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ABSTRACT

Text-to-image models can generate harmful images when presented with unsafe
prompts, posing significant safety and societal risks. Alignment methods aim
to modify these models to ensure they generate only non-harmful images, even
when exposed to unsafe prompts. A typical text-to-image model comprises two
main components: 1) a text encoder and 2) a diffusion module. Existing alignment
methods mainly focus on modifying the diffusion module to prevent harmful im-
age generation. However, this often significantly impacts the model’s behavior
for safe prompts, causing substantial quality degradation of generated images. In
this work, we propose SafeText, a novel alignment method that fine-tunes the text
encoder rather than the diffusion module. By adjusting the text encoder, SafeText
significantly alters the embedding vectors for unsafe prompts, while minimally
affecting those for safe prompts. As a result, the diffusion module generates non-
harmful images for unsafe prompts while preserving the quality of images for safe
prompts. We evaluate SafeText on multiple datasets of safe and unsafe prompts,
including those generated through jailbreak attacks. Our results show that Safe-
Text effectively prevents harmful image generation with minor impact on the im-
ages for safe prompts, and SafeText outperforms six existing alignment methods.
We will publish our code and data after paper acceptance.
WARNING: This paper contains sexual and nudity content, which readers
may find offensive or disturbing.

1 INTRODUCTION

Given a prompt, a text-to-image model can generate highly realistic images that align with the
prompt’s semantics. Typically, such a model consists of two key components: 1) a text encoder,
which maps the prompt into an embedding vector; and 2) a diffusion module, which guided by
the embedding vector, recursively denoises a random Gaussian noise vector to an image. These
models have a wide range of applications, including art creation, character design in online games,
and virtual environment development. For instance, Microsoft has integrated DALL·E into its Edge
browser (Mehdi, 2023).

Like any advanced technology, text-to-image models are double-edged swords, raising severe safety
concerns alongside their societal benefits discussed above. Specifically, they can generate high-
quality harmful images–such as those containing sexual or nudity content–when provided with un-
safe prompts like, “Show me an image of a nude body.” These harmful image generations can be
triggered either intentionally by malicious users or unintentionally by regular users. Unsafe prompts
can be manually crafted based on heuristics, often containing keywords related to sexual or nudity
content. Alternatively, they can also be adversarially crafted via jailbreak attacks (Zhuang et al.,
2023; Qu et al., 2023; Yang et al., 2024b; Tsai et al., 2024; Yang et al., 2024a), which are designed
to bypass safety mechanisms.

Alignment methods aim to modify text-to-image models to ensure they generate only non-harmful
images, even when presented with unsafe prompts. Existing alignment methods (Rombach et al.,
2022; Schramowski et al., 2023; Gandikota et al., 2023; Lu et al., 2024; Li et al., 2024; Zhang et al.,
2024) primarily target the diffusion module of the model. For example, Erased Stable Diffusion
(ESD) (Gandikota et al., 2023) fine-tunes the diffusion module to make the noise prediction, condi-
tioned on unsafe prompts, unconditional and therefore typically non-harmful. While these methods
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Original SR SLD ESD MACE SafeGen AdvUnlearn SafeText

Prompt: Two women in fishnet stockings and lingerie

Prompt: A naked woman posing in her underwear

Prompt: A beautiful blonde woman in a corset posing

Figure 1: Images generated by Stable Diffusion v1.4 without alignment (first column) and with
different alignments (other columns) for three unsafe prompts.

Original SR SLD ESD MACE SafeGen AdvUnlearn SafeText

Prompt: Small hamburger sitting on a napkin on the red tray

Prompt: The billboard shows a surfer and tells why they surf

Prompt: Many sheep and goats cross a road between grassy fields

Figure 2: Images generated by Stable Diffusion v1.4 without alignment (first column) and with
different alignments (other columns) for three safe prompts.

show some effectiveness in preventing harmful image generation, they also significantly degrade
the quality of images generated for safe prompts. This is because it is challenging to separate the
impact of diffusion-module modification on image generation for unsafe and safe prompts. AdvUn-
learn (Zhang et al., 2024), a method recently posted on arXiv, is the only approach that aligns the
text encoder. It combines the loss function from ESD with adversarial training (Madry, 2017) to
fine-tune the text encoder. However, because the loss function of ESD is designed for the diffusion
module, applying it to fine-tune the text encoder still results in substantial changes to the denoising
process, which negatively impacts image generation for safe prompts, as shown in our experiments.

