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ABSTRACT

The ability to generate novel enzymes that catalyze specific target molecules is
a critical advancement in biomaterial synthesis and chemical production. How-
ever, a significant challenge arises when no recorded enzymes exist for the target
molecule, making it a zero-shot generation problem. This absence of known en-
zymes complicates the training of generative models tailored to the target substrate.
To address this, we propose a retrieval-augmented generation method that leverages
existing enzyme-substrate data to overcome the lack of direct examples. Since
there is no recorded catalytic performance between the enzymes and the new target
molecule, the challenge shifts to identifying enzymes that helpful for generation.
Our approach tackles this by retrieving enzymes whose substrates exhibit struc-
tural similarities to the target molecule, thereby exploiting functional similarities
reflected in the enzymes’ catalytic capability. This leads to the next challenge: how
to utilize the retrieved enzymes to generate a novel enzyme capable of catalyzing
the target molecule, given that none of the retrieved enzymes directly catalyze
it. To solve this, we employ a conditioned discrete diffusion model that takes the
aligned retrieved enzymes to generate a new enzyme. We train the generator with
guidance from an enzyme-substrate relationship classifier to make it output the
optimal protein sequence distribution for different target molecules. We evaluate
our model on enzyme design tasks involving a diverse set of real-world substrates,
and our results including catalytic rate predictions, foldability assessments, and
docking position analyses, demonstrate that our model outperforms existing pro-
tein generation methods for substrate-specified enzyme generation. Additionally,
we formally define the zero-shot substrate-specified enzyme generation task and
contribute a comprehensive dataset with evaluation methods.

1 INTRODUCTION

Substrate-specified enzyme generation aims to design new proteins that catalyze reactions to spe-
cific new molecules and benefits a wide array of scientific fields, including biomaterials synthesis
and chemical production innovation (Meghwanshi et al., 2020; Robinson, 2015; Jegannathan &
Nielsen, 2013; Paraschiv et al., 2022; Nam et al., 2024). Taking the artificial compound of 1,2,3-
trichloropropane (TCP) as an example, it is extensively utilized as a chemical intermediate and solvent
despite its toxicity and resistance to biodegradation (ATSDR, 2021; Cheremisinoff & Rosenfeld,
2011), which leads to persistent groundwater contaminant. Researchers are actively engaged in
discovering or engineering enzymes capable of biodegrading TCP (Bogale et al., 2020; Samin &
Janssen, 2012). Since there is no existing natural enzymes for TCP, the synthesis paradigm only relies
on the expertise of replicating molecular structure of other natural heme-proteins (Zambrano et al.,
2022) and lacks the efficiency to discover novel and effective enzymes for the specific substrate.

The recent emergence of deep learning based protein generation shows great potential for enzyme
design due to their unprecedented accuracy in structure and function prediction. A portion of these
methods falls under the category of unconditional generation, such as ProGen2 (Nijkamp et al., 2023)
and ProtGPT2 (Ferruz et al., 2022), possessing the capability to generate protein sequences that fold
into stable and functional structures and resemble real proteins, without relying on the predefined
substrate. The other subset of these methods is characterized by conditional generation, consisting
of ligand-conditioned sequence design and structure generation. The ligand-conditioned sequence
design models (Gruver et al., 2023; Martinkus et al., 2023) are proposed to synthesize therapeutic
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antibodies treating well to the antigen ligands. On the other hand, the ligand-conditioned structure
generation methods, like LigandMPNN (Dauparas et al., 2023) and RFdiffusionAA (Krishna et al.),
generate proteins structurally docking to a given target. By ensuring spatial compatibility, these
methods generate effective proteins associated with enhanced biological function and stability in
complex cellular environments.

While the unconditional approaches fail to match requirements, existing work of conditional gen-
eration cannot be repurposed directly to generate desired enzymes that catalyze specific substrates
represented as small molecules. Particularly, the ligand condition of these models is amino acid
sequences of antigens but our substrates are small molecules. The enzyme substrates exhibit a vast
chemical space with high structural diversity, including variations in functional groups, stereochem-
istry, and electronic properties, which make it challenging to learn the interactions with enzymes.
In addition, the catalytic capability of an enzyme is not solely determined by how it structurally
interacts with the substrate molecule, so these models are not yet capable of synthesizing functional
enzymes. The label-conditioned generative method, i.e. ZymCTRL (Munsamy et al., 2022), takes an
Enzyme Commission (EC) number and outputs a corresponding enzyme sequence. It requires prior
knowledge about the expected enzyme’s EC, which relays human expertise heavily.

In this study, we formally define the task of zero-shot substrate-specified enzyme generation and
identify two primary challenges associated with it. The first challenge is the complete absence of
positive samples. For instance, without any effective enzymes for TCP as training data, it is difficult to
train or fine-tune a model to generate enzymes that catalyze TCP. A potential solution to this challenge
is the Retrieval-Augmented Generation (RAG). Specifically, RAG-based methods sample protein
sequences as prompts and subsequently instruct models to generate sequences that are structurally
and/or functionally similar (Ma et al., 2023; Alamdari et al., 2023; Lewis et al., 2020). However,
the problem of retrieving proteins without relying on an exemplar enzyme needs to be addressed, as
the only input is the target substrate. The second challenge is the generation of proteins that diverge
from training data. The generated TCP enzyme must differ from recorded enzymes, as none in the
record can effectively catalyze TCP molecules. This divergence requirement extends to enzymes
for other new substrates. Since the mainstream training methods focus on recovering recorded data,
a new approach is required—one that trains models to generate enzymes that are both divergent
from existing records and capable of catalyzing different target molecules. Furthermore, there is
currently no comprehensive evaluation framework for zero-shot enzyme generations. While Johnson
et al. (2024) and Song et al. (2024) introduced certain metrics for computationally designed enzymes,
there is a lack of refined datasets for zero-shot settings and multiple-perspective evaluations, as the
substrate-specified enzyme generation task has not yet been fully formulated.

