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ABSTRACT

Input-gradient-based feature attribution methods, such as Vanilla Gradient, Inte-
grated Gradients, and SmoothGrad, are widely used to explain image classifiers by
generating saliency maps. However, these methods struggle to provide explana-
tions that are both visually clear and quantitatively robust. Key challenges include
ensuring that explanations are sparse, stable, and faithfully reflect the model’s
decision-making. Adversarial training, known for enhancing model robustness,
have been shown to produce sparser explanations with these methods; however,
this sparsity often comes at the cost of stability. In this work, we investigate the
trade-off between stability and sparsity in saliency maps and propose the use of a
smoothing layer during adversarial training. Through extensive experiments and
evaluation, we demonstrate this smoothing technique improves the stability and
faithfulness of saliency maps without sacrificing sparsity. Furthermore, a quali-
tative user study reveals that human evaluators tend to distrust explanations that
are overly noisy or excessively sparse—issues commonly associated with expla-
nations in naturally and adversarially trained models, respectively and prefer ex-
planations produced by our proposed approach. Our findings offer a promising
direction for generating reliable explanations with robust models, striking a bal-
ance between clarity and usability.

1 INTRODUCTION

Input gradient-based explanation methods highlight the features most influential to a model’s deci-
sion by calculating the gradient of the model’s output with respect to its input, visualized as saliency
maps in images. One of the earliest approaches, Vanilla Gradient (VG) (Simonyan et al., 2014),
computes gradients across input pixels, ranking features by their gradient magnitude. While prior
studies have shown that input-gradients can capture relevant information regarding a model output
(Samek et al., 2016), VG suffers from noisy saliency map. Hence, various methods like Integrated
Gradient (IG) (Sundararajan et al., 2017), and SmoothGrad (SG) (Smilkov et al., 2017) have been
proposed that modifies the input-gradient approach to reduce saliency map noise and improve the
visual quality of the explanations.

However, quality explanations require more than visual appeal. Explanations should be compre-
hensible to users and satisfy quantitative measures to ensure their practical utility. Key properties
include sparsity, which ensures explanations focus on the most relevant features by discarding ir-
relevant ones (Chalasani et al., 2020); stability, which guarantees consistent explanations across
small input perturbations (Alvarez-Melis & Jaakkola, 2018); and faithfulness, ensuring that the ex-
planations accurately reflect the model’s actual decision-making process (Rong et al., 2022). These
attributes are essential for explanations to be trustworthy and actionable in real-world applications.

In this work, we demonstrate a way to enhance above-mentioned properties of explanations in input-
gradient based methods. We consider three representative input-gradient based methods (Vanilla
Gradient (VG), Integrated Gradient (IG), and SmoothGrad (SG)) and first demonstrate that the sta-
bility of their explanations is closely tied to the model’s sensitivity to input perturbations. Adver-
sarial training (Goodfellow et al., 2015), a technique commonly used to improve model robustness,
results in explanations that are sparser, aligning with previous studies (Chalasani et al., 2020; Et-
mann et al., 2019). However, we observe that this increased sparsity comes at the cost of reduced
stability in explanations. To mitigate this trade-off, we introduce a smoothing layer applied during
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adversarial training. Our extensive experiments with FMNIST, CIFAR-10 and ImageNette demon-
strate that including feature-map smoothing using local filters like mean, median or Gaussian during
adversarial training preserves stability and faithfulness of explanations without sacrificing on spar-
sity, resulting in explanations that are both clearer and more reliable.

Test image Naturally trained Adversarially trained Feature map smoothed

Figure 1: Saliency maps examples using
Vanilla Gradient for different models that cor-
rectly classify the test images. Natural mod-
els produce noisy saliency maps (2nd column),
adversarial models produce sparser maps (3rd
column), and feature-map smoothed models
smoothens the sparse maps (4th column), im-
proving comprehensibility.

