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ABSTRACT

As deep learning enabled an unprecedented number of applications in versatile
vision cognition tasks, researchers surged for the solutions of higher performance
and more generalized algorithms, coming with expensive training and deployment
to be applied in complex scenarios across domains. However, we argue that
generalization and high performance are not always the ultimate goal in real-life
with various applications and regulatory requirements. In this work, for the first
time to our knowledge, we propose a Controllable Adaptive Learning (CAL)
paradigm that allows the model to perform well on some data domains while
performing poorly on others by control. We define the problem as a Controlled
Multi-target Unsupervised Domain Adaptation (CMUDA) Task. Without the need
to access labels in the target domain, we make the model have poor performance on
certain target domains through a novel distribution different loss function design.
We then introduced two easy-to-use control methods, namely implicit embedding-
enabled controller and explicit prompt-based controller, to regain access of the
high-performance result with little effort, without the need of retraining the entire
network. Extensive experiments demonstrated the effectiveness of our approach.
We believe that our CAL paradigm will lead to an emerging trend for future
research. Our code is at *URL*.

1 INTRODUCTION

The era has witnessed the explosive growth of deep learning in a wide range of applications in
computer vision tasks. Now, Artificial Intelligence as a Service (AlaaS) has become an emerging trend
that underpins many applications for consumers used in daily life |Lins et al.|(2021)). Under the trend,
researchers have spent continuous efforts exploring higher-performance algorithms. Encouraging
achievements have been made. For example, in nearly a decade, the classification accuracy of
ImageNet has been elevated from around 60% to above 90% [Krizhevsky et al.| (2017); [Liu et al.
(2022), which is supported by factors like large dataset, growing size of the model, and lengthy and
costly training.

However, we argue that high-performance is not always the right goal and cannot be the only goal in
the context of AlaaS. The potential for misuse and abuse of Al services, e.g., the misuse of tools like
DeepFake or facial recognition algorithms, has triggered the alarm for the massesCobbe & Singh
(2021)); Harwell| (2022). Different standards in law enforcement in different regions regulating certain
applications of Al, e.g., in the context of pornography, also call for Al service providers to carefully
and selectively provide Al services (Cobbe & Singh| (2021). Moreover, there are scenarios with
commercial purposes of limiting the performance of the Al algorithm for free users and unlocking
the model’s full potential for paid users for profit-making. All the above-mentioned examples derive
the need for one demand — Controllable Al

Few efforts have been made to control the access of particular Al models in the realm of Al security.
For example, methods like feature-based or trigger-based watermarking|Uchida et al.|(2017); Rouhani
et al.| (2018); Kuribayashi et al.|(2020) and secure authorization approaches |Alam et al.|(2020) have
been used to safeguard deep neural networks. Yet, these methods mainly focus on Who is allowed
to use the AI model. However, we argue the Al model should also be controllable in terms of What
data is being used, or namely applicability authorization Wang et al.| (2021)), to meet the demand
in the above-mentioned scenarios, which is, however, a research gap in the field. The realm of
domain adaptation and domain generalization can ensure the model’s satisfactory performance by
generalizing models with domain gaps filled Ahmed et al.| (2021); Blanchard et al.| (2011), but cannot
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Figure 1: The overall scheme of our Controllable Adaptive Learning (CAL). a) Our CAL scheme
aims to control the model performance by controlling the generalization bound. b) How users benefit
from the CAL scheme. The model generalize to specific source domain data, if inputted by the
target domain information, the model falls into "Degraded" mode with restricted performance (with
a restricted generalization bound of the model). The "controller" can boost the performance of the
model and bring back the satisfactory performance even with input from the target domain (with a
enlarged generalization bound of the model).

be controlled to decrease the model performance to specific domains. Non-transfer Learning (NTL)
Wang et al.| (2021)) proposes decreasing the model generalization in specifically selected domains, but
cannot regain access to the high-performance model in the selected domains.

To fill the research gap, we propose a new Controllable Adaptive Learning (CAL) paradigm, which
enables the control of model performance for different data domains. Specifically, our approaches
and contributions are as follows:

* We introduce a Controlled Multi-target Unsupervised Domain Adaptation (CMUDA) Task.
Without the need to access the label in the target domain, we deliberately prevent the
knowledge from being transferred from the source domain to one or more target domains,
thus decreasing the performance in specific domains.

* We propose two methods to regain access to high-performance in the decreased-performance
domains, namely implicit embedding-enabled controller and explicit prompt-based controller.
Retraining the neural network is no longer needed.

* We perform extensive experiments in two widely-used vision datasets including Digits and
Multi-PIE, and demonstrate the effectiveness of our approach. The model performs well in
the source domain while badly in the selected target domain. The access to high performance
can be effectively regained using the two controllers.

To the best of our knowledge, our work pioneers to control the model performance adaptively based
on the image data feed in. We believe that our work tailors a viable path in solving some Al-ethics
problems and enabling new commercial possibilities.

2 TASK DESCRIPTION

We propose to realize our Controllable Adaptive Learning (CAL) paradigm under a Controlled Multi-
target Unsupervised Domain Adaptation (CMUDA) Task. We consider a labeled source domain
D, = {x;,y;}Y; and multiple target domains {D;}?_, , where D; = {z; }jvzfl Conventional
unsupervised domain adaptation approaches transfer knowledge from the source domain to the target
domains to boost the model’s generalization capability. We, however, make the process controllable —
the performance on the target domains can be" Enhanced" or "Degraded" by control, with an explicit
generalization bound. Specifically, in the "Degraded" mode, we deliberately stopped the knowledge
learned from source domains leaked to the targets, leading to degraded performance, the "Enhanced"
mode vice versa. The two modes can be freely switched without the need to costly retrain the entire
model or deploy different models, serving the real-world demands with many conveniences.
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3 METHOD

3.1 DISTRIBUTION DIFFERENCE EXPANDING LOSS WITH MAXIMUM MEAN DISCREPANCY
MEASUREMENT

We make possible the CAL paradigm by firstly turning the target domains into "Degraded" mode with
an explicit and narrow generalization bound that fits the source domain data but not the target domain
data. That goal can convert to the effort of enlarging the distance between the feature distributions
of source and target domains. The distance should be calculated with the appropriate measurement.
Here, we employ the Maximum Mean Discrepancy (MMD) to measure the distance between every
two distributions a and b, which is a kernel two-sample test and can be formulated as:

dap = |[EpnaHf )] = Epr oy [HE IO, 1)

where f and f " denotes two feature distributions. H (f, f ') refers to the reproducing kernel computed

as H(f, f') — e IIf=F117, d,» measures the distance of a and b, with a larger d, ; reflecting greater
similarity and vise versa. We argue that compared to the other similarity measurements like KL
divergence, the MMD is more effective in measuring the inter-domain shared information [Wang et al.
(2021).

Based on the MMD, a novel distribution difference expanding (DDE) loss is designed to enlarge the
distance between the feature distributions of source and target domains, enabling the model to have
satisfactory performance in the source domain but degraded performance in the target domain.

We notice that the naive cross-domain training would make similar-to-source-domain data in target do-
mains have higher performance, which contradicts our goal to establish a more explicit generalization
bound. Therefore, inspired by the success of loss functions that pay attention to the hard examples
mining, we propose to emphasize domain differences with different degrees when computing the
overall loss, forcing the optimizer to focus more on the domains with high performance to take it
down. We follow works in domain adaptation [cite] and semi-supervised learning [cite] and employ
a confidence measurement to evaluate individual samples. Specifically, for each domain ¢, we get
the pseudo label for all samples within it, and then compute their average confidence c;. Then for
domains that have better performance with higher ¢, a higher weight is assigned.

Eventually, the overall DDE loss can be formulated as:

T

T
EDDE - Zwtds,t = Z ct HEfNa[H(fa f/)} _Ef’wb[H(fa f/)]Hz (2)

T
t=1 1 21 Ct
3.2 THEORETICAL ANALYSIS

The above-mentioned design can be supported by theoretical analysis. We consider a general domain
adaptation theory to show how our method work.Ben-David et al.| (2010) Given a source domain
Dsource and a target domain Drg,get, let K be a hypothesis space (of a particular VC dimension)
forany k' € K:

1
RTarget (k) S RSource (k) + §dkAk (DSOUT'C€7 DTarget)

. 3
+ g/nelrll((RTarget (k/) + RSource(k/))7

where Rrgrget and Rsoyree denote the expected source and target errors respectively. diax denotes
the divergence measuring maximal discrepancy between two distributions. The implementation of
DDE loss results in a comparable source error and leads to a significantly greater divergence term,
which would eventually bring a much looser upper bound for the target error, as indicated in Equation
[l Such a loosened upper bound results in a significant increase in target error, effectively preventing
knowledge transfer into the target domain, thus realizing our goal.

3.3 CONTROLLER FOR STATE-SWITCHING

The above-mentioned method has made a narrow and explicit generalization bound possible, enabling
precise control of model performance and making the model in the target domain fall into the "De-
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Figure 2: The illustration of two controllers. (a) The embedding-enabled controller is performed by
modifying the model parameters without adding extra computation burden. (b) the prompt-based
controller is performed by adding a learned prompt to the image and feed into the network.

graded" mode. This section illustrates how we control the model to achieve satisfactory performance
in its "Enhanced" mode.

We argue that the design of the controller should be domain-specific — one controller has to be used
in one particular domain to meet the data-specific design of CAL, and inter-domain general — the
controller should work well on all data in one specific domain. Based on such principles, we design
two kinds of controllers: 1) Implicit Embedding-enabled Controller that enables the transfer of
source-related representations and 2) Explicit Prompt-based Controller that modifies the input image
to explicitly transfer the domain properties. Their structures are presented in Fig. 2]

Implicit Embedding-enabled Controller. To make possible the performance enhancement in a
particular target domain, the model should be controlled to utilize the target-specific information. We
realized the information utilization by adding a sub-branch of the network without changing the main
trained network that is only trained on the source domain data. The goal is to transfer the target-like
embedding to source-like ones and weaken the effect of domain-specific features.

Concretely, as most CNNs composed of the convolution layers and followed by a batch normalization
(BN) and a non-linear activation, we consider each layer as a set of parameters, in which {IV, b}
denotes the convolution layer and {u, o, v, 3} denotes the BN layer. We add a parallel target-specific
layers with the parameters {W;, b} and {u¢, o4, ¥+, Ot }. As aresult, as shown in Fig. a), the new
operation for the [-th layer can be formulated as:

fl+1 = BN (COHV (flv I/va) ;Mvav’%ﬁ)

4
+BN (Conv (fi; Wi, be) 5 pe, 0,7, Be) - @

We found that satisfactory performance can be achieved even when editing layers only at the first
stage of the ResNet backbone. The controller with parameter set rc; can be added or eliminated by
choice to select a domain ¢ that falls into the "Enhanced" or "Degraded" status. We make the addition
of rc; at test time and add no extra computation effort. We denote two parallel convolution layers
with weight Wy, W5 and bias by, b1, Normg = {10, 00,0, 50} and Norm; = {u1,01,71, 51}
denote the mean, variance, weight and bias of two normalization layers Normg and Normi, the
calculation is performed with merged convolution represented as one with weight W and bias b:

x = Normo(Woz + bg) + Normy(Wix + by)
(Woz + bo — o) Wiz + by — 1)

=% +m + Bo + b1
(s} g1
(%)
Z 71 z Z '72 i — Vilbi +/Bz)
o
=0 =0
=Wz +b.
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Concretely, if rc¢; is not added, images for the ¢-th domain will only be processed by the source-
specific parameters, resulting in unsatisfactory performance. While after rc; is added, by receiving the
domain-transfer representation from the extra parameters, performance can be improved, achieving
the result of domain adaptation.

Explicit Prompt-based Controller. Besides adding extra parameters to the network, we also offer a
control approach that applies to only the data itself, namely data-editing, which is applicable in many
real-world applications where the deployed model is fixed and network-editing cannot be performed.
Specifically, we introduced a prompt-based approach to make data editing possible. For each domain
t, a visual prompt pc; is learned and added on the images within ¢. Thus, the prompted image can
be formulated as £; = x + pc;. The prompt pc; is domain-specific and is obtained in training by
minimizing the overall loss function, in which the gradient updates are also applied to the prompt
parameters. After the prompt have been well-trained, we add the specifically trained visual prompt to
the image of the corresponding domain as the input of the network at the test time.

Specifically, the pc; can be in various forms, for example, pixel patches in random locations, pixel
patches in fixed locations, or paddings around the image. We have tested these settings and found
that padding achieves the best performance. The spatial information distribution can explain this —
we found that in many cases, the information that determines labels is usually in the central part of
the image. At the same time, the background contains more domain properties. The padding prompt
that changes the boundary region can better control the domain adaptation.

Compared to the embedding-enabled controller, such a prompt-based controller, as illustrated in Fig.
[2[b), can be more convenient in real-world applications. Users can use pc; to switch the domain to
the "Enhanced" mode without the need to access and modify the network model parameters.

3.4 LoSss FUNCTION

With the method to control the network into "Degraded" or "Enhanced" mode, the training of the
CAL model is targeted for two goals: 1) enlarging the distance between the source and target domains
without the controller, and 2) bringing the distance between source and target closer using controllers.
For the first goal, the proposed DDE loss for adjusting the inter-domain distribution distance is
applied. For the second goal, we use the opposite of DDL loss. The final loss for training the CAL
model can be formulated as:

Lear =Lppe (Ds,Di;0) — Lppe (Ds, Di; 0, {ci}i—y) + Lok, (6)

where Lo refers to the cross entropy loss for source data training. ¢; denotes the controller for the
target domain ¢. It can be either the embedding-enabled controller rc; or the prompt-based controller
pcy. It is also an option to use both the representation and prompt-based controllers for training, as
we have evaluated and demonstrated the result in the following part.

4 EXPERIMENTS

4.1 DATASET

We perform experiments on two commonly-used domain adaptation datasets: Digits and Multi-PIE.
Digits is a combination of 4 different digits datasets including MNIST (mt), MNIST-M (mm), SVNH
(sv) and USPS (up). Each dataset contains 10 classes that represent 10 different digits. The Multi-PIE
dataset contains face images for 337 individuals with different views, expressions and illumination
conditions. Specifically in our experiments, following |(Gholami et al.|(2020), images from different
camera views including C05, C08, C09, C13 and C14 are regarded as 5 different domains, and each
one contain 5 different face expressions (normal, smile, surprise, squint, disgust, scream) as the
classes.

4.2 IMPLEMENTATION DETAILS

We use Adam as the optimizer for training, with the learning rate of 0.0002 and the momentum
parameters being 0.5 and 0.999. The batch size is 16 for each domain and the input images were
mean-centered/rescaled to range from -1 to 1. We use ResNet50 as the backbone network for all
experiments.
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Table 1: Classification accuracy on the Digits dataset, where mt, mm, sv and up denote four different
sub-datasets including MNIST, MNIST-M, SVNH and USPS, respectively. The left side of each
arrow denotes the source domain and the right side denotes the tested target domain. The first column
shows the performance of the baseline setting, which indicates training a model only on the source
domain and directly evaluating on the target domains. EC and PC refer to the embedding-enabled
controller and prompt-based controller, respectively.

Setting | mt 5mm | mt—=sv | mt—up | sv—omt | sv—mm | sv—up
Baseline | 59.12 + 0.55 | 35.38 & 0.70 | 80.05 + 0.44 | 66.18 + 0.58 | 44.52 & 0.77 | 43.80 + 0.71
"Degraded" Status 9.13+0.42 | 5.80 £0.60 |13.75+0.41| 9.85+0.50 | 7.10 £ 0.55 | 6.90 £ 0.42

"Enhanced" Status w/ EC 87.94 +£0.30 | 52.19 £ 0.25 | 92.95 £ 0.41 | 91.37 £ 0.33 | 63.90 + 0.32 | 65.75 £ 0.29
"Enhanced” Status w/ PC 82.30 +0.32 | 49.77 £ 0.29 | 88.58 £ 0.38 | 86.60 4+ 0.50 | 60.12 + 0.40 | 61.11 £ 0.29
"Enhanced" Status w/ EC & PC | 88.50 £ 0.39 | 53.90 4+ 0.41 | 93.78 + 0.46 | 92.91 £ 0.35 | 65.45 4+ 0.43 | 67.06 &+ 0.33

Table 2: Classification accuracy on the Multi-PIE dataset, where C05, C08, C09, C13 and C14
refer to five different views representing different domains. The left side of each arrow denotes
the source domain and the right side refers to the tested target domain. The first column shows the
performance of the baseline setting, which indicates training a model only on the source domain and
directly evaluating on the target domains. EC and PC refer to the embedding-enabled controller and
prompt-based controller respectively.

Setting | C13 =+ C05 | C13— C08 | C13 — C09 | C13 — Cl4

Baseline | 53.29+£0.34 | 49.18+0.50 | 44.70+0.42 | 63.91+£0.25
"Degraded" Status 6.12+0.39 5.77+£0.44 5.20 £ 0.60 7.39 £0.29
"Enhanced" Status w/ EC 76.62 +£0.44 | 64.82+0.20 | 68.65£0.35 | 87.83 +£0.30
"Enhanced" Status w/ EC 72.19 £0.40 | 60.50 +0.25 | 65.02£0.29 | 83.95+0.33
"Enhanced" Status w/ EC & PC | 77.69 £0.38 | 65.92+0.20 | 69.11 +0.31 | 88.59 £0.23
Setting | C14 - C05 | C14— C08 | C14 — C09 | Cl4 — C13

Baseline | 64.73+£0.45 | 39.88+0.53 | 45.294+0.38 | 65.13 +0.44
"Degraded" status 7.87+0.19 4.39+£0.37 5.50 £ 0.30 7.99 £0.22
"Enhanced" status w/ EC 86.57+0.26 | 60.92£0.17 | 58.37 £0.44 | 84.71+0.19
"Enhanced" status w/ PC 82.07+£0.30 | 56.20 £0.21 | 56.03 £0.32 | 80.91 £ 0.22
"Enhanced" status w/ EC & PC | 88.00 £ 0.21 | 62.05+0.35 | 59.60 £0.40 | 85.94 £ 0.25

4.3 MAIN RESULTS

In our task, each target domain can switch between the "Enhanced" and the "Degraded" statuses
by using the controllers or not. We report the experimental result for performance degradation and
enhancement using the embedding-enabled controller and prompt-based controller. We perform
experiments on both the Digits and Multi-PIE datasets. For Digits, we test 2 different settings, in
which the MNIST (mt) and SVNH (sv) datasets are used as the source, and other datasets are the
target domains. For Multi-PIE, we also evaluate two conditions where C'13 and C'14 are the source
domain, respectively and others are the target domains. Table. [T] shows the result for the Digits
dataset and Table. 2] shows the result for the Multi-PIE dataset.

Baseline Results. As a baseline, we first train a supervised task only on the source domain, and then
evaluate its results on other domains that do not participate in the training. The results are shown in
the first column of Table. [T]and Table. 2| for Digits and Multi-PIE respectively. As can be observed,
while only training using source data, since the feature distributions are not explicitly enlarged, the
model can still achieve considerable performance on the unseen target domains due to the semantic
similarity. Thus in this case, the unauthorized users can still apply the trained model to their own
domains, jeopardizing the property rights.

Results for the ""Degraded' Status. We further test the performance after using the proposed
methods. With the controller not applied, training the network solely on the target domain with DDE
loss makes it hard to make the correct classification decisions for the network to perform in the target
domain. As can be seen from the second column in Table. [1|and Table. [2| for Digits and Multi-PIE
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Table 3: Ablation results for the DDE loss on the Digits dataset.

Setting | mt—-mm | mt—sv | mt—up
Baseline | 59.12+£0.55 | 35.38+0.70 | 80.05 4 0.44
"Degraded" Status w/ Weight Strategy 9.13 +£0.42 5.80 £0.60 | 13.75£0.41
"Degraded" Status w/o Weight Strategy 13.59+0.45 | 9.39+£0.30 | 17.08 +0.44
"Enhanced" Status w/ EC w/ Weight Strategy | 87.94 +£0.30 | 52.19 £0.25 | 92.95 £ 0.41
"Enhanced" Status w/ EC w/o Weight Strategy | 82.18 & 0.33 | 49.04 £ 0.20 | 87.56 £ 0.46
"Enhanced" Status w/ PC w/ Weight Strategy | 82.30 £ 0.32 | 49.77 £0.29 | 88.58 = 0.38
"Enhanced" Status w/ PC w/o Weight Strategy | 77.91 +£0.32 | 44.99 £0.22 | 85.19 + 0.40

respectively, compared to the baseline performance where the model was trained on source data
and directly used for testing on target data, classification accuracy for the "Degraded" status in our
method is significantly decreased, showing the data is apparently out of the generalization bound of
the model. The maximal accuracy drop occurs in the mt-up setting, where the accuracy decreases
from 80.05 to 13.75 after using our method. The results verify the effectiveness of our method in
preventing unauthorized data been utilized by the network.

Results with the Embedding-enabled Controller. The controllers can transfer embedding infor-
mation from the target domain, switching the model from "Degraded" to the "Enhanced" status.
The results are shown in the third column of Table. [I|for Digits dataset and Table. 2] for Multi-PIE
dataset. It can be found that with the embedding-enabled controller, the average accuracy over all
target domains can be significantly improved, with the maximum increase reaching 80%, showing
the effectiveness of the embedding-enabled controller.

Results with the Prompt-based Controller. We further evaluate the effectiveness of the prompt-
based controller. The results are presented in the fourth column of Table. [I]for Digits dataset and
Table. [2|for Multi-PIE dataset. It can also observe a significant accuracy improvement after using
the prompt-based controller. We find that the embedding-enabled controller demonstrated better
capability than the prompt-based controller in our experiment. We hypothesize the reason could be
that the embedding-enabled controller can deliver the effective domain-transferred information in
each layer, while by only modifying the input image, the model will still struggle to extract the useful
information.

Results for using Both Embedding-enabled and Prompt-based Controllers. In addition to using
the embedding-enabled and prompt-based controllers individually, it is also an option to apply them
together, and the results are shown in the fifth column of Table. [I] and Table. [2] for Digits and
Multi-PIE respectively. The results under this setting are slightly better than only using any individual
controllers, with the average accuracy increasing 2.16% for Digits and 1.93% for Multi-PIE.

4.4 ABLATION STUDIES

Ablation of DDE Loss. Here we conduct experiments to verify the effectiveness of the proposed
DDE loss. In our method, the DDE loss is employed to enlarge the inter-domain feature distributions.
Thus, it can encourage target domains to have a bad performance by increasing their distance to
the source one. And by using its opposite as the optimization goal, the performance for target
domains after using controllers can be pushed to be better. One crucial design in the DDE loss is
the confidence-based weight, which encourages the optimizer to pay more attention to domains
with better performance. From the experimental results performed on the Digits dataset and
presented in Table. [3] we observe that the domain imbalance can negatively affect the performance
if the weight strategy is not applied, with the average accuracy for targets under degraded
status increasing from 9.56% to 13.35%, the average accuracy for targets under enhanced status
decreasing from 77.69% to 72.93% when using the embedding-enabled controller, and decreasing
from 73.55% to 69.36%. The results demonstrate that such a weight strategy is effective for
both the non-adaptive target performance degrading and the adaptive target performance improvement.
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Figure 4: Visualization of sample feature distributions under different situations. (Best view in
color) The blue and orange dots denote the samples for source and target domains respectively within
the same class. Baseline refers to training a model on source and then testing on the target domain.
The experiments are conducted on the C14-CO05 setting for the Multi-PIE dataset.

Ablation of Prompt-based Controllers. The prompt used for constructing the controllers can be
designed in multiple forms. As shown in Fig. [3] besides the padding way we have adopted in our
method, we can also use pixel patches at random locations and pixel patches at fixed locations for the
visual prompt. Here we perform experiments on the Multi-PE dataset C14-CO5 setting to validate
the effectiveness of different forms, with the prompt size p ranging from 0 to 150. We observe that
the padding prompt with the size of 75 can achieve the best performance. For classification task,
information that determines labels is usually in the central part of the image, while the background
contains more domain properties. Thus padding prompt that changes the boundary region can better
control the domain adaptation.

4.5 VISUALIZATION

We provide the visualization results of feature distribution under different statuses in Fig. [] (best
view in color), where the blue and orange dots denote the samples for source and target domains
within the same class. FigE] (a) shows the baseline where the model is trained on the source domain
and then tested on the target domain. Despite the significant difference, there are still overlapping
areas for the source and target domain distributions in this case. Thus, the learned decision boundary
on the source can still cover some areas of the target region, thus achieving the target classification
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accuracy that is not very low. Figld] (b) shows the degraded status after using our method. As can
be observed, two distributions for the source and target are separated, i.e., the generalization bound
"shrank." Thus, the learned decision boundary for the source domain cannot cover the target domain,
resulting in degraded performance. FigH](c) presents the "enhanced" status after using our proposed
control method, where two distributions for source and target almost completely overlap, i.e., the
generalization bound "enlarged." In this case, the source decision boundary can be shared with the
target domain, resulting in a satisfactory performance. These visualization results further demonstrate
the effectiveness of our method.

5 RELATED WORK

The most related to our CAL approach is the realm of domain adaptation (DA) and domain general-
ization (DG). When the model is trained solely on the source domain, the performance will degrade
in the target domain outside the training distribution. The objective is to boost the performance
in the target domain through enhanced model generalization Ben-David et al.| (2010). In domain
adaptation, target data can be accessed, while domain generalization has no access to the target data
Xu et al.|(2021)); Dong et al.[(2021)). For domain adaptation, the popular approach is to transfer the
knowledge from a source domain to the target domain. Attempts have been proposed to minimize
the Maximum Mean Discrepancy (MMD) Muandet et al.| (2013); |Ghifary et al.|(2016a)), to learn an
auxiliary reconstruction task|Ghifary et al.|(2016b)); [Hoffman et al.|(2018), to design and implement a
gradient reversal layer|Tzeng et al.[|(2017)), to focus on classifier discrepancy and align source and
target features Lee et al.| (2019)); Saito et al.|(2018)), or to implement self-training |Zhu et al.| (2017);
Zou et al.[(2019). Among the abovementioned approaches, many works are unsupervised, in which
the label of the target domain is unknown. In this work, we follow the unsupervised settings, which
are closer to real-world scenarios.

Contrary to DA & DG, Wang et al.|(2021) propose a Non-Transferable Learning (NTL) paradigm that
can reduce the generalization bound for Al models aiming for model security and intellectual property
(IP) protection. NTL resolves the issue that previous IP protection method|Alam et al.| (2020) can
only prevent unauthorized users to access the network, but cannot forbid the access of unauthorized
data. However, it is a supervised approach that relies on large amount of labeled data from the target
domain, which are hard to obtain. Moreover, after the model well-trained, users cannot reclaim the
access of the unauthorized domain.

As mentioned in the introduction, the main difference between our CAL approach and DA & DG &
NTL is that we aim to control the generalization bound toward different domains in an unsupervised
setting, which, to the best of our knowledge, is still a research gap to be filled.

6 CONCLUSION

In this work, we propose a novel Controllable Adaptive Learning (CAL) scheme, which can control
the model performance based on the data feed-in, enabled by manipulating the generalization bound
of the model. We provide theoretical analysis and extensive experiments to demonstrate how our
method works. Specifically, we propose a novel Distribution Difference Expanding (DDE) Loss to
add convergence terms in the target domain and restrict the information transfer from the target to the
source domain (making the model falls into a "Degraded" mode). We then introduced two controllers,
an implicit embedding-enabled controller, and an explicit prompt-based controller, to transfer relevant
information and realize the effect of domain adaptation (making the model fall into an "Enhanced"
mode). We believe our newly introduced paradigm will broadly impact the IP protection Al model,
solving Al-related ethics problems and a wide range of commercial purposes under AlaaS in the near
future.
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