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ABSTRACT

Generative model ecosystems increasingly operate as competitive multi-platform
markets, where platforms strategically select models from a shared pool and users
with heterogeneous preferences choose among them. Understanding how plat-
forms interact, when market equilibria exist, how outcomes are shaped by model-
providers, platforms, and user behavior, and how social welfare is affected is crit-
ical for fostering a beneficial market environment. In this paper, we formalize a
three-layer model-platform-user market game and identify conditions for the exis-
tence of pure Nash equilibrium. Our analysis shows that market structure, whether
platforms converge on similar models or differentiate by selecting distinct ones,
depends not only on models’ global average performance but also on their local-
ized attraction to user groups. We further examine welfare outcomes and show
that expanding the model pool does not necessarily increase user welfare or mar-
ket diversity. Finally, we design novel best-response training schemes that allow
model providers to strategically introduce new models into competitive markets.

1 INTRODUCTION

Generative models are no longer developed in isolation. They now operate within competitive,
multi-platform markets, where platforms strategically deploy models to attract heterogeneous user
groups and compete for market share. For example, Microsoft Azure and Amazon Bedrock compete
to license foundation models to enterprises (Staffl, [2024; [Janakiram| 2023)), Canva and Adobe Fire-
fly compete to attract designers by integrating state-of-the-art generative models (Newsroom, 2024
Vincent, 2024)), and platforms like Midjourney and Stability Al compete directly for end users seek-
ing creative tools (Staff,|2025a;b)). Understanding the behavior of such markets is crucial for guiding
governance, policy, and the design of trustworthy Al ecosystems.

Prior work has largely focused on a two-layer market, where model developers also operate the de-
livery platforms and offer services directly to users (Einav & Rosenfeld, 2025} Jagadeesan et al.,
2023b; [Raghavan| [2024} [Taitler & Ben-Porat, 2025). Within this setting, a substantial body of
literature examines discriminative scenarios in which (binary) classifiers are trained and used by
end users. For instance, Einav & Rosenfeld| (2025) show that platforms often prioritize capturing
user share over maximizing predictive accuracy, leading to equilibrium states that deviate from so-
cially optimal outcomes. Similarly, Jagadeesan et al.|(2023b) demonstrate that even when individual
classifiers achieve lower Bayes risk, competition can perversely reduce overall social welfare. By
contrast, the literature on generative model markets remains sparse, with only a few recent studies
analyzing how competition shapes overall welfare outcomes (Taitler & Ben-Porat, [2025; Raghavan,
2024)). Specifically, Taitler & Ben-Porat| (2025) identify a counterintuitive phenomenon: adding
more models can paradoxically decrease user welfare. More recently, Raghavan| (2024) find that
competitive pressures often reduce diversity, though stronger competition can partially mitigate ho-
mogenization, and that models performing well in isolation may fail in competitive environments.
Collectively, these studies highlight that, in generative markets, improvements in individual model
performance do not necessarily translate into greater welfare or diversity.

However, the generative ecosystem is increasingly structured as a three-layer market (Fallah et al.,
2024): model providers develop models and license them to platforms, which in turn deliver services
to end users. Unlike the two-layer setting, where model developers both build and operate the deliv-
ery platforms, in the three-layer market, platforms act as intermediaries: they decide which models



to adopt and deploy, ultimately shaping how users experience generative Al. For instance, Azure
OpenAl Service (Azurel 2025) supplies GPT-family models through Microsoft Azure, enabling en-
terprise clients to embed them into a wide range of applications; Cohere (Cohere, 2025) provides
large language models as APIs for enterprises, serving platforms rather than end users directly; and
Canva (Canva, [2025)) integrates external models such as Stable Diffusion and Leonardo Phoenix into
its design suite, allowing millions of users to access generative capabilities without ever selecting
the underlying model themselves. In all these cases, platforms are the direct consumers of models,
while users experience only the models that platforms choose.

In this work, we formalize the market as a three-layer model-platform-user game, in which hetero-
geneous users choose the platform that best aligns with their preferences, while platforms strategi-
cally adopt the models from providers that maximize their market share (Fig.[I). We then conduct a
rigorous analysis of how platform-level competition influences user welfare, diversity, and equilib-
rium outcomes. Our main contributions and findings are summarized below:

1. In Section [2| we formalize the model-platform-user game and show that when users make hard
selections on platforms, the resulting game among platforms may not admit pure Nash equilibria.

2. In Section [3] we identify conditions for the existence of pure Nash equilibria. Crucially, we
analyze market structure at equilibrium and derive conditions for both fully differentiated equi-
libria (all platforms choose distinct models) and homogeneous equilibria (all platforms converge
on the same model). We show that market structure is determined not only by models’ average
performance but also by their deviation advantage to heterogeneous users.

3. In Section ] we analyze market diversity and user welfare. We show that equilibrium may not
achieve the socially optimal outcome that maximizes user welfare, and that increasing competi-
tion (e.g., adding more platforms or models) does not necessarily improve user welfare or market
diversity. This finding aligns with recent observations of growing homogenization in generative
model markets (Zhang et al., [2025; [Wu et al.| 2025).

4. In Section[6] we take the model providers’ perspective and design best-response training schemes
that allow a provider to introduce a new model effectively into the competitive market.

5. In Section[7] we conduct experiments on both synthetic and real data to validate our theorems.
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Figure 1: The three-layer model-platform-user market structure. Model providers develop genera-
tive models, platforms select models to deploy, and heterogeneous users choose platforms.
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2 PROBLEM MODEL

Consider a three-layer generative model service market as shown in Fig. |1} which consists of:

* Model Layer: A set of generative models G = {¢1,...,ga} trained by M model providers.
Each model g;, i € M = {1,..., M} is characterized as a data distribution over domain X'.

* Platform Layer: A set of platform-players I = {1,..., N}. From the provider, each platform i
selects a model f; € M to serve its users. Denote the platform selection as f = (f1,..., fn).

 User Layer: A population of heterogeneous users categorized into types © = {61,...,0x} C
R? with distribution {7 }gce such that 3", o T = 1. For each user type 6y, let rg, (x) be the
underlying reward function indicating their preference over generated content = € X'.



User’s choice of platform. Given platform selections, users of type 8 choose platforms to interact
based on the generation ability of selected models. Let S;(0) := E, g, [ro(x)] be score measuring
the quality of contents generated by model g; for user type 8; higher S; (6) indicates better alignment
with user preferences. Then, the probability for users of type 6 selecting platform i is given by:

0 if f; ¢ argmax; e Sy (0)
pi(a) = L if f; € arg max;/e[N] sz/ (0) (D

|arg max;/ cnj ng (0)|

That is, users select the platform with the highest score, breaking ties uniformly at random. This
hardmax choice model is a standard simplification commonly used in prior work on platform or
model selection (Jagadeesan et al.,|2023bja; Mansour et al.,2018). In SectionE], we discuss how our
analysis and results can be extended to the softmax user choice model.

Platform’s choice of models. Each platform i € [IN] strategically selects a model f; from the
model-provider to compete for market share, in response to other platforms’ selections:

fr= arg max Ui(fi; £23) @

where Us(fi; f-i) == > _gco To - pi(0) - Sy, (@) is the utility function capturing the market share of
platform. Denote profile f = (f1,---, fi) as the strategies of all platforms, and f_; strategies of
all excluding the platform i. We consider a normal-form game G(G, [, ©) in which each platform
chooses a model to maximize its utility.

Definition 2.1 (Nash Equilibrium). We say a strategy profile f* = (fy,---, fx) is a pure Nash
equilibrium (PNE) if no platform can improve its utility by unilaterally deviating, i.e., U; (f; f*,) >
Ui(fi; ), Vi. A pure Nash equilibrium is fully differentiated equilibrium if all platforms choose
distinct models: [{ff, -, fx} = N. A pure Nash equilibrium is homogeneous equilibrium if
all platforms choose the same model: |{f,---, fx}| = 1.

By Nash'’s classical theorem, every finite game admits at least one mixed-strategy Nash equilibrium,
where each player ¢ randomizes over actions according to a probability distribution (Monderer &
Shapley, 1996). However, when users make deterministic selections as in Eq. m we show in Propo-
sition that a pure Nash equilibrium may not exist.

Proposition 2.2. [Nonexistence of PNE] Consider the game G(G, 1, ©) with finite sets of platforms
I, models G, and user types ©, where each platform i chooses a model f; € M based on Eq.|l| The
game may not admit a pure-strategy Nash equilibrium f*.

To prove Proposition [2.2] we provide a counterexample in Appendix [C.I] The existence of a pure
Nash equilibrium can be examined via best-response dynamics: starting from any profile f, plat-
forms sequentially update their strategies as best responses to the current strategies of others. When
a pure equilibrium does not exist, this process fails to converge and instead enters cycles.
Definition 2.3 (Best-Response Cycle). A best-response cycle is a finite sequence of strategy pro-
files fO, £@ . f@)in best-response dynamics such that: (i) at each step ¢, only one platform
changes its strategy, and it does so as a best response to f(*), and (ii) the sequence eventually returns
to the initial profile, i.e., f(Ft) = f(1),

User welfare & market diversity. Next, we introduce metrics we will use for analyzing the market.

Definition 2.4 (Coverage Value). For a strategy profile f = (f1,..., fx) with f; € M. define
the coverage value of f as V(f) := > g.q o maxi<i<n Sy, (0), i.e., the expected quality users
receive from their best available platforms.

Definition 2.5 (User Welfare). Define user welfare W as W := V(f*) if the game G(G,I, ©)
admits a pure Nash equilibrium f*; and W := % Zle V(f (t)) if it enters best-response cycle.
Definition 2.6 (Social Optimum Welfare). The social optimum welfare is defined as the highest
coverage value achievable by any strategy profile. That is, Wop¢ := max gy V(f).

Definition 2.7 (Herfindahl-Hirschman Index (HHI) Diversity). For strategy f = (f1,..., fx) with
fi € ML, let (1, pa, . . . , i) be the market share vector of platforms, where p; = > .o Topi(0).