In addition, we conduct a qualitative study to as-
sess the comprehensibility of these explanations in
human subjects. We interview 65 graduate stu-
dents specializing in computer vision to assess
their understanding of different types of explana-
tions, which varies in terms of sparsity and smooth-
ness. We use the Hoffman satisfaction scale as
our assessment tool (Hoffman et al., 2023). Our
findings reveal that explanations of input-gradient
based attribution methods in naturally trained mod-
els are perceived as noisy and untrustworthy, while
highly sparse explanations in adversarially trained
models are also problematic due to the loss of
information for enhancing sparsity. Explanations
generated by input-gradient attribution methods for
feature-map smoothed models are rated as more
comprehensible, striking a balance between spar-
sity and clarity.

Figure 1 shows examples of saliency maps for dif-
ferent models on FMNIST, CIFAR-10, and Ima-
geNette test images using Vanilla Gradient. We
observe that saliency maps (a) for naturally trained
models (second column) are noisy, and difficult to
comprehend, (b) for adversarially trained models
(third column) are sparse and align with the con-
tours of the input image, but overly sparse saliency maps can lead to incomplete model understand-
ing, and (c) for robust models with feature-map smoothing (fourth column) shows a reduction in
sparsity to strike a balance between clarity and comprehensiveness. The smoothing helps reduce
noise in the saliency map, resulting in explanations that are more continuous and coherent, while
still maintaining a focus on key regions. Visualizations for Integrated Gradient, SmoothGrad and
additional visualizations for Vanilla Gradient are provided in the Appendix L.

2 RELATED WORK

As highlighted by Ilyas et al. (2019), explanations that are meaningful and faithful to the model’s
decision-making process cannot be pursued independently from the training of the model, a principle
central to our approach. Below we discuss such related works.

Improving saliency maps by training modification: Previous studies have proposed several mod-
ifications to model training to improve saliency maps. For instance, Kim et al. (2019) introduce
layer-wise thresholding during backpropagation, while Dombrowski et al. (2019) suggest soft-plus
activations as an alternative to ReLU for refining saliency maps. Wicker et al. (2023) develop a
framework for certifying the robustness of explanations through training constraints. Meanwhile,
Chenyang & Chan (2023) propose training object detectors by ensuring explanation consistency
within same object and distinctions between different objects. In contrast, we do not make such
modifications, and enhance the quality of explanations by applying simple smoothing filters during
adversarial training.

Study of saliency maps in robust models: Some previous works have also explored saliency map
quality in robust models (Etmann et al., 2019; Zhang & Zhu, 2019; Chalasani et al., 2020; Mangla
et al., 2020; Shah et al., 2021), typically evaluating sparsity, or visual quality. Chalasani et al. (2020)
show that adversarial training with L∞ attacks leads to sparse saliency maps, and theoretically
demonstrate that training a 1-layer network by encouraging stability of explanations is equivalent
to adversarial training, but do not present results on multi-layer networks. Etmann et al. (2019) ex-
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plain the interpretability of robust models by demonstrating alignment between image and saliency
maps, which works well for smaller datasets like MNIST but does not scale to larger datasets like
ImageNet. Zhang & Zhu (2019) argue that adversarially trained models produce shape-biased rep-
resentations, resulting in sparser saliency maps. In contrast, we approach the quality of saliency
maps via the stability of the input-gradient explanation methods and establish a theoretical con-
nection with model sensitivity, and propose adversarial training with feature-map smoothing as the
mitigation of sparsity-stability tradeoff.

3 METHOD

Preliminaries: Consider a single-layer DNN with the form F (x) = H(⟨w,x⟩), where H is a
differentiable scalar-valued activation function (e.g., sigmoid), ⟨w,x⟩ is the dot product between
the weight vector w and input x ∈ Rd. The Vanilla Gradient (VG) method (Simonyan et al., 2014)
measures the sensitivity of the model output F (x) with respect to each feature of the input x. This
is given by computing the gradient of the output F (x) with respect to the input x. The Integrated
Gradients (IG) method (Sundararajan et al., 2017) averages the gradients along a straight-line path
from a baseline input x′ (often a zero vector) to the actual input x. SmoothGrad (SG) (Smilkov
et al., 2017) improves on any gradient-based explanations like VG or IG by adding random noise to
the input x multiple times, calculating the explanations for each noisy version, and then averaging
the results.

