.1721 0.0413 0.4604
M1: Qwen2.5-Coder-32B 0.5710 0.6497 0.3326 0.3089 0.4363
M2: Nxcode-CQ-7B-orpo 0.8723 0.6688 0.1237 0.4007 0.4007
M3: Qwen2.5-Coder-32B-Instruct 0.8320 0.7723 0.3989 0.4955 0.7265

Table 9: Different user pool

User Pool User type (θ) with π(θ)

Pool 1 A (0.2), B (0.2), C(0.2), D(0.2), E (0.2)
Pool 2 A (0.1), B (0.1), C(0.2), D(0.5), E (0.1)

Pool 3 A (0.35), B (0.2), C(0.2),
D(0.35), E (0.2))

Table 10: User type with its preference

User
type(θ) Preferences(class(θc))

A HEval (0.6), Overall (0.2), IFEval(0.2)
B Overall (0.8), IFEval (0.2)
C HEval (0.8), IFEval (0.2)
D HEval (0.6), Muti-language (0.5)
E Math (1.0)

E.2.2 ALGORITHM PARAMETER SENSITIVITY ANALYSIS

For resampling,we investigate the sensitivity of β and γ. The result is shown as Fig. 10. For direct-
gradient optimaiztion, We investigate the sensitivity of λ, which controls the trade-off between utility
and the diffusion. The result is shown as Fig. 11.

F EXPERIMENTS ON LANGUAGE MODELS

In this section, we study the three-layer game in a language setting using real large language models.
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Figure 12: Best-response simulations under different settings of language tasks.

Model Pool. We consider a pool of four publicly available models that appear on both the Big-
Code models leaderboard (BigCode, 2023) and the Open LLM Leaderboard (Fourrier et al., 2024):
CodeLlama-34B (Rozière et al., 2024), Qwen2.5-Coder-32B (Hui et al., 2024), Nxcode-CQ-7B-
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Table 11: Outcomes of a 3-player setting under different user pools.

User Pool f Dsupp DHHI Weq

Pool 1 (M3,M3,M3) 1 0.3333 0.65945
Pool 2 (M3,M2,M2) 2 0.375 0.75949
Pool 3 (M3,M3,M2) 2 0.33375 0.73080

orpo (Hong & Thorne, 2024) and Qwen2.5-Coder-32B-Instruct (Hui et al., 2024). For each model,
we collect its HumanEval-Python score (HEval) and a multi-language coding score (Multi-language,
average over Java, JavaScript, and C++) from the BigCode leaderboard, as well as its overall, math-
related scores and instruction-following evaluation (IFEval) from the Open LLM Leaderboard. Ta-
ble 8 summarizes these benchmark results, which we treat as pre-computed performance statistics.

User Group and reward function. We partition the user population into five groups, each char-
acterized by heterogeneous preferences over metric preferences the details are given in Table 10.
Then the reward for user type θ is calculated by rθ(x) =

∑
c∈C θc · performance.

Simulation and Results. We conduct three sets of experiments:

• Expanding the model pool. With three players fixed, we gradually enlarge the model pool size
from 1 to 4 face the user pool 1. The resulting diversity DHHI and coverage value V (f) are
shown in Fig. 12a and Fig. 12a, respectively.

• Increasing the number of players. With the full model pool available, we increase the number of
players from 1 to 6 face the user pool 1. The resulting diversity DHHI and coverage value V (f)
are shown in Fig. 12b and Fig. 12e, respectively.

• Shifting user groups. With the full model pool and three players, we vary the user pool as shown
in Table. 9 . The diversity DHHI and coverage value V (f) are shown in Fig. 12c and Fig. 12f,
respectively. The corresponding equilibrium outcomes are summarized in Table. 11.

THE USE OF LARGE LANGUAGE MODELS

We used a large language model to aid in polishing grammar and phrasing. Consistent with ICLR
policy, authors remain fully responsible for all content, including parts assisted by an LLM.
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