HHI diversity is defined as Dypi(f) := Zf\il w2



HHI diversity measures how evenly users are distributed across platforms. Its value lies in [%, 1],
taking value % when users are evenly split across all platforms (maximum diversity) and 1 when all
users concentrate on a single platform (no diversity).

Definition 2.8 (Support Diversity). For strategy f = (f1,..., fn) with f; € M, the support diver-
sity is defined as Dgypp (f) := |{m e M | 3t € I, f; = m}|

Support diversity measures the number of distinct models adopted by platforms, taking integer val-
ues between 1 and N. Larger values indicate that more models are represented in the market,
reflecting greater model diversity.

Objectives. With the platform selection game and evaluation metrics in place, the remainder of this
paper aims to address the following key questions about competitive generative model markets:

* Under what conditions do pure Nash equilibria (PNE) arise, and when do platforms converge to
differentiated versus homogeneous structures?

* How does the user welfare depend on the number of platforms and models, and how does it
compare to the social optimum?

* From the model-provider’s perspective, how to design new generative models that can successfully
enter the market and be strategically adopted by competing platforms?

3 EQUILIBRIUM ANALYSIS AND MARKET STRUCTURE

Proposition [2.2] showed that a pure Nash equilibrium (PNE) may not exist in the platform selection
game. We now investigate the conditions under which a PNE does exist. To facilitate the analysis,
we first introduce some basic notations.

Definition 3.1 (Average Score). Let average score of model g; be defined as T := 3 5. m9-5;(0)

Definition 3.2 (Attraction Term and Deviation Advantage). For a strategy profile f = (f1,..., fn)
with f; € M, define A¢(0) := argmaxi<;<n Sy,(0) as the set of maximizers for a user type 6,
and let A¢(0) := |A£(0)| be the number of platforms tied for the maximum. Then, the attraction
term for f; in strategy f is defined as

N — Az (0) .
————=5.(0) if f, € Ap(O
210:5) =1 Ag8) #0) IR0 G
—S¢,(0), otherwise
The deviation advantage for f; under strategy f is defined as
6fb(f) = ZTFQ'Zfi(B;f) 4)

6co

Intuitively, the attraction term Zj, (0; f) quantifies how much f; benefits when it is among the
winners for type 8, and how much it loses otherwise. Aggregated across all user types, the deviation
advantage dy, (f) represents the net gain of f; relative to its competitors under the current strategy.
Proposition 3.3. [Utility Decomposition.] The expected utility U; (f; f—:) of platform i in Eq. [Z]
can be decomposed into Ty, and 6¢,(f) as:

1
Ui (fis f-i) = W(Tfi +5fz(f)) (5
Lemma 3.4. [Existence of Equilibrium] Consider the game G(G, I, ©) with finite user types O, and
N platforms choosing from M models G, where M > N. A fully differentiated equilibrium f* =
(ff, ..., fx) exists if and only if for every platform i and every alternative model f; € G\ {fF},

Tfi* - Ty, Zéﬂ(.fivufl) *6)”,[‘(](’*) (6)
A homogeneous equilibrium f* = (f{,..., fx), £ = m exists if and only if for some m € M,
T""L - sz Z 5f1 (fi'm u fb) - 677L(f*) (7)



Scenario A: fully differentiated equilibrium Scenario B: homogeneous equilibrium

7T9A=7T9520.5 7T9A=7T9520.5
| S1(8)  S>(0) | 51(6)  S5(6)
04 0.90 0.85 04 0.60 0.70
Oz | 0.35 0.80 Oz | 0.65 0.95
£ =(91,92) = (92, 92)

Figure 2: Two scenarios with the same average score gap [T, — 77| = 0.20 but different deviation
advantage (d1,02) for N = 2 and M = 2, resulting in opposite equilibrium outcomes. In Scenario
A, although g; has a lower average score (17 < T5), itis still chosen in equilibrium because its strong
advantage on the high-weight type 0 4 satisfies the differentiation condition. Removing this type-
specific advantage in Scenario B breaks the condition, leading to a homogeneous equilibrium on g5.
These scenarios demonstrate that market structure is not determined solely by average performance;
a strong local advantage in high-weight user segments can sustain a model’s presence in equilibrium.
Full calculation details are provided in Section|C.4}

The proof is given in Section [C.3] Lemma [3.4] shows that market structure is determined by the
balance between average performance 7" and the deviation advantage 6. When average performance
is uniformly strong across models, platforms tend to converge on the single best model, where
performance alone cannot sustain multi-model entry. In contrast, when models differ in whom they
serve best, even uniformly weak models can secure adoption as platforms specialize, yielding a
differentiated market. To illustrate this, we provide an example in Fig. 2]

Lemma also implies that market structure depends on the user distribution. Building on this,
Corollary shows that when the user distribution is centralized, i.e., a single user type constitutes
a large fraction of the population, the market tends to converge to a homogeneous structure.

Corollary 3.5 (High User Centralization = Homogeneous Equilibrium). Assume there exists a
dominant user type 0* with fraction 7} and a model m satisfying: ¥j # m, Sy, (0%) — S;(6*) >
p>0and V0 # 0*,j #m, |S;(0) — S (0)| < T If nf is sufficiently large and satisfies

1
g > 1——F
1425
then the homogeneous strategy f* = (m, ..., m) is a pure-strategy Nash equilibrium.

Intuitively, p measures strength of the “majority advantage” of
model, I' measures the maximum performance difference outside
the majority group, and % measures the “relative strength of minor-
ity variation to majority advantage.” From Corollary 3.3] increasing
mg effectively lowers the threshold of p needed for homogeneous
equilibrium. So even a small quality advantage p on the domi-
nant user type can outweigh potential gains from minority types
(bounded by I'), allowing a single model to dominate the entire mar-

ket. To illustrate the parameter regime in which Corollary [3.5] ap- 0.0 05 10 15 20 25 3.0
. . * . E . T /p

plies, Fig. plots the 7 against R the shaded region shows the pa-

rameter range where the homogeneous strategy f* = (m,...,m)

. Figure 3: 7} versus L.
is a PNE. P

4 USER WELFARE AND MARKET DIVERSITY

Proposition 4.1. [Coverage Value Calculation] Given a strategy profile f = (f1,...,fn), the
coverage value in Definition[2.4| can be written as:

N

V) = 5 30 (T 4+ 01(F)

i=1

where T and § are defined in Definitions[3.1|and[3.2] respectively.



Scenario A: fully differentiated equilibrium Scenario B: Add a new model g3

7T9A=7T9520.5 7T9A=7T9520.5
| 51(0) S52(0) | S1(8)  S2(6) S5(6)
64 | 0.90 0.85 64 | 0.90 0.85 0.91
6 | 0.35 0.80 0p | 0.35 0.80 0.77
W =V(f*)=V(,2) =0.85 W =V(f*)=V(3,3) =084

Figure 4: An example where enlarging the model pool decreases welfare. In Scenario A, with
models ¢g; and ds , the equilibrium is fully differentiated with the welfare W = 0.85. Adding a new
model g3 in Scenario B shifts the equilibrium to the homogeneous (g3, g3 ), where welfare decreases
to W = 0.84. It pulls both platforms toward homogenization, thereby sacrificing the welfare of
minority types. The calculation details are provided in Section @

Proposition AT with proof in Section [C.6] provides a closed-form expression for the coverage value
of any strategy profile f, showing that the sum of individual platform utilities equals the coverage
value, ie., V(f) = vazl U;(f). However, under competition, self-interested platforms that each
maximize their own utility U; do not necessarily achieve optimal user welfare, as discussed below.

Lemma 4.2. Let W denote the user welfare (Definition n) 2.5) achieved under the game G(G, 1, ©),
and Wy the social optimum welfare (Definition @) Then, it always holds that W < W

Note that the equality in Lemmaholds only in the degenerate cases: when f* € arg maxy V(f)
or when every f(*) in the best-response cycle attains the maximum welfare value. Such situations
rarely occur in competitive markets, highlighting the misalignment between platform incentives and
user welfare as the social objective. We provide an example in Section[C.8]

Next, we examine the impact of the number of models and platforms on the market. Intuitively,
enlarging the model pool G or increasing the number of platforms N might be expected to promote
competition and enhance user welfare and market diversity. However, our counterexamples show
that neither approach is reliably effective. As illustrated in Fig. ] expanding the model pool can
introduce a uniformly strong model, pulling the market toward homogenization and reducing welfare
for minority users, as shown in Corollary[3.3] Similarly, adding platforms can be counterproductive:
strategic interactions may induce best-response cycles or lead platforms to adopt weaker models to
avoid competition, thereby lowering welfare. These results demonstrate that welfare and diversity
are not monotone in competition intensity. Nonetheless, we can identify sufficient conditions under
which platform entry does not reduce welfare or diversity, as detailed in Proposition 4.3}

Proposition 4.3. Consider a game G(G, 1, ©) with an equilibrium f*. Let G(G,T' :=TU {i*},©)
be another game with one addmonal platform added. Suppose there exlsts amodel h € G and an
incumbent equilibrium strategy f from f* such that the extended profile f (f*, h) satisfies the
best-response conditions: (i ) the best response to f* is h; (ii) no incumbent platform has a profitable
deviation against f Then f is an equilibrium of the ~game G F urthermore the user welfare and
market diversity in g are at least as high as in G, ie., W > W and DSupp > Dgupp-

5 FROM HARDMAX TO SOFTMAX USER CHOICE

Our main analysis adopts the hardmax user choice rule in Eq. [T} where each user deterministically
selects the platform whose model achieves the highest score Sy, (¢) for their type 6, breaking ties
uniformly. This assumption makes the analysis of strategic interactions more straightforward. In
practice, however, users exhibit noisy and heterogeneous behavior rather than perfectly rational best
responses. A natural extension is a softmax choice model. Given a profile f = (f1,..., fnv) and a
user type 0, we define

S5 (0)/7

qu\/:]_ eka )/

where 7 > 0 is a temperature parameter controlling the level of randomness in user choice. When
T — 00, users are nearly indifferent and split across platforms almost uniformly. As 7 decreases,

p(0) = (8)



users concentrate more on higher-scoring platforms, and in the limit 7 — 0 the softmax model
converges to the hardmax rule.