To address these two challenges, we propose Substrate-specified enzyme generator (SENZ). Our
main contributions are as follows:

• We formally define the task of substrate-specified enzyme generation and present a curated
dataset. This dataset consists of the substrate-enzyme pairs that are extracted from the
known enzymes. We further partition it into training and test subsets without overlap in
terms of proteins and small molecules to secure the zero-shot setting.

• We propose a substrate-indexed retrieval method to search the functionally-similar enzymes
as prompting signals. The key merit is the enzymes associated with the structurally close
substrates exhibit similar catalyzing properties. Considering a query substrate, we compare
the structural closeness with other stored molecules and retrieve the pairwise enzyme data
of top-ranking molecules. This approach is distinct from traditional protein retrieval since
it retrieves based on substrate similarity instead of protein similarity, as traditional protein
retrieval does.

• We employ a discrete diffusion model to generate new enzymes based on the retrieved
ones and utilize a substrate-enzyme catalyzing classifier as guidance for the generative
process. The classifier transforms the complicated catalytic relationship into a continuous
and differentiable function for optimizing the generator. With different substrates, it guides
the generation toward different directions distinct from the whole record data distribution.

• Experimental results in designing enzymes for particular substrates demonstrate that our
model can generate novel enzymes of superior quality. Compared with rule-, unconditioned-,
sequence-, and structure-based methods, our framework generates proteins showing high
enzymatic capability and high foldability.
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2 SUBSTRATE-SPECIFIED ENZYME GENERATION TASK

We define the substrate-specified enzyme generation task by specifying the model’s input and output,
along with the training and testing data and evaluation methods.

Problem definition. The task involves generating a protein that serves as the enzyme for the target
molecule. Let m denote the Simplified Molecular-Input Line-Entry System (SMILES) (Weininger,
1988) string representation of the molecule and let x denote the protein sequence. We have x =
(a1, a2, a3, ..., al) ∈ Al where ai is an amino acid and A is the vocabulary of amino acids together
with related tokens including gap ("-"). Henceforth, the amino acid a can be represented as a one-hot
vector, and we do not differentiate between the protein sequence and the sequence of one-hot vectors,
which means x ∈ Al is a matrix with shape l× |A|. Let P denote the domain of all protein sequences
and let M denote the domain of all molecular SMILES strings. The function G : M→ P means the
task of substrate-specified enzyme generation, which can be defined as x = G(m;θ) where θ is the
set of G’s parameters. If G is a machine-learning model, the training process is given by:

θ∗ = argmin
θ

L(G(mD;θ),xD,mD). (1)

xD and mD are the enzyme and molecule in training setD, respectively, θ∗ is the optimal parameters,
and L is the loss function. The input can include various types of data: Enzyme Commission (EC)
label of string sEC = N1.N2.N3.N4, three-dimensional conformation structure of the target substrate
Cm or an existing enzyme Cx. The generative function can be extended as below:

x = G(m, sEC,Cm,Cx), (2)
where sEC,Cm,Cx are all optional input parameters for G(·), but m is the required input.

Data construction. For this task, we construct a dataset of substrate-enzyme pairwise relationships
extracted from public raw data, as illustrated in Fig. 1(a). Each record in raw data comprises the
SMILES representations of a chemical reaction with a specific enzyme. To identify the specific
substrate in each chemical reaction, we select the least common reactant among all reactants in the
database, treating it as the specific substrate for the enzymes involved in that reaction. This approach
is grounded in the established observation of substrate specificity (Jackson et al., 2010). Consequently,
we define the "substrate-enzyme" relation (m,x) as protein x being the enzyme of molecule m, and
the training dataset D can be defined as follows:

D = {(m,x)}, x is the enzyme of m. (3)
The substrate-enzyme pair (m,x) is the element of the dataset as in Eq. (3).

Zero-shot data split. All substrate-enzyme pairs (m,x) are split into D for training, Dvalid for
validation andDtest for testing. To avoid of data leakage, two rules are designed for any two (m1,x1)
and (m2,x2) in different subsets: 1. Molecules from different subsets should not be the same, i.e.
m1 ̸= m2; 2. Any two protein sequences from different subsets, i.e., x1 and x2, should not have
an overlap of more than 30% (with an identity exceeding 30%). The split forms a zero-shot setting.
Take the target molecule TCP as an example. TCP is in Dtest and the model G is generating enzyme
for TCP. G has never trained with TCP because TCP is not in D. G has never seen proteins similar
to TCP’s ground truth enzymes because all of them are only in Dtest, and all proteins in D have at
least 70% different from them. Therefore generating enzyme for TCP and any molecules in Dtest is
zero-shot.

Evaluation. Regardless of the input data, models should be evaluated using consistent metrics. An
evaluation model feval scores the generated protein x as follows:

y = feval(x,m), (4)
where m is optional. If the evaluation focuses solely on the generated protein, m is not required.
Given different functions of feval, the ideal training process should be framed as a multi-objective
optimization problem. However, in the substrate-specified enzyme generation task, we prioritize
catalytic capability above all and thus focus primarily on the corresponding feval.

3 SUBSTRATE-SPECIFIED ENZYME GENERATOR

We present Substrate-specified enzyme generator (SENZ), a novel approach designed to retrieve
enzymes based on a new target substrate and subsequently generate new enzymes from the retrieved
ones with the help of a guidance training method.

3
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Figure 1: (a) Database extraction. Extracting substrate-enzyme relation from records and constructing
a relational database indexing with substrates. (b) Sample pipeline. Retrieve enzymes from the
database based on their substrates’ similarity to the target molecule. Align them in MSA for the
generator and insert a fully masked sequence on top. Predict masks of the top sequence every iteration
until the full sequence is unmasked. (c) Training pipeline. A partly masked ground truth enzyme
sequence is inserted on top of the retrieved sequences’ MSA, and the generator outputs the distribution
of amino acids on masked positions. The reconstruction loss measures the distribution difference
between the generated and ground truth sequence of one timestep before. The guided loss is the gap
between the score of the generated sequence given by a discriminator and the maximum score of 1.

3.1 SUBSTRATE-INDEXED ENZYME RETRIEVAL MODULE

Since there are no existing enzymes for a target substrate in the zero-shot generation setting, it is
crucial to retrieve the related data record without relying on the ground truth enzyme sequence as
an anchor. In order to retrieve a set of related proteins P(m) for the target molecule m, a relational
database is constructed and a substrate-similarity based retrieval rule is designed. The superiority
is demonstrated by only querying with molecule m, while traditional protein retrieval methods require
an anchor sequence to search for similar sequences.

Substrate-enzyme relational database. We adopt training set D in Eq. (3) as a relational database
of substrate-enzyme pairs (m,x). D contains substrate-indexed enzymes, in which substrates are
non-unique indices for corresponding protein sequences as shown in Fig. 1(b) green part.

Retrieval by substrate-similarity. Based on relational databaseD, we then retrieve enzymes whose
substrates exhibit high similarity to the target molecule, with the expectation that the generated enzyme
will incorporate beneficial features from the retrieved ones. This approach is based on the observation
that enzymes catalyzing highly similar substrates may also share some similarities (Goldman et al.,
2022). We denote all molecules in D as set Dm. Querying D with a molecule m gets a protein set
P(m) as follows:

P(m) =


{x|(m,x) ∈ D}, m ∈ Dm, (5a)
d⋃

i=1

P(mi) where mi ∈ Dm and T(mi−1,m)
T(mi,m) > 1, i = 2, ..., d, m ̸∈ Dm. (5b)

We consider two cases to retrieve the related enzymes. On one hand, if m is stored in the relational
database as shown in Eq. (5a), all protein indexed with m, i.e., m’s enzymes, are obtained by table-
checking; otherwise, if m is not stored (m ̸∈ Dm) as in Eq. (5b), which is the case in the zero-shot
enzyme generation, P(m) consists of a number of d enzymes selected from D according to following
rules. First, all the substrates mi in D are compared with target molecule m to determine the
Tanimoto similarity of their one-hot Morgan fingerprint, which is T(mi,m) ∈ [0, 1] in Eq. (5b). The
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top-dmi are selected in descending order based on the similarity to m, represented as m1, ...,md.
Finally a number of d enzymes are gathered from P(m1), ...,P(md) to form the retrieval result P(m).

3.2 MSA-BASED GENERATOR MODULE

With retrieved enzyme sequences, we transform them into Multiple Sequence Alignment (MSA)
format as input and employ a discrete diffusion model generator to derive a new enzyme. MSAs are
matrices of protein sequences aligned to uniform length through strategic gap insertions, facilitating
the comparative analysis of homologous positions across related sequences.

Discrete noising for enzyme generator. Our generator G, depicted in Fig. 1(b), is an order-agnostic
autoregressive diffusion model (Hoogeboom et al., 2022) with an MSA transformer (Rao et al., 2021)
backbone. G generates protein sequence by gradually denoising from a fully noised sequence. To
begin with, a number of d enzymes within P(m) are aligned into MSA matrix by ClustalW algorithm
(Thompson et al., 1994): X(m) = ClustalW(P(m)) ∈ Ad×l. A partly noised sequence xt is inserted
on the top of X(m) as a new row to formulate data point Xt at time step t ≤ T in the diffusion model:

Xt =

[
xt

X(m)

]
∈ A(d+1)×l, where xt = (a1, a2, ..., al) and

l∑
i=1

1{ai=#} = k · t. (6)

where ai = # means position i of xt is masked. 1{ai=#} = 1 if ai = # otherwise 0. There are k · t
masks in xt. k is the number of increasing masked positions from xt to xt+1, so k · T = l. Therefore
xT = #l is a totally noised (masked) sequence, and x0 is the finally generated sequence.

Discrete denoising at the generative process. We adopt matrix p ∈ [0, 1]l×|A| to represent the
probability of selecting each vocabulary on each position in a length l sequence, and p(xt−1|xt)
to represent the conditional probability distribution of xt−1 from unmasking k positions of xt.
Apparently xt−1 ∼ p(xt−1|xt) when xt is fixed. Our generator G is defined as follows:

z = G(Xt,m) = G(xt,m). (7)
p(xt−1|xt) = softmax(z). (8)

The Eq. (7)’s second equation holds because Xt = [xt;X
(m)] and X(m) is decided by m. z is the

model output log-likelihood. Eq. (8) outputs distribution p(xt−1|xt) for sampling by time step. The
fully masked sequence xT can be denoised step by step to the final result x0: xT−1 can be sampled
from p(xT−1|xT ), and so on x0 can be sampled from p(x0|x1). Those are the denoising steps.

Molecule and protein representation fusion: To inject the target substrate m into the generative learn-
ing process, we adopt a learnable molecule encoder (Ahmad et al., 2023). Specifically, a Graph
Attention Network (GAT) (Veličković et al., 2018) is used to encode the molecule’s graph structure
to embedding hm, which has the same shape as token embedding in generative function G. hm is
appended at the end of each row in the MSA representation as an additional token, as illustrated in red
in Fig. 1(b). This design respects the relative size relationship in terms of atom numbers between an
amino acid and the substrate in the real world. Since the MSA transformer in G performs row-wise
attention and tied column-wise attention on the MSA matrix, the integration allows m to influence
the generation in G together with the retrieved MSA X(m).

Training to mimic distribution. With ground truth substrate-enzyme pair (m,xm) in training set, G
output distribution p(xt−1|xm

t ) = softmax(G(xm
t ,m)) from xm

t is trained to consist with training
set distribution p(xm

t−1|xm
t ). Ground truth protein xm is the enzyme of molecule m. xm

t is partly
noised (masked) xm at time step t with kt masks. Denoting P = p(xm

t−1|xm
t ) and Q = p(xt−1|xm

t ),
KL-divergence is used to measure the difference:

DKL(p(x
m
t−1|xm

t )||p(xt−1|xm
t )) = DKL(P ||Q) = H(P,Q)−H(P ). (9)

Lr = H(P,Q) = −
∑
|A|

P (i) logQ(i) = CE(xm
t−1, softmax(G(xm

t ,m))). (10)

DKL is performed on the vocabulary probability dimension of p. The second equation in Eq. (10)
is derived from P = p(xm

t−1|xm
t ) = xm

t−1 and Q = p(xt−1|xm
t ) = softmax(G(xm

t ,m)). Since
H(P ) is a constant given xm, H(P,Q) can measure the difference of our model’s distribution to the
training set and is adopted as reconstruction loss Lr.
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Variable sequence length: Although xt−1 has a fixed length l, the represented protein sequence may
have a different length. MSA inserts gap tokens ("-") into the origin protein sequence of amino acids
to align them. xm

t−1 and xm
t are masked from sequence in MSA X(m), so there are also many "-" in

xm
t−1. Based on Eq. (10), G is learned to output the training set sequence distribution p(xm

t−1|xm
t ).

As a result, the probability of "-" can be high in some positions in G’s output p(xt−1|xm
t ), just as the

training target p(xm
t−1|xm

t ). Then "-" will probably be sampled at some position in xt−1. Gaps "-" in
the fully sampled sequence x0 will be removed and thus x0 is shorter than l.

3.3 GUIDED TRAINING METHOD

We employ guidance from a catalyzing discriminator to train generator G. The discriminator
D evaluates whether a molecule m and a protein x are a substrate-enzyme pair with a score y =
D(x,m). D is pre-trained on training set D and remains frozen during the generator’s training.

Gradient guidance from discriminator. To generate enzyme x containing catalytic capability to a
molecule m, the frozen D guides the training of G by constructing guided loss Lg as follow:

x∗ = p(xt−1|xm
t ) = g(z), (11)

y∗ = D(x∗,m), (12)
Lg = 1− y∗, (13)

−∂Lg/∂θG = ∂D(x∗,m)/∂θG = ∂D(x∗,m)/∂x∗ · ∂x∗/∂θG

= ∇x∗D(x∗,m) · ∂p(xt−1|xm
t )/∂θG. (14)

z is the model output log-likelihood in Eq. (7), g(·) is Gumbel-softmax function (Jang et al., 2017)
and θG is the parameters of G. The gradients derived from the discriminator can be decoupled
into three steps: soft protein sequence generation, loss construction, and gradient derivation. First,
Eq. (11) transforms the output of G into distribution p(xt−1|xm

t ) associated with differentiable
noises. The p(xt−1|xm

t ) can be regarded as a "soft" protein sequence, i.e., x∗, at which each token is
a continuous amino acid probability instead of one-hot vector. Second, let y∗ denote the predicted
catalyzing score for x∗ as shown in Eq. (12). We thus construct the guided loss Lg as the difference
between y∗ and maximum score 1. By minimizing loss Lg, generator G should be supervised to
synthesize soft enzyme sequence x∗ with a score close to 1. Third, when updating generator via
θG ← θG − η · ∂Lg/∂θG, two items needed to be computed according to Eq. (14): ∇x∗D(x∗,m)
means the gradient direction of x∗, to which the soft distribution changes can lead to an effective
enzyme functioning higher catalyzing probability for target molecule m; ∂p(xt−1|xm

t )/∂θG is the
Jacobian matrix describing if the soft sequence changes, how should the parameters within model G
correspondingly updates in order to synthesize proteins adhere to the desired distribution of molecule
m’s enzymes.

Therefore, both Lg and Lr function by providing a changing direction for the output distribution
p(xt−1|xm

t ), except they are for different purposes: the former one pursues an effective enzyme for
m while the later regularize the generative enzymes to be close to training set p(xm

t−1|xm
t ). The final

loss L is the sum of reconstruction loss Lr from Eq. (10) and the guidance loss Lg from Eq. (13),
expressed as L = Lr + Lg , which are used to update the generator.

4 EXPERIMENT

4.1 DATASET FOR SUBSTRATE-SPECIFIED ENZYME GENERATION TASK

We provide a substrate-enzyme relationship dataset extracted from RHEA1 database to better
evaluate model performance on the substrate-specified enzyme generation task. Statistics of the
dataset are shown in Table. 7. The two rules in Sec. 2 are strictly followed to avoid data overlap.

4.2 CATALYTIC ACTIVITY EVALUATION

Research question: Can SENZ generate proteins with catalytic capability for specified target
molecules? This section compares our model with eight baselines and the ground truth enzymes to
evaluate the generated proteins’ catalytic capability. Ten sequences are generated in each design task.

1https://www.rhea-db.org
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Baselines. We compare our model with 4 kinds of baselines. The rule-based methods include:
a) the ground truth proteins that are recorded to be the enzymes of target molecule; b) randomly
generated amino acids sequences as random proteins; c) single position mutation of the ground truth
enzymes; and d) the retrieved enzymes based on our substrate-index enzyme retrieval method. The
unconditional generation models include ProtGPT2 (Ferruz et al., 2022) and ProGen2 (Nijkamp et al.,
2023), which generates protein sequences with a distribution like natural ones while having some
distance. The Sequence generation models include: ZymCTRL (Munsamy et al., 2022), which takes
an Enzyme Commission (EC) number and outputs a corresponding enzyme; and NOS (Gruver et al.,
2023), which is a guided diffusion model for antibody infilling with our modified guided function
same as our model for enzyme generation. The structure-based model is LigandMPNN (Dauparas
et al., 2023), which refines proteins based on the binding of small molecules.

Metric. We adopt the turnover number of the enzyme (kcat) to measure its catalytic capability. A
well-accepted predictor, UniKP (Yu et al., 2023), is used to predict log10(kcat) value for the generated
enzyme on the target molecule. UniKP is trained on the dataset of enzyme-substrate reaction kcat.

Table 1: Average log10(kcat) of generated enzymes towards different targets of 7 tasks.

Type Model Sepiap-
terin

Propylene
oxide

Levo-
glucosan

cGMP L-Pro Pyri-
doxine

leukotriene
A4(1-)

Rule

Ground Truth 0.247 0.785 0.719 0.132 0.107 0.508 0.371
Random -0.056 0.076 0.359 -0.203 0.037 0.269 -0.215
Mutation 0.387 0.752 0.740 0.006 0.030 0.480 0.316
Retrieved 0.139 0.701 0.728 -0.004 0.039 0.234 0.575

Uncond ProtGPT2 0.410 0.441 0.491 0.194 0.244 0.432 0.302
ProGen2 0.234 0.423 0.529 0.410 0.385 0.517 0.351

Sequence ZymCTRL -0.091 0.444 0.505 0.174 0.109 0.549 0.268
NOS 0.066 0.331 0.370 -0.071 0.193 0.265 0.229

Structure LigandMPNN 0.125 0.641 0.707 0.079 0.358 0.333 0.429

Ours 0.705 0.802 0.788 0.464 0.462 0.745 1.288

▷ Table 1 shows the log10(kcat) of different methods’ generated enzymes with targets, from which we
observe our model generated proteins have the highest catalytic capability among all. The predicted
log10(kcat) of Ground Truth enzymes are much higher than those of random protein sequences,
suggesting the effectiveness of the evaluation metric. Our model generated enzymes have the highest
average turnover number among all the compared methods in the designing tasks. The result shows
our model is able to generate enzymes with high turnover numbers when evaluated in silico. Table 1
also suggests that generated enzymes can outperform Ground Truth natural enzymes, which suggests
the natural enzymes are possibly not the most efficient.

4.3 PROTEIN PROPERTIES EVALUATION

Research question: Can SENZ generate proteins with good quality as well as catalytic capa-
bility? We evaluate the generated sequences for all 389 substrates in the test set with six feval to
validate our model’s generated sequence in different protein properties. 10 enzymes are generated for
each substrate.

Metric. Protein property predictors feval are adopted in the evaluation, including: a) the predicted
local distance difference test (pLDDT) of ESMFold (Lin et al., 2023), which is the confidence score
of protein structure prediction in [1, 100]; b) identity with the nearest different known sequence got by
BLASTp2 in SwissProt database3; c) the number of clusters with identity over 30%; d) the length of
repeat amino acids (Johnson et al., 2024); and e) the successful rate, which quantifies the proportion
of successfully generated sequences relative to the total desired number of sequences. Wasserstein
distance is used following (Martinkus et al., 2023) in b), and d), and the absolute difference is
calculated in c), aiming to describe the distribution difference between the test set and generated
enzymes for each target molecule individually.

2https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
3https://ftp.ncbi.nlm.nih.gov/blast/db/swissprot.tar.gz
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Table 2: Different properties predicted by their feval of the generated enzymes for test set.

Type Model kcat ↑ pLDDT
↑

WD↓
(BLASTp)

Absolute
difference ↓
(#cluster)

WD↓
(#repeat
AA)

success
rate↑(%)

Rule

Test set 0.363 - - - - -
Random 0.185 20.2 38.3 8.59 - -
Mutation 0.354 - - - - -
Retrieved 0.351 85.9 19.6 1.87 - -

Uncond ProtGPT2 0.322 55.2 31.5 8.58 1.41 100
ProGen2 0.352 55.5 26.7 8.47 161.04 100

Sequence ZymCTRL 0.375 62.5 23.0 4.12 0.78 99.2
NOS 0.224 23.1 36.5 8.59 0.65 100

Structure LigandMPNN 0.342 31.0 33.6 8.52 3.14 99.5

Ours 0.380 62.8 20.8 1.74 0.90 100
▷ Table 2 presents the properties of our method-generated enzymes, highlighting their superior
catalytic capability (log10(kcat)) and foldability (pLDDT) compared to other neural network methods.
Notably, ZymCTRL exhibits similar properties, but it relies on ground truth EC numbers as input.
The process of mapping the target substrate to the correct EC number requires more human expertise
than our model. The Wasserstein distance with the test set on BLASTp and the difference in cluster
number shows that our model can generate new proteins that have a similar distribution with the test
set, suggesting our generated proteins cluster properly to be specific for each target substrate, just
like natural enzymes.

What is SENZ generated sequences’ quality in terms of foldability? We calculate the portion of
generated proteins over a certain pLDDT to further evaluate the foldability. The result is in Table 3.

Table 3: Portion of SENZ generated enzymes over different pLDDT.

pLDDT 0.8 0.7 0.6 0.5

The portion of proteins over the pLDDT 0.23 0.42 0.59 0.72

▷ From Table 3, it can be seen that the generated proteins have good foldability. 23% of generated
proteins have a pLDDT over 0.8, and 72% have a pLDDT over 0.5. The result suggests that a great
porotion of the generated enzymes are likely to fold into stable structures.
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Figure 2: (a) and (b): The distribution of kcat value and pLDDT of our model with different numbers
of retrieved enzymes. (c) and (d): Those of our model with or without discriminator guidance.

4.4 RETRIEVAL EFFECTIVENESS

Research question: Does the retrieval of enzymes contribute to enzyme generation? We modified
the number of retrieved enzymes and generated 10 enzymes for each of the 389 target substrates to
evaluate the effectiveness of the retrieval method. Results are shown in Fig. 2(a) and Fig. 2(b).

▷ Comparing generation with 0 and 1 retrieved protein in Fig. 2(a) and Fig. 2(b), it can be concluded
that even a single retrieved enzyme is crucial to the generation of enzymes with catalytic capability
and foldability. It shows the effectiveness of the retrieval method.

▷ Comparing generation with 1 or more retrieved proteins in Fig. 2(a) and Fig. 2(b), it can be
concluded that retrieval enhances the generated enzymes’ catalytic capability by a small concession of
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foldability. Fig. 2(a) of kcat shows that the increase in retrieved sequences improves the performance
in terms of catalyzing. In Fig. 2(b) of pLDDT, the foldability decreases with the increase of retrieved
enzymes. The reason is that structure prediction examines the full sequence pattern with existing
proteins. The retrieved proteins do not resemble each other in full sequence, making the derived
generated sequence less similar to existing proteins. In fact, several short periods (enzymatic
active site) in the retrieved sequences dominate the proteins’ catalytic capability, which is different
from foldability’s requirement on the full sequence. Therefore, there’s a trade-off between the
enzyme’s folding stability and catalytic capability. In fact, the trade-off has been reported in other
literature (Vanella et al., 2024), which is the same case in our generated sequences. With more
retrieved sequences, our model gives up sequence foldability for better catalytic performance.

4.5 GUIDANCE EFFECTIVENESS

Research question: Does the discriminator guidance contribute to enzyme generation? We
removed the discriminator in our model and generated 10 enzymes for each of the 389 target substrates
to evaluate the guidance effectiveness. The results are shown in Fig. 2(c) and Fig. 2(d).

▷ Fig. 2(c) shows the necessity of guidance to generate the enzymes with high kcat. Fig. 2(c) and
Fig. 2(d) also suggest that our model performs the same trade-off in two circumstances with or
without guidance. Comparing the kcat value of rule-based retrieved sequence in Table. 2 with w/o
guidance column in Fig. 2(c), it can be seen that the generated enzymes’ kcat is almost the same as
the retrieved ones. The reason is that the generator only learns to generate sequences resembling the
retrieved ones.

It is natural that adopting guidance decreases the foldability of generated enzymes. The discriminator
guides the generator to output proteins with a high score, which has a different distribution from
natural-like proteins. The pLDDT given by the structure prediction model suggests confidence, and it
is low when the evaluated sequence is not very natural-like.

4.6 CASE STUDY TARGETING METHYLPHOSPHONATE(1-)

Research question: Why proteins generated by SENZ are predicted to have the better catalytic
capability? We perform docking between a substrate, methylphosphonate(1-), and generated enzymes
with AutoDock-Vina4 to closely examine the generated enzyme’s structure and its interaction with
the target substrate. The docking result is presented in Fig. 3.

(a) ProtGPT2
Score=-2.607

(b) ProGen2
Score=-2.445

(c) ZymCTRL
Score=-2.726

(d) NOS
Score=-2.574

(e) LigandMPNN
Score=-2.133

(f) Ours
Score=-3.075

Figure 3: Docking result and the corresponding AutoDock-Vina scores of 6 neural network generated
proteins with methylphosphonate(1-). The molecule with 5 atoms in red, orange, and green is
methylphosphonate(1-). The generated protein is in blue. Protein’s side chains within 5 Å to the
substrate are shown. A lower score denotes a better binding position.

▷ From Fig. 3(f), it is evident that the enzyme generated by our model achieves the lowest AutoDock-
Vina score, indicating the highest likelihood of binding between the molecule and the protein. This
result is likely due to our generated protein possessing more side chains that extend toward the
substrate, resulting in a tighter binding. Although a favorable docking score does not necessarily
ensure catalytic activity, it does demonstrate that our generated enzyme can effectively capture the
substrate, which is a crucial prerequisite for the subsequent chemical reaction.

Research question: For the same substrate, how different are the proteins generated via the
different benchmarked methods in terms of sequence and structure? We calculate the sequence

4https://vina.scripps.edu
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identity and structure TM-score between every pair of model-generated proteins for the same substrate
methylphosphonate(1-). The result is demonstrated in Table 4 and Table 5 respectively.

Table 4: Generated enzymes’ sequence identity to each other. Value is in percentage.

ProtGPT2 ProGen2 ZymCTRL NOS LigandMPNN

ProGen2 21.86 - - - -
ZymCTR 21.03 19.13 - - -

NOS 20.18 20.61 16.44 - -
LigandMPNN 20.23 21.65 20.68 21.81 -

SENZ 20.00 20.16 15.63 21.82 18.76

Table 5: Generated enzymes’ TM-score to each other.

ProtGPT2 ProGen2 ZymCTRL NOS LigandMPNN SENZ

ProtGPT2 - 0.23789 0.12233 0.12550 0.18619 0.12544
ProGen2 0.22836 - 0.11656 0.13564 0.18303 0.13386
ZymCTR 0.26331 0.25968 - 0.26866 0.26289 0.33121

NOS 0.20648 0.22723 0.20648 - 0.24652 0.23912
LigandMPNN 0.20929 0.21419 0.14044 0.17088 - 0.15116

SENZ 0.21737 0.24737 0.27572 0.25447 0.23319 -

▷ From Table 4 and Table 5, it can be concluded that the generated sequences has low similarity
to each other, both in terms of sequence and structure. Usually, an identity lower than 30% or a
TM-score lower than 0.3 indicates no clear relation. This result is likely due to the diversity of
theoretical possible enzymes for a given substrate, and it is natural for different models to have
different solutions.

Research question: For the same substrate, how different are the proteins generated by the
deep learning models from the natural enzymes in sequence? We calculate the sequence identity
between model-generated proteins for the substrate methylphosphonate(1-) and its natural enzyme.
The result is demonstrated in Table 6.

Table 6: Sequence identity between the generated enzymes to the ground truth enzyme.

ProtGPT2 ProGen2 ZymCTRL NOS LigandMPNN SENZ

Identity - 0.23789 0.12233 0.12550 0.18619 0.12544

▷ From Table 6, it can be concluded that the generated sequences have low similarity to the ground
truth. This result is likely due to the diversity of theoretical possible enzymes for a given substrate.

5 CONCLUSION

In this paper, we have formally defined the task of zero-shot substrate-specified enzyme generation,
wherein models are provided solely with a new target molecule and are required to output a protein
sequence possessing catalytic capabilities specific to that molecule. To address this task, we introduce
the Substrate-specified enzyme generator (SENZ), an RAG method. SENZ utilizes a single molecule
as a query to retrieve enzymes based on their substrate similarity to the target, thereby enabling the
retrieval of known proteins from new molecules. This retrieval strategy capitalizes on the functional
similarity of enzymes as indicated by their substrates. To generate enzymes from the retrieved
sequences, we employ multiple sequence alignment (MSA) on them and introduce a diffusion model
generator guided by an enzyme-substrate classifier. This classifier guides the generated protein
distribution for different substrates, serving as the objective for the generator during training. In
experiments involving the generation of enzymes for real-world target molecules, evaluation functions
assessed turnover rate and foldability together with other properties, demonstrating the superiority of
our model in enzyme generation.

REPRODUCIBILITY STATEMENT

We have described all necessary details to ensure reproducibility, including dataset informa-
tion, model architectures, hyperparameters, and evaluation protocols. The code is available at
https://anonymous.4open.science/r/SENZ-2BE1/.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Table 7: Enzyme distribution in the split of Enzyme-Substrate Relation Dataset

dataset #entry #mol #enzyme #enzyme/mol #EC25% 50% 75% max

training 26757 2294 8179 2 4 10 868 819
validation 4279 366 2617 1 3 6 501 381

testing 3946 389 2432 1 2 7 316 553
total 34982 3049 13228 1 4 9 868 1746

A.1.1 MORE DETAILS ABOUT BASELINES

ProGen2 (Nijkamp et al., 2023) and ProtGPT2 (Ferruz et al., 2022): We utilized the pre-trained
weights for both models to generate sequences with a maximum length of 1024. These models serve
as benchmarks for the capability of protein language models to generate sequences without specific
functional guidance.

ZymCTRL (Munsamy et al., 2022): This model employs pre-trained weights and uses the Enzyme
Commission (EC) number as a prompt for the autoregressive generation process. It is worth noting
that the EC number provides more detailed information about enzymatic function compared to the
substrate alone, offering this baseline an advantage in generating enzyme sequences for the given
tasks.

NOS (Gruver et al., 2023): We trained NOS following the methodology of its original paper. The
original NOS framework uses a discriminator to score the binding affinity between an antibody and
an antigen (two protein sequences). We replaced the original discriminator with our enzyme-substrate
probability scoring model in our adaptation. Furthermore, we replaced the target protein sequence
input with the target substrate molecule. During inference, the NOS generator is updated iteratively
for 10 steps using the test set input before sampling, following a discrete diffusion model for sequence
generation, as described in the original paper. These adjustments allow NOS to generate enzymes in
our setting while preserving its original generative framework.

LigandMPNN (Dauparas et al., 2023): This reverse folding model generates a protein sequence
based on a protein-ligand complex structure. To adapt it for our task, we randomly generated protein
sequences (length: 1024) and predicted their structures using ESMFold [1]. Using RDKit, we
generated the structure of the target substrate, and NeuralPLexer [2] was employed to dock the
substrate with the predicted protein structure, creating a complex structure. The resulting complex
was then input into LigandMPNN for sequence redesign.
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A.1.2 COMPUTATION RESOURCES

All the experiments are conducted on a single virtual machine with 200 GB memory, 2 AMD EPYC
7742 64-Core CPUs, and 4 NVIDIA A100 GPUs with 80 GB memory each. The virtual machine is
created in an internal cluster. All used data in the experiment requires storage of less than 500 GB.

The training time of the model is less than 20 hours.

A.1.3 HYPER-PARAMETERS

The training of the discriminator starts from the pre-trained weight of ProSimth Kroll et al. (2023),
with all the training set as positive samples, and randomly pair molecules and proteins that are not
positive samples as negative samples. The ratio of positive versus negative samples is 1:1. Adam
optimizer is adopted in the training. The learning rate is 5e-5. The real batch size is 256. A BCE loss
is used, with a 6.0 positive weight.

The training of the generator starts from the pre-trained weight of EvoDiff MSA-OADM version
Alamdari et al. (2023). Adam optimizer is adopted in the training. The learning rate is 3e-5. The real
batch size is 256.

A.2 RELATED WORK

Unconditional protein generation. Some research focuses on generating proteins that resemble
natural ones. Within this scope, the protein language model-based sequence-only approaches include
ProGen2 (Nijkamp et al., 2023), ProtGPT2 (Ferruz et al., 2022), and ESM-2 (Lin et al., 2023). These
models are trained to predict masked amino acids in natural protein sequences, thus learning to
generate proteins that mimic natural ones. The discrete diffusion models approach, aimed at this
target, includes EvoDiff (Alamdari et al., 2023), which performs corruption and reconstruction on
multiple sequence alignments (MSA). Generative adversarial networks (GAN) approaches, such as
ProteinGAN (Repecka et al., 2021), use a discriminator to guide the generated protein to resemble
natural ones, enabling the generation of natural-like enzymes when a template is provided. Structure-
based methods include ProteinMPNN (Dauparas et al., 2022), which seeks to generate a protein
sequence likely to fold into a given structure. These methods do not target external generation
objectives or rely heavily on human-selected input templates to achieve specific functions.

Conditioned protein generation. Some researchers use non-protein data to guide protein generation.
ZymCTRL (Munsamy et al., 2022) uses an Enzyme Commission (EC) number as a prompt to generate
enzymes categorized in the corresponding EC. Progen (Madani et al., 2023) takes natural language
protein labels to output corresponding protein sequence. LigandMPNN (Dauparas et al., 2023) and
RFdiffusionAA (Krishna et al.) can recover a protein sequence and structure based on a binding
molecule, which is derived from their prediction ability on the ligand-protein complex.

Protein guided protein generation. Some research aims to generate new proteins that bind to a
given protein. The sequence approach includes NOS (Gruver et al., 2023), which merges antibody
and antigen in one sequence and uses the diffusion method to train a transformer, while some
property prediction models can be used in sampling to make the generated protein tend to have certain
properties. The structure approach includes AbDiffuser (Martinkus et al., 2023), which uses a SE(3)
equivariant neural network to model residue-to-residue relations. The generation target and output
protein are both in the same protein modality.

Enzyme evaluation. Enzyme evaluation models can help with enzyme design. ProSmith (Kroll
et al., 2023) predicts protein-small molecule interactions. UniKP (Yu et al., 2023) predicts the
kcat and Km value of enzyme and substrate. NeuralPLexer (Qiao et al., 2024) and AlphaFold
3 (Abramson et al., 2024) can predict the protein-ligand complex structures. Johnson et al. (2024)
proposes comprehensive methods for evaluating neural network-generated enzymes but does not
include metrics related to catalytic activity.

Retrieval method. Some research develops retrieval methods to help with generation or predic-
tion. RetMol (Wang et al., 2023) retrieves molecules based on similarity and desired properties
to refine molecules. MSA transformer (Rao et al., 2021) and AlphaFold 2 (Jumper et al., 2021)
uses evolutionary-based MSA to enhance structure prediction accuracy. They retrieve proteins with
proteins by sequence similarity only.
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A.3 LIMITATION

Currently, the implementation of our method can only deal with small molecule substrates. If users
want to generate enzymes for polymer substrates like DNA, RNA, protein, or polysaccharides with
our model, they have to derive the SMILES of the corresponding monomer or dimer manually for
input.
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