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Abstract

The success of score-based models largely stems
from the idea of denoising a diffusion process
given by a collection of time-indexed score fields.
While diffusion-based models have achieved
impressive results in sample generation, lever-
aging them for sound probabilistic inference—
particularly for sampling from arbitrary condi-
tional distributions—remains challenging. Briefly,
this difficulty arises because conditioning infor-
mation is only observed for clean data and not
available for higher noise levels, which would
be required for generating exact conditional sam-
ples. In this paper, we introduce an effective ap-
proach to DIffusion-free SCOre matching (DISCO),
which sidesteps the need for time-dependent score
fields altogether. Our method is based on a princi-
pled objective that estimates only the score of the
(slightly perturbed) data distribution. In our experi-
ments, score models learned with DISCO are com-
petitive with state-of-the-art diffusion models in
terms of sample quality. More importantly, DISCO
yields a more faithful representation of the underly-
ing data distribution and—crucially—enables sam-
pling from arbitrary conditional distributions. This
capability opens the door to sound and flexible
probabilistic reasoning with score-based models.

1 INTRODUCTION

Diffusion-based score models set the current state of the art
in many generative modeling tasks, producing samples of
unprecedented fidelity. These models fit the score function
rather than the density, waiving the need for the model’s nor-
malization constant [Hyvärinen and Dayan, 2005]. While a
connection to auto-encoders leads to effective learning via
denoising score matching (DSM) [Vincent, 2011], this objec-

tive fits the score only close to the data manifold, effectively
ignoring low-density regions, leading to poor sample quality.
To fix this, a key technique was the idea of generative mod-
eling by reversing a diffusion process [Sohl-Dickstein et al.,
2015, Song et al., 2020], which specifies a collection of
time-indexed distributions. Intuitively, diffusion takes care
that the model is fit on a large support, not only close to the
data manifold, leading to excellent sample quality.

However, generating high-quality samples is not the only
objective of probabilistic modeling. Probability theory is, at
its core, a rigorous framework for reasoning under uncer-
tainty [Jaynes, 1995, Pearl, 1988]. In particular, computing
marginals (sum rule), which corresponds to accounting for
unobserved variables, and conditionals (product rule), which
incorporates observed evidence, are the fundamental oper-
ations in probabilistic reasoning [Ghahramani, 2015], and
lie at the core of Bayesian methods, inverse problems and
optimal decision making. Hence, the central question of this
paper is: Can score-based models serve as sound proba-
bilistic reasoners and provide access to exact marginals
and conditionals? Here, we focus on drawing faithful sam-
ples from arbitrary marginals or conditionals, which might
be used in Monte Carlo-based inference.

For marginals, one can draw samples from the joint distri-
bution and simply discard the variables corresponding to
the marginalized dimensions, yielding an exact marginal
sample. However, exact conditional sampling is much more
challenging due to the diffusion process, as conditioning
the whole stochastic process on the available observations
is intractable. Various strategies to address this problem
have been proposed, which, however, are either heuristic,
e.g. [Song et al., 2020, Ho et al., 2022, Kawar et al., 2022] or
have only asymptotic exactness guarantees, e.g. [Wu et al.,
2023]. While these methods can produce compelling results
for conditional tasks such as image inpainting, they fail
to produce unbiased samples from conditionals, as can be
demonstrated even on simple toy problems such as in Figure
1.

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.



Figure 1: Conditional sampling in a low-dimensional setting. We train a score-based diffusion model and an energy-based
DISCO model on samples of a 2-dimensional Gaussian mixture model (pd, left). We produce conditional samples from the
learned models, x2 ∼ pθ(x2 |x1 = 1.75), and compare these with ground truth conditional samples derived via rejection
sampling (right). For the diffusion-trained model we use gradient guidance [Ho et al., 2022], the replacement heuristic
[Song et al., 2020] and twisted SMC [Wu et al., 2023], for which the produced samples follow a substantially different
distribution than the ground truth, illustrating a clear failure case for these methods. In contrast, conditional samples from
DISCO using tempered SMC follow the ground truth distribution faithfully (see supplementary for details).

In this paper, we address this problem by challenging the
assumption that diffusion-based training of score-models is
a pressing requirement, and propose an effective approach to
DIffusion-free SCOre matching (DISCO). By starting from
a mixture of generalized Fisher divergences, specified by
an array of “noisy” proposal distributions, we arrive at a
principled score matching objective. This objective, albeit
reminiscent to diffusion training, only fits the (slightly per-
turbed) data distribution rather than a full diffusion process,
while taking care that the score field is also fit outside the
data manifold. With this approach, conditioning becomes
simple: in the learned score, one can fix the values of ob-
served variables and apply sampling only with respect to
the unobserved variables.

In experiments, we show that DISCO produces samples
of high visual quality, achieving FID scores on CIFAR-10
competitive with state-of-the-art diffusion models. More
importantly, DISCO provides a more faithful representation
of the underlying data distribution and enables accurate sam-
pling from arbitrary conditional distributions, as illustrated
in Figure 1. This capability opens the door to sound and
flexible probabilistic reasoning with score-based models.

2 BACKGROUND

Score-Based Modeling. In generative modeling, we are
given i.i.d. samples {x(i) ∈ RD}Ni=1 from a data distribu-
tion pd(x), and aim to learn a parametric model pθ that
approximates pd well. Parameterizing a proper density pθ

introduces the challenge of normalization, i.e., ensuring that∫
RD pθ(x) dx = 1. Score-based modeling [Hyvärinen and

Dayan, 2005] circumvents this issue by learning the score
of the data density, defined as ∇x log pd(x), which is invari-
ant to the normalizing constant. The idea is to use a neural
network sθ : RD → RD to represent the model score and
minimize the Fisher divergence:

F(pd ∥ sθ) := Ex∼pd

[
∥∇x log pd(x)− sθ(x)∥22

]
(1)

Since the Fisher divergence involves the unknown score
∇x log pd(x), it is generally unsuitable for direct optimiza-
tion. This motivates the use of alternative objectives that
do not require explicit access to ∇x log pd(x). A particu-
larly popular variant is denoising score matching (DSM),
which approximates the score of a perturbed data distri-
bution pσ(x̃) =

∫
pd(x) q(x̃ |x) dx, where q(x̃ |x) :=

N (x̃ |x, σ2I) is a Gaussian perturbation kernel with fixed
noise level σ. Concretely, minimizing the objective

LDSM(θ) := Epd(x)q(x̃ |x)
[
∥∇x̃ log q(x̃ |x)− sθ(x̃)∥22

]
(2)

is equivalent to minimizing Fisher divergence, as
∇θLDSM(θ) = ∇θF(pσ ∥ sθ) for all θ [Vincent, 2011].
This objective and its gradients can be efficiently estimated
using data samples, as it only depends on the score of the
perturbation kernel, given by ∇x̃ log q(x̃ |x) = (x− x̃)/σ2.

In (2), one chooses the fixed noise level σ to be small so
that the perturbed distribution pσ closely approximates the
data distribution pd. However, this implies that in regions
far from the data manifold, pσ almost never samples points,
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so the learned score is essentially arbitrary there. Since sam-
pling (e.g., via Langevin MCMC) typically starts far from
the manifold, these inaccurate estimates lead the sampler to
drift into random directions, yielding poor samples [Song
and Ermon, 2019].

Diffusion Models. Diffusion models address the limita-
tions of naïve DSM by learning a multitude of score vector
fields, each corresponding to a different noise level applied
to the data distribution [Sohl-Dickstein et al., 2015, Song
et al., 2020]. Formally, let the clean data be denoted by
x0 ∼ pd, and define the conditional distribution qt(xt |x0)
via the forward diffusion process xt = α(t)x0 + σ(t)ε
where ε ∼ N (0, I) and t ∈ [0, T ] for some T > 0. In this
work, we focus primarily on the variance-exploding (VE)
formulation [Song et al., 2020], where α(t) = 1 and only
the noise scale σ(t) varies over time. This process defines a
family of progressively noisier distributions {pt(xt)}t∈[0,T ],
where pt(xt) =

∫
qt(xt |x0) pd(x0) dx0.

A time-dependent score network is then trained to approx-
imate the score function sθ(x, t) ≈ ∇x log pt(x) for all
x ∈ RD and t ∈ [0, T ], by minimizing LDM(θ), defined as

Et,x0,xt

[
λ(t) ∥∇xt

log pt(xt |x0)− sθ(xt, t)∥22
]

(3)

where t ∼ p(t), x0 ∼ pd(x0), and xt ∼ qt(xt |x0). Here
p(t) is some distribution over [0, T ] and λ(t) is a positive
weighting function.

After training, the score network sθ is used for sample
generation, aiming to approximate draws from p0. Popular
approaches are numerical integration of the reverse-time
SDE [Song et al., 2020] and ancestral sampling [Ho et al.,
2020]. A key advantage of diffusion models over standard
DSM is that, due to training across multiple noise levels, the
score network is also informed in low-density regions.

3 DIFFUSION-FREE SCORE MATCHING

While only the approximate data score at t = 0 is of actual
interest, diffusion models introduce the overhead of an en-
tire family of score functions, making conditional sampling
challenging. Specifically, when splitting the data variable x
into unobserved variables xu and conditioned variables xc,
the goal is to sample xu ∼ p(xu |xc). When dealing with
only a single score field ∇x log p(x), conditioning becomes
straightforward, since the conditional score is simply the
joint score with clamped xc:

∇xu log p(xu,xc) = ∇xu log p(xu |xc) +∇xu log p(xc)︸ ︷︷ ︸
=0

(4)
However, drawing conditional samples with diffusion mod-
els requires ∇xt log pt(xt |xc

0) for each t > 0, which is
intractable to compute.