Indeed, our negative result on the existence of equilibrium (Proposition [2.2)) extends to the softmax
user choice model. The platform game under Eq. [§] remains a finite normal-form game, and pure
Nash equilibria may not exist. Proposition [C.7]in Appendix [C.10] shows that any instance with no
PNE under the hardmax choice model remains without a PNE for all sufficiently small temperatures
7 in the softmax model. We also provide an example in Appendix [C.I0] demonstrating that, for a
fixed 7 > 0, the softmax model still admits no pure Nash equilibrium.

The utility decomposition (Proposition [3.3) and the existence of fully differentiated and homo-
geneous equilibrium (Lemma [3.4) also extend beyond the hardmax model. As shown in Ap-
pendix [C.10] an analogous decomposition holds under softmax choice once the deviation term is
redefined as 6}‘?( f) in Eq. With this modified deviation, Lemma carries over directly: the
equilibrium conditions retain the same form and can still be expressed as inequalities involving T',
and 53}1?&( f). This highlights that that market segmentation is not determined by average model per-
formance alone; a model with lower average performance may support a differentiated equilibrium
if it performs particularly well for certain user types.

Finally, our notion of welfare is largely independent of the choice rule. The only change is in the
relation between coverage V'( f) and platform utilities: under hardmax, >, U;(f) = V(f), whereas
under softmax Y, U™ (f) < V/(f), typically with strict inequality, which further increases the
misalignment between platform incentives and user welfare. Nevertheless, since the definition of
coverage and welfare is determined only by the available models and their scores, all comparisons
between V' (f) and W, including Lemma and its Proposition remain valid.

6 DESIGNING COMPETITIVE MODELS FOR PLATFORM ADOPTION

In this section, we shift focus to model providers. Consider a single provider aiming to learn pa-
rameters ¢ for an entrant model g4 that will be adopted by rational platforms. The provider seeks to
maximize an adoption-weighted quality objective:

max F(¢) := Z TeTeS4(0)

6coe

where og € [0, 1] represents the adoption probability that users of type 8 would choose g4 when it
competes against incumbents, and S4(0) = E, 4, [re()] is the expected quality that user type 0
receives from gg.

To calculate og, suppose we can estimate the user distribution {mg }gceo and the score S;(0) of
incumbent ¢ € M. Let S(0) := max;cm S;(6) be the best opponent score for user type 6. A hard
adoption rule would set 0 = 1 when S;(0) > S(8) and 0 otherwise. As this is non-differentiable
and unsuitable for gradient-based optimization, we adopt a Bradley-Terry Bradley & Terry| (1952)
soft gate on the margin Ag := S4(0) — S(0) and define the adoption probability of type € attracted
by the new model as 09 = o (8Ag), where o(z) = Here, 3 controls the softness, as 5 — 0,
o approaches the hard adoption.

_1
14+e—="

We provide two solutions to solving the above optimization: 1) training data resampling; and 2)
direct-gradient optimization.

Training Data Resampling. We first adopt a resampling-based scheme that biases the training
data distribution toward user types with higher payoff weights g := mg (0g)” - S(0), where v > 0
emphasizes user types for which the entrant is more likely to outperform incumbents. Each data
point x is then assigned a sampling probability (), normalized from w(z) o< ) g agve(z),
where vg(z) € [0, 1] measures how strongly « is preferred by users of type 6. Specifically:

o Structured data: Each z has an attribute (e.g., class, domain, style) u(xz) € U, and type 6
specifies a distribution gg(u). We set vg(z) = go(u(x)), i.e., the probability that « matches type
0’s preferred attribute. Sampling then proceeds by first drawing v ~ w(u) o Y, agqe(u), and
then sampling © ~ D(- | u).



* Unstructured data: We use the reward itself vg = normalize(rg(x)), so data points yielding
higher expected rewards for type @ are sampled more frequently.

In this method, type weights are computed based on og and S(6), and the model g is trained on
data resampled according to these weights. This method alters the data distribution but not the loss
function, making it compatible with standard training pipelines while effectively biasing training
toward strategically valuable user types. The detailed procedure is provided in Algorithm ]

Direct-Gradient Optimization. We train the model to directly improve both its generation quality
and its competitive attractiveness against fixed opponents. Specifically, the training objective is:

argmin L(9) = £(¢) — \F(9) ©)

where £(¢) is the standard loss ensuring that the model maintains overall sample quality, and F'(¢)
is the adoption-weighted quality objective that promotes competitiveness. The trade-off parameter
A > 0 balances quality and competitiveness.The main challenge in optimizing this objective via
gradient descent lies in computing the gradient of F'(¢). Note that the only term depending on ¢ in
F(¢) =2 gco m00054(0) is Sy(0) = Eyny,[re(x)]. By the chain rule, we have:
VoF(9) =Y maloo + oo (1—00) Ss(0)] - V54 (0)
6co

We next present two estimators for V45,(8). The detailed procedure is shown in Algorithm
* Pathwise gradient: This estimator applies when both the reward function rg(x) (e.g., classi-

fier score, probability output) and the generative model (e.g., GAN (Goodfellow et al., |2014),

DDPM (Ho et al.l 2020), SGM (Song & Ermonl 2019)) are differentiable. The model samples

x = g(§), where £ ~ po(§) is drawn from a fixed prior py and g, is a deterministic transforma-
tion of the noise &, then

VpSy(0) = Eg {ere(x)

: J¢g¢>(€)}

x=94(§)
where Jyg4(§) is the Jacobian of g4 (&) with respect to ¢.

* REINFORCE gradient (Williams}|1992): This estimator applies when either the reward function
rg(x) (e.g., discrete 0/1 feedback) or the generative process (e.g., SeqGAN (Yu et al., 2017),
MaliGAN (Che et al., 2017))is non-differentiable. With a moving-average baseline bg to reduce
gradient variance and let p,(x) is the model distribution, then

V555(0) = Exwp, [(r6(x) — o) Vs log(py (x))]

7 EXPERIMENTS

In this section, we conduct experiments on both synthetic (Section D)) and real-world data to provide
a reproducible prototype for validating the theory.

Model Pool. We adopt a denoising diffusion probabilistic model (DDPM) (Ho et al.| [2020) trained
on the full CIFAR-10 dataset (Krizhevsky}, [2009)), contains 60,000 images from 10 classes C =
{airplne := 0, automobile := 1,bird := 2,cat := 3,deer := 4,dog := 5,frog := 6,horse :=
7,ship := 8, truck := 9}, as the base model. To construct preference-oriented variants, we apply
Low-Rank Adaptation (LoRA) (Hu et al) 2022) fine-tuning with different class-specific subsets.
The choice of class groups and LoRA hyperparameters for each variant is summarized in Table [T}
Each variant captures preferences aligned with a subset of CIFAR-10 classes.

User Group. We partition the user population into six groups, each characterized by heteroge-
neous preferences over CIFAR-10 classes. Formally, for user group 8, we specify a distribution of
weights @ = {0.}cec. D cc e = 1, the details are given in Table

Reward Function. We employ pretrained ResNet20 model (He et al., 2016) with the 92.60%
Top-1 accuary trained on CIFAR-10 and held fixed during experiments, assume p,e.(c | x) is the
posterior class probability computed by this model for class ¢. Then the reward of v for user type 0
is calculated by 7o () = > . Oc - Pace(c | X). For every calculation of S, we sample 2000 samples.



Table 1: Model Pool Table 2: User Groups

# classes d ar e #(0) preferences(class(d.)) m(0)
M1 airplane,auto 4 16 1.0 A cat (0.6), dog (0.4) 0.18
M2 ship, truck 4 16 1.0 B dog (0.7) cat (0.3) 0.17
M3 bird, cat 4 16 1.0 C airplane (0.5), ship (0.3), auto (0.2)  0.16
M4 cat, dog 8 32 15 D auto (0.6), truck (0.4) 0.16
M5 cat, dog 4 16 1.0 E bird (0.4), deer (0.3), 017

frog (0.2), horse (0.1)
cat (0.2), dog (0.2), airplane (0.15), 016
auto (0.15), ship (0.1), truck (0.2) ’

Notes: d denotes the LoRA rank, ay is the
LoRA scaling factor, and 7, is the external F
scale applied during fine-tuning.

Discrete Best-Response Simulation. The average performance of the five models 7; and their
user-specific performance S;(0) are shown in Fig. [8|in Section where we conduct a discrete
best-response simulation by progressively enlarging the model pool (from 1 to 5 models with 3
players) and increasing the number of platforms (from 1 to 6 players with 5 models). At each round,
platforms update their strategies by choosing the best response among the available models, given
the current distribution of opponents’ choices. For each game, we perform three independent runs
and track diversity Dypr and coverage value V( f) at every step ¢ of best-response dynamics.

|—®—player 1 player 2 —— player3|

0 round 1 2 0
E T 0.24 0 1 round 2 3
0.50 - —=— 1 model 0.22 0.14 ' ' '
’? N ; moge:s 0.20 - 0.12 3
7 0.45 T modery E 3
g L meday| <18 2010
5 1 — o— 5 modelg| >0-16 / — 1 model 2 models ;—;0,08 3
— 0.40 0.14 - —- 3 models — 4 modeld| o
= ] /) 0.06
= 0.124/ st Wone — 5 model
0.35 4 0.04 5
s oo 0.107 0.02 3 k
T 0.08 T T T T T T
0 3 step 6 0 3 step 6 0 3 step 6 9

() Dun1 as model pool increases. (b) V' (f) as model pool increases. (¢c) BRwith M =4,N =3

0.18 0 round 1 2
0224 e e e e S A A —
1.0 - i 0.16 - —— player 1
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= 4 - - 1
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= wA > 014 p 50.08 -
T 04 S0 o1zl 0.06 -
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024 el FIFaeNA o010 - dplayers — - dplayery  “
— - 5 players 6 players| .
T 0.08 T 0.00 T . . . T . . . T
0 round 1 2 0 round 1 2 0 step 4 8
(d) Dumnr as player increases. (e) V(f) as player increases. (f) BR with M =5,N =4

Figure 5: When enlarging either the model pool (a,b) with 3 players or the number of platforms
(d,e) with 5 models, the change of HHI diversity ((a,d), where larger values indicate more homoge-
nization) and coverage value ((b,e), where larger values are better). (c,f) provide examples of utility
trajectories across best-response steps, where filled markers denote the player taking the action at
each step. (c) shows best-response cycle and (d) shows an equilibrium.

From the Fig. [5a enlarging the model pool does not automatically increase diversity. Only when the
newly introduced models are sufficiently distinct (add M2 or M3) can they enhance diversity. By
contrast, strong entrants that are merely close substitutes for existing leaders tend to homogenize the
market (add M5), as platforms converge toward the same high-performing options. This reproduces
the convergence phenomenon widely observed in today’s generative model markets. Increasing the
number of platforms in Fig.[5d] however, expands adoption opportunities and thus promotes diver-
sity. In terms of welfare, adding more platforms as Fig. [5¢](which enables greater choice) improves
user welfare and accelerates its growth. However, welfare never reaches the social optimum. The
trajectory examples in Fig. [5c| and Fig. [5f] further reveal that early movers often select the “best”



model, but are later forced to share its benefits with subsequent players, leaving their utilities subop-
timal. In contrast, players who move later sometimes adopt models that are less attractive globally
but provide relative advantages when not shared, resulting in higher individual utilities.

In Section [D| we systematically vary the model pool size, the number of platform players, and the
user group distributions on synthetic data, with detailed results and figures provided.

Algorithmic Best-Response Entry. The hyperparameters and full algorithmic details are pro-
vided in the Section.[E.2.T] Section[E.2.2]reports a systematic hyperparameter tuning for both meth-
ods. Both algorithms are initialized on the full CIFAR-10 dataset. The result is shown in Fig. [

[EAms COM1 DM@P :’MMI |\: Original Pool [] R pling [ Direct-GrudientI 02

0.40 0.30 F a
Direct-Gradient 0.10845 0.10845 0.07684 {03/ -

0.25
0. % 0.07375 0.07101 . EO:;S— B
3

Vi 1 0.20 H
Original Pool yﬂs‘t 0.07284| 0.07115 | HH
0.30 H—L; 015 HAL £

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Utility Diversity Welfare D Mo

J

Method
)

Figure 6: Performance of new models generated by the direct-gradient method Mg,.q and the resam-
pling method Map. (@) Left: equilibrium outcomes and utilities of three players when competing
over the original pool, after introducing Mgraq and Mgamp. (b) Middle: diversity Dy and welfare
Weq under the three equilibrium. (c) Right: comparison between the best original model M5 and
the new entrants Mgyaq, Msamp ON User scores.

The direct-gradient method achieves stronger performance: it successfully replaces the best model
in the original pool, dominates the market, and yields higher welfare and diversity. Moreover, it con-
verges with fewer iterations (= 20). However, it requires modifying the model’s internal objective,
and the diversity of sample classes is decreased as shown in Fig.[9]

The resampling method suffers from higher variance due to stochasticity. It only approaches the best
model in the original pool, while reducing welfare. It is also more computationally demanding (=
10 resampling with 50 iterations each). However, the method has the practical advantage of being
plug-and-play: it can be applied to any model without altering its loss function.

8 CONCLUSION

In this paper, we formalize generative Al markets as a three-layer model-platform-user game. From
the platform perspective, we characterize conditions for both fully differentiated and homogeneous
equilibria, showing that the market is jointly shaped by average model performance and user-specific
deviation advantages. From the user perspective, we demonstrate that enlarging the model pool
or increasing the number of platforms does not necessarily translate into higher welfare. From
the model provider perspective, we propose training schemes that strategically facilitate entry into
competitive markets. Together, these findings highlight inherent paradoxes in generative Al markets
and point to design principles for more socially aligned ecosystems.

ETHICS STATEMENT

This work analyzes competitive generative model markets using both theoretical modeling and em-
pirical experiments. Our analysis is abstracted from specific settings and does not involve sensitive
personal data, human subjects, or system manipulations. Our findings raise broader ethical impli-
cations. The results show that competition among generative models may reduce diversity and user
welfare, highlighting the need for responsible governance and transparent platform practices. The
proposed training schemes are designed to advance understanding of market dynamics, not to pre-
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scribe adversarial practices. Overall, this work aims to inform policy discussions and support the
design of more socially beneficial generative ecosystems.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by including all definitions, propositions, and proofs, and by detailing
model pool construction, user groups, reward functions, and evaluation metrics. Hyperparameters
and training procedures are documented in the appendix, and code will be released to support repli-
cation and extension of our results.
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A RELATED WORK

Recent advances in machine learning have created markets where multiple models coexist and com-
pete for user adoption. In such competitive environments, the strategic interactions among providers
critically shape both market outcomes and overall social welfare.

Competition among classification models has been extensively studied through the market design
and strategic learning. A key insight is that in competitive markets, maximizing classification ac-
curacy alone does not guarantee higher adoption or improved social welfare. For example, re-
cent work |[Einav & Rosenfeld|(2025) formalizes the accuracy market, where multiple classification
providers compete for users, showing that optimal strategies must account for rivals’ actions rather
than accuracy in isolation. Similarly, Ben-Porat & Tennenholtz|(2017) study the learnability of opti-
mal responses in competitive regression, and further establish that pure-strategy equilibria exist and
that competition may induce strategic misprediction (Ben-Porat & Tennenholtz, [2019). Further, Ja-
gadeesan et al.| (2023b)) demonstrate that even when individual predictors achieve lower Bayes risk,
strategic competition can paradoxically reduce overall social welfare. Extending beyond classifica-
tion and regression, |Yao et al.|(2023) analyze how top-K recommendation performs under competing
content creators, showing that user welfare losses remain bounded, while|Yao et al.|(2024b) propose
platform interventions that directly optimize user welfare in such competitive recommendation envi-
ronments. Overall, these results show that accuracy must be assessed in the context of competition,
entry, and social welfare.

As model capabilities improve, research has increasingly focused on competition among generative
models. [Raghavan| (2024)) show that equilibrium under generative Al competition tends toward
content homogeneity, even when models perform well in isolation, while stronger competition can
counteract this effect. Empirical studies further suggest that generative Al usage in areas such as
peer review |[Ebadi et al.| (2025)); [Kankanhalli| (2024), writing |Doshi & Hauser| (2024)), and creative
generation [Wu et al.| (2025) often associated with reduced output diversity. Beyond model-model
competition, recent work also examines the interplay between humans and generative models: at
the creator level, |Yao et al.| (2024a) model competition between human creators and generative Al
using a generalized contest framework, showing conditions for coexistence, conflict, or even the
absence of stable equilibria; while at the platform level, Taitler & Ben-Porat (2025) demonstrate
that generative Al can paradoxically reduce overall welfare in human-driven platforms, echoing
Braess’s paradox.

Unlike prior studies that focus on two-layer market, our work formalizes a three-layer model-
platform-user game. Under the assumption of deterministic user choice, we show that pure Nash
equilibria may fail to exist. Building on this observation, we characterize the conditions under which
equilibria arise and analyze how the resulting market structures shape welfare and diversity as the
set of available models becomes richer. Moreover, we depart from prior work by adopting the per-
spective of model providers, and propose best-response entry training schemes that allow entrants
to strategically introduce new models, which is an angle largely absent in the existing literature on
model competition.

B DISCUSSION

Platforms with Multiple Models. For tractability, the current framework assumes that each plat-
form selects a single model. However, it can be extended naturally to accommodate multiple models
per platform. In this setting, each platform’s strategy would be a set of models M;, and user choice
could depend on the highest-performing model in that set for their type, S;(0) = max;ens, S;(6),
or an expected score S;(0) = Eje s, S;(6). The three-layer market formalization remains as before,

with platform payoffs computed using S’i(ﬁ) instead of S;(#), and best responses now taken over
model mixtures rather than single models. Then, many of the existing analysis, such as the utility
decomposition, equilibrium characterization, and welfare analysis, can be generalized to this setting.

Partially Overlapping Markets. Our framework is designed for settings where platforms offer
comparable services and draw from a shared pool of models M. In such markets, platforms face
similar types of demand (e.g., overlapping mixes of coding and translation tasks), and their strategic
decision is which model from this common pool to deploy in order to attract groups. By contrast,
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if different platforms specialize in largely disjoint services (e.g., one focuses almost exclusively on
coding while another focuses almost exclusively on translation), then their effective model pools
may overlap only partially or not at all. In that case, they are not competing for the same user base
in the sense of our model: a user might naturally use both services for different tasks, and platforms
no longer face a shared competitive environment. Extending the framework to this multi-market or
partially overlapping-market environments is an interesting direction for future work.

Dynamic Interactions. Our analysis focuses on first-round interactions in a static, complete-
information setting. In practice, user behavior and platform strategies evolve gradually: the data
distribution shifts under repeated deployments, and models are retrained iteratively. Incorporating
these multi-round feedback effects into our three-layer framework is left for future work.

C PROOFS

C.1 PROOF OF PROPOSITION 2.2

Proposition 2.2. [Nonexistence of PNE] Consider the game G(G, 1, ©) with finite sets of platforms
I, models G, and user types ©, where each platform i chooses a model f; € M based on Eq.|l| The
game may not admit a pure-strategy Nash equilibrium f*.

Proof. We provide a constructive counterexample here. Let © = {04,05,0.} with uniform
weights (6;,) = 3. Let G = {g1, g2, g3} and define scores:

| S1(6) S2(0) S3(0)

s (0.1,0.067) (0.067,0.1) (0.05,0.05)

64| 02 0.1 0
Op 0 0.2 0.1
6o | 0.1 0 0.2
Then when there are two players, the payoff matrix is :
f:(flan) ‘ g1 g2 g3
g1 (0.05,0.05) (0.1,0.067) (0.067,0.1)
g2 (0.067,0.1) (0.05,0.05) (0.1,0.067)

On the diagonal (gy, g ) each platform gets 0.05. Against g, the unique best response is the model
that yields 0.10, so any diagonal profile is profitably deviated from. Off the diagonal, the player
receiving 0.067 can switch to the third model and improve to 0.10. Hence no profile is a mutual best
response; therefore no PNE exists. O

C.2 PROOFS OF PROPOSITION [3.3]

To illustrate the intuition, we first consider the case with two platforms N = 2.

The strategy profile is f = (f;, f;), in this case, the attraction term in Deﬁnition simplifies to:

S1(0)  ifS7,(0) > S, (6)
Zi;(0) =10 if tie (10)
—55,(0) if 55,(6) < 51,(6)
which measures how much user type 8 strictly prefers f; over f;. Accordingly, the deviation advan-
tage is:
8ij =Y _ m(6) - Zi;(6) (11)
6co

Proposition C.1 (Utility Decomposition for two platforms.). Suppose N = 2, leti,j € 1 be the two
players who choose model f; and f; under strategy f. Then the expected utility is

%Tfi iffi=1;

5Ty +8y) i fi# S (12)

Ui (fi, f) Z{
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Proof. Consider the case with two platforms (N = 2) and strategy profile f = (f;, f;), let Win, =
{0 :5;,(0) > S;,(0)}, Tie = {0 : S;,(0) = Sy;(0)}, Loser; = {6 : S;,(0) < S¢,(0)}.

With Eq. |1} a type 0 is fully assigned to the winner, split evenly on a tie, and assigned zero to the
loser. Therefore, the utility of the platform choosing g; is:

Uilfio f) = Ym0 -pi(6) - 57.(8) = 3 w(0)S1.(6) + 5 3 w(6)5,(0)

0co 0cWin; 0cTie
By definition,
6coO 0cWin; OcTie 6cLoser;
5y =Y _m(0)Z;(0)= > w(6)Sr(0)— > 7(0)S:(6)
6co 0cWin; Oc Loser;
Adding these two:
f 0 =2 Y m0)S5(0)+ > m(0)S(6)
0cWin; O6cTie
Then

S (T4 05) = 3 w(6)55,(0) + 5 > 7(0)S1,(6) = u

Wini T

If both platforms choose the same model, then all users are split evenly, so
1 1

Ui =Uj =g > w(6)S,(6) = 3 Ls-
0
Therefore, for N = 2:
7, if f; = f;
Ui (fis f) =142 1 e
(i 13) {é(Ter&j) if fi # f;

[
Proposition 3.3. [Utility Decomposition.] The expected utility U; (fi; f—i) of platform i in Eq. [Z]
can be decomposed into Ty, and é7,(f) as:
1
Ui (fi;.f—i) = N(sz_'_éfz(f)) &)

Proof. Fix a strategy profile f = (f1,..., fnx) and a model f; chosen by player i. Recall that let
M(f) = {f1,-.., fn} denote the set of models used in this strategy. For a user type 6, define the
set of maximizers Az (6) := argmaxyen(r) Sk (0) and let Af(0) := |A¢(0)| be the number of
models tied for the maximum.

Under the rule, the share of type 0 that is allocated to a platform using f; is
1 .
pil6:f) = | A0 1€ A0
0 fi & Ag(0).
Hence the expected utility of player ¢ equals

Uilfio foi) = 3 w(0)pi(6: ) Sy, (6).

6co

We now prove the following per-type identity:
N -p;(0; f) - S5,(0) = S5, (0) + Z;(6; f) VO <O (13)

16



where Z;(0; f) is defined in Definition[3.2]

Case 1: f; ¢ Af(6). Then p;(0; f) = 0, so the left-hand side of Eq. [13]is 0. By Definition [3.2]
Z;(0; f) = —Sy,(0). hence Sy, (0) + Z;(8; f) = Sy, (8) — Sy, (8) = 0. Thus Eq.[I3]holds.

Case 2: j € Af(6)). Then p;(0; f) = ﬁ. Again by Deﬁnition

7,0 ) = W 5,(0)

Therefore

51,(0) + Z,(0: f) = (1 T W) 55,(0) = AJwa) S1,(8) = N py(6: £) Sy, (0)

So Eq. [[3]also holds.
When we have Eq. E sum both sides over 8 with weights 7(0) and divide by N:

S w(0)p;(0: £)57,(6) = 1 3 (6) (7,(6) + 2,6 £)) = : (Ty, +57,(£)

[JSIC] ZISC)
where §;(f) =3, 7(0)Z;(0; f).
Since U;(fi, f—i) = Zeee m(0)pi(0; f)Sy,(0), we obtain:

Uilfir 1) = (5. + 67.(9)

C.3 PROOFS OF LEMMA[3.4]

‘We first consider the case with N = 2.

Lemma C.2 (Conditions for Equilibrium for two platforms). Consider a game with N = 2 platform
players choosing between M models G with a finite users’ type space © with weights w(0) > 0,

Zaeo (0 ) = 1. The utility of each player is defined in Eq.|2) l A strategy f* = (Y = gi, f5 = 9;)
with i # j is a fully differentiated equilibrium iff

{T,» + 8;; > max{T};, maxy2;{T; + 0k, } } (14)
T; + §;; > max{T;, maxy£;{Tk + Ori}}
When M = 2, the condition becomes
=0y <T; —Tj < 0y (15)
A strategy f* = (f{, f3) is a homogeneous equilibrium where all f = m for some m € M iff
ImeMst Tp—Tk >0pm YkeM\{m} (16)
When M = 2, the condition becomes
T, —T; > 6y or T,—T;> 6 (17)

Proof. First, let’s consider that there is only two models, N = 2 and M = 2. Using Proposition[C.1}
we obtain the utility of each model, from which the payoff matrix can be derived.

f \ gi \ 9j
gi (3T, iT)) (3(Ti + 0ij), %(Tj +3;:))
95 | (3(T5 +850), 5(Ti + 6ij)) (375, 5T5)

Suppose players choose different models. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate, that is:

{é(Ti + 0ij)

> 1T {Ti+5ij>Tj
5(T; + 651) > 5T,

+8; > T;
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Then the condition is:

—0i5 <T; = Tj < &y

Suppose players choose the same model. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate:

1 1
§(Tj+5ﬂ)<§TZ = Tj+(5ji<Ti

or
1 1
5(’11 + 6”) < iTj — T+ 52']' < Tj

Then the condition is:

‘Tj—Ti>(5ij or Ti—Tj>(5ji

Second, let’s consider that there is more than two models. The payoff matrix is:

f \ gi \ gj \ \ Ik

9i (%TiéTi) (%(Tﬁ%)a%(Tj +05)) | (ﬁ(Ti +5ik)7§(Tk + 0ki))
g | 3Ty +65), 3(Ti + 63)) (375, 5Ty) co | (5T + 05k), 5 (Tk + 61j))
o | (040 3T+ 8) | (Bra) 3@ +) || (meim)

Suppose players choose different models i, j. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate, that is:

3(Ti+6i) = 5T;

%(Tz+5zg)2 %(Tk-i-(sk]) Vke M {Ti'i‘(;lj ZTJ
LT +65) > 3T, T 4 053 > T;
%(Tj + (5ﬂ> > %(Tk + 6ik> Vk e M

Then the condition is:

T; + 6;5 > max{T}, maxy,;{Tx + Or;}}

=) € M s.t.
i7ie s {Tj + 5ji > maX{Ti,maxk#{Tk + (5;”}}

Suppose players choose different models m. This is a pure strategy Nash equilibrium if and only if
neither player wants to deviate:

1 1
§(Tj+(5ji)<§Ti = Tj+6ji<Ti Vi £ j

Then the condition is:

[Ime Mst. Tp—T >0k Vhe M)\ {m}|

O

Lemma 3.4. [Existence of Equilibrium] Consider the game G(G, 1, ©) with finite user types ©, and
N platforms choosing from M models G, where M > N. A fully differentiated equilibrium f* =
(ff,..., &) exists if and only if for every platform i and every alternative model f; € G\ {f}},

Tyr =Ty, = 65, (25U fi) = 05: (F7) (6)
A homogeneous equilibrium f* = (ff,..., fX), f = m exists if and only if for some m € M,
Tm - Tf,i Z 5fz(.fim U fL) - 6m(f*) (7)
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Proof. Fix a candidate profile f* = (f5,..., f&). For any player i and any deviation g € G\ {f;},
let.f/ = (ffa R i*—lagvfi*-i-lw")f;[) = .fiz U {g}
By definition of a pure Nash equilibrium, f* is a PNE iff for all ¢ and all such g,
Ui(f*) > Ui(f')

Using Proposition we have

N-U(f*) =Ty +07:(f7)  N-U(f') =Ty + 64(f")
Therefore:

Ty + 05 (F7) 2 Ty + 6,

Conversely, if it holds for all ¢ and all g # f7, then the above inequality reverses to U; (f*) > U;(f’)

for every deviation, so no player profits from deviating and f* is a PNE. This completes the proof
of the fully differentiated case.

The homogeneous case is similar, with f = m for all 4; plugging m into the same inequality we
obtain the desired results. O

C.4 CALCULATION OF THE EXAMPLE IN FIG.[2|

Scenario A: Two user types © = {0 4,05} with equal weights 7(04) = 7(05) = 0.5. The model

SCores are:
| 51(6) S2(0)
0,4 | 0.90 0.85
O | 0.35 0.80

The average scores are:
T, =0.625, T, =0.825 T,—T, =0.20
The deviation advantages are:
019 = %(—1—0.90 —0.35) =0.275, 091 = %(—0.85 +0.80) = —0.025
The differentiation condition —d15 < 177 — T < 21 becomes:
—0.275 < —0.20 < —0.025
which holds. Hence, by Lemma|[C.2] the equilibrium is full differentiated: the two platforms select
different models, even though 7} < 7T5.

The payoff matric of this scenario is:

f | g 92
g1 | (0.3125,0.3125) (0.45,0.4)
9 (0.4,0.45) (0.4125,0.4125)

So the equilibrium is (g1, g2) or (g2, g1).

Scenario B: We keep 77 = 0.625, To = 0.825, and T5 — 77 = 0.20, but change the type-level
structure to weaken g;’s advantage:

| 51(8) S5(0)
0.60 0.70
0.65  0.95

04
Op

The deviation advantages are now:
019 = %(—0.60 —0.65) = —0.625, 091 = %(+0.70 +0.95) = 0.825
The differentiation condition —d15 < 177 — T < 21 becomes:
0.625 < —0.20 < 0.825
which fails. The consolidation condition T —T} > 8§19 or T1 —T5 > do1 holds since 0.20 > —0.625;
thus, the equilibrium is homogeneous on gs.
The payoff matric of this scenario is:

f \ g1 g2
g1 | (0.3125,0.3125) (0,0.825)
g2 (0.825,0) (0.4125,0.4125)

So the equilibrium is (g2, g2)-
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C.5 THE PROOF OF COROLLARY [3.3]

Corollary 3.5 (High User Centralization = Homogeneous Equilibrium). Assume there exists a
dominant user type 0* with fraction 7} and a model m satisfying: ¥j # m, S, (0*) — S;(6*) >
p>0and V0 # 0*,j #m, |S;(0) — S,,(0)| <T. If n} is sufficiently large and satisfies

1 1
- 1427

*

To
then the homogeneous strategy f* = (m, ..., m) is a pure-strategy Nash equilibrium.

Proof. We use the utility decomposition Proposition [3.3]

Suppose all players currently choose m, consider a deviation by a single platform to some k # m.
Let A denote the utility gain from this deviation, then

A= [Ty + 0k (2 U{RD] = [T + 0 ()]
The A is consists of three parts:

Loss on the dominant type 6*: Under f*, each platform receives a % share of 8*’s contribution

%Sm(e*). After deviating to k&, the deviator’s share on 8* becomes 0 because m strictly wins there.
Using the margin S, (6*) — S;(0*) > p, the utility loss from 6* is at least

7T*
AUg. > %ﬂ

Gain on minority types where £ wins: On © \ {6*}, the total mass is 1 — 7. Wherever k wins
m, the deviator’s share improves from % to 1. Since k’s per-type advantage over m is at most I,
the upper bound gain is

(1 - mp)T

n <
Ame — N

Additional loss on minority types where % loses: On those types where m remains superior, the
deviator’s share falls from % to 0. Bounding score levels by the same heterogeneity constant I', we
get
1 —ay)T
Al-jlose < _%
So the change:

A= AUwin - A[Jlose - AUO*
(- (=m)l

N N N
_2(1 =m)l' —mp
B N

Therefore, if A <0, 2(1 — 75)I' — m5p < 0, that is:

* p

so no player benefits from deviating and the homogeneous profile f* is a Nash equilibrium. So the
condition is:

*

P
7r‘921_p+2I‘
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C.6 PROOF OF PROPOSITION [4.1]

Proposition C.3. Consider the case where N = 2 and fix a strategy f = (gi, g;). For each user
type 6 € © with weight w(0) > 0, the coverage value of the pair (i, j) is

1
V(i j) = 5 (i + Tj + bij + ;)

Proof. First, for any i # j,
§ij + 050 = Y _ malSi(6) — 5;(6))| (18)

6coe

Fix a type 6. Consider three cases.
Case 1: S( ) ( ) Then Z”(B) = S,L(G) and Z]Z(B) = —SJ(G), SO ZZJ(B) + Z]Z(B) =

5.(0) — 5,(0) = [:(6) — 5,(0)].
Case 2: S ( ) ( ) Then Z”(G) = 751(9) and ZN(G) = SJ(O), SO le(O) + Zﬂ(g) =
5,(0) — 5.(0) = [:(6) — 5,(0)].

Case 3: S;(0) = 5;(0): Then Z;;(0) = Z;;(0) = 0, hence the sum is 0 = |S;(8) — S;(0)].
Multiplying by 7 and summing over 8 yields the claim.

Use the pointwise identity: max{a,b} = 3 (a+ b+ |a — b|). Applying it with a = S;(6) and
b = S,(0) and summing over 0:

V(i,j) = Y m(6) max{S;(6), 5;(6)}

— % (ZW(H)&(O) +> m(6)S;(8)+ > w(6)]S:(6) — Sj(0)|>
4

6 6

T; T; 8;5+6;:by Eq.[T8]
1
= §(Tz‘+Tj+5ij+5ji)

O

Proposition 4.1. [Coverage Value Calculation] Given a strategy profile f = (fi1,..., fn), the
coverage value in Definition[2.4) can be written as:

1 N
V(f) =5 D (Tr +5.(f)

i=1

where T and § are defined in Definitions[3.1)and[3.2] respectively.

Proof. Fix 6 and recall Af(0) := arg maxycn(s) Sk(0) and Ax(0) = |Af(0)|. By the definition
of Z;(0; f):

)5 70— N Ag00)) o
S S0+ 20 = Y (1+ Y] )&(0)

JEM(S) jeAfw)
( > S
AN e

=N max S;(0)
keM(f)
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Multiply by 7(0), sum over 6, and divide by N to obtain
1
Vi =% 2 <Zw<0>5j<0) +>_m(0)Z;(6; f))
JEM(S) \ 0 6
1
=5 Y @)

JEM(S)

N
NZ Tf@ +5f1

C.7 PROOF OF LEMMA (4.2

Lemma 4.2. Let W denote the user welfare (Definition achieved under the game G(G, 1, ©),
and Wy the social optimum welfare (Definition IZE]) Then, it always holds that W < W

Proof. If O = f*is a PNE, then W(O) = V(f*) < maxy V(f) = Wp by definition.
If Oisacycle £, ..., f(I) then

L
1
t
:ZZV f() ZmaxV = Wopt
t=1
since an arithmetic mean is at most its maximum term.

Therefore, | W (O) > Wy O

C.8 THE EXAMPLE OF LEMMA [4.2]

Example C.4. Consider three user types 04,05,0¢c with weights 7(04) = 0.5, 7(05) = 0.3,
m(0¢) = 0.2. Their scores for each of the three models g1, g2, g3 are:

\ g1 g2
040434 0.698 0. 760
05 | 0.828 0.679 0.431
Oc 1 0.343 0.776 0.565

The average scores are:

T, =0.534, T, =0.7079, T3 =0.6223.
The pairwise attraction shifts d;; are computed as in the model:

012 = —0.0372, 627 = 0.3005, 413 = —0.0372
031 = 0.3637, 023 = 0.0099, d30 = 0.1377

The coverage value of a pair (g;, g;) is

V(i,j) = Zﬁe max{Ss(g:), Se(9;)}
0

Numerically:
V(1,2) =0.7526, V(1,3)=0.7414, V(2,3) =0.7389
Thus, the socially optimal pair is (g1, g2) with

Wopt = 0.7526.
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The payoft:

f \ g1 g2 gs

g1 (0.267,0.267) (0.2484,0.5042) (0.2484,0.5112)
(0.5042,0.2484) (0.35395,0.35395) (0.3589,0.38)
(0.5112,0.2484) (0.3870.3589) (0.31115,0.31115)

Equilibrium check for (g2, g3): the differentiation condition requires:
{Tg + 23 > max{T5, T1 + 013}
T5 + 032 > max{Ty, T1 + 012}
Substituting:
T5 + d23 = 0.7079 4 0.0099 = 0.7178
max{T5, T1 + d13} = max{0.6223, 0.534 — 0.0372} = 0.6223
T5 4 432 = 0.6223 + 0.1377 = 0.7600
max{Ts, T} + 612} = max{0.7079, 0.534 — 0.0372} = 0.7079
Both inequalities hold, hence (gs, g3) is a full differentiated equilibrium with welfare
Weq =V (2,3) =0.7389.

Although (g2, g3) is a valid differentiated equilibrium, it yields lower welfare than the optimal pair
(91,92):

Weq = 0.7389 < Wep = 0.7526

This demonstrates that a differentiated equilibrium does not necessarily coincide with socially opti-
mal differentiation.

C.9 PROOF OF PROPOSITION [4.3]

Proposition 4.3. Consider a game G(G, 1, ©) with an equilibrium f*. Let é((G, I:=Tu{it},0)
be another game with one additional platform added. Suppose there exists a model h € G and an

incumbent equilibrium strategy f from f* such that the extended profile f := (f*, h) satisfies the
best-response conditionS' (i)1 the best response to f* is h; (ii) no incumbent platform has a profitable

deviation against f Then f is an equilibrium of the game g Furthermore, the user welfare and
market diversity in Q are at least as high as in G, i.e., W > W and DSupp > Dgupp-

Proof. Best-response conditions (i) and (ii) imply f is a PNE. If f belongs to a cycle, appending h
yields a one-step extension that meets the same no-improvement conditions for that period, so the
induced outcome is an equilibrium.

For welfare, by the Proposition , since M(f) = M(f*) U {h}, for every type 6 we have

max S(0 max Sy (60
keM(f) ) = keM(f*) +(®)

Summing with weights 7(0): V(f) > V(f*).
If h ¢ M(f*) and improves some type strictly, then the inequality is strict. O

Example C.5 (counterexample: two — three models). Two user types © = {04,065} with equal
weights 7(04) = 7(0p) = 0.5.

Scenario A: The model scores are:
| S1(0) S2(0)
04| 0.90 0.85
Op | 0.35 0.80

The average scores are:
Ty =0.625, T5 =0.825
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The deviation advantages are:

812 = 1(+0.90 — 0.35) = 0.275, 9y = 1(—0.85 + 0.80) = —0.025

The payoff matric of this scenario is:

g2
(0.45,0.4)
(0.4125,0.4125)

f ‘ g1
g1 | (0.3125,0.3125)
92 (0.4,0.45)

So the equilibrium is (g1, g2) or (g2, ¢91), and W(O) = V(1,2) = 0.85

Scenario B: Add a new model g3 with S3(04) = 0.91,55(805) = 0.77 Then T3 = 0.84 The
deviation advantages are now:

812 = 1(+0.90-0.35) = 0.275, 01 = 1(—0.85+0.80) = —0.025 d13 = 1(—0.90-0.35) = —0.625

J31 = 2(+0.9140.77) = 1.68, 623 = 1(—0.85+0.80) = —0.025, 035 = 1(+0.91-0.77) = 0.07

The payoff matric of this scenario is:

f| g1 92 g3

g1 | (0.3125,0.3125) (0.45,0.4) (0,0.89)
g (0.45,0.4) (0.4125,0.4125)  (0.4,0.455)
93 (0.84,0) (0.455,0.4)  (0.42,0.42)

So the equilibrium is (g3, g3), and W(O) = V(3,3) = 0.84.

Here, 0.84 < 0.85

Example C.6 (counterexample: two — three players). Consider user types 7(04) = 0.18, 7(0p) =
0.17, 7(6¢) = 0.16, 7(8p) = 0.16, m(8) = 0.17, 7(6r) = 0.16

The model scores are:

51(0)

52(0)

53(0)

54(0)

S5(6)

S6(0)

0.030658748
0.021978186
0.266589463
0.171553999
0.039888468
0.131100401

0.208093837
0.149636775
0.035725005
0.007992042
0.145473659
0.089481771

0.32744655
0.298145086
0.019578686
0.007932614
0.077957489
0.136355415

0.298774868
0.274754494
0.029395873
0.019235272
0.078738138
0.132456332

0.154842913
0.092761844
0.04788997
0.067757338
0.110034101
0.095638528

0.020151094
0.014372437
0.182804301
0.160182327
0.019024562
0.136379898

Scenario A: With only two platform: the equilibrium is (g3, g¢) with user welfare W = 0.2148

Scenario B: With three platforms: the cycle is (g3, 93,91) — (93,93,96) — (91,93,96) —

(91793793) and W = (V(QSag?ngl) + V(93793796> + V(gl7g3796)) /3 ~ (02147 + 0.2148 —+
0.199571)/3 = 0.2097

Since 0.214 > 0.210, adding a platform may not increase the user welfare.

C.10 EXTENSION TO SOFTMAX USER CHOICE MODEL

Proposition C.7 (Robust nonexistence of PNE under softmax choice). Consider a fixed instance
(©,7,{S;(0)},). Let UM4( £) denote platform utilities under the hardmax user choice rule Eq.
and suppose that the induced platform game admits no pure Nash equilibrium, in the following strict
sense: there exists A > 0 such that for every profile f there is a platform i and a deviation f] with:

UL (], i) 2 U (fi i) + A (19)

Let U™ (f;7) be the utilities under the softmax user choice rule Eq. @ with 7 > 0. Then there
exists 7o > 0 such that forV 0 < 17 < 79, the softmax game (U:°™(-; 7)) also admits no pure Nash
equilibrium.
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Proof. Fix a profile f and a type 6. Under hardmax, a type 6 user only considers platforms whose
model achieves the highest score maxy, Sy, (6), assigns equal probability to those platforms, and

assigns zero probability to all others. Under the softmax rule Eq.
S;.(0)/7

soft e

oft(gy .~ "

pi(0) S eSO/

as 7 — 0, the largest-score terms dominate the denominator, so p$°f(0; 7) — phard(@).

Platform utilities are finite weighted sums of these probabilities:

U™ (£) =D mopi™"(8)Sy,(6)
o

hence U (£) — UM (f) as 7 — 0.

Because the strategy space is finite, this convergence is uniform over all profiles f: for any ¢ > 0
there exists 79 > 0 such that for all 0 < 7 < 79, all platforms 4, and all profiles f,

U (£) — Uk ()] < <

Consider any profile f. By the strict no NE condition Eq. [19] there exist ¢ and f/ with
UP(ffs f) = UP™9(fis f-i) 2 A
Choose ¢ = A/4 and the corresponding 7. For any 0 < 7 < 79,
U (ffs i) = UM (fis foi) 2 (U] Fi) — €] = [UF(fis £-0) + €]
>A-2=A/2>0

Thus f cannot be a best response strategy in the softmax user choice. Since f was arbitrary, the
softmax game has no pure Nash equilibrium for any 0 < 7 < 7.

Example C.8. We provide a constructive counterexample here. Let © = {64,05} with uniform
weights 7(0;) = 0.5. Let G = {g1, g2, g3} and define scores

| S1(6) S2(8) S3(0)
0.734 0.148 0.934
0.833 0.935 0.534

04
O0p

If the softmax user choice is used with 7 = 0.1, then when there are two players, the payoff matrix
is:

f= (f1,f2) \ g1 92 gs
g1 (0.39175,0.39175) (0.47634,0.34381) (0.43853,0.42549)
g2 (0.34381,0.4763)  (0.27075,0.27075) (0.45843,0.47210)
gs (0.42549, 0.43853) (0.47210, 0.45843) (0.36925, 0.36925)

Here, the cycle is (g3, 91).(93, 92).(91, 92).(91. 93).(92, 93).(92, 91)-
The W, = 0.9345, but W = (0.8835 + 0.9345 + 0.835)/3 = 0.87067
We now show that the 7' + ¢ decomposition extends to the softmax user choice rule in Eq.[§] We

keep Deﬁnition@fer the average score T’y unchanged, and adapt the attraction term and deviation
advantage as follows:

Definition C.9 (Attraction Term and Deviation Advantage of softmax). For a strategy profile f =
(f1,..., fn) with f; € M, the attraction term for f; in strategy f is defined as

(N —1)e5r: @)/ _ Zk;éi 55, (0)/7

soft /. L
Z5Ne; f) = ST Sy.(0) (20)
The deviation advantage for f; under strategy f is defined as
07N (F) =D 7o Z51(6; f) 1)

0co
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With this definition, the utility decomposition in Proposition [3.3] continues to hold under softmax

choice:
1

Ut (Fis f-i) = 5 (T + 65 (F)) (22)
Proof. We use ef to denote -, . 51O/,
We have:
, S5 (6)/7
U™ (fi, f-i) = Z W(O)T S1,(0) (23)
60co
eSfi 0)/ -+ ef—q‘,
Ty =) 7(0)54,(0) = > 7(0)—— 57— 51.(0) (24)
6co 6co
sof soft N —1 eSfi (9)/T — ef—l
) = Y mo- ZpNe: ) = Y me N S0 @)
60co 0co
It is clear that US%(f;, f_;) = L (Tfi + g f)) 0

D EXPERIMENTS WITH SYNTHETIC DATASET

In this section, we design a controlled simulation environment to study equilibrium outcomes under
different models and user populations.

M

Generative Models. We consider M generative models G = {g;};Z;,

Radial Basis Function (RBF) (Broomhead & Lowe, |1988)) mixture:

each parameterized as a

R;
9i(@) = b + > Ajr - exp (5|l = o)
r=1 ’

where R; is the number of kernels for model j, 1, is the center of the r-th kernel, o, is its width,
Ay is its amplitude, and b; is a bias. Outputs are truncated to [0, 1].

User Distributions We represent the user by © = {6 }5_,, where § € R? has distribution 7.
The distribution g is derived by discretizing a Gaussian Mixture Model (GMM) with @ compo-
nents, where each component ¢ is parameterized by weight w, > 0 with 3 g Wqg = 1, mean vector
/1q> and covariance matrix X :

Q
m(u) = qu/\/(u | fg(u), Xq(u)).

continuous samples « drawn from this GMM are then mapped to the nearest discrete type 6y, This
construction yields a finite user distribution 7(6) that serves as input to the equilibrium analysis.
The variant user groups are constructed by shifting all component means along the z-axis: p,(u) —
tq(u) + (dz,0) where dz controls the degree of population shift or by adjust different weight wy.

Reward Function. The expected reward of model j for user type 0 is S;(0) = Eyzy;[re()]. In
theory, g; and ry are distinct objects, however, in our simulation, we collapse g; and ry into a single
score function implemented as a radial basis function (RBF) mixture.

Simulation Parameters and Results. For all simulations, we have a model pool with M = 6
models as shown in Table [3]and K = 12 user types drawn from the GMMs. The baseline user
distribution uses () = 2 components as shown in Table {4}

We conduct four sets of experiments:
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Table 3: Simulation model pool.

Model b, Ljr Ajr Ojir
1 0.12 (1.5,0.0) 0.90 1.20
2 0.05 (0.0, 0.0) 1.30 0.35
3 0.08 (3.0,0.0) 1.00 0.50
4 0.06 (0.0,0.0), (3.0,0.0) 0.70,0.70 0.70,0.70
5 0.05 (1.5,0.6) 1.00 0.40
6 0.05 (1.5,-0.6) 1.00 0.40
Table 4: User distribution parameters.
Weight wy,  Mean g4 Covariance ¥4
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Figure 7: Best-response simulations under different settings.
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» Expanding the model pool. With three players fixed, we gradually enlarge the model pool size
from 1 to 6. The resulting diversity Dypyy and coverage value V(f) are shown in Fig. [7a] and

Fig.[7d| respectively.

* Increasing the number of players. With the full model pool available, we increase the number of
players from 1 to 6. The resulting diversity Dy and coverage value V' (f) are shown in Fig.
and Fig.[7¢l respectively.

* Shifting user groups. With the full model pool and three players, we vary the GMM means used to
sample user types by setting dz € {—0.6,0.0,0.6,1.2}. The diversity Dy and coverage value
V (f) are shown in Fig.[7c|and Fig. 71} respectively.

* Changing mixture weights. With the full model pool and three players, we alter the GMM compo-
nent weights (w,, , wy,) € {(0.1,0.9),(0.2,0.8), (0.4,0.6), (0.6,0.4), (0.7,0.3)} The results are

reported in Fig.[7g] Fig.[7h|and Fig.

We observe that equilibria always exist in this setting, but diversity and welfare vary substantially
depending on whether the new models are sufficiently differentiated. Strong but substitutable mod-
els lead to market homogenization, while genuinely differentiated entrants promote diversity and
increase welfare.

E EXPERIMENTS WITH REAL DATASET

E.1 DISCRETE BEST-RESPONSE SIMULATION

The models in the model pool are constructed by applying different LoORA parameters to the back-
bone network, each trained on different CIFAR-10 subsets, as summarized in Table. m The backbone
network itself was trained on the full CIFAR-10 dataset for 200 epochs. During training, we used a
learning rate of 2 x 104, 1000 diffusion steps, and a batch size of 256.

We first provide the average performance 7; of the five models in model pool and their user-specific
performance S;(6) in user groups in Fig.

[COmi[Jm2 [ JM3[ M4 M5 F B

0.16 4

0.14 M5
2 0.12 M4
S 0.10 1 M3
7} ] M2
g"’ 0.08 Ml
Z 0.06

0.04 E C

0.02

0.00 T

Models D
(a) The average performance. (b) The user-specific performance.

Figure 8: The average performance T; of the five models in model pool in Table [1| and their user-
specific performance S;(6) in Table

Impact of different user groups. As a complementary experiment, we examine how platform
choices vary when facing different user groups. Specifically, we consider three player choosing
from the model pool. The user group configurations are provided in Table. 5] and the corresponding
equilibrium outcomes are summarized in Table.
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Table 5: Different user pool Table 6: User type with its preference

User Pool User type (0) with 7(6) User type(0) Preferences(class(6.))
Pool 1 A (0.2), B (0.2), E (0.2), F (0.2) A cat (0.6), dog (04)
Pool 2 A (0.3), C (0.3), E (0.4) B dog (0.7) cat (0.3)
P 7 D : C airplane (0.5), ship (0.3), auto (0.2)
ool 3 C (0.2),D (0.2), E (0.35), F (0.33)
Pool 4 A (0.6). F (0.4) D auto (0.6), truck (0.4)
A e ’ bird (0.4), deer (0.3),
(0.1), B (0.09), C (0.16), E
Pool 5 D (0.32). E (0.17). F (0.16) frog (0.2), horse (0.1)
R JngS : cat (0.2), dog (0.2), airplane (0.15),
Pool 6 C (0.33), D (0.35), E (0.2), F (0.12) F

auto (0.15), ship (0.1), truck (0.2)

Table 7: Outcomes of a 3-player setting under different user pools.

User Pool f Dgwpp  Dunn Weq

Pool 1 (M5, M5, M5) 1 0.3333 0.2110
Pool 2 (M5, M5, M1) 2 0.3349 0.2117
Pool 3 (M5, M3, M1) 3 0.3335 0.1615
Pool 4 (M5, M5, M5) 1 0.3333  0.2366
Pool 5 (M5,M1,M1) 2 0.3856 0.1932
Pool 6 (M1,M1,M1) 1 0.3333 0.1715

E.2 ALGORITHMIC BEST-RESPONSE ENTRY

E.2.1 ALGORITHM DETAILS

We provide the implementation details and hyperparameters used in our experiments for evaluating
algorithmic performance. We first describe the specific procedures of the Resampling and Direct-
Gradient methods, followed by the hyperparameters employed in training and evaluation. Unless
otherwise specified, the same base diffusion backbone and optimization settings are applied across
methods for a fair comparison.

Resampling. The algorithm for resampling method is shown as Algorithm.

Algorithm 1 Training Data Resampling

Require: Dataset I; user types O; fixed opponents G = {g1,-- , gar} with scores {S,,(0)};
parameters /3, y; outer rounds 7'; inner epochs E'; evaluation budget b.
1: Compute S(0) = max;em S;(0) for all 6.
2: fort=1,...,7Tdo
3:  Estimate S4(0) := E;, ,~g,70().
4:  Compute Ag := S,(0) — S(0).
5:  Compute og = 0 (8Ap) -
6:  Type weights ag = m(0) (cg)” S(0).
7:  Data weights: w(u) o< Y4 cgge(u) or w(x) o< Yo agre(z).
8

: Sample D with w as D
9: fore=1,...,Edo
10: Update ¢ by minimizing the original loss in D.
11:  end for
12: end for

13: return ¢.

The specific parameter details for algorithm-level:
* Outer round, the time of resample 7" = 5.

* Inner epcohs E = 50.
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L] 5 = 4.
. »‘Y = 1
» Use adaptive scaling for og.

* LoRA rank 4, LoRA scaling coefficient 16, LoRA runtime multiplier 1.0.

Direct-Gradient. The algorithm for direct-gradient method is shown as Algorithm. 2]

Algorithm 2 Direct-Gradient Optimization

Require: Dataset I; user types O; fixed opponents G = {¢1,-- , gar} with scores {S,,(0)};
parameters \; Epochs E
1: fore=1,...,Edo
2:  Estimate S4(0) := E;, ,~g,70().
3:  Compute Ag := S4(0) — S(6).
4:  Compute 09 = 0 (fAg)
50 L+ 1(¢) =AY gcom(0)00S4(0)
6 ¢+ ¢—nVL.
7: end for
8: return ¢

The specific parameter details for algorithm-level:
* Epcohs I = 20.
* A=04.

» Use adaptive scaling for og.

Shared parameter. The specific parameter details for shared training parameters:
* The backbone network is trained on the full CIFAR-10 dataset for 200 epochs.

* Batch size 256.

* Learning rate 2 x 10~* (for AdamW optimizer).

* Diffusion steps 1000.

Data Distribution. As a supplement to Fig.[6| A, we provide the label distributions of 2, 000 sam-
ples generated by three models, as shown in the Fig.[9]

[ airplane[__| automobile[ | bird [ ]cat [ deer
[ dog [ frog [ horse[ | ship[] truck
w N ‘
MS in original model pool samp M,

Figure 9: Label distributions of 2, 000 generated samples from three models: (a) left: M2 from the
original model pool (b) middle: Mamp, by redampling method. (c) right: Mg,,q by direct-gradient
method.
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Table 8: Performance of four models on coding and reasoning benchmarks.

Model HEval Multi-language Overall ~Math  IFEval
MO: CodeLlama-34B 0.5079 0.4297 0.1721  0.0413  0.4604
M1: Qwen2.5-Coder-32B 0.5710 0.6497 0.3326 0.3089 0.4363
M2: Nxcode-CQ-7B-orpo 0.8723 0.6688 0.1237  0.4007  0.4007
M3: Qwen2.5-Coder-32B-Instruct  0.8320 0.7723 0.3989  0.4955 0.7265

Table 9: Different user pool

Table 10: User type with its preference

User
User Pool User type (0) with 7(6) type(0) Preferences(class(6.))
Pool 1 A (0.2), B (0.2), C(0.2), D(0.2), E (0.2) A HEval (0.6), Overall (0.2), IFEval(0.2)
Pool 2 A (0.1), B (0.1), C(0.2), D(0.5), E (0.1) B Overall (0.8), IFEval (0.2)
Pool 3 A (0.35), B (0.2), C(0.2), C HEval (0.8), IFEval (0.2)
D(0.35), E (0.2)) D HEval (0.6), Muti-language (0.5)
E Math (1.0)

E.2.2 ALGORITHM PARAMETER SENSITIVITY ANALYSIS

For resampling,we investigate the sensitivity of 3 and . The result is shown as Fig. For direct-
gradient optimaiztion, We investigate the sensitivity of A, which controls the trade-off between utility

and the diffusion. The result is shown as Fig. [TT]

F EXPERIMENTS ON LANGUAGE MODELS

In this section, we study the three-layer game in a language setting using real large language models.
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Figure 12: Best-response simulations under different settings of language tasks.

We consider a pool of four publicly available models that appear on both the Big-

Model Pool.
Code models leaderboard (BigCodel [2023)) and the Open LLM Leaderboard (Fourrier et al.l [2024):

CodeLlama-34B (Roziere et al., [2024), Qwen2.5-Coder-32B (Hui et al., [2024)), Nxcode-CQ-7B-
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Table 11: Outcomes of a 3-player setting under different user pools.

User Pool f Dsupp Dynr Weq

Pool 1 (M3,M3,M3) 1 0.3333  0.65945
Pool 2 (M3, M2, M2) 2 0.375 0.75949
Pool 3 (M3, M3, M2) 2 0.33375 0.73080

orpo (Hong & Thorne, [2024) and Qwen2.5-Coder-32B-Instruct (Hui et al., [2024). For each model,

we collect its HumanEval-Python score (HEval) and a multi-language coding score (Multi-language,
average over Java, JavaScript, and C++) from the BigCode leaderboard, as well as its overall, math-
related scores and instruction-following evaluation (IFEval) from the Open LLM Leaderboard. Ta-
ble [§] summarizes these benchmark results, which we treat as pre-computed performance statistics.

User Group and reward function. We partition the user population into five groups, each char-
acterized by heterogeneous preferences over metric preferences the details are given in Table

Then the reward for user type € is calculated by 7¢(x) = > ¢ 0 - performance.

Simulation and Results. We conduct three sets of experiments:

* Expanding the model pool. With three players fixed, we gradually enlarge the model pool size
from 1 to 4 face the user pool 1. The resulting diversity Dy and coverage value V(f) are
shown in Fig.[I2a]and Fig.[12a] respectively.

* Increasing the number of players. With the full model pool available, we increase the number of

players from 1 to 6 face the user pool 1. The resulting diversity Dypp and coverage value V()
are shown in Fig.[I2b]and Fig.[12¢] respectively.

* Shifting user groups. With the full model pool and three players, we vary the user pool as shown

in Table.[0]. The diversity Dypr and coverage value V(f) are shown in Fig. and Fig.
respectively. The corresponding equilibrium outcomes are summarized in Table. |1 1]

THE USE OF LARGE LANGUAGE MODELS

We used a large language model to aid in polishing grammar and phrasing. Consistent with ICLR
policy, authors remain fully responsible for all content, including parts assisted by an LLM.
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