3.1 RELATIONSHIP BETWEEN EXPLANATION STABILITY AND MODEL SENSITIVITY

In this section, we establish the foundation for understanding how model sensitivity affects the
stability of gradient-based saliency maps. We first compute the explanation using VG, given by:

V G(x) =
∂F (x)

∂x
=

∂H(⟨w,x⟩)
∂x

= H ′(⟨w,x⟩).w (1)

Here, H ′(⟨w,x⟩) is the gradient of activation function H with respect to the ⟨w,x⟩. For eg, for a
sigmoid activation function, H ′(z) = H(z)(1 −H(z)) where z = ⟨w,x⟩. The feature attribution
score computed by IG for feature i of input image x ∈ Rd with baseline u, model F is given by
Eqn. 2, with a closed form expression of Eqn. 3 (Chalasani et al., 2020):

IGF
i (x,u) = (xi − ui).

∫ 1

α=0

∂iF (u+ α(x− u))∂α (2)

IGF (x,u) = [F (x)− F (u)]
(x− u)⊙w

⟨x− u,w⟩
(3)

For SG, we add Gaussian noise n ∼ N (0, σ2) to the input x and compute the input-gradient for
multiple noisy samples xk = x + nk for k = 1, . . . , N , where N is the number of noise samples.
SG explanation, when aggregating VG, is given by:

SG(x) =
1

N

N∑
k=1

∂F (xk)

∂xk
=

1

N

N∑
k=1

∂H(⟨w,xk⟩)
∂xk

=
1

N

N∑
k=1

H ′(⟨w,xk⟩).w (4)

Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of
inputs x where the model prediction is locally consistent. The stability of explanations-VG, IG and
SG-can be computed by measuring the norm of the difference between the original explanation and
explanation for the noisy image. Using Eqns. 1, 3 and 4, we obtain,

∆V G = ||V GF (x′)− V GF (x)||1 ≤ (F (x′)− F (x))).w (5)

∆IG = ||IGF (x′,u)− IGF (x,u)||1 ≈ ||IGF (x′,x)||1 =
∣∣∣∣∣∣[F (x′)− F (x)]

(x′ − x)⊙w

⟨x′ − x,w⟩

∣∣∣∣∣∣
1

(6)
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∆SG =

N∑
k=1

||SGF (x′)− SGF (x)||1 ≤ 1

N
(F (x′)− F (x))).w (7)

Since w is fixed for a given model, the bounds in Eqns 5, 6 and 7 indicate that the stability of ex-
planations is influenced by the model sensitivity, setting up a basis for using methods that enhance
explanation stability by reducing model sensitivity. However, these bounds do not serve a strict
proportional relationship between model sensitivity and attribution stability, and should not be in-
terpreted as such. Rather, the bounds serve as approximate indicators, highlighting that attribution
stability is influenced by model sensitivity. See Appendix J for the complete proof and Appendix G
for conditions affecting the tightness of the stability bounds.

3.2 ADVERSARIAL TRAINING AND IMPACT ON SALIENCY MAP STABILITY

Building on the observation from Section 3.1, we apply adversarial training (Goodfellow et al.,
2015) as a method to address model sensitivity. Adversarial training modifies the loss to minimize
the sensitivity to input perturbations, by solving E(x,y)∼D

[
max∥δ∥∞≤ϵ L(x+ δ, y;w)

]
where δ is

a small perturbation and ϵ is the perturbation bound.

