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Abstract001

A key challenge for Large Language Mod-002
els (LLMs) is improving their Multilingual003
instruction-following ability over time with-004
out deteriorating their ability in languages they005
already excel at, typically English. This pa-006
per studies a two-phase Continual Fine-tuning007
(CFT) setup toward improving a model’s Mul-008
tilingual adaptability. We study a two-phase009
CFT process in which an English-only end-to-010
end instruction fine-tuned LLM from Phase 1011
is sequentially fine-tuned on a multilingual in-012
struction dataset. We focus on the open-source013
MISTRAL-7B and LLAMA-3-8B models and014
multiple dataset pairs. Our findings show that015
our two-phase CFT setup outperforms simul-016
taneous fine-tuning on the mixture of English017
and Multilingual instruction datasets. More-018
over, we observe that the instructions similarity019
between Phase 1 and Phase 2 datasets plays020
a crucial role. When instructions are similar,021
the LLM after Phase 2 fine-tuning retains (or022
improves) its English performance, while also023
improving its Multilingual ability. In contrast,024
for non-similar phase-wise datasets, Phase 2025
LLM’s English ability deteriorates. To address026
this, we explore layer freezing and data replay027
techniques. We show that these methods en-028
hance multilingual ability while preserving En-029
glish ability, compared to relevant baselines.030

1 Introduction031

The widespread adoption of Large Language Mod-032

els (LLMs) has led to a growing multilingual user033

base (Shiyas, 2023). However, ensuring strong per-034

formance across languages remains a fundamental035

challenge, with models consistently performing036

worse on low-resource languages spoken by mil-037

lions of speakers worldwide (Ahuja et al., 2023,038

2024a). A key limitation is that both labeled and039

unlabeled training data are predominantly avail-040

able in English and a few high-resource languages,041

while resources for other languages, especially low-042

resource ones, are scarce (Shaham et al., 2024).043
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Figure 1: Comparing t-SNEs (van der Maaten and Hin-
ton, 2008) of the hidden activations for MISTRAL-7B
and LLAMA-3-8B during our two-phase Continual
Fine-tuning (CFT) process. We prompt each model
with examples from MTBENCH (Zheng et al., 2024),
and visualize the similarity between the mean hidden ac-
tivations, for each model layer. For datasets that encode
"similar" instructions (ALPACA & MULTIALPACA), En-
glish ability does not decline (e.g., 3% gain for IFEval).
For non-similar datasets (Instruct & MULTIALPACA),
English ability declines (e.g., 8% decline for IFEval).
Here, Phase 2 model representations do not align with
Phase 1’s; thus, suggesting greater model weight inter-
ference and a decline in English ability.

Training large models from scratch is computa- 044

tionally expensive, making fine-tuning pre-trained 045

LLMs the preferred approach for improving multi- 046

lingual capabilities (Lankford et al., 2023; Nguyen 047

et al., 2023). A common fine-tuning strategy is to 048

train LLMs on an instruction-following dataset that 049

contains a mixture of languages. However, these 050

datasets are often heavily skewed toward English 051

and other high-resource languages, leading to a 052

performance imbalance: models perform strongly 053

in English but struggle with low-resource lan- 054

guages (Dhamecha et al., 2021; Li et al., 2024a,b). 055

Further, prior works show that fine-tuning on a 056

dataset that only contains non-English languages 057
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can hurt the model’s performance on English due058

to catastrophic forgetting, which is not desirable059

for most real-world scenarios due to the volume of060

English queries (Ta, 2023). Ideally, we want the061

same model to be proficient in both English and062

other languages to avoid the costs of maintaining063

multiple models. We refer to an LLM’s proficiency064

in English as its English Ability (EA), and its ef-065

fectiveness across other languages its Multilingual066

Ability (MA). In this work, we aim to improve an067

LLM’s MA while maintaining or improving its EA.068

Our Approach. To bridge the gap between EA069

and MA, we introduce a two-phase Continual Fine-070

tuning (CFT) setup. We fine-tune a pre-trained071

LLM on an English instruction dataset in Phase072

1 and then fine-tune it on a similarly-sized Mul-073

tilingual dataset in Phase 2. In Phase 1, we use074

ALPACA (Taori et al., 2023) and OPENORCA (Lian075

et al., 2023), and in Phase 2 we use MULTIAL-076

PACA (Wei et al., 2023) and MOPENORCA (§4.1).077

ALPACA and OPENORCA provide high-quality En-078

glish instruction data, while MULTIALPACA and079

MOPENORCA are their multilingual counterparts,080

ensuring consistency in instruction style across081

phases. To compare the efficacy of our two-phase082

CFT setup, we compare it with a straightforward083

single-phase setup where the LLM is fine-tuned on084

the mixture of both the instruction tuning datasets.085

We focus on two open-source models, LLAMA-086

3-8B and MISTRAL-7B as base models for our087

experiments. We also use fine-tuned versions of088

them, LLAMA-3-8B-INSTRUCT and MISTRAL-089

7B-INSTRUCT, as off-the-shelf Phase 1 English090

fine-tuned models1. We quantify a model’s En-091

glish Ability (EA) based on its performance092

on four English datasets: (i) Two datasets that093

measure instruction following capabilities (i.e.,094

IFEval (Zhou et al., 2023) and Alpaca Eval (Li095

et al., 2023)) and (ii) two that measure reason-096

ing abilities (i.e., MMLU (Hendrycks et al., 2021)097

and HellaSwag (Zellers et al., 2019)). Likewise,098

we quantify a model’s Multilingual Ability (MA)099

based on its performance on (i) two question-100

answering tasks (i.e., MLQA (Lewis et al., 2019) and101

XQuAD (Artetxe et al., 2019)) and (ii) XLSUM (Hasan102

et al., 2021), a summarization task.103

Our Contributions. In this paper, we make the104

following contributions.105

1LLAMA-3-8B’s pre-training data was 5% multilin-
gual, but LLAMA-3-8B-INSTRUCT is primarily non-
multilingual (Dubey et al., 2024).

CFT Outperforms Mixture. We first observe that 106

models trained using our two-phase CFT setup per- 107

form better than the single-phase "dataset mixture" 108

setup (Tables 1, 2; §4.2). Moreover, our two-phase 109

CFT setup overall results in a better model for all 110

languages, including English, for the same number 111

of training steps. The two-phase CFT pipeline also 112

provides more flexibility than training on a mixture 113

of datasets, with the possibility of extending our ap- 114

proach to multi-phase fine-tuning, especially when 115

data from earlier phases might not be available. 116

Forgetting vs. Dataset Similarity. As mentioned 117

earlier, fine-tuning with multilingual datasets to en- 118

hance a model’s multilingual ability can lead to a 119

decline in its English ability due to catastrophic for- 120

getting (Mukhoti et al., 2023; Winata et al., 2023). 121

We investigate the factors that may lead to such for- 122

getting by computing the similarity of English and 123

Multilingual Instruction Fine-tuning (IFT) datasets. 124

We observe that when English and multilingual 125

datasets have instructions that are not similar, there 126

is a decline in the Phase 2 model’s performance 127

in English. On the other hand, when Phase 1 and 128

Phase 2 datasets encode similar instructions, the 129

Phase 2 model’s performance in English improves 130

(refer to Figure 1). To quantify the similarity of 131

these phase-wise datasets, we introduce two met- 132

rics based on language-agnostic embeddings and 133

model representations. We show that our quantifi- 134

cation correlates with the decline in English ability 135

(Tables 3, 4; §4.3). 136

Mitigating Forgetting. We study the efficacy of two 137

tailored variants of existing CFT strategies to mit- 138

igate the decline in EA after Phase 2 fine-tuning, 139

while boosting MA. The first strategy is distribu- 140

tion replay. Here, we look at generative replay, i.e., 141

using instructions from a similar English counter- 142

part of the Phase 2 dataset to generate replay data 143

using the Phase 1 model. We also try english replay 144

which acts as language replay by utilizing existing 145

English parallel data from the Phase 2 distribution. 146

The second strategy employs layer freezing. Our 147

heuristic selects specific layers for freezing during 148

Phase 2 fine-tuning based on the weight differences 149

between the Base and Phase 1 models. We also 150

explore Spectrum (Hartford et al., 2024) as an alter- 151

native heuristic. We study the gains in EA and MA 152

of these strategies compared to specific baselines 153

(Table 5; §5). To the best of our knowledge, we 154

are the first to explore the effectiveness of CFT on 155

LLMs with multilingual instruction datasets. 156
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2 Related Work157

Continual Learning in LLMs. In general, con-158

tinual learning in LLMs can be broadly catego-159

rized into (i) continual pre-training (CPT) and (ii)160

continual fine-tuning (CFT). In CPT, the LLMs161

are continuously pre-trained to adapt to new do-162

mains or tasks by continuously updating them with163

new data alongside the existing data (Shi et al.,164

2024). CPT builds on the existing LLM’s knowl-165

edge and is more computationally efficient than166

retraining an LLM using the current and old pre-167

training data (Gupta et al., 2023). CPT is em-168

ployed when distributional shifts occur (i) over169

time (Amba Hombaiah et al., 2021; Jang et al.,170

2022a,b), (ii) across languages (Jin et al., 2022; Fu-171

jii et al., 2024; Blevins et al., 2024) or (iii) across172

domains (Ke et al., 2023; Gong et al., 2022; Xie173

et al., 2023).174

On the other hand, CFT involves training the175

LLM on successive downstream tasks with vary-176

ing data distribution or time shifts (Shi et al.,177

2024). CFT comprises fine-tuning for different178

tasks (Carrión and Casacuberta, 2022), instruction-179

tuning (Cahyawijaya et al., 2023), model re-180

finement/editing (Zhang et al., 2023) and align-181

ment (Suhr and Artzi, 2023). Recent literature182

also focuses on using CFT to assist the LLM to183

learn new languages (Praharaj and Matveeva, 2023;184

Pfeiffer et al., 2022; Badola et al., 2023).185

CFT: Enhancing LLMs Multilingual Abilities.186

Cahyawijaya et al. (2023) propose InstructAlign187

which uses cross-lingual alignment and episodic188

replay to align an LLM’s pre-trained languages189

to unseen languages but requires parallel data and190

previous task data. Shaham et al. (2024) intro-191

duces multilinguality during the first instruction192

fine-tuning phase which improves an LLM’s in-193

struction following capability across languages. He194

et al. (2023) show catastrophic forgetting during195

CFT and use techniques such as joint fine-tuning196

and model regularization to mitigate it. However,197

these techniques are computationally expensive or198

require access to previous task data.199

Multilingual Adaptation. This set of works looks200

at language and task adaption by adjusting the201

model to understand new languages and enhanc-202

ing its performance on specific tasks through fine-203

tuning, respectively (Chen et al., 2023; Zhao et al.,204

2024; Pfeiffer et al., 2020). For instance, Chen et al.205

(2023) perform task adaption by fine-tuning the206

model on downstream task data. For language adap-207

tion, they fine-tune only the token embedding layer, 208

helping the model learn specific lexical meanings 209

of new languages. Language and english ability are 210

either trained in parallel or sequentially. However, 211

in this paper, we try to incorporate multilingual abil- 212

ity in models with the constraint that they may have 213

already learned english ability (e.g., MISTRAL-7B- 214

INSTRUCT). To the best of our knowledge, this 215

is a first attempt at studying the effect of task and 216

language self-instruct datasets on an LLM’s multi- 217

lingual ability through CFT. 218

3 Two-phase Continual Fine-tuning Setup 219

When instruction fine-tuning LLMs, the most nat- 220

ural method is to fine-tune on a "dataset mixture" 221

containing English and Multilingual data (Work- 222

shop et al., 2023). However, fine-tuning on all lan- 223

guages simultaneously may introduce performance 224

bias where the model performs better in English 225

(and other high resource languages) (Dhamecha 226

et al., 2021; Li et al., 2024a,b)2. 227

Continual Fine-tuning (CFT). To improve the 228

multilingual performance of pre-trained LLMs, we 229

introduce the following two-phase CFT process. 230

Two-Phase CFT Process

• Phase 1: Fine-tune a base LLM end-
to-end on an English instruction dataset.
Phase 1 aims to teach the LLM English
Instruction Following Ability, which we
refer to as English Ability (EA).

• Phase 2: Take the fine-tuned LLM from
Phase 1 and further fine-tune it end-to-
end on a Multilingual instruction dataset.
Phase 2 focuses on enhancing the LLM’s
Multilingual Ability (MA), using a dataset
with multiple languages and fewer data
points per language.

231

Challenges. The primary challenge in our two- 232

phase CFT process is that the LLM’s Multilingual 233

Ability must not come at the cost of its English 234

Ability. We impose two additional constraints 235

based on real-world scenarios. First, in Phase 236

2, we cannot re-use Phase 1’s dataset. Often in- 237

struction fine-tuned LLMs are available without 238

their corresponding datasets (e.g., MISTRAL-7B- 239

INSTRUCT (Jiang et al., 2023)). Second, in Phase 240

2, we cannot use the weights of the Phase 1 model 241

2In §4.2, we compare dataset mixture to CFT.
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during training, as saving both old and new set242

of parameters on the GPU for training would be243

computationally expensive.244

4 Evaluating English & Multilingual245

Ability for Multilingual CFT246

4.1 Experiment Setup & Evaluation Tasks247

Fine-tuning Models. We continually fine-tune248

open-source MISTRAL-7B (Jiang et al., 2023) and249

LLAMA-3-8B (Dubey et al., 2024) LLMs for mul-250

tilingual adaptation.251

Fine-tuning Datasets. For our phase-wise datasets,252

we use the open-source ALPACA (Taori et al.,253

2023), MULTIALPACA (Wei et al., 2023), and254

OPENORCA (Lian et al., 2023) datasets. AL-255

PACA is a self-instruct English-only dataset. MUL-256

TIALPACA is a multilingual dataset created by257

translating ALPACA’s seed tasks to 11 languages258

and using GPT-3.5-Turbo for response collection.259

The languages are in equal proportions and are260

“French”, “Arabic”, “German”, “Spanish”, “Indone-261

sian”, “Japanese”, “Korean”, “Portuguese”, “Rus-262

sian”, “Thai”, and “Vietnamese”. The appendix263

(§A.2) describes OPENORCA and MOPENORCA.264

Fine-tuning Technique. We perform full fine-265

tuning with bf16 precision to study the effects of266

full fine-tuning with multilingual data in Phase 2267

and its effect on english ability. We also wish to268

exploit the benefits gained via complete fine-tuning269

of these models, which may not be possible with270

parameter efficient fine-tuning (Aggarwal et al.,271

2024; Panda et al., 2024). However, in §5, we272

propose a heuristic-based layer freezing strategy273

to mitigate forgetting of english ability in which274

we freeze some layers and fine-tune the rest. For275

our experiments, we use Axolotl3, an open-source276

framework to fine-tune LLMs.277

Evaluation Tasks. To quantify an LLM’s english278

ability, we evaluate Phase 1 and Phase 2 models on279

two instruction-following tasks (i) IFEval (Zhou280

et al., 2023) and (ii) Alpaca Eval (Li et al., 2023),281

(iii) MMLU (Hendrycks et al., 2021) for problem-282

solving and (iv) HellaSwag (Zellers et al., 2019)283

for commonsense reasoning ability. To quantify an284

LLM’s multilingual ability, we evaluate our fine-285

tuned models on three benchmark datasets com-286

prising two multilingual generative tasks: ques-287

tion answering (MLQA (Lewis et al., 2019) & XQuAD288

(Artetxe et al., 2019)) and summarization (XLSUM289

3github.com/axolotl-ai-cloud/axolotl/

(Hasan et al., 2021)). Further details on these tasks 290

are available in §A.3. 291

To evaluate our models on TA and LA, we use LM- 292

Evaluation-Harness4, which is a unified framework 293

for zero/few-shot evaluations of LLMs. For both 294

English and multilingual ability, we use zero-shot 295

evaluation. For additional details on the training 296

setup, code, and evaluation tasks, refer to §A. 297

4.2 Results 298

We compare the English and Multilingual ability of 299

MISTRAL-7B and LLAMA-3-8B continually fine- 300

tuned models on different phase-wise datasets5. Ta- 301

ble 1 presents the results for English Ability (EA), 302

while Table 2 presents the results for Multilingual 303

Ability (MA). Table 2 reports the average score 304

across languages. We provide language-specific 305

scores and results when the phases are reversed 306

(e.g., MULTIALPACA-ALPACA) in §B. 307

Comparison with Mixture. From Tables 1 & 2, 308

for Mixture, the mean of EA and MA scores 309

for MISTRAL-7B fine-tuned on ALPACA- 310

MULTIALPACA is 0.34, and 0.31 for LLAMA-3- 311

8B. The corresponding two-phase mean score is 312

0.38 for both MISTRAL-7B and LLAMA-3-8B. 313

That is, two-phase CFT is more effective than 314

Mixture, for approximately the same number of 315

training steps. 316

Results Discussion. From Table 1, for phase-wise 317

datasets like Instruct and MULTIALPACA, the per- 318

formance of the Phase 2 models trained on them 319

declines for English. This decline occurs when 320

they are continually fine-tuned on multilingual data 321

in Phase 2. However, we see a jump in MISTRAL- 322

7B’s multilingual ability for the multilingual gen- 323

erative tasks (Table 2). That is, Phase 2 models 324

fine-tun ed on multilingual datasets show forget- 325

ting in English. However, for phase-wise datasets 326

like ALPACA followed by MULTIALPACA, we see 327

that Phase 2 models do not show a decline in En- 328

glish ability (Table 1). We also see a gain in these 329

models’ multilingual ability (Table 2). 330

Ablations. In Tables B1 & B2 (§B), we present 331

results for OPENORCA-MOPENORCA phase-wise 332

datasets. First, the "dataset mixture" again per- 333

forms worse on average than CFT: 0.19 vs. 0.41 334

for MISTRAL-7B and 0.22 vs. 0.27 for LLAMA- 335

4github.com/EleutherAI/lm-evaluation-harness
5When it is clear from the context, we use “Instruct” to

denote the dataset used in Phase 1 to instruction fine-tune
MISTRAL-7B-INSTRUCT or LLAMA-3-8B-INSTRUCT.

4
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Two-phase Continual Fine-tuning

Model Phase 1 (P1) Phase 2 (P2) IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average
Dataset Dataset P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

MISTRAL-7B
ALPACA MULTIALPACA 0.364 0.395 0.12 0.16 0.552 0.573 0.581 0.616 0.404 0.436
Instruct MULTIALPACA 0.550 0.462 0.35 0.15 0.575 0.533 0.641 0.416 0.529 0.390

LLAMA-3-8B
ALPACA MULTIALPACA 0.277 0.326 0.10 0.11 0.231 0.242 0.556 0.567 0.291 0.311
Instruct MULTIALPACA 0.735 0.182 0.14 0.10 0.340 0.239 0.533 0.278 0.437 0.2

Dataset Mixture

Model Dataset Mixture IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average

MISTRAL-7B ALPACA MULTIALPACA 0.394 0.23 0.538 0.602 0.441
LLAMA-3-8B ALPACA MULTIALPACA 0.363 0.07 0.598 0.602 0.408

Table 1: English Ability results for two-phase Continual Fine-tuning (CFT). When the phase-wise datasets are
similar (Definition 1 and Definition 2), English Ability post Phase 2 (P2) fine-tuning consistently improves (denoted
with green). When the phase-wise datasets are not similar, we see a significant decline in English Ability post Phase
2 (P2) fine-tuning (denote with red). We also provide numbers for dataset mixture – when the models are fine-tuned
simultaneously on the Phase 1 and Phase 2 datasets.

Two-phase Continual Fine-tuning

Model Phase 1 Phase 2 MLQA (↑) XLSUM (↑) XQuAD (↑) Average
Dataset Dataset Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

MISTRAL-7B
ALPACA MULTIALPACA 0.229 0.288 0.012 0.060 0.290 0.602 0.177 0.317
Instruct MULTIALPACA 0.246 0.307 0.012 0.033 0.351 0.436 0.203 0.259

LLAMA-3-8B
ALPACA MULTIALPACA 0.438 0.597 0.033 0.034 0.586 0.737 0.352 0.456
Instruct MULTIALPACA 0.609 0.321 0.048 0.027 0.712 0.417 0.456 0.256

Dataset Mixture

Model Dataset Mixture MLQA (↑) XLSUM (↑) XQuAD (↑) Average

MISTRAL-7B ALPACA MULTIALPACA 0.406 0.079 0.217 0.234
LLAMA-3-8B ALPACA MULTIALPACA 0.480 0.040 0.139 0.220

Table 2: Multilingual Ability results for two-phase Continual Fine-tuning (CFT). With green, we denote an
improvement in Multilingual Ability post Phase 2 fine-tuning. Likewise, we denote a decline in Multilingual Ability
with red. For MLQA and XQUAD we use F1 abstractive score, while for XLSUM we use ROUGE Score. We also provide
numbers for dataset mixture – when the models are fine-tuned simultaneously on the Phase 1 and Phase 2 datasets.

3-8B. Second, for MISTRAL-7B, the average En-336

glish ability of the Phase 2 model (over Phase 1’s337

MISTRAL-7B-OPENORCA) marginally declines:338

0.487 from 0.504. Whereas, for MISTRAL-7B-339

INSTRUCT, the average decline in English ability340

is significant: 0.376 from 0.529. Likewise, for341

LLAMA-3-8B, the average English ability for342

LLAMA-3-8B OPENORCA MOPENORCA sees343

an increase of 0.415 from 0.404. In contrast, for344

Instruct-MOPENORCA, the English ability signifi-345

cantly drops, from 0.437 to 0.173.346

Observation. With Table 1, we see that our two-347

phase CFT setup for multilingual adaptation shows348

an interesting trend: for certain pairs of phase-wise349

datasets (e.g., ALPACA & MULTIALPACA), the350

LLM after Phase 2 sees an improvement in the351

English ability (computed on English evaluation352

tasks). We notice that phase-wise datasets like353

ALPACA and MULTIALPACA have the same seed354

prompts. Alternately, the two datasets encode the 355

same instructions in different languages. We hy- 356

pothesize an LLM fine-tuned on either of these 357

datasets learns the same instructions, and therefore, 358

the second phase of CFT leads to lesser interfer- 359

ence in the representation space. That is, an LLM 360

continually fine-tuned on ALPACA & MULTIAL- 361

PACA preserves its English ability across phases. 362

We next define two metrics that aim to quantify the 363

instruction-specific similarity of two datasets. 364

4.3 Similarity of Phase-wise Datasets 365

Dataset Embedding Similarity (DES). To quan- 366

tify whether two datasets are similar6, we define 367

DES that computes a similarity score using the 368

dot product of the average representations (embed- 369

dings) generated by a language-agnostic model. 370

Definition 1 (Dataset Embedding Similarity 371

(DES)). Given a language-agnostic text embed- 372

5



Phase 1 Dataset Phase 2 Dataset DES (↑)

ALPACA
MULTIALPACA 0.924
MOPENORCA 0.792

OPENORCA
MOPENORCA 0.953

MULTIALPACA 0.774
MISTRAL-7B Instruct‡ MULTIALPACA 0.746
‡: Prepared using model responses on MTBENCH (Zheng et al., 2024)

Table 3: Quantifying Phase-wise Dataset Similarity us-
ing DES: higher the score, greater the dataset similarity.

Dataset D2 Model Parameter Difference (↓)

ALPACA 0.29
Instruct 1.00

OPENORCA 0.55

Table 4: Quantifying Phase-wise Dataset Similarity us-
ing MPD: lower the score, greater the dataset similar-
ity. Here, we fix MULTIALPACA as D1 and θB as
MISTRAL-7B.

ding model Θ, and any pair of datasets D1 and D2,373

let DES be the function fDES : D ×D → [0, 1]374

fDES(D1, D2; Θ) = ⟨EΘ(D1),EΘ(D2)⟩375

Here, EΘ(Di) ∈ Rd, ∀i ∈ {1, 2} is the normal-376

ized mean embedding across samples in Di.377

Higher the DES score, more similar the embedding,378

i.e., greater similarity between D1 and D2. For Θ,379

we use the language-agnostic sentence-tokenizer380

LaBSE (Feng et al., 2020). We compute DES by en-381

coding 500 random samples from ALPACA, MUL-382

TIALPACA, OPENORCA, and MOPENORCA, and383

measure fDES for each pair. Table 3 presents the384

numbers. For dataset pairs with similar datasets, we385

see a high DES score and relatively low scores for386

dissimilar datasets. DES captures the (pair-wise)387

variation in instruction similarity of these datasets.388

Model Parameter Difference (MPD). Another389

method of quantifying the similarity of instructions390

for two datasets D1 and D2 is to compute the dif-391

ference between the parameters of models Θ1 (fine-392

tuned on D1) and Θ2 (fine-tuned on D2). Geomet-393

rically, the difference of the parameters captures394

the representation shift of Θ2 in the space defined395

by Θ1. If D1 & D2 encode the same datasets, the396

combined shift by Θ2 should be relatively lower,397

compared to the shift if D1 & D2 encode different398

intstructions. Formally,399

Definition 2 (Model Parameter Difference (MPD)).400

Given any two models Θ1 and Θ2 fine-tuned on401

6The CL-ML literature often defines task similarity via
permutation tasks, emphasizing input-output transforma-
tions (Goldfarb et al., 2024). Whereas, we consider semantic
and structural similarity in natural language instructions.

self-instruct datasets D1 and D2 respectively, from 402

the same base model ΘB , let MPD be the function 403

fMPD : Θ×Θ → R≥0 s.t. 404

fMPD(Θ1,Θ2; ΘB) =
1

n

n∑
i=1

∥w(Θ1,i)−w(Θ2,i)∥2 405

Here, w(Θj,i), ∀j ∈ {1, 2} is Θj’s ith parameter. 406

The smaller the MPD score, the closer the fine- 407

tuned models are in the parameter space. Fix- 408

ing MISTRAL-7B as the base model ΘB , and D1 409

as MULTIALPACA, we vary D2 as one of AL- 410

PACA, OPENORCA, and MOPENORCA, and ob- 411

serve the corresponding MPD scores. We normal- 412

ize the MPD scores with the maximum observed 413

score across all three models for a fair comparison 414

(see Table 4). MPD shows a similar trend to DES: 415

for ALPACAand MULTIALPACA, the scores are 416

lower, highlighting the similarities in the datasets 417

in the parameter space. We see relatively higher 418

scores for the other pair of models, implying a dif- 419

ference in the dataset pairs. 420

4.4 Visualizing Decline in English Ability 421

Setup. To explain the effect of similar phase- 422

wise data sets on an LLM’s EA, we look at model 423

representations when parsing English. We feed 424

MTBENCH (Zheng et al., 2024) to the models, a 425

widely-used English benchmark for generalized 426

instruction-following evaluation, and visualize the 427

similarity between the mean hidden activations for 428

each model layer. For the analysis, given an LLM 429

Θ with l layers, let XΘ ∈ Rl×d be the mean hidden 430

activations, across n samples from MTBENCH. 431

t-SNE Visualization. Figure 1 depicts t- 432

SNEs (van der Maaten and Hinton, 2008) for 433

XMISTRAL-7B and XLLAMA-3-8B when these are con- 434

tinually fine-tuned on (i) ALPACA & MULTIAL- 435

PACA and (ii) Instruct & MULTIALPACA. We 436

observe that for similar phase-wise datasets, the 437

model before and after Phase 2 produces simi- 438

lar hidden activations. Contrarily, for non-similar 439

phase-wise datasets, the hidden activations form 440

distinct clusters, implying separation between the 441

phase-wise activations. That is, the model repre- 442

sentations for non-similar phase-wise datasets are 443

well-separated. The separation between model rep- 444

resentations results in increased weight interference 445

during Phase 2 – leading to a decline in EA. 446

Visualizing Variance in Model Representations. 447

Figure 1 provides an intuition for the correlation 448
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Figure 2: We see a greater change in the variation of
the representations for non-similar datasets (e.g., In-
struct & MULTIALPACA) compared to similar datasets
(e.g., ALPACA & MULTIALPACA). Interestingly, for
LLAMA-3-8B the change is large across layers and a
magnitude higher than MISTRAL-7B. For MISTRAL-
7B, we see the later layers showing the most change.

between phase-wise datasets and the decline in En-449

glish ability. To further understand the layer-wise450

behavior of the hidden activations, similar to Chang451

et al. (2022), we compute covariance matrices ΣΘ452

for each XΘ. Intuitively, ΣΘ captures the variance453

in different directions for representations of hidden454

activations for Θ.455

We first compute the mean centered activation ma-456

trix X̄Θ = XΘ − µΘ, where µΘ = 1/l
∑l

i=1X
(i)
Θ .457

Next, we derive ΣΘ = 1
l−1 · X̄T

ΘX̄Θ ∈ Rd×d.458

To compare the layer-wise variance in represen-459

tations, we compute the L2-Norm of the difference460

of the matrices ΣMISTRAL-7B (Figure 2 (left)) or461

ΣLLAMA-3-8B (Figure 2 (right)) when continually462

fine-tuned on ALPACA & MULTIALPACA (blue463

lines) or Instruct & MULTIALPACA (red lines).464

From the figures, we see clear evidence of repre-465

sentational change, both in terms of the magnitude466

of the change and the subset of layers that show467

a greater change. For MISTRAL-7B, the Phase 2468

model after CFT with Instruct & MULTIALPACA,469

shows 3 to 4 times more variation in its represen-470

tations compared to the model with ALPACA &471

MULTIALPACA phase-wise datasets. This gap is472

significantly larger for LLAMA-3-8B.473

5 Mitigating Strategies for CFT474

To mitigate EA decline, we explore two tailored475

CFT techniques: Distribution Replay and Layer476

Freezing. In Distribution Replay, we study Gener-477

ative Replay (GR), a new English data generation478

method inspired by dataset similarity and English479

ability (§4.2), and English Replay (ER), which re-480

plays parallel English data of Phase 2’s distribution.481

In Layer Freezing (LF), we identify layers to freeze482

during Phase 2 fine-tuning using specific heuristics.483

5.1 Distribution Replay 484

Typically, Generative Replay (GR) is a technique 485

that generates data from past distributions to be 486

used alongside new task data for the continual fine- 487

tuning of a model on a new task (Shin et al., 2017). 488

However, from §4.2, we do not see a decline in 489

English ability if the phase-wise datasets encode 490

similar instructions. Based on this, we use the 491

Phase 1 model to generate responses, in English, 492

from the English counterpart of the multilingual 493

dataset used for fine-tuning in Phase 2. The intu- 494

ition is that the generated dataset may bridge the 495

distributions of Phase 1 and Phase 2. 496

During Phase 2 fine-tuning, we include varying 497

quantities of this generated data: specifically, 5% 498

(GR_5) and 10% (GR_10), of the Phase 2 dataset. 499

We also fine-tune the models with a similar sized 500

subset of the English counterpart with original re- 501

sponses7. We refer to this mitigating strategy as 502

English Replay (ER_10). 503

5.2 Layer Freezing 504

Model regularization is an effective technique to 505

mitigate the drop in the previous task’s perfor- 506

mance in continual learning (e.g., EWC (Kirk- 507

patrick et al., 2017)). However, this is computa- 508

tionally inefficient as it requires using both the old 509

and new sets of parameters. Instead, we use Layer 510

Freezing (LF), a relatively efficient technique for 511

use as a ‘regularizer’ to preserve English ability 512

during Phase 2. We consider the following varia- 513

tions to select the set of layers to freeze: 514

1. LF_H1: freezing a random set of 10 layers of the 515

model from Phase 1 to be fine-tuned in Phase 2. 516

2. LF_H2: freezing the top-10 layers that have 517

changed the most during Phase 1 fine-tuning 518

(e.g., MISTRAL-7B Base to MISTRAL-7B- 519

INSTRUCT). We select layers separately for Key, 520

Query, and Value, for each attention head. 521

3. Spectrum (Hartford et al., 2024): freeze the 522

"most informative" layers of the Phase 1 model 523

based on their signal-to-noise ratio (§D.1). 524

We present our results in Table 5 for both GR and 525

LF. We define a baseline in which we use LoRA (Hu 526

et al., 2022)8for continually fine-tuning in Phase 527

2. We perform LoRA fine-tuning with rank 64 and 528

quantisation bfloat16. 529

7This dataset may not be available for all multilingual
datasets, such as Aya (Singh et al., 2024). While instructions
can be translated into English, translating responses is often
impractical. Thus, ER is the best-case scenario for GR.

8Parameter efficient techniques like LoRA (Hu et al., 2022)

7



CFT Setup English Ability (EA) Multilingual Ability (MA) Combined

Phase 2 Mitigating IFEval Alpaca Eval MMLU HellaSwag Avg MLQA XLSum XQUAD Avg Avg
Dataset Strategy (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

M
IS

T
R

A
L

-7
B

MULTIALPACA

– 0.462 0.15 0.533 0.416 0.390 0.307 0.033 0.436 0.259 0.325
LF_H1 0.456 0.03 0.497 0.598 0.395 0.176 0.016 0.215 0.136 0.266
LF_H2 0.364 0.12 0.364 0.504 0.338 0.213 0.014 0.442 0.223 0.281

Spectrum 0.435 0.24 0.488 0.524 0.422 0.317 0.083 0.176 0.192 0.307
GR_5 0.540 0.17 0.540 0.611 0.465 0.311 0.008 0.428 0.249 0.357
GR_10 0.567 0.12 0.567 0.594 0.462 0.213 0.007 0.427 0.215 0.339
ER_10 0.593 0.08 0.580 0.635 0.599 0.249 0.008 0.398 0.218 0.409
LoRA 0.383 0.09 0.579 0.625 0.42 0.289 0.043 0.518 0.283 0.352

L
L

A
M

A
-3

-8
B

MULTIALPACA

– 0.182 0.10 0.239 0.278 0.217 0.321 0.030 0.417 0.256 0.237
LF_H1 0.303 0.0 0.231 0.275 0.202 0.368 0.037 0.505 0.303 0.253
LF_H2 0.380 0.06 0.485 0.525 0.373 0.400 0.038 0.505 0.314 0.344

Spectrum 0.409 0.09 0.612 0.524 0.408 0.429 0.056 0.086 0.190 0.299
GR_5 0.269 0.01 0.516 0.316 0.279 0.437 0.019 0.593 0.349 0.314
GR_10 0.264 0.12 0.229 0.250 0.228 0.254 0.009 0.314 0.192 0.210
ER_10 0.420 0.02 0.603 0.561 0.420 0.434 0.025 0.53 0.330 0.375
LoRA 0.196 0.0 0.280 0.235 0.179 0.007 0.008 0.005 0.007 0.093

Table 5: English and Multilingual Ability results for our mitigating strategies, Generative Replay (GR_5 & GR_10),
English Replay (ER_10) and Layer Freezing (LF_H1, LF_H2 & Spectrum). We use LoRA (Hu et al., 2022) as a
baseline strategy. For ER_10, we use the English dataset used in GR with original responses. The Phase 1 dataset
is Instruct for each row. The first row for both MISTRAL-7B and LLAMA-3-8B provides numbers for Instruct-
MULTIALPACA (from Table 1 & 2).

5.3 Results Discussion530

From Table 5, we see that GR, ER and LF mitigate531

the decline in English ability and also show gains532

in Multilingual ability.533

Distribution Replay. ER_10 demonstrates the best534

performance in both English and combined abil-535

ity, with EA scores of 0.599 for MISTRAL-7B and536

0.420 for LLAMA-3-8B, and the best combined537

average. GR_5 also excels in multilingual tasks, out-538

performing ER_10: 0.249 vs. 0.218 for MISTRAL-539

7B and 0.349 vs. 0.330 for LLAMA-3-8B. GR_5540

also performs reasonably well on English tasks,541

achieving scores of 0.465 and 0.279 for MISTRAL-542

7B and LLAMA-3-8B, respectively, making it a543

competitive strategy.544

Layer Freezing. Compared to ER and GR, LF_H1,545

LF_H2, and Spectrum show mixed results. LF_H2546

performs better than LF_H1. Spectrum’s EA scores547

are better than LF_H1 and LF_H2, but suffers from548

lower multilingual numbers.549

Additional Discussion & Results. In §D.5, we550

analyze the computational cost of these strategies551

over the baseline CFT setup. Furthermore, §D.2552

repeats the same experiment from §4.4 to quantify553

the representation change in the fine-tuned models554

using our mitigating strategies. We see a trend sim-555

ilar to Figure 2. That is, a decrease in the variation556

are also widely used to efficiently fine-tune LLMs on multilin-
gual data. However, such techniques also show forgetting on
English (Aggarwal et al., 2024) after Phase 2.

in the model activations, compared to the base- 557

line model trained on Instruct and MULTIALPACA. 558

In §D.4, we also present EA and MA results for 559

MISTRAL-7B Instruct-MOPENORCA for our miti- 560

gating strategies. Here, LF, particularly Spectrum, 561

performs better than the other strategies. 562

6 Conclusion & Future Work 563

In this paper, to the best of our knowledge, we 564

present a first study on the influence of the simi- 565

larity of phase-wise instruction following datasets 566

on LLMs’ English and Multilingual ability through 567

CFT. Experiments on MISTRAL-7B and LLAMA- 568

3-8B show that when datasets are similar, English 569

ability is preserved; otherwise, it declines. Towards 570

mitigation, we study layer freezing and distribution 571

replay as mitigating strategies based on specific 572

heuristics. Our results indicate that these strategies 573

help improve task performance while not compro- 574

mising on the LLM’s multilingual adaptability. 575

Future Work. We see that there is no one-size-fits- 576

all strategy to mitigate the decline in English ability, 577

among the strategies discussed. Future work can 578

explore developing other parameter-efficient reg- 579

ularization methods that address the current com- 580

putational challenges with methods like EWC or 581

forgetting due to LoRA. One can also explore ana- 582

lytical notions for dataset instruction similarity. 583
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7 Limitations584

The study assumes that the similarity between585

phase-wise datasets can be effectively quantified586

using DES and MPD metrics. However, these met-587

rics may not capture all nuances of task similar-588

ity. Moreover, the experiments were conducted on589

MISTRAL-7B and LLAMA-3-8B models. The590

results and conclusions drawn may not general-591

ize to other LLMs with different architectures or592

training paradigms. Additionally, The study’s fine-593

tuning and evaluation processes were constrained594

by available computational resources. More ex-595

tensive experiments with larger models and longer596

training datasets were not possible. Furthermore,597

while generative replay and heuristic-based layer598

freezing showed promise, their effectiveness may599

vary with different models and datasets. The best600

performing strategy, ER_10, requires parallel data.601

Lastly, the evaluation of task and language ability602

was based on specific benchmarks. These metrics603

may not encompass all aspects of model perfor-604

mance, particularly in real-world applications.605
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A Training Details1240

A.1 Hyperparameters for Fine-tuning and1241

Training Setup1242

Hyperparameter Value

Learning Rate 1× 10−6

Epochs 4
Global Batch size 16
Scheduler Cosine
Warmup Linear
Warmup Steps 10
Optimizer AdamW (Loshchilov and Hutter, 2019)
Weight Decay 0

Table A1: Hyperparameters for continual fine-tuning

A.2 Fine-tuning Datasets1243

OPENORCA is an English-only self instruct dataset,1244

created to best mimic the ORCA dataset (Mukher-1245

jee et al., 2023), which is not publicly available.1246

To create the multilingual version of OPENORCA,1247

namely MOPENORCA, we follow Ahuja et al.1248

(2024b) to generate selective translations for a sub-1249

set of OPENORCA. The subset contains 50k sam-1250

ples from the OPENORCA dataset and we selec-1251

tively translate them to 11 languages which are1252

also in MULTIALPACA. In total, we generate 550k1253

examples for all languages.1254

A.3 Evaluation Tasks1255

In this paper, we consider two sets of benchmarks1256

to evaluate task and language ability. We explain1257

them briefly next.1258

English Ability (EA). To quantify an LLM’s task1259

ability, we evaluate Phase 1 and Phase 2 models on1260

the following tasks:1261

1. IFEval (Zhou et al., 2023): Instruction-1262

Following Evaluation (IFEval) asses the ability1263

of an LLM to follow natural language instruc-1264

tions. It comprises 500 verifiable instructions1265

(e.g., “mention the keyword AI 3 times”). We1266

choose IFEval as the instructions are verifiable1267

and also test an LLM’s context understanding.1268

2. Alpaca Eval (Li et al., 2023): This is an LLM-1269

based automatic evaluator for instruction fol-1270

lowing models, to measure task ability. Like1271

Aggarwal et al. (2024), we evaluate our CFT1272

models against text-davinci-003 responses on1273

800 instructions and use GPT4 (gpt-4-32k) as1274

the evaluator.1275

3. MMLU (Hendrycks et al., 2021): Massive Mul- 1276

titask Language Understanding (MMLU) is a 1277

benchmark to assess an LLM’s knowledge and 1278

problem-solving abilities. It includes 57 sub- 1279

jects across domains like STEM, or law, with 1280

16k MCQs in total. 1281

4. HellaSwag (Zellers et al., 2019): This is a pop- 1282

ular benchmark to evaluate the commonsense 1283

reasoning ability of an LLM. HellaSwag’s test 1284

split contains 10k samples in total. 1285

Multilingual Ability (MA). To quantify an 1286

LLM’s language ability, we evaluate our fine-tuned 1287

models on three benchmark datasets comprising 1288

two multilingual generative tasks: question answer- 1289

ing and summarization. 1290

• Question Answering: MLQA (Lewis et al., 2019) 1291

contains 5k extractive question-answering in- 1292

stances in 7 languages. The XQuAD dataset 1293

(Artetxe et al., 2019) consists of a subset of 1294

240 paragraphs and 1190 question-answer pairs 1295

across 11 languages. 1296

• Summarisation: XLSUM (Hasan et al., 2021) 1297

spans 45 languages, and we evaluate our models 1298

in Arabic, Chinese-Simplified, English, French, 1299

Hindi, Japanese, and Spanish. 1300

B Evaluating Multilingual Ability for 1301

Continual Fine-tuning 1302

Phase-wise Continual Fine-tuning 1303

English Ability. Table B1 present the en- 1304

glish ability numbers of our ablations on 1305

the OPENORCA-MOPENORCAand Instruct- 1306

MOPENORCAdatasets using MISTRAL-7B and 1307

LLAMA-3-8B models. When the datasets are 1308

pairwise not similar, i.e., Instruct-MOPENORCA, 1309

MISTRAL-7B shows a significant decline in the 1310

average english ability, from 0.529 in Phase 1 to 1311

0.376 in Phase 2. Likewise, LLAMA-3-8B also 1312

experiences a decrease, dropping from 0.437 to 1313

0.173 on average. 1314

In contrast, when the pairwise datasets are simi- 1315

lar, i.e., OPENORCA and MOPENORCA, MISTRAL- 1316

7B sees a marginal drop between the phases 1317

(0.504 → 0.487), on average. LLAMA-3-8B’s 1318

performance sees an improvement in the average 1319

english ability, from 0.404 to 0.415. 1320

Multilingual Ability. Table B2 tabulates the re- 1321

sults for multilingual ability. We see an improve- 1322

ment in the average multilingual ability for the 1323

15



Two-phase Continual Fine-tuning

Model Phase 1 (P1) Phase 2 (P2) IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average
Dataset Dataset P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

MISTRAL-7B
OPENORCA MOPENORCA 0.494 0.482 0.31 0.32 0.601 0.582 0.612 0.562 0.504 0.487

Instruct MOPENORCA 0.550 0.426 0.35 0.06 0.575 0.507 0.641 0.509 0.529 0.376

LLAMA-3-8B
OPENORCA MOPENORCA 0.377 0.425 0.09 0.07 0.579 0.599 0.571 0.564 0.404 0.415

Instruct MOPENORCA 0.735 0.205 0.14 0.0 0.340 0.236 0.533 0.250 0.437 0.173
Dataset Mixture

Model Dataset Mixture IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average

MISTRAL-7B OPENORCA MOPENORCA 0.228 0.035 0.284 0.444 0.248
LLAMA-3-8B OPENORCA MOPENORCA 0.248 0.072 0.484 0.473 0.319

Table B1: English Ability results for two-phase Continual Fine-tuning (CFT). With green, we highlight an increase
in a model’s task ability post P2 fine-tuning. Likewise, red highlights a decline in a model’s task ability.

Two-phase Continual Fine-tuning

Model Phase 1 Phase 2 MLQA (↑) XLSUM (↑) XQuAD (↑) Average
Dataset Dataset Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

MISTRAL-7B
OPENORCA MOPENORCA 0.435 0.36 0.007 0.008 0.556 0.643 0.332 0.337

Instruct MOPENORCA 0.246 0.155 0.012 0.040 0.351 0.323 0.203 0.173

LLAMA-3-8B
OPENORCA MOPENORCA 0.401 0.453 0.017 0.006 0.499 0.531 0.306 0.330

Instruct MOPENORCA 0.609 0.604 0.048 0.048 0.712 0.713 0.456 0.455
Dataset Mixture

Model Dataset Mixture MLQA (↑) XLSUM (↑) XQuAD (↑) Average

MISTRAL-7B OPENORCA MOPENORCA 0.201 0.128 0.071 0.133
LLAMA-3-8B OPENORCA MOPENORCA 0.224 0.034 0.091 0.116

Table B2: Multilingual Ability results for two-phase Continual Fine-tuning (CFT). With green, we highlight an
increase in a model’s language ability post Phase 2 fine-tuning. Likewise, red highlights a decline in a model’s
language ability.

OPENORCA-MOPENORCA dataset pair, for both1324

MISTRAL-7B and LLAMA-3-8B. For Instruct-1325

MOPENORCA, with LLAMA-3-8B, the average1326

multilingual ability is virtually the same across1327

tasks. However, for MISTRAL-7B, we see a slight1328

drop in the average language ability, driven primar-1329

ily due to a drop in performance for MLQA.1330

Furthermore, Table B5, Table B6, and Table B71331

present the language-specific results for MLQA,1332

XLSUM, and XQuAD, respectively.1333

C Reverse Order CFT Result Analysis1334

In tables B3 and B4 we reverse the order of1335

phase 1 and phase 2 datasets where we first1336

finetune on multilingual dataset and then on en-1337

glish counterpart. For MISTRAL-7B MULTIAL-1338

PACA-ALPACA, the average performance is 0.2261339

and for LLAMA-3-8B MULTIALPACA-ALPACA,1340

0.259. Compared to the mixture and ALPACA-1341

MULTIALPACAscores (§4), we observe that en-1342

glish ability benefits from multilingual finetuning1343

in phase 1 leading to similar result to data mixture.1344

However, we observed drastic drop in multilingual 1345

ability when the models were trained on english 1346

data in phase 2, leading to worse results than mix- 1347

ture setting and also the 2 phased setting discussed 1348

in the main paper. 1349

D Mitigating Strategies 1350

Here, we provide additional details on 1351

Spectrum (Hartford et al., 2024). We then 1352

visualize the impact of our mitigating strategies on 1353

the variance in model representations. Lastly, we 1354

ablate our findings for the Instruct-MOPENORCA 1355

phase-wise datasets. 1356

D.1 Spectrum 1357

Spectrum (Hartford et al., 2024) is a layer-freezing 1358

technique that optimizes the fine-tuning of LLMs 1359

by selecting layers based on their signal-to-noise 1360

ratio (SNR). We use Spectrum as a heuristic for 1361

layer-freezing; that is, the layers identified as "im- 1362

portant" by Spectrum are frozen during Phase 2 1363

fine-tuning. A layer is important based on its signal- 1364
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Model Phase 1 (P1) Phase 2 (P2) IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average
Dataset Dataset P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

MISTRAL-7B MULTIALPACA ALPACA 0.245 0.290 0.120 0.114 0.528 0.430 0.476 0.510 0.342 0.336
LLAMA-3-8B MULTIALPACA ALPACA 0.245 0.340 0.038 0.065 0.570 0.540 0.577 0.590 0.357 0.384
MISTRAL-7B MOPENORCA OPENORCA 0.190 0.310 0.091 0.055 0.410 0.490 0.520 0.510 0.303 0.341

LLAMA-3-8B MOPENORCA OPENORCA 0.314 0.340 0.0 0.0 0.530 0.540 0.522 0.590 0.342 0.368

Table B3: English Ability results for two-phase Continual Fine-tuning (CFT)

Model Phase 1 Phase 2 MLQA (↑) XLSUM (↑) XQuAD (↑) Average
Dataset Dataset Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

MISTRAL-7B MULTIALPACA ALPACA 0.122 0.230 0.021 0.030 0.122 0.090 0.088 0.116
LLAMA-3-8B MULTIALPACA ALPACA 0.363 0.340 0.048 0.040 0.058 0.030 0.157 0.134
MISTRAL-7B MOPENORCA OPENORCA 0.165 0.160 0.077 0.070 0.140 0.180 0.127 0.137

LLAMA-3-8B MOPENORCA OPENORCA 0.057 0.0 0.038 0.0 0.047 0.0 0.047 0.0

Table B4: Multilingual Ability results for two-phase Continual Fine-tuning (CFT)

Model Phase 1 Phase 2 MLQA
Dataset Dataset Phase 1 Phase 2

ar de es hi vi zh ar de es hi vi zh

MISTRAL-7B
ALPACA

MULTIALPACA

0.143 0.337 0.331 0.149 0.385 0.031 0.172 0.485 0.529 0.196 0.336 0.009
Instruct 0.113 0.440 0.395 0.088 0.369 0.073 0.228 0.456 0.529 0.279 0.327 0.0222

LLAMA-3-8B
ALPACA 0.320 0.538 0.563 0.438 0.611 0.155 0.552 0.672 0.765 0.573 0.784 0.237
Instruct 0.549 0.701 0.769 0.624 0.788 0.192 0.316 0.453 0.526 0.137 0.464 0.028

MISTRAL-7B
OPENORCA

MOPENORCA

0.374 0.504 0.511 0.395 0.600 0.226 0.298 0.506 0.572 0.274 0.481 0.030
Instruct 0.113 0.440 0.395 0.088 0.369 0.073 0.115 0.253 0.213 0.088 0.222 0.038

LLAMA-3-8B
OPENORCA 0.262 0.545 0.565 0.369 0.568 0.099 0.437 0.549 0.622 0.462 0.625 0.024

Instruct 0.320 0.538 0.563 0.438 0.611 0.155 0.554 0.701 0.771 0.625 0.787 0.188

Table B5: MLQA: Language Ability results for two-phase Continual Fine-tuning (CFT).
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Figure D3: Visualizing Variance in Model Represen-
tations for MISTRAL-7B Mitigating Strategies: We
see a decrease in the variance of model representations
for models trained using our mitigation strategies com-
pared to vanilla Phase 2 models (see Figure 2).

to-noise (SNR) ratio. In the following, we elaborate 1365

on how Spectrum computes SNR. 1366

Marchenko-Pastur distribution. The
Marchenko-Pastur distribution (Marchenko
and Pastur, 1967) is given by:

ρ(λ) =
1

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
,

where
λ± = σ2(1±

√
Q)2,

and Q = N
M , with N and M being the dimensions 1367

of a random matrix W , and σ2 representing the 1368

variance of the entries in W . 1369

SNR. Let W ∈ RN×M be the weight matrix of 1370

a given layer. The empirical spectral density of 1371

W is analyzed by comparing its eigenvalue dis- 1372

tribution of 1/N · W TW against the theoretical 1373

Marchenko-Pastur distribution. Deviations from 1374

this distribution indicate the presence of significant 1375

signal components. We get, 1376

λ± = σ2

(
1±

√
M

N

)2

,

17



where λ± are the largest and smallest eigenvalues1377

and σ the standard deviation. This implies the1378

bounds of singular values of W as:1379

ϵ± =
1√
N

σ

(
1±

√
M

N

)
(1)1380

By evaluating how the singular values of W dis-1381

tribute relative to ϵ±, Spectrum assesses the SNR1382

of each layer, as defined next.1383

Ratio (Hartford et al., 2024). Specifically, the
SNR value of a weight matrix is,

SNR =

∑
k|σk>ϵ σk∑
k|σn<ϵ σn

Here, ϵ separates signal from noisy singular val-1384

ues. Layers with singular values significantly ex-1385

ceeding ϵ+ have a high SNR, indicating a substan-1386

tial presence of informative signal components.1387

Measuring the Ratio (Hartford et al., 2024).1388

Having defined all ingredients above, Spectrum1389

now computes each layer’s SNRs. To do this, it1390

first computes SVD (Zhang and Xu, 2009) of the1391

the layer’s weight matrix, calculates the SNR and1392

normalizes it by the highest singular value. Eq. 11393

gives the noise threshold.1394

Now, Spectrum selects layers with higher SNRs,1395

where the number of layers selected is a hyperpa-1396

rameter. Similar to Hartford et al. (2024), for our1397

experiments, we select the top-50% of layers in1398

each module.1399

D.2 Visualizing Variance in Model1400

Representations1401

In Figure D3, we repeat the same experiment as in1402

§ 4.5 to quantify the representation change in the1403

fine-tuned models using our mitigating strategies.1404

The trend seen is expected from §4.5: we see a1405

decrease in the variation in the model activations,1406

compared to the baseline model trained on Instruct1407

and MULTIALPACA.1408

For the mitigating strategies that are curated to1409

curb representational change, i.e., LF_H2, GR_5,1410

and GR_10, we see that the corresponding curves1411

have lesser change than the baseline Phase 2 model,1412

MISTRAL-7B Instruct MULTIALPACA. That is,1413

there is less representational change for LF_H2,1414

GR_5, and GR_10 compared to MISTRAL-7B In-1415

struct MULTIALPACA.1416

Our generative replay techniques are the clos- 1417

est in the representational change to MISTRAL- 1418

7B Instruct. This ‘closeness’ also improves its 1419

task and language ability performance compared to 1420

the vanilla Phase 2 model, MISTRAL-7B Instruct 1421

MULTIALPACA(refer to Table 1 and Table 2). 1422

D.3 LLAMA-3-8B Doesn’t Show Consistent 1423

Improvement with our Mitigation 1424

Strategies 1425

From Table 5, while both GR and LF improve on 1426

the baseline LLAMA-3-8B-INSTRUCT MULTI- 1427

ALPACA, the gains in task and multilingual ability 1428

are not comparable to LLAMA-3-8B-INSTRUCT. 1429
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Figure 4: Demonstrating extent of cross-lingual trans-
fer in MISTRAL-7B and LLAMA-3-8B on a parallel
dataset prepared by subsampling FLORES (Costa-jussà
et al., 2022). We find that the English activation cluster
for LLAMA-3-8B is separated from the multilingual
cluster, compared to MISTRAL-7B.

To understand this further, for GR, we investigate 1430

the cross-linguality difference between LLAMA- 1431

3-8B and MISTRAL-7B. Like Figure 1, we plot 1432

t-SNEs of the mean model activations for the 1433

MISTRAL-7B and LLAMA-3-8B base models on 1434

two parallel datasets, English and Multilingual. We 1435

create the parallel datasets by subsampling data 1436

from FLORES (Costa-jussà et al., 2022). In Fig- 1437

ure 4, we see that the English activation cluster for 1438

LLAMA-3-8B is separated out from multilingual 1439

cluster, compared to MISTRAL-7B. This suggests 1440

that GR may not be as effective when the model 1441

has less cross lingual ability. While for LF, we ac- 1442

knowledge that our method to identify the layers 1443

to freeze may not be the best and better methods to 1444

identify which layers to freeze can be a direction 1445

for future work. 1446

Last, but not the least, we acknowledge that 1447

LLAMA-3-8B-INSTRUCT seems to be a strong 1448

model even on multilingual benchmarks. Hence, 1449

it is also important to evaluate Phase 1 models on 1450

these benchmarks first and then decide if the Phase 1451
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2 fine-tuning step should be undertaken or not.1452

With regards to LLAMA-3-8B-INSTRUCT1453

MULTIALPACA LA results in Table 2, we be-1454

lieve that this is due to lack of cross-linguality in1455

LLAMA-3-8B-INSTRUCT and less data in MUL-1456

TIALPACA which fails to cause sufficient represen-1457

tation drift to improve the model’s performance.1458

D.4 Additional Ablations1459

We also present the impact of our mitigating strate-1460

gies for the Instruct-MOPENORCA phase-wise1461

datasets on MISTRAL-7B. Table D8 presents these1462

results.1463

We see that LF_H2 achieves moderate success,1464

especially in maintaining the language ability for1465

MLQA (0.258) and XQUAD (0.527). However, task1466

ability shows some decline (e.g., IFEval (0.401)1467

and ALPACA Eval (0.048)), compared to the base-1468

line. Furthermore, GR_5 results in lower task1469

ability (IFEval = 0.281), while GR_10 performs1470

slightly better in task ability (e.g., MMLU = 0.483,1471

HellaSwag = 0.494).1472

Among the baselines, ER_10 performs similarly1473

to the generative replay strategies, with modest1474

improvements in task ability (e.g., IFEval = 0.367,1475

MMLU = 0.479), but still struggles in language ability.1476

Perhaps LoRA shows the best overall performance1477

among the strategies for maintaining task ability1478

(e.g., IFEval = 0.587, MMLU = 0.567, HellaSwag =1479

0.591) with reasonable retention of language ability1480

(e.g., XQUAD = 0.354).1481

Note. These results show that no single strategy1482

is perfect, and future work may need to combine1483

these strategies or develop new approaches to ad-1484

dress the balance between task and language ability1485

retention across phases.1486

D.5 Compute Analysis1487

Our results show that we are able to gain significant1488

preservation of english ability and improvement in1489

multilingual ability with just 10% increase in total1490

compute overhead for ER_10. With GR_5 as close1491

second which increase the compute overhead by1492

only 5%. In our experiments we also use LF (for1493

all three heuristics) where we freeze 50% out of1494

total layers decreasing the compute by 50% in total1495

compute.1496

E Resources Used1497

We used 4 NVIDIA A100 GPU (80 GB) with a1498

96 core AMD CPU to run our inferences. One1499

Finetuning Run with MULTIALPACA took 4 hours 1500

while for MOPENORCA it took 12 hours. 1501

the list of model and the URL with checkpoints 1502

available and licenses are listed below: 1503

LLAMA-3-8B : meta-llama/ 1504

Meta-Llama-3-8B License: llama3 1505

MISTRAL-7B : https://huggingface. 1506

co/mistralai/Mistral-7B-v0.1 License: 1507

Apache-2.0 1508
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CFT Setup Task Ability Language Ability Overall

Model Phase 2 Mitigating IFEval ALPACA Eval MMLU HellaSwag Avg MLQA XLSum XQUAD Avg AvgDataset Strategy

M
IS

T
R

A
L

-7
B

MOPENORCA

– 0.426 0.060 0.507 0.509 0.376 0.155 0.040 0.323 0.173 0.275
LF_H2 0.401 0.048 0.518 0.487 0.364 0.258 0.060 0.527 0.282 0.323

Spectrum 0.442 0.158 0.508 0.616 0.431 0.387 0.086 0.201 0.225 0.328
GR_5 0.281 0.027 0.478 0.495 0.320 0.167 0.042 0.305 0.171 0.246
GR_10 0.305 0.013 0.483 0.494 0.324 0.150 0.038 0.238 0.142 0.233
ER_10 0.367 0.025 0.479 0.493 0.341 0.157 0.042 0.305 0.168 0.255
LoRA 0.587 0.130 0.567 0.591 0.469 0.167 0.027 0.354 0.183 0.326

Table D8: English and Multilingual Ability results for our mitigating strategies, Generative Replay (GR_5 & GR_10),
English Replay (ER_10) and Layer Freezing (LF_H1, LF_H2 & Spectrum). We use LoRA (Hu et al., 2022) as a
baseline strategy. For ER_10, we use the English dataset used in GR with original responses. The Phase 1 dataset is
Instruct for each row. The first row provides MISTRAL-7B numbers for Instruct-MOPENORCA (from Table B1).
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