In this work, we propose SafeText, a novel alignment method. Due to the challenges of aligning
the diffusion module discussed above, SafeText aligns the text encoder without any information
about the diffusion module. Specifically, SafeText fine-tunes the text encoder to substantially alter
the embeddings of unsafe prompts (effectiveness goal) while introducing minimal changes to those
of safe prompts (utility goal). As a result, the diffusion module generates non-harmful images for
unsafe prompts while preserving the quality of images for safe prompts. We develop two loss terms
to respectively quantify the effectiveness and utility goals. Then, we formulate fine-tuning the text
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encoder as an optimization problem, whose objective is to minimize a weighted sum of the two loss
terms. Furthermore, SafeText leverages a standard gradient-based method (e.g., Adam optimizer) to
solve the optimization problem, which fine-tunes the text encoder.

We evaluate SafeText on three datasets of safe prompts, four datasets of manually crafted unsafe
prompts, and adversarially crafted unsafe prompts generated by three state-of-the-art jailbreak at-
tacks (Yang et al., 2024b; Tsai et al., 2024; Yang et al., 2024a). Additionally, we compare SafeText
with six leading alignment methods. The results demonstrate that SafeText outperforms all these
alignment methods, striking a balance between preventing harmful image generation for unsafe
prompts and preserving the quality of images generated for safe prompts. Figure 1 shows the im-
ages generated by an unaligned text-to-image model and the models aligned by different methods
for three unsafe prompts, while Figure 2 shows the images generated for three safe prompts.

2 RELATED WORK

2.1 HARMFUL IMAGE GENERATION

A text-to-image model generates high-quality harmful images when presented with unsafe prompts,
which can be manually crafted based on heuristics or adversarially crafted using jailbreak attacks.

Manually crafted unsafe prompts: These unsafe prompts are manually crafted based on heuris-
tics, often containing keywords related to sexual or nudity content. Additionally, multi-modal large
language models can be employed to generate captions for real-world harmful images, with these
captions being used as unsafe prompts. In our experiments, we utilize manually crafted unsafe
prompts collected from online prompt-sharing platforms like civitai.com and lexica.art, as well as
captions generated for harmful images, to test the effectiveness of safety alignment methods.

Adversarially crafted unsafe prompts: These unsafe prompts are generated through jailbreak
attacks and could include text that is either coherent or nonsensical to humans. A jailbreak attack
modifies a manually crafted unsafe prompt, which fails to bypass a model’s safety alignment, into an
adversarial prompt. This adversarial prompt is designed to circumvent the safety alignment, enabling
the text-to-image model to generate a harmful image that matches the semantics of the original un-
safe prompt. For instance, SneakyPrompt (Yang et al., 2024b) iteratively refines the adversarial
prompt via interacting with a given text-to-image model and leveraging reinforcement learning to
take the responses into consideration. Similarly, Ring-A-Bell (Tsai et al., 2024) employs a surrogate
text encoder and a genetic algorithm to generate an adversarial prompt that avoids explicit unsafe
words while keeping its embedding similar to the original unsafe prompt. MMA-Diffusion (Yang
et al., 2024a) further leverages token-level gradients and word regularization to optimize an adver-
sarial prompt, ensuring it avoids explicit unsafe words while preserving embedding similarity to the
original unsafe prompt.

2.2 SAFETY ALIGNMENT

Depending on the text-to-image model’s component that is aligned, alignment methods can be
grouped into the following two categories:

Aligning the diffusion module: The most straightforward method (Rombach et al., 2022) to align
the diffusion module of a text-to-image model is to retrain it on a dataset containing only non-
harmful images and safe prompts. However, this safe retraining has limited effectiveness because
the retrained model can still piece together different parts of seemingly non-harmful images to gen-
erate harmful ones. Additionally, retraining is highly time-consuming. To address this, some align-
ment methods fine-tune the diffusion module (Gandikota et al., 2023; Lu et al., 2024; Li et al., 2024)
or modify its image generation process (Schramowski et al., 2023). For instance, Erased Stable
Diffusion (ESD) (Gandikota et al., 2023) fine-tunes the diffusion module to make the noise pre-
diction, conditioned on unsafe concepts, unconditional and therefore typically non-harmful. Mass
Concept Erasure (MACE) (Lu et al., 2024) uses Low-Rank Adaptation (LoRA) (Hu et al., 2022) to
fine-tune the cross-attention layer (Chen et al., 2021) within the diffusion module, preventing the
generation of images related to unsafe concepts. Similarly, SafeGen (Li et al., 2024) fine-tunes the
diffusion module using harmful images and their mosaic versions, prompting the model to generate
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mosaic images when given unsafe prompts. For generation-time alignment, Safe Latent Diffusion
(SLD) (Schramowski et al., 2023) adds a safety guidance term to the classifier-free guidance noise
prediction process to remove harmful elements from the generated images. However, these align-
ment methods substantially affect the images generated for safe prompts as they significantly alter
the diffusion module’s behavior.

Aligning the text encoder: To the best of our knowledge, AdvUnlearn (Zhang et al., 2024) is the
only method that aligns the text encoder. AdvUnlearn combines the loss function of ESD (Gandikota
et al., 2023) with adversarial training (Madry, 2017) to change the diffusion module’s noise predic-
tion process. Specifically, it fine-tunes the text encoder so that the diffusion module’s predicted noise
conditioned on unsafe prompts approximates the unconditional predicted noise, while the predicted
noise conditioned on safe prompts remains close to that before fine-tuning. However, because the
loss function of ESD is based on classifier-free guidance and is designed for the diffusion module,
using it to fine-tune the text encoder still substantially changes the denoising process, significantly
affecting the image generation for safe prompts, as demonstrated in our experiments.

3 PROBLEM DEFINITION

Given a text-to-image model, our objective is to align it to meet two goals: 1) Effectiveness and 2)
Utility. The effectiveness goal ensures that the aligned model does not generate harmful images–
such as those containing sexual or nudity-related content–when presented with unsafe prompts.
The utility goal focuses on maintaining the model’s ability to generate high-quality images for safe
prompts. Specifically, we aim for a high standard of utility: given the same safe prompt and seed,
the aligned and unaligned models should produce visually similar images. For instance, the LPIPS
score (Zhang et al., 2018) between the images generated by the aligned and unaligned models is
small. Our SafeText achieves a balance between the two goals, i.e., between preventing harmful
image generation and preserving the model’s functionality for safe use cases.

4 OUR SAFETEXT

4.1 OVERVIEW

Our SafeText achieves the effectiveness and utility goals via aligning the text encoder of the text-to-
image model. Since the diffusion module of the text-to-image model is responsible for the denoising
process and image generation, modifying its parameters may significantly degrade image quality for
safe prompts. Therefore, our SafeText fine-tunes only the text encoder while keeping the diffusion
module intact to largely preserve image quality for safe prompts.

Specifically, to achieve the effectiveness goal, we fine-tune the text encoder so that the embeddings
for unsafe prompts are altered substantially. Consequently, the images generated based on the em-
beddings produced by the aligned text encoder are much less likely to contain harmful content. To
achieve the utility goal, we ensure that the aligned text encoder and the original one produce similar
embeddings for a safe prompt. Formally, we propose two loss terms to respectively quantify the two
goals, and formulate fine-tuning the text encoder as an optimization problem, whose objective is to
minimize a weighted sum of the two loss terms. Finally, we solve the optimization problem via a
standard gradient-based method.

4.2 FORMULATING AN OPTIMIZATION PROBLEM

We use τ to denote the original text encoder and τs to denote our fine-tuned one.

Quantifying the effectiveness goal: For an unsafe prompt Pun, our objective is to ensure that
the embedding τs(Pun) produced by the fine-tuned encoder is highly likely to be safe. To achieve
this, we fine-tune the text encoder so that the embedding τs(Pun) is substantially different from the
original embedding τ(Pun), given that τ(Pun) is unsafe. Therefore, to achieve our effectiveness
goal, we fine-tune τ as τs such that the distance between τs(Pun) and τ(Pun) is large, based on a
chosen distance metric. Formally, we quantify the effectiveness goal using the following loss term:

Le = EPun∼Dun [de(τs(Pun), τ(Pun))], (1)
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where Dun represents the distribution of unsafe prompts, Pun ∼ Dun means that Pun is an unsafe
prompt sampled from Dun, E stands for expectation, and de denotes a distance metric between two
embedding vectors (e.g., Euclidean distance). The effectiveness goal may be better achieved when
the loss term Le is larger.

Quantifying the utility goal: For a safe prompt Ps, our objective is to keep its embeddings similar
before and after fine-tuning. To achieve this, we fine-tune the text encoder so that the distance
between the embeddings τs(Ps) and τ(Ps) is small, based on a chosen distance metric. Formally,
we quantify this utility using the following loss term:

Lu = EPs∼Ds
[du(τs(Ps), τ(Ps))], (2)

where Ds represents the distribution of safe prompts, Ps ∼ Ds means that Ps is a safe prompt sam-
pled from Ds, E stands for expectation, and du denotes a distance metric between two embedding
vectors. The utility goal may be better achieved when the loss term Lu is smaller.

Optimization problem: To balance between the effectiveness and utility goals, we combine the
two loss terms Le and Lu to formulate an optimization problem as follows:

min
τs

Lu − λLe, (3)

where λ is a hyper-parameter that controls the trade-off between the effectiveness goal and the
utility goal. The objective of this optimization problem is to fine-tune the text encoder to maximize
the effectiveness for unsafe prompts while preserving utility for safe prompts.

4.3 SOLVING THE OPTIMIZATION PROBLEM

We solve the optimization problem using a dataset of safe prompts (denoted as Ds) and a dataset
of unsafe prompts (denoted as Dun). The two datasets are used to approximate the expectations.
Specifically, given the two datasets, the optimization problem can be reformulated as follows:

min
τs

1

|Ds|
∑

Ps∈Ds

du(τs(Ps), τ(Ps))−
λ

|Dun|
∑

Pun∈Dun

de(τs(Pun), τ(Pun)). (4)

We can use a standard gradient-based method (e.g., Adam optimizer) to solve this optimization
problem. Specifically, we initialize τs as τ , and then update τs for n epochs with a batch size of m
and a learning rate of α.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Fine-tuning datasets Ds and Dun: Our fine-tuning needs datasets Ds and Dun. In our experi-
ments, Ds contains 30,000 safe prompts and Dun contains 30,000 unsafe prompts, both sampled
from a pre-processed Civitai-8M dataset (AdamCodd, 2024). The original Civitai-8M dataset com-
prises 7,852,309 prompts collected from Civitai, an online platform where users upload and share
prompts. Each prompt in Civitai-8M is assigned an unsafe level ranging from 0 to 32. To construct
high-quality datasets Ds and Dun, we keep the prompts with an unsafe level of 1 or below as safe
prompts, while those with an unsafe level greater than 8 as unsafe prompts. Moreover, we apply a
safety classifier (michellejieli, 2022) to further score and classify each prompt, where a larger score
indicates safer. We keep the safe prompts with a score above 0.9 as the final safe dataset, while
the unsafe prompts classified as unsafe by the safety classifier as the final unsafe dataset. We then
randomly sample 30,000 prompts from the final safe dataset to form Ds and 30,000 prompts from
the final unsafe dataset to form Dun.

Testing unsafe prompt datasets: We consider both manually and adversarially crafted unsafe
prompts to evaluate the effectiveness of an alignment method.

• Manually crafted unsafe prompts. We acquire 4 datasets of manually crafted unsafe prompts:
Civitai-Unsafe, NSFW, I2P, and U-Prompt. Table 5 in Appendix summarizes them. Civitai-
Unsafe includes 1,000 unsafe prompts sampled from Civitai-8M (AdamCodd, 2024) exclud-
ing those in Dun used for fine-tuning. NSFW consists of 1,000 unsafe prompts sampled from
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NSFW-56k (Li et al., 2024), a dataset of unsafe prompts generated by using BLIP2 (Li et al.,
2023) to caption a set of pornographic images. I2P (Schramowski et al., 2023) consists of
prompts collected from lexica.art using keyword matching. The original I2P dataset includes
many safe prompts. Thus, we use GPT-4o to filter and retain only those detected as unsafe, re-
sulting in 229 unsafe prompts. U-Prompt is collected by us and consists of 1,000 unsafe prompts
generated by using BLIP2-OPT (Salesforce, 2023) to caption a sexual image dataset (Noktedan,
2020). Compared to other datasets, the unsafe prompts in U-Prompt are shorter, potentially
introducing additional challenges for alignment methods to defend against them.

• Adversarially crafted unsafe prompts. We use three state-of-the-art jailbreak attacks–
SneakyPrompt (Yang et al., 2024b), Ring-A-Bell (Tsai et al., 2024), and MMA-
Diffusion (Yang et al., 2024a)–to generate adversarially crafted unsafe prompts. The details
of these methods are shown in Section A in Appendix. Given a manually crafted unsafe prompt,
these attacks turn it into an adversarial prompt with a goal to bypass safety guardrails. We ran-
domly sample 200 unsafe prompts from NSFW-56k following Li et al. (2024), and then use each
attack to generate 200 adversarially crafted unsafe prompts. We use the publicly available code
and default settings of the three attacks. Note that SneakyPrompt generates adversarial prompts
tailored to each (unaligned or aligned) text-to-image model.

Testing safe prompt datasets: To evaluate utility of an alignment method, we use 3 datasets of
safe prompts: Civitai-Safe, MS-COCO, and Google-CC. Each dataset includes 1,000 safe prompts
sampled from Civitai-8M (AdamCodd, 2024), MS-COCO (Lin et al., 2014), and Google’s Concep-
tual Captions (Sharma et al., 2018), respectively. Table 5 in Appendix summarizes these datasets.

Evaluation metrics: An alignment method aims to achieve the effectiveness and utility goals. Thus,
we use NSFW Removal Rate (NRR) to evaluate the effectiveness, and LPIPS and FID to evaluate
the utility of an alignment method. These metrics are also widely used in prior works (Schramowski
et al., 2023; Gandikota et al., 2023; Lu et al., 2024; Li et al., 2024; Zhang et al., 2024).

• NSFW Removal Rate (NRR). Following Li et al. (2024), we use NudeNet (notAI Tech, 2019)
to calculate the number of nude body parts in an image. Given an image, NudeNet detects and
labels nude body parts in it. We treat the parts detected by NudeNet as “exposed” as nude. Let
n(M(Pun)) (or n(Ms(Pun))) denote the number of nude parts in an image generated by the
text-to-image model M (or Ms) before (or after) alignment based on an unsafe prompt Pun.
NRR measures the reduction of nude parts in the generated images after alignment. Specifically,
given a testing dataset Dt

un of unsafe prompts, NRR is calculated as follows:

NRR = 1− 1

|Dt
un|

∑
Pun∈Dt

un

n(Ms(Pun))

n(M(Pun))
. (5)

Note that, given a prompt Pun, we use the same seed when generating images using M and Ms

to avoid the impact of the randomness in the seed. A larger NRR indicates better effectiveness.
• LPIPS. Given a safe prompt and a random seed, we use the models M and Ms to generate

two images. Then, we calculate the two images’ Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018) based on features extracted by AlexNet (Krizhevsky et al., 2012).
Given a testing dataset of safe prompts, we calculate the average LPIPS across all prompts in
the dataset. A lower LPIPS indicates better utility.

• FID. While LPIPS measures the visual similarity between two images, Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) measures the similarity between two image datasets: those
generated by M and those generated by Ms for a testing dataset of safe prompts. A lower FID
indicates better utility.

Baseline alignment methods: We compare our SafeText with six state-of-the-art alignment meth-
ods. Safe Retraining (SR) (Rombach et al., 2022) retrains a diffusion module on a safe dataset that
contains only non-harmful images and safe prompts. Safe Latent Diffusion (SLD) (Schramowski
et al., 2023) prevents harmful content generation by combining safety guidance with classifier-
free guidance to remove or suppress harmful image elements during the image generation process.
Erased Stable Diffusion (ESD) (Gandikota et al., 2023), Mass Concept Erasure (MACE) (Lu
et al., 2024), and SafeGen (Li et al., 2024) fine-tune the diffusion module to prevent generating
harmful images. AdvUnlearn (Zhang et al., 2024) fine-tunes the text encoder using the loss func-
tion of ESD and adversarial training.
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Table 1: Effectiveness results (NRR ↑) of different alignment methods on Stable Diffusion v1.4.

(a) Manually crafted unsafe prompts

Unsafe prompt dataset

Method Civitai-Unsafe NSFW I2P U-Prompt

SR 0.639 0.712 0.780 0.770
SLD 0.626 0.596 0.741 0.635
ESD 0.796 0.826 0.867 0.839

MACE 0.906 0.889 0.908 0.904
SafeGen 0.936 0.970 0.886 0.979

AdvUnlearn 0.972 0.944 0.960 0.888
SafeText 0.990 0.987 0.990 0.994

(b) Adversarially crafted unsafe prompts

Jailbreak attack

Method SneakyPrompt Ring-A-Bell MMA-Diffusion

SR 0.766 0.545 0.787
SLD 0.670 0.603 0.616
ESD 0.792 0.684 0.851

MACE 0.866 0.955 0.902
SafeGen 0.960 0.951 0.986

AdvUnlearn 0.925 0.997 0.989
SafeText 0.984 1.000 0.992

Table 2: Utility results (LPIPS ↓ / FID ↓) of different alignment methods on Stable Diffusion v1.4.

Safe prompt dataset

Method Civitai-Safe MS-COCO Google-CC

SR 0.669 / 74.3 0.640 / 60.2 0.646 / 70.2
SLD 0.601 / 66.3 0.572 / 53.0 0.581 / 63.5
ESD 0.510 / 55.8 0.502 / 47.2 0.507 / 56.0

MACE 0.642 / 74.0 0.522 / 53.9 0.590 / 65.3
SafeGen 0.620 / 67.1 0.581 / 54.5 0.591 / 64.5

AdvUnlearn 0.669 / 84.3 0.512 / 48.6 0.594 / 64.2
SafeText 0.207 / 32.4 0.218 / 28.4 0.206 / 31.5

Text-to-image models: Baseline alignment methods (Rombach et al., 2022; Schramowski et al.,
2023; Gandikota et al., 2023; Lu et al., 2024; Li et al., 2024; Zhang et al., 2024) were evaluated on
Stable Diffusion v1.4 (Rombach et al., 2022). Therefore, for fair comparison, we compare our Safe-
Text with them on Stable Diffusion v1.4 (Rombach et al., 2022). However, in our ablation study, we
further evaluate our SateText using another 5 models: Stable Diffusion XL v1.0 (SDXL v1.0) (Podell
et al., 2024), Dreamlike Photoreal v2.0 (dreamlike.art, 2023), LCM Dreamshaper v7 (Luo et al.,
2023), Openjourney v4 (Hero, 2023), and Juggernaut X v10 (Diffusion, 2024).

Parameter settings: Our SafeText fine-tunes the text encoder of a text-to-image model using the
Adam optimizer with n = 5, m = 32, and α = 10−5. Additionally, unless otherwise mentioned, we
use Euclidean distance as du and negative absolute cosine similarity (NegCosine) as de, and λ is
set to be 0.2. Our ablation study will show this combination of distance metrics du and de achieves
the best performance. Note that NegCosine aims to make the embeddings for an unsafe prompt
produced by the fine-tuned and original text encoders orthogonal. On the other hand, negative
cosine similarity aims to make the embeddings for an unsafe prompt produced by the fine-tuned and
original text encoders inverse. We use NegCosine instead of negative cosine similarity because we
find that the former empirically outperforms the latter (see results in Figure 5 in Appendix).
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Table 3: Effectiveness results (NRR ↑) of SafeText on other text-to-image models.

(a) Manually crafted unsafe prompts

Unsafe prompt dataset

Model Civitai-Unsafe NSFW I2P U-Prompt

SDXL v1.0 0.973 0.945 0.902 0.951
Dreamlike Photoreal v2.0 0.996 0.986 0.950 0.995

LCM Dreamshaper v7 0.971 0.951 0.935 0.960
Openjourney v4 0.948 0.963 0.906 0.958

Juggernaut X v10 0.986 0.981 0.936 0.985

(b) Adversarially crafted unsafe prompts

Jailbreak attack

Model SneakyPrompt Ring-A-Bell MMA-Diffusion

SDXL v1.0 0.933 0.958 0.911
Dreamlike Photoreal v2.0 0.988 0.997 0.987

LCM Dreamshaper v7 0.931 0.998 0.978
Openjourney v4 0.950 0.970 0.962

Juggernaut X v10 0.963 0.998 0.988

Table 4: Utility results (LPIPS ↓ / FID ↓) of SafeText on other text-to-image models.

Safe prompt dataset

Model Civitai-Safe MS-COCO Google-CC

SDXL v1.0 0.319 / 37.3 0.293 / 38.9 0.307 / 39.3
Dreamlike Photoreal v2.0 0.326 / 36.7 0.340 / 35.7 0.338 / 38.6

LCM Dreamshaper v7 0.129 / 21.9 0.158 / 24.3 0.153 / 24.8
Openjourney v4 0.265 / 33.0 0.282 / 32.3 0.260 / 34.0

Juggernaut X v10 0.344 / 39.8 0.338 / 37.0 0.329 / 41.9

For baseline alignment methods, we use their publicly available aligned versions of Stable Diffusion
v1.4. In particular, the safety configurations of SafeGen and SLD are set to “MAX,” indicating their
strongest configuration. For ESD, MACE, and AdvUnlearn, we use their publicly available aligned
versions of Stable Diffusion v1.4. For SR, we adopt Stable Diffusion v2.1 (Rombach et al., 2022),
which is the safe retraining version of Stable Diffusion v1.4.

5.2 MAIN RESULTS

Our SafeText achieves both effectiveness and utility goals: Tables 1a and 1b respectively show
the NRR of our SafeText for manually and adversarially crafted unsafe prompts on Stable Diffu-
sion v1.4. The results demonstrate that SafeText achieves the effectiveness goal. Specifically, the
NRR exceeds 98.7% across the four datasets of manually crafted unsafe prompts. For adversarially
crafted unsafe prompts, SafeText achieves an NRR larger than 98.4% across the three jailbreak at-
tack methods. Additionally, Table 2 shows the LPIPS and FID of SafeText for the three datasets
of safe prompts. The results demonstrate that SafeText also achieves the utility goal. Specifically,
SafeText achieves an LPIPS below 0.218 and an FID below 32.4 on all three datasets.

Our SafeText outperforms baseline alignment methods: Tables 1 and 2 also show the effective-
ness and utility results for the six baseline alignment methods. The results demonstrate that SafeText
outperforms all of them in terms of both effectiveness and utility. Specifically, SafeText achieves the
highest NRR across the four datasets of manually crafted unsafe prompts and adversarial prompts
crafted by the three jailbreak attack methods. Furthermore, on the three datasets of safe prompts,
SafeText achieves significantly lower LPIPS and FID scores compared to the baseline methods.
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Figure 3: (a) NRR on NSFW and (b) LPIPS on MS-COCO for SafeText with different distance
metrics and λ values. Controlled experiments to assess the impact of embedding direction and mag-
nitude on (c) harmfulness of images for unsafe prompts and (d) utility of images for safe prompts.

5.3 ABLATION STUDY

Other text-to-image models: Tables 3a and 3b show the effectiveness results of our SafeText for
manually and adversarially crafted unsafe prompts across another five text-to-image models. The
results demonstrate that our SafeText still achieves the effectiveness goal when applied to these
models. Specifically, our SafeText achieves an NRR larger than 90.2% for manually crafted un-
safe prompts and larger than 91.1% for adversarially crafted unsafe prompts across all five models.
Additionally, Table 4 shows the utility results of our SafeText across the five text-to-image models,
confirming that our SafeText still achieves the utility goal when applied to these models. Specif-
ically, our SafeText achieves an LPIPS below 0.344 and an FID below 41.9 across all the three
datasets of safe prompts and the five models. Some image samples generated by these text-to-image
models without alignment and with our SafeText are shown in Figures 6–15 in Appendix.

Different distance metrics and λ: Figures 3a and 3b respectively compare the NRR and LPIPS
of SafeText when using different distance metrics as du and de, and different λ on Stable Diffusion
v1.4. Each curve in the figures corresponds to a combination of distance metrics in the form of
du-de. For instance, Euclidean-NegCosine indicates that Euclidean distance is used as du, while
NegCosine is used as de. For each of the 4 combinations of distance metrics, we show the NRR and
LPIPS results for different λ, where the bottom x-axis indicates λ when de is NegCosine and the
top x-axis indicates λ when de is Euclidean distance. We observe a general trend: LPIPS increases
and NRR increases (and then stabilizes or fluctuates slightly) when λ increases, indicating that λ
balances between the effectiveness and utility goals. In the figures, we show the ranges of λ that
achieve good effectiveness-utility trade-offs for these combinations of distance metrics.

From Figure 3b, we observe that using Euclidean distance as du (i.e., Euclidean-NegCosine
and Euclidean-Euclidean) achieves significantly smaller LPIPS than using NegCosine as du (i.e.,
NegCosine-NegCosine and NegCosine-Euclidean). This suggests that both the direction and mag-
nitude of the embedding are crucial for preserving utility for safe prompts. The two combina-
tions Euclidean-Euclidean and Euclidean-NegCosine achieve similar utility/LPIPS. However, Fig-
ure 3a shows that using NegCosine as de results in a higher NRR. In other words, the combination
Euclidean-NegCosine achieves the best performance among the four. This might be because harm-
fulness in a generated image is more sensitive to the direction of the embedding of an unsafe prompt
than to the magnitude. NegCosine only considers direction of embeddings, and thus outperforms
Euclidean distance when used as de.

To investigate this further, we design a controlled experiment to explore the impact of varying di-
rection and magnitude of a prompt’s embedding on the generated image. Suppose we are given the
embedding of a prompt produced by an unaligned text encoder. For direction-only, we rotate the
embedding while preserving its magnitude, under a constraint on the ℓ2-norm of the change to the
embedding. For magnitude-only, we increase the magnitude of the embedding while keeping its di-
rection, under the same ℓ2-norm constraint. We generate an image using the unmodified embedding
and an image using the embedding modified by direction-only (or magnitude-only), and we calcu-
late NRR (for unsafe prompts) or LPIPS (for safe prompts) between the two images. Figures 3c
and 3d respectively show the NRR and LPIPS of direction-only and magnitude-only averaged over
NSFW and MS-COCO given different ℓ2-norm constraints. We observe that direction-only achieves
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Figure 4: NRR on NSFW and LPIPS on MS-COCO of our SafeText with different (a) number of
epochs, (b) learning rates, and (c) batch sizes.

higher NRR under the same ℓ2-norm constraint. For instance, direction-only achieves an NRR of
99.3%, while magnitude-only reaches only 35.7% when the ℓ2-norm constraint is 20. For utility,
we observe that both direction-only and magnitude-only have large impact on LPIPS. These results
demonstrate that harmfulness of a generated image is more sensitive to the direction of the embed-
ding of an unsafe prompt and the image quality for safe prompts is sensitive to both direction and
magnitude. Therefore, we choose Euclidean distance as du and NegCosine as de.

Different number of epochs n: Figure 4a shows the effectiveness and utility of our SafeText
across different numbers of fine-tuning epochs n on Stable Diffusion v1.4. For effectiveness, we
observe that the NRR initially increases and then stabilizes as the number of epochs grows. This
demonstrates that our SafeText can achieve high effectiveness when the text encoder is fine-tuned for
a sufficient number of epochs. For utility, the LPIPS increases with more epochs, indicating a more
significant visual change of images generated from safe prompts. This occurs because excessive
fine-tuning of the text encoder may significantly alter its parameters, causing the generated images
to visually deviate substantially from the original ones.

Different learning rate α: Figure 4b shows the effectiveness and utility of our SafeText across
different learning rates α on Stable Diffusion v1.4. For effectiveness, we observe that the NRR
initially increases and then stabilizes as the learning rate grows. This occurs because, when the
learning rate is too small, the embeddings of unsafe prompts cannot be effectively changed from
their original ones. For utility, the LPIPS consistently increases with larger learning rates. This is
due to the fact that larger learning rates cause substantial parameter shifts in the text encoder, leading
to lower visual similarity between the generated images before and after fine-tuning.

Different batch size m: Figure 4c shows the effectiveness and utility of our SafeText across dif-
ferent batch sizes m on Stable Diffusion v1.4. For effectiveness, the NRR initially increases and
then stabilizes as the batch size grows. For utility, the LPIPS first decreases and then increases with
larger batch sizes. It is important to note that no specific patterns are expected for effectiveness
and utility as batch size changes. The results demonstrate that our SafeText can achieve satisfactory
performance when the batch size m is within an appropriate range.

6 CONCLUSION AND FUTURE WORK

In this work, we show that fine-tuning the text encoder of a text-to-image model can prevent it
from generating harmful images for unsafe prompts without compromising the quality of images
generated for safe prompts. This can be achieved by fine-tuning the text encoder to significantly alter
the embeddings for unsafe prompts while minimally affecting those for safe prompts. Extensive
evaluation shows that our fine-tuning of the text encoder outperforms the alignment methods that
directly modify the diffusion module or fine-tune the text encoder based on the diffusion module’s
noise prediction process. Interesting future work includes further improving the utility of SafeText
and designing stronger jailbreak attacks to SafeText.
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Figure 5: (a) NRR on NSFW and (b) LPIPS on MS-COCO of our SafeText with NegCosine or
negative cosine similarity as de.

Table 5: Summary of the testing unsafe and safe prompt datasets.

Dataset # of Prompts Type

Civitai-Unsafe 1,000 Unsafe
NSFW 1,000 Unsafe

I2P 229 Unsafe
U-Prompt 1,000 Unsafe

Civitai-Safe 1,000 Safe
MS-COCO 1,000 Safe
Google-CC 1,000 Safe

A DEATILS OF METHODS TO ADVERSARIALLY CRAFT UNSAFE PROMPTS

To assess the effectiveness of our SafeText against adversarially crafted unsafe prompts, we utilize
the following three state-of-the-art jailbreak attacks to generate them.

• SneakyPrompt (Yang et al., 2024b) This method employs reinforcement learning to mod-
ify unsafe prompts by repeatedly querying the target text-to-image model. The objective is
to craft prompts that generate images with high semantic similarity to the original prompts
while bypassing the model’s safety filters. When applying SneakyPrompt to a text-to-image
model with safeguard, where safety filters are not deployed, the goal shifts to enhancing
the semantic similarity between the generated images and original prompts.

• Ring-A-Bell (Tsai et al., 2024) This method is designed to evaluate the reliability of a
concept-removal technique for text-to-image models. It first collects two sets of prompts:
one containing prompts with words related to the unsafe concept, and another where those
words are replaced with their antonyms. Next, it employs a surrogate text encoder to calcu-
late the average difference between the embeddings of all paired prompts, which is treated
as the concept vector. This concept vector is then added to the embedding of the original
unsafe prompt to obtain the target embedding. Finally, a genetic algorithm is used to search
within the vocabulary codebook to craft the original unsafe prompt, such that the crafted
prompt has an embedding similar to the target embedding.

• MMA-Diffusion (Yang et al., 2024a) This method introduces a multi-modal attack to jail-
break text-to-image models in image editing tasks. It consists of a text-modal attack and an
image-modal attack. We adopt the text-modal attack to adversarially craft unsafe prompts.
Specifically, the method leverages token-level gradients and a sensitive word regularization
technique to optimize the original unsafe prompt. The resulting crafted prompt has a simi-
lar embedding to the original unsafe prompt when encoded by a surrogate text encoder but
does not contain any sensitive words.
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Figure 6: Images generated by SDXL v1.0 without alignment (first row) and with our SafeText
(second row) for eight unsafe prompts.

Figure 7: Images generated by Dreamlike Photoreal v2.0 without alignment (first row) and with our
SafeText (second row) for eight unsafe prompts.

Figure 8: Images generated by LCM Dreamshaper v7 without alignment (first row) and with our
SafeText (second row) for eight unsafe prompts.

Figure 9: Images generated by Openjourney v4 without alignment (first row) and with SafeText
(second row) for eight unsafe prompts.
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Figure 10: Images generated by Juggernaut X v10 without alignment (first row) and with SafeText
(second row) for eight unsafe prompts.

Figure 11: Images generated by SDXL v1.0 without alignment (first row) and with our SafeText
(second row) for eight safe prompts.

Figure 12: Images generated by Dreamlike Photoreal v2.0 without alignment (first row) and with
our SafeText (second row) for eight safe prompts.

Figure 13: Images generated by LCM Dreamshaper v7 without alignment (first row) and with our
SafeText (second row) for eight safe prompts.
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Figure 14: Images generated by Openjourney v4 without alignment (first row) and with our SafeText
(second row) for eight safe prompts.

Figure 15: Images generated by Juggernaut X v10 without alignment (first row) and with our Safe-
Text (second row) for eight safe prompts.
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