Smoothing 
operation

1x1 conv

Figure 2: A
feature-map
smoothing block

(a) (b)

(c)
(d)

Natural model Adversarially trained Mean smoothed

Figure 3: Plot of feature maps (channel=7, 21, 127) after first residual block for
a test image on different ResNet18 ImageNette models: (a) a naturally trained
model, (b) an adversarially-trained model, (c) an adversarially-trained model
with feature-map smoothing (mean filter) (d) corresponding saliency maps using
Vanilla Gradient.

In Figure 3, given a test image from the ImageNette dataset, we visualize feature maps derived
from (a) a naturally trained model and (b) an adversarially trained model. All models are trained
using the identical ResNet18 architecture (He et al., 2016) and training settings. The visualized
feature maps are taken after the first residual block, which has 128 channels, with maps from three
representative channels shown for comparison. The notable difference between Figure 3(a) and
Figure 3(b) is that many feature activations in the adversarially-trained model are shrunk, leading
to more selective attention, which influences the saliency maps produced by input-gradient based
methods. Such methods yield sparser explanations in the adversarially trained model compared to
the natural model (see Figure 3(d)). This effect is also explored in (Etmann et al., 2019; Chalasani
et al., 2020). However, intriguingly, adversarial training does not lead to improvement in explanation
stability in DNNs. For such models, we find (in Sections 4.1 and 4.3) that while we gain sparsity in
saliency maps, the sparser explanations affect explanation stability and comprehensibility.

3.3 FEATURE MAP SMOOTHING FOR COMPREHENSIBLE EXPLANATIONS

To address the limitations of adversarial training on saliency map stability and comprehensibility,
we incorporate feature map smoothing (Xie et al., 2019). By smoothing out the sharp reductions
in feature activations, these smoothing techniques help stabilize input-gradient-based explanations,
producing saliency maps that are both sparse and stable, when combined with adversarial training.

In our study, we explore three local-smoothing filters (mean, median, and Gaussian) and two non-
local smoothing filters (non-local Gaussian, and embedded Gaussian) (Wang et al., 2018) due to
their complementary properties in smoothing feature maps (See Appendix B for details on each
filter). Figure 2 represents a feature-map smoothing block, which can take any feature map as input.
The block applies a smoothing operation, followed by a 1x1 convolutional layer, and combines the
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Table 1: Sparsity-Stability Evaluation on Vanilla Gradient (VG), Integrated Gradient (IG) and
SmoothGrad (SG). ↑ and ↓ indicate that larger & smaller values are better respectively.

FMNIST CIFAR-10 ImageNette
A M1 M2 G E NG A M1 M2 G E NG A M1 M2 G E NG

VG

dG ↑ 0.198 0.198 0.171 0.183 0.188 0.219 0.188 0.185 0.181 0.185 0.189 0.190 0.050 0.018 0.036 0.063 0.117 0.107
dRIS ↓ 2.193 1.396 -1.025 1.168 -0.400 1.781 -0.458 -0.621 -0.676 -0.465 -0.503 -0.637 -0.056 -0.121 -0.016 -0.098 0.767 0.401
dROS ↓ 2.084 1.121 -1.222 0.739 -0.451 1.785 0.217 0.260 0.214 0.226 0.280 0.257 -0.362 -0.470 -0.297 -0.456 0.386 0.240
dRRS ↓ 2.489 1.600 -0.799 1.452 -0.126 2.202 0.445 0.453 0.433 0.457 0.438 0.467 0.241 -0.218 -0.096 -0.078 0.778 0.441

IG

dG ↑ 0.067 0.075 0.047 0.050 0.021 0.069 0.091 0.091 0.092 0.094 0.087 0.095 0.034 0.033 0.062 0.041 0.063 0.056
dRIS ↓ 2.016 2.679 -0.843 4.564 1.007 2.714 -1.056 -1.504 -1.862 -1.662 -1.499 -1.597 0.143 -0.0071 0.135 0.276 0.370 0.163
dROS ↓ 1.931 2.917 -0.698 4.681 2.103 2.526 0.228 0.350 -0.123 -0.090 0.593 0.041 -0.230 -0.532 -0.451 -0.376 -0.273 -0.038
dRRS ↓ 2.037 2.811 -0.741 5.030 1.622 2.676 1.050 0.219 0.163 0.410 0.258 0.243 -0.157 -0.121 -0.027 -0.224 0.135 -0.232