In this paper, we reconsider the assumption that diffusion-
based learning is strictly necessary for learning expressive
score-based models. Instead, we aim to learn just a single
score field, which allows us to sample any conditional ac-
cording to (4). To this end, we start with a slight modification
of the Fisher divergence:

Definition 1. q-Weighted Fisher Divergence. Let pd and
q be probability densities over RD whose supports satisfy
supp(pd) ⊆ supp(q). We define the q-weighted Fisher di-
vergence as

Fq(pd ∥ sθ) := Ex∼q

[
∥∇x log pd(x)− sθ(x)∥22

]
(5)

Like the Fisher divergence F in Equation (1), also Fq mea-
sures the score-mismatch between pd and the model sθ,
but in expectation over a proposal distribution q rather
than pd. It is easy to show that Fq(pd ∥ sθ) = 0 implies
F(pd ∥ sθ) = 0, hence Fq is a principled divergence.

Next, we adopt from diffusion models the idea of us-
ing a family of Gaussian perturbed distributions where
qt(xt |x) := N (xt |x, σ(t)2I) is a Gaussian perturbation
kernel indexed by t ∈ [0, T ], pt(xt,x) = qt(xt |x) pd(x)
is the joint of a data sample x and a perturbed version xt,
and pt(xt) =

∫
pt(xt,x) dx.

Unlike as in diffusion models, we do not aim to approximate
the pt(xt)’s for t > 0, but use them merely as proposals
for Fq. We propose to minimize a weighted mixture of q-
weighted Fisher divergences:

Fmix(pd ∥ sθ) = Et∼p(t) [λ(t)Fpt
(pd ∥ sθ)] (6)

= Et∼p(t)

[
λ(t)Ext∼pt

[
∥∇xt log pd(xt)− sθ(xt)∥22

]]
(7)

Also Fmix is a principled objective, since, as λ(t) is positive
and Fpt

is non-negative, Fmix(pd ∥ sθ) = 0 implies that
Fpt

(pd ∥ sθ) = 0 for almost all t ∈ [0, T ].

Fmix requires the true data score ∇x log pd(x) which is not
available. Hence, we adopt a similar approach as in [Vincent,
2011] and replace pd with a slightly Gaussian-perturbed
version p′d(x) := p0(x), i.e. the perturbed data distribution
at the lowest noise level. Given that σ(0) is small, fitting p′d
instead of pd is a worthwhile goal. With this modification,
we are able to derive the following principled objective, the
DIffusion-free SCOre matching loss (DISCO loss):

Theorem 1. Let pd be the true data distribution, p(t) a
distribution over [0, T ], and λ(t) a positive weighting func-
tion. Further, let qt(xt |x), pt(xt) and pt(x |xt) be de-
fined as above. Let pt′(x |xt) = pt′(xt,x)/pt′(xt) be
the posterior at noise level σ(t′) and let q(t,x,xt) :=
p0(x |xt) pt(xt) p(t). The DISCO loss LDISCO(θ), defined
as

Eq(t,x,xt)

[
λ(t) ∥∇xt

log q0(xt |x)− sθ(xt)∥22
]

(8)

has the same parameter gradients as Fmix(p
′
d ∥ sθ).
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The proof can be found in the supplementary. From Theo-
rem 1 it follows that, given that sθ has sufficient capacity,
the global minimizer of LDISCO will learn the true score of
p′d and since we employ an array of noisy proposal distribu-
tions, we make sure that sθ gets informed far from the data
manifold.

DISCO Training. Estimating LDISCO for training is
straightforward, expect for one part. In order to sample
from q(t,x,xt), we first sample t ∼ p(t). Subsequently,
we sample xt ∼ pt(xt), by first sampling some (inter-
mediate) data sample x′ ∼ pd and then its perturbed ver-
sion xt ∼ qt(xt |x′). The challenging part is then to sam-
ple p0(x |xt).1 However, as we usually have only finitely
many training data points D = {x(i)}Ni=1, the data distri-
bution is the empirical distribution pd(x) = pemp(x) :=
1
N

∑N
i=1 δ(x

(i) − x) where δ(·) denotes the Dirac-delta
function. From Bayes’ law, we obtain

p0(x |xt) =
q0(xt |x) pemp(x)

p0(xt)

which induces a probability mass function over D. Thus, we
compute p0(x(i) |xt) ∝ q0(xt |x(i)) for each x(i) ∈ D and
sample x from the normalized mass function2.

DISCO Samples. If we only have access to the learned
score sθ(x), we may use samplers like Unadjusted Langevin
Dynamics (ULA) to draw asymptotically exact samples.
However, in our low-dimensional experiments, we pa-
rameterize an energy-based DISCO model as sθ(x) :=
−∇xEθ(x), where Eθ is a scalar-valued neural network.
In this setting, we can employ more sophisticated MCMC
sampling strategies: We use Sequential Monte Carlo (SMC)
[Naesseth et al., 2019, Doucet et al., 2001, Chopin et al.,
2020, Del Moral et al., 2006] with Hamiltonian Monte Carlo
(HMC) steps to sample from a sequence of tempered distri-
butions Neal [1996] (see supplementary for details).

4 EXPERIMENTS

Low-Dimensional Experiments. To experimentally vali-
date DISCO in a low-dimensional setting, we train both a
vanilla diffusion model and an energy-based DISCO model
on a two-dimensional Gaussian mixture model (GMM). In
Figure 1 we compare the quality of samples from the condi-

1Note the asymmetry in this principle, where xt is generated
by a perturbation at “high” noise levels, but the posterior p0(x |xt)
is over clean data “assuming xt had been generated by p0 (lowest
noise level).” In particular, the intermediate sample x′ which was
used to produce xt does not necessarily have high probability
under p0(x |xt), especially for large σ(t).

2If |D| is large, we can draw an approximate posterior sample
using either a mini-batch or more sophisticated techniques which
are discussed in the supplementary

Figure 2: Unconditional samples from a score-based DISCO
model trained on CIFAR-10. This model achieves an FID
score of 3.80.

tional distribution pθ(x2 |x1 = 1.75), using popular heuris-
tic conditional sampling techniques which are explained in
the supplementary material. We find that only the DISCO
model produces faithful samples, while all other methods
fail to preserve the relative weights of the Gaussian com-
ponents. Details and additional results for other datasets
and GMMs with varying dimensionality are provided in the
supplementary material.

CIFAR-10. To demonstrate that DISCO performs well
in high-dimensional generative modeling tasks, we use the
model architecture proposed in [Karras et al., 2022] and train
an unconstrained score model with DISCO on the CIFAR-
10 dataset [Krizhevsky et al., 2009]. Using the second-order
Heun sampler Karras et al. [2022], we achieve a competitive
FID score of 3.80 on unconditional CIFAR-10, where state-
of-the-art with diffusion models is 1.79 [Zhang et al., 2024].
This demonstrates that directly learning a single data score
can lead to high visual sample quality. In the supplementary,
we discuss experimental details and DISCO’s capability for
image inpainting via conditional sampling.

5 CONCLUSIONS

In this paper, we challenge the prevailing belief that diffu-
sion processes are essential for training effective score-based
generative models. We introduce DISCO, a diffusion-free
score matching framework that avoids time-indexed score
fields in favor of learning a single, time-independent score
function. Our results demonstrate that this approach is not
only viable but also competitive with diffusion models in
terms of visual sample quality. More importantly, DISCO
provides a principled foundation for exact conditional sam-
pling, which has remained elusive for traditional diffusion-
based models. This ability opens the door to using such mod-
els as sound probabilistic reasoners, positioning DISCO as
powerful tool for a wide array of tasks in probabilistic mod-
eling, beyond mere sample generation. For example, our
method might be beneficial for designing molecular struc-
tures that satisfy target binding affinities or for sampling
physically plausible protein conformations conditioned on
partial structural constraints.
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Effective Diffusion-free Score Matching for
Exact Conditional Sampling
(Supplementary Material)

A DISCO SAMPLING

Since it is well known that Langevin algorithms suffer from slow mixing times if the target distribution is multimodal, we
employ tempering strategies [Neal, 1996] by considering a sequence of distributions {pβi

}ni=0 with

pβi(x) ∝ pθ(x)
βi (9)

where 0 = β0 < · · · < βn = 1 is a schedule of inverse temperature parameters. As β → 0, pβ approaches a uniform
distribution, and as β → 1, we recover the original model pθ. Tempering simply scales the score, i.e., ∇x log pβ(x) =
β∇x log pθ(x). In the same way, we can also temper any conditional distribution of pθ given by (4).

In our low-dimensional experiments, we use BlackJAX [Cabezas et al., 2024] and apply tempered sequential Monte Carlo
(SMC) with an adaptive schedule for the inverse temperatures βi.1 For the results in Figure 1, we perform systematic
resampling after a single Hamiltonian Monte Carlo (HMC) step, using 10 leapfrog integration steps. All other heuristic
methods are configured to allow approximately the same number of function evaluations for a fair comparison.

B RELATED WORK AND CONDITIONAL SAMPLING HEURISTICS

Time-Independence in Score-Based Models. Most similar in spirit to DISCO is the work by Li et al. [Li et al., 2023],
who share the idea of only learning ∇x log p0(x) using a score-matching objective. However, they do not minimize LDISCO,
but a variant which they term multiscale denoising score matching (MDSM), which is LDISCO when (incorrectly) setting
q(t,x,xt) := p(t)pd(x)pt(xt |x) in (8). This objective in fact learns s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt log pt(xt)
]
, i.e. a

posterior average over pt scores, where the posterior over noise levels is reweighted. Thus, the claim of [Li et al., 2023] that
s∗θ only learns the score of p0 is erroneous (see Section E.2 details). Their main motivation is also not conditional sampling
but on analyzing diffusion training.

A key property in DISCO is that the score network is independent of t, while diffusion-based models inherently rely on a
notion of time. Yet, there have been attempts to minimize LDM with neural networks where (1) time enters in a simple way,
or (2) time does not enter into the network sθ(x) at all. [Song and Ermon, 2020] proposed to model sθ(x, t) := εθ(x)/σ(t)
where εθ is a time-independent neural network. However, it is easy to see that the true scores of different noise levels are
not just scaled versions of another, i.e., there exists no constant c such that ∇x log pt1(x) = c · ∇x log pt2(x) ∀x, t1 ̸= t2,
except for the trivial case where p0 is Gaussian. Thus, even with infinite capacity in εθ, we cannot learn the true scores.
In fact, one can interpret this parameterization as learning a single distribution whose tempered versions try to match the
diffused distributions pt. Recently, Sun et al. [2025] studied the effect of minimizing LDM with a time-independent network
sθ(x). Doing so results in a minimizer s∗θ(xt) = Ep(t |xt) [∇xt log pt(xt)], which learns to average the scores of pt over
the posterior distribution of noise levels (see Section E.3). Sun et al. [2025] argue that in high dimensions, p(t |xt) is close
to δ(t− txt

), where xt = x0 + txt
ε, ε ∼ N (0, I), and hence, s∗θ(xt) ≈ ∇xt

log ptxt
(xt). However, this work is clearly

distinct to DISCO, as we try to regress ∇x log p0(x) only.
1A fixed linear schedule for βi also performs adequately.
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Conditional Sampling in Diffusion Models. Many approximations to the true conditional p0(xu
0 |xc

0) have been proposed:
Song et al. [2020] introduce the replacement method, a popular heuristic that estimates the conditional score at time t as

∇xu
t
log pt(x

u
t |xc

0) ≈ ∇xu
t
log pt(x

u
t | x̂c

t) (10)

where x̂c
t is drawn from the known distribution pt(x

c
t |xc

0) = N (xc
t ;α(t)x

c
0, σ(t)

2I). This approximation enjoys no
theoretical guarantees and often fails to produce samples coherent with the conditioning information [Ho et al., 2022].

Gradient guidance [Ho et al., 2022] relies on the fact that ∇xt log pt(xt |xc
0) = ∇xt log pt(x

c
0 |xt)+∇xt log pt(xt). While

∇xt log pt(xt) is known via sθ , the intractable quantity pt(x
c
0 |xt) is approximated, often by N (xc

0; Ω(x̂θ(xt, t)), σ(t)
2I),

where x̂θ(x, t) = x + σ(t)2sθ(x, t) is the “denoised” input, and Ω(x) returns only the observed coordinates in x. At
each noise level t, the approximation of the conditional score ∇xt

log pt(x
u
t |xc

t) is used to perform sampling. Note
that computing ∇xt

logN (xc
0; Ω(x̂θ(xt, t)), σ(t)

2I) involves backpropagating through the neural network, making this
approximation computationally expensive. Again, this heuristic provides unreliable estimates [Zhang et al., 2023] and comes
with no theoretical guarantees.

[Wu et al., 2023] introduced the twisted diffusion sampler (TDS), which uses gradient guidance in a twisted sequential
Monte Carlo (SMC) procedure as an approximation to the (unknown) optimal twisting function. Due to this, the sampler
will not produce exact samples for any finite number of simulated particles. In contrast, DISCO guarantees asymptotically
exact samples, even when simulating a single particle.

C POSTERIOR SAMPLING

When optimizing LDISCO, we need to draw samples from the t = 0 posterior

p0(x |xt) =
q0(xt |x) pd(x)

p0(xt)
.

When we set pd(x) = pemp(x), we can draw exact samples from p0(x |xt): Given xt ∈ RD, we compute q(xt |x(i)) for
each x(i) ∈ D, and sample x from the normalized mass function over elements in D. Intuitively, since the perturbation
kernel q(xt |x(i)) is an isotropic Gaussian, it will assign more probability mass to points x(i) that are close to x(i). This is
distinct but reminiscent of the popular (minibatch) optimal transport techniques in the flow matching literature [Tong et al.,
2023].

Sampling from the posterior in this way needs O(ND) operations, where N = |D|. In our low-dimensional experiments
(N = 100, 000 and D ∈ {2, 10, 50}) we do not observe any significant slowdown during model training. In our high-
dimensional CIFAR-10 experiments, we draw approximate posterior samples by using minibatches of size 512.

Future work may explore utilizing techniques like Locality Sensitive Hashing [Gionis et al., 1999] or k-d Trees to efficiently
get the k nearest neighbors of xt, and then compute the mass function over just these neighbors. If σ(0) is sufficiently small,
this will be a good approximation to the true posterior mass function over all elements in D.

D EXPERIMENTAL DETAILS

D.1 LOW-DIMENSIONAL SETTING

Moons Dataset. We further trained a standard diffusion model and an energy-based DISCO model on the popular Moons
dataset (make_moons in scikit-learn [Pedregosa et al., 2011]). In Figure 3 we visualize the L2 norms of learned
scores (for the diffusion model the one corresponding to t = 0) and the score of the empirical data distribution, Gaussian
smoothed with σ(0) = 0.1, which is the actual target distribution p′d for DISCO. We see that DISCO excellently fits the
target score, underpinning its role as principled score matching objective. The diffusion model does not fit the data score
well for areas far from the data. This is to be expected, as the diffusion formalism does not even strive to represent a single
data score, but “distributes” the generative process over a hierarchy of time-dependent score-fields.

GMM Experimental Setup. To quantitatively evaluate the performance of DISCO w.r.t. conditional sampling, we train
several small energy-based models (parameterized using an MLP) using both LDISCO, and the regular diffusion objective
LDM. For each dimension D ∈ {2, 10, 50}, we randomly generate parameters of a 20-component Gaussian Mixture Model
(GMM) in RD, and use 100, 000 samples from the GMM as our training dataset.
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Figure 3: Comparison of the L2 norms of the scores of a vanilla diffusion model at t = 0 (left), an energy-based DISCO
model (center), and the ground truth empirical distribution of the Moons dataset (smoothed with σ(0) = 0.1, which is the
target p′d for DISCO). Note that the diffusion model systematically underestimates the magnitudes of scores that are far
from the data manifold.

We use a batch size of 1024 and the Adam optimizer [Kingma, 2014] with learning rate 10−4 and otherwise default
parameters. When D = 2, we train the models for 50, 000 gradient steps, and when D > 2, we train for 100, 000 steps. We
use a variance exploding formulation with α(t) = 1 for all t, and use 100 exponentially spaced noise scales σ(ti), with
σ(0) = 0.1 and σ(T ) = 2. For D = 50, we increase σ(T ) to 5.

After training, we sample 100 test points x(i) from the GMM, and want to draw from the conditional distribution over the
last coordinate in x(i), given the others. In the DISCO model, we use the SMC sampler described above, with systematic
resampling after 2 HMC steps, which use 2 leapfrog integration steps each. To sample from the diffusion-based models, we
employ several popular heuristics sampling schemes: Twisted Diffusion Sampler (TDS) [Wu et al., 2023], Gradient Guidance
[Ho et al., 2022], and the Replacement Heuristic [Song et al., 2020]. We use all of these heuristics in conjunction with 100
steps of ancestral sampling, roughly taking the same number of function evaluations as sampling from the DISCO model2

. For each test point, we draw 1024 (approximate) conditional samples from each model and compute the Wasserstein-1
distance (W1) to 1024 true samples from the ground-truth conditional GMM. We repeat this 3 times with different random
seeds and visualize the distribution of W1 over all test points and random seeds in Figure 4 (for each D ∈ {2, 10, 50}). We
find it to be beneficial for DISCO sampling to slightly lower σ(0) after training, i.e., we sample from a slightly “cooled
down” version of the learned distribution: In all DISCO experiments shown in Figure 4, we thus train with σ(0) = 0.1 and
sample with σ(0) = 0.07.

As shown in Figure 4, we can easily find failure cases where methods like TDS cannot produce faithful conditional samples.
In contrast, the DISCO model consistently performs well in the worst-case setting.

In the main text, we show qualitative results of a similar GMM experiment with D = 2, except that (1) we parameterize the
diffusion model to output the score directly (instead of the energy), and (2) we show kernel-density estimates of both the
approximate model conditional, and the true model conditional (obtained via rejection sampling). In contrast, the experiment
we show here compares the approximate model conditional and the ground-truth GMM conditional.3

Network Architecture. The network architectures of the diffusion models and DISCO models are identical, except that
the diffusion models receive the noise level σ(t) as input, while the DISCO models do not. In the former case, we use a
simple positional embedding for σ(t), which we concatenate to the input. Moreover, following Tancik et al. [2020], we also
use the same positional embedding for each coordinate in the input x. The remainder of the MLP consists of 4 blocks (with
residual connections), where each block contains 2 affine layers followed by leaky ReLU activations, and normalization
layers at the start of each block, after the first affine layer (InstanceNorm++ introduced in Song and Ermon [2019]). All
affine layers in these blocks are maps RK → RK , where we choose K = 128 when D = 2, K = 256 when D = 10, and

2Since we apply adaptive tempering when sampling from the DISCO model, the number of function evaluations per conditional
sample is not static. In all experiments, the DISCO sampler needs less function evaluations than the diffusion model samplers.

3We make this modification because generating true samples from the model conditional via rejection sampling is intractable in high
dimensions.
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Figure 4: Wasserstein-1 distance between (approximate) conditional samples and ground-truth conditional samples for
each sampling scheme and dimension D ∈ {2, 10, 50}. When D = 2 (left), DISCO substantially outperforms all other
approaches. When D = 10 (middle), TDS performs well on average, but fails on certain conditionals: When using TDS,
the maximum W1 observed was 4.29, while the maximum W1 was 0.42 with DISCO. We emphasize that such failure cases
are detrimental for sound and consistent reasoning. When D = 50 (right), DISCO again outperforms all other methods in
terms of average W1. Note that since we compare against the ground-truth GMM conditional distribution, the errors shown
here are due to sampling inaccuracy and model mismatch, where the latter is typically larger in higher dimensions.

K = 512 when D = 50. The final block is followed by the same normalization and activation layers, and a final affine layer
mapping from RK to RD. When parameterizing the score directly, we use the output of the final hidden layer z as our score
approximation. When building an energy-based model, we follow Du et al. [2023] and compute the energy Eθ as −∥z∥22.

D.2 CIFAR-10

We use the popular EDM implementation4 [Karras et al., 2022] which defines a denoising network Dθ(x), where the score
network is then given as

sθ(x) :=
Dθ(x)− x

σ(0)2
(11)

Since ∇xt
log q0(xt |x0) = (x0 − xt)/σ(0)

2, it follows that LDISCO then simplifies to

LDISCO(θ) = σ(0)−4 Eq(t,x,xt)

[
λ(t)∥x−Dθ(xt)∥22

]
(12)

where we simply drop σ(0)−4 because it is a constant factor w.r.t. θ. Karras et al. [2022] model their time-dependent
denoiser as

Dθ(x, t) := cskip(t)x+ cout(t)Fθ(cin(t)x, cnoise(t)) (13)

where Fθ(·, ·) is the direct output of the neural network, and cskip, cout, cin, cnoise are scalar-valued functions. Inspired by
[Sun et al., 2025], we choose time-independent constants cskip = 0.5, cout = cin = 1, and do not use cnoise because we
model a time-independent network. Finally, we train Dθ(x) = 0.5x+ Fθ(x) with the same hyperparameter configuration
as Karras et al. [2022]5 on 8 Quadro RTX 8000 GPUs, which took roughly 2 days. To minimize LDISCO, we approximately
sample from the posterior p0(x |xt) using a mini-batch of data.

We use the second-order Heun sampler with 18 steps (i.e., NFE = 35) [Karras et al., 2022] to produce the samples shown in
Figure 2, achieving an FID score of 3.80. We also experiment with energy-based DISCO models, but observe worse visual
fidelity in the generated samples, which is consistent with findings in [Salimans and Ho, 2021].

4https://github.com/NVlabs/edm
5To be exact, except for the discussed changes, we use the configuration of their cifar10-32x32-uncond-vp model.

10

https://github.com/NVlabs/edm


Figure 5: CIFAR-10 Inpainting with the DISCO model. First Column: CIFAR-10 test image from each class. Second
Column: Pixels from the test images we condition on. Other Columns: Inpaintings with different random seeds using the
DISCO model in conjunction with the replacement heuristic. Best viewed zoomed in.

CIFAR-10 Inpainting. We use the DISCO model described in the main paper in an inpainting experiment. The results are
shown in Figure 5: In this experiment, we use the popular replacement heuristic to inpaint images. We find that running
the Heun EDM sampler does not produce visually pleasing samples when using the true conditional scores directly. We
hypothesize that this is due to fact that during training, the model has never seen images where some pixels are clean and
others are noisy and thus, it fails to generalize to these cases. We leave investigation of this to future work but note that
training directly on such augmented clean/noisy images may alleviate this issue.

E PROOFS

E.1 DISCO OBJECTIVE

Let p(t) be a prior distribution over a “time” parameter6 t ∈ [0, T ], let pd denote the data distribution, and let α : [0, T ] →
R>0 and σ : [0, T ] → R>0 be positive functions of time. Given the distributions p(t,x,xt) := p(t)pd(x)pt(xt |x) with
pt(xt |x) := N (xt;α(t)x, σ(t)

2I) and q(t,x,xt) := p(t)pt(xt)p0(x |xt) with pt(xt) =
∫
pt(xt |x)pd(x) dx and

p0(x |xt) =
p0(xt |x)pd(x)

p0(xt)
,

we will show that the DISCO Loss

LDISCO(θ) := Eq(t,x,xt)

[
λ(t)∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(14)

6We want to stress that it has only the meaning of time in diffusion models, while in DISCO it indexes a family of successively noisier
proposal distributions.
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is equivalent to

Fmix(p0 ∥ sθ) = Ep(t) [λ(t)Fpt
(p0 ∥ sθ)] = Ep(t)Ept(xt)

[
λ(t)∥∇xt

log p0(xt)− sθ(xt)∥22
]

(15)

up to an additive constant independent of θ. As defined above, p0(x) is the slightly Gaussian-perturbed version of pd and is
also called p′d in the main text.

Proof. We see that

LDISCO(θ) = Eq(t,x,xt)

[
λ(t)∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

= Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]]

We have

Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

= Ep0(x |xt)

[
∥∇xt

log p0(xt |x)∥22 − 2∇xt
log p0(xt |x)⊤sθ(xt) + ∥sθ(xt)∥22

]
= c1 − 2Ep0(x |xt) [∇xt

log p0(xt |x)]⊤ sθ(xt) + ∥sθ(xt)∥22
= c2 + ∥Ep0(x |xt) [∇xt

log p0(xt |x)]− sθ(xt)∥22

where c1, c2 are constants w.r.t. θ. We notice that

Ep0(x |xt) [∇xt
log p0(xt |x)] =

∫
p0(x |xt)∇xt

log p0(xt |x) dx

=

∫
p0(x |xt)

∇xt
p0(xt |x)

p0(xt |x)
dx

=

∫
p0(xt |x)p0(x)

p0(xt)

∇xtp0(xt |x)
p0(xt |x)

dx

=

∫
p0(x)∇xt

p0(xt |x)
p0(xt)

dx

=
1

p0(xt)

∫
p0(x)∇xtp0(xt |x) dx

=
1

p0(xt)
∇xt

∫
p0(x)p0(xt |x) dx

=
1

p0(xt)
∇xt

p0(xt)

= ∇xt log p0(xt)

and hence,

∥Ep0(x |xt) [∇xt log p0(xt |x)]− sθ(xt)∥22 = ∥∇xt log p0(xt)− sθ(xt)∥22

which implies that

LDISCO(θ) = Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]]

+ const.

= Ep(t)pt(xt)

[
λ(t) ∥∇xt

log p0(xt)− sθ(xt)∥22
]
+ const.

= Ep(t) [λ(t)Fpt
(p0 ∥ sθ)] + const.

which concludes the proof.

E.2 MULTISCALE DENOISING SCORE MATCHING

We show that the multiscale denoising score matching (MDSM) [Li et al., 2023] objective

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
λ(t) ∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(16)

has the minimizer s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt log pt(xt)
]

when λ(t) = 1 and α(t) = 1 for all t (variance exploding).
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Proof. For convenience, we assume λ(t) = 1, as this can always be subsumed into the prior p(t) without affecting the
minimizer. Moreover, we assume α(t) = 1. With p(t,x,xt) = p(t)pd(x)pt(xt |x), we denote with p(xt) the marginal over
xt (not to be confused with pt(xt), which conditions on t). We have

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(17)

= Ep(xt)p(t |xt)pt(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(18)

= Ep(xt)p(t |xt)

[
∥Ept(x |xt) [∇xt log p0(xt |x)]− sθ(xt)∥22

]
+ const. (19)

where the last step follows the same argument as in Section E.1. With R(xt, t) := Ept(x |xt) [∇xt
log p0(xt |x)] and

repeating this argument, we see that

Ep(xt)p(t |xt)

[
∥R(xt, t)− sθ(xt)∥22

]
= Ep(xt)

[
∥Ep(t |xt) [R(xt, t)]− sθ(xt)∥22

]
+ const. (20)

where clearly, the minimizer is

s∗θ(xt) = Ep(t |xt) [R(xt, t)] (21)
= Ep(t |xt)pt(x |xt) [∇xt

log p0(xt |x)] . (22)

Expanding ∇xt log p0(xt |x) = (x− xt)/σ(0)
2, we get

s∗θ(xt) = Ep(t |xt)pt(x |xt)

[
x− xt

σ(0)2

]
= Ep(t |xt)

[Ept(x |xt) [x]− xt

σ(0)2

]
(23)

Via Tweedie’s formula, we can express the posterior mean as Ept(x |xt) [x] = xt + σ(t)2∇xt
log pt(xt), and thus,

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt

log pt(xt)− xt

σ(0)2

]
= Ep(t |xt)

[
σ(t)2

σ(0)2
∇xt log pt(xt)

]
(24)

which concludes the proof.

This shows that the claim made in Li et al. [2023] that s∗θ(x) only learns ∇x log p0(x) is incorrect.

E.3 TIME-INDEPENDENT DIFFUSION MODELS

We show that minimizing LDM with a time-independent score model sθ(xt), i.e.,

LDM(θ) = Et,x0,xt

[
λ(t) ∥∇xt log pt(xt |x0)− sθ(xt)∥22

]
, (25)

leads to a minimizer s∗θ(xt) = Ep(t |xt) [∇xt log pt(xt)] when λ(t) = 1 and α(t) = 1 for all t.

Proof. As the proof looks almost identical to Proof E.2, we will only briefly sketch it and refer the reader to Sun et al. [2025]
for more details. With R(xt, t) := Ept(x |xt) [∇xt log pt(xt |x)], we again have that

s∗θ(xt) = Ep(t |xt) [R(xt, t)] = Ep(t |xt)pt(x |xt)

[
x− xt

σ(t)2

]
(26)

Again via Tweedie’s formula, we obtain

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt

log pt(xt)− xt

σ(t)2

]
= Ep(t |xt) [∇xt

log pt(xt)] (27)

which concludes the proof.
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