SG

dG ↑ 0.198 0.198 0.171 0.183 0.158 0.219 0.681 0.684 0.684 0.678 0.684 0.686 0.036 0.028 0.064 0.035 0.101 0.068
dRIS ↓ 0.945 0.799 -0.466 0.994 -0.282 2.015 -0.040 -0.034 -0.191 0.885 0.372 0.340 0.017 -0.148 0.719 0.045 0.272 0.030
dROS ↓ 5.593 3.418 -0.194 2.034 1.099 2.988 4.619 5.087 4.393 4.540 4.733 0.494 -0.576 -0.728 -0.589 -0.657 -0.331 -0.348
dRRS ↓ -1.360 0.028 -0.850 -0.694 -2.085 1.245 -2.561 -2.469 -2.693 -2.612 -2.440 -2.582 -0.274 -0.381 -0.216 -0.306 0.010 -0.234

result with the input through a residual connection. The introduction of this smoothing block has
minimal effect on model accuracy (detailed in Appendix D), but it significantly alters the behavior
of input-gradient based explanations.

As shown in Figure 3(c), the feature maps of an adversarially trained model with feature-map
smoothing exhibit a noticeable smoothing effect, which varies based on the type of filter applied. For
instance, with mean filtering, rapid changes in feature map values are reduced through averaging.
While adversarial training alone (Figure 3(b)) suppresses many feature activations, the addition of
smoothing helps preserve key features while eliminating the sharp discontinuities typically seen in
naturally trained models. This results in smoother and more interpretable saliency maps, as demon-
strated in Figure 3(d). The smoothed feature maps also align with the stability bounds derived in
Section 3.1, as smoother activations reduce the norm ∥F (x′) − F (x)∥, yielding tighter bounds for
VG, IG, and SG. In Appendix H, we also discuss the effect of convolution operation on the recep-
tive field expansion in the smoothing block and demonstrate that smoothing filters still provides a
competitive advantage especially on sparsity and stability of saliency maps.

4 EXPERIMENT AND ANALYSIS

4.1 EXPERIMENT FRAMEWORK

Setup: We evaluate our approach on three datasets: FMNIST (Xiao et al., 2017), CIFAR-10
(Krizhevsky et al., 2009), and ImageNette (Howard, 2020), training several model variants for each.
The variants include: 1) naturally trained (N), 2) adversarially trained (A), 3) adversarial training
with mean-filter smoothing (M1), 4) adversarial training with median-filter smoothing (M2), 5) ad-
versarial training with Gaussian-filter smoothing (G), 6) adversarial training with embedded filter
smoothing (E), and 7) adversarial training with non-local Gaussian smoothing (NG). Following the
setup from Chalasani et al. (2020), we use LeNet (LeCun et al., 1998) for FMNIST and Wide-ResNet
(Zagoruyko & Komodakis, 2016) for CIFAR-10. We use ResNet-18 He et al. (2016)for ImageNette.
For adversarial training, we apply perturbations under the L∞ norm using the PGD attack (Madry
et al., 2018). The models are trained with ϵ = 0.1 for FMNIST and CIFAR-10, and ϵ = 1/255 for
ImageNette, as these values yielded the best performance across our evaluations. We also achieved
optimal results by adding the smoothing block after the first convolutional or residual block. Full
details of our datasets and training methodology are provided in Appendix A, and we discuss the
impact of altering the smoothing filter’s position in Appendix E. We also discuss the effect of robust
training strategy on saliency map quality for a different network architecture in Appendix F.

Evaluation Metrics: Given a saliency map from Vanilla Gradient (VG), Integrated Gradient (IG)
and SmoothGrad (SG) for each model and dataset, we compute its sparseness using Gini index (G)
(Chalasani et al., 2020), and its stability using relative input stability (RIS), relative output stability
(ROS) and relative representation stability (RRS) (Agarwal et al., 2022). We analyze faithfulness us-
ing ROAD analysis (Rong et al., 2022), and saliency map similarity using structural similarity index
(SSIM) (Adebayo et al., 2018). All results are aggregated for 1000 randomly selected test images
that the model accurately classifies across all datasets. See Appendix K for detail discussion on met-
rics. Our code is available at https://anonymous.4open.science/r/iclr2025xai/
README.md.
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(b) CIFAR10
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(c) ImageNette

Figure 4: ROAD evaluation of VG with MoRF removal strategy

4.2 RESULTS AND DISCUSSION

1. On the sparsity and stability of saliency maps: Similar to Chalasani et al. (2020), we compare
the sparsity and stability improvement of saliency maps with respect to the naturally trained model
(N). Specifically, for a given training method (M), we compute the following metrics that quantify
the improvement in sparseness (dG), relative input stability (dRIS), relative output stability (dROS),
and relative representation stability (dRRS) of the explanation method ϕ(.) ∈ {V G, IG, SG}:
dG[ϕ(x)] = GM [ϕ(x)]−GN [ϕ(x)], dRIS[ϕ(x)] = RISM [ϕ(x)]−RISN [ϕ(x)], dROS[ϕ(x)] =
ROSM [ϕ(x)]−ROSN [ϕ(x)] and dRRS[ϕ(x)] = RRSM [ϕ(x)]−RRSN [ϕ(x)].

As illustrated in Table 1, across all datasets-FMNIST, CIFAR-10 and ImageNette-robust models
consistently achieve higher positive dG values for all three explanation methods (VG, IG, SG), in-
dicating that these methods produce sparser saliency maps in robust models than naturally trained
models. Notably, the highest sparsity gains in explanations are observed in models utilizing non-
local smoothing filters. On FMNIST and CIFAR-10, the NG models (non-local gaussian) attain the
highest sparsity across all explanation methods, and on ImageNette dataset, model E (embedded
gaussian) achieves the highest sparsity for VG, IG and SG. However, this increase in sparsity comes
at the expense of stability, as most robust models exhibit reduced stability in their explanations, sug-
gesting an inverse relationship between the sparsity and stability of saliency maps. For example: NG
models, while achieving high sparsity for explanations, show significant drops in dRIS, dROS, and
dRRS, indicating that their explanations may be more sensitive to input perturbations or variations
in model representations. Notably, models M1 and M2 provide a promising middle-ground. On
FMNIST and CIFAR-10, explanations consistently achieves the highest stability in M2 across all
methods, while still maintaining sparsity gain. On ImageNette, M1 offers the best stability across
explanation methods. These results suggest that the use of local smoothing filters like mean and me-
dian filters during adversarial training can preserve the stability of saliency maps while maintaining
a degree of sparsity.

2. On the faithfulness of explanation: Faithfulness metrics that involve pixel removal and measur-
ing model prediction changes (such as insertion/deletion (Petsiuk et al., 2018)) introduces artifacts
and cause a distribution shift in the perturbed inputs. Retraining based approaches like ROAR
(Hooker et al., 2019) addresses this problem but is computationally expensive. ROAD (Rong et al.,
2022) addresses both concerns in faithfulness evaluation by measuring model accuracy on the test
set as pixels are iteratively removed using a nosily linear imputation strategy. We adopt the MoRF
(Most Relevant First) removal strategy but ROAD demonstrates consistent results with both MoRF
and LeRF (Least Removal First) removal strategy. For further details, see Rong et al. (2022).

Figure 4, 5 and 6 illustrate the evaluation results for VG, IG and SG using ROAD. In the MoRF
strategy, a faster drop in accuracy with increase in removal of k most important features indicate
that key discriminative features are being removed. Across VG, IG and SG, on FMNIST (See Figure
4a, 5a, 6a), while natural models start with sharper drop in accuracy, robust models quickly surpass
them. On CIFAR-10 and ImageNette, robust models exhibit sharper accuracy drops across VG, IG,
and SG, suggesting these explanation methods capture more discriminative features from the input
images. Furthermore, the application of smoothing filters enhances explanations differently across
datasets. For eg. on ImageNette, the complex feature patterns cause smoothing filters to diverge
in impact. This contrast is less prominent on CIFAR-10, where the simpler feature structures lead
to more similar accuracy trajectories. This shows that even with the same explanation method, the
faithfulness of the explanation is influenced by the model and dataset it is applied to.
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(b) CIFAR10
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(c) ImageNette

Figure 5: ROAD evaluation of IG with MoRF removal strategy
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Figure 6: ROAD evaluation of SG with MoRF removal strategy

Additionally, we evaluate faithfulness using faithfulness estimate (Alvarez Melis & Jaakkola, 2018),
Softmax Information Curve (SIC) (Kapishnikov et al., 2019), and Accuracy Information Curve
(AIC) (Kapishnikov et al., 2019) in Appendix C. The results confirm that saliency maps from ro-
bust models are consistently more faithful compared to those from naturally trained models, and the
introduction of smoothing filters does not affect explanation faithfulness.

4. On the structural similarity of saliency maps: Following Adebayo et al. (2018), we plot the
structural similarity of attribution maps. For each image x, we introduce Gaussian noise (N (0, σ))
to create its noisy counterpart x′ while ensuring consistent model predictions. Subsequently, we
compute saliency maps for x and x′ and measure the structural similarity between the maps. As
illustrated in Figures 7, 8 and 9, the input-gradients of robust models exhibit greater invariance to
noise compared to naturally trained models. This outcome aligns with expectations, as adversarially
trained models undergo training with additional perturbation of input. The inclusion of feature map
smoothing imparts an additional layer of invariance to noise, and can further improve the structural
similarity of saliency maps. In SG (Figure 9), the saliency maps have similar structural similarity
over different standard deviation of the noise distribution. This is because SG aggregates explana-
tions by introducing noise to the given test image, so explanations are substantially more robust to
input variations. However, saliency maps of robust models still outperform naturally trained models
in structural similarity.
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Figure 7: Structural similarity evaluation of VG
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Figure 8: Structural similarity evaluation of IG
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Figure 9: Structural similarity evaluation of SG

5. Trade-off between model performance & saliency map quality: Our findings reveal that: (a)
input-gradient based attribution methods produce sparse saliency maps in adversarially trained mod-
els, (b) adversarially trained models with non-local-feature-map smoothing, increase the sparsity of
saliency maps but compromise on stability, (c) adversarially trained models, with local-feature-map
smoothing, enhances the stability of saliency maps without compromising on sparsity, (d) saliency
maps in robust models demonstrate invariance to noise, and (e) saliency maps in robust models are
more faithful to the underlying model than naturally trained counterparts. These observations lead to
the conclusion that saliency maps in robust models are more reliable and interpretable than natural
models for the input-gradient based attribution methods. However, it’s important to note a caveat:
such models come at the expense of benign accuracy.

We illustrate this tradeoff in Figure 10 and Figure 11. We train L∞(ϵ) robust models with perturba-
tion strength ϵ ∈ [0.01, 0.03, 0.06, 0.1] for FMNIST and CIFAR-10 datasets. For each robust model,
we compute its benign accuracy, and three saliency map characteristics using Vanilla Gradient: spar-
sity (Chalasani et al., 2020), faithfulness estimate (Alvarez Melis & Jaakkola, 2018), and structural
similarity (Adebayo et al., 2018). Then, we plot the saliency map characteristics against the benign
accuracy of the model. Figure 10 and Figure 11 illustrate that the higher the sparsity, faithfulness,
and sensitivity, the lower the benign accuracy. This trend holds across all robust models, where
increasing model robustness tends to reduce benign accuracy but enhances sparsity, faithfulness and
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Figure 10: Tradeoff between saliency map quality and model performance on FMNIST
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Figure 11: Tradeoff between saliency map quality and model performance on CIFAR-10

structural similarity of saliency maps. In contrast, naturally trained models have lower values of all
three saliency map metrics but at much higher benign accuracy.
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Figure 12: Relationship between model robustness and saliency map quality on FMNIST
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Figure 13: Relationship between model robustness and saliency map quality on CIFAR-10

6. Relationship between model robustness & saliency map quality: For each L∞(ϵ) robust
model trained at ϵ ∈ [0.01, 0.03, 0.06, 0.1], we compute its robust accuracy as the accuracy of classi-
fying PGD (Madry et al., 2018) samples, created at ϵ = 0.1 and steps = 100. We plot the relationship
between sparsity (Chalasani et al., 2020), faithfulness estimate (Alvarez Melis & Jaakkola, 2018),
and structural similarity (Adebayo et al., 2018) against robust accuracy in Figure 12 and Figure 13,
where we can observe that the sparsity, faithfulness, and sensitivity of saliency maps improves with
the increase in the robustness of the model.

4.3 QUALITATIVE ANALYSIS

Our quantitative studies demonstrate that saliency maps in adversarially trained models are sparse
but at the expense of stability. Incorporating local feature-map smoothing improves stability of
saliency maps without drastically compromising sparsity, balancing these two aspects. In this sec-
tion, we analyze how well end-users comprehend saliency maps from different model training strate-
gies based on the level of sparsity.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We conducted an experiment with 65 graduate students (Ph.D./ Masters), each with at least a year of
experience in computer vision1. The objective was to determine whether the information conveyed
by saliency maps was sufficient for understanding and trusting the underlying model behavior. Par-
ticipants were shown saliency maps using Vanilla Gradient from three models—naturally trained,
adversarially trained, and adversarially trained with feature-map smoothing (median filter)—for 10
images across FMNIST and CIFAR-10 datasets, resulting in 60 image-saliency pairs. The saliency
maps were presented in random order, and participants were unaware of the model that generated
them. Afterward, they rated each saliency map using the Hoffman satisfaction scale (Hoffman et al.,
2023), responding to two key questions: 1) “Does the explanation provide sufficient information?”
and 2) “Do you trust the model’s classification based on this saliency map?” Ratings were on a scale
of 1 (strongly disagree) to 5 (strongly agree). Finally, participants were asked to compare saliency
maps from all three models side by side and select the most comprehensible explanation, providing
free-text justifications for their choices.

Results: We assessed the comprehensibility of the saliency maps based on two metrics: sufficiency
and trust. For the naturally trained model, participants rated sufficiency at an average of 2.08 (± 0.75)
and trust at 2.02 (± 0.82), indicating that the noisy maps from this model were generally considered
untrustworthy. In contrast, adversarially trained models fared better, with sufficiency scoring 2.99
(± 0.93) and trust 3.08 (± 0.90), as participants found these maps clearer and more aligned with the
images. The feature-map smoothed adversarial model scored the highest, with sufficiency at 3.33
(± 1.03) and trust at 3.14 (± 1.01). Participants appreciated the reduction in noise and highlighted
the clarity and relevance of the explanations. When comparing saliency maps directly, 56% of
participants preferred the maps from the feature-map smoothed model, 29% favored the adversarial
model, and only 15% selected the naturally trained model. The majority cited reasons such as
“highlighting important features without excessive detail” and “close enough to the image with the
least noise”.

To statistically validate the results, we performed Wilcoxon signed-rank test (Woolson, 2007) and
one-way ANOVA (Cuevas et al., 2004) on the sufficiency and trust metrics across the three models.
The p-values were extremely small (< 0.001), confirming significant differences between the models
in terms of both metrics. This shows that the different training strategies lead to distinct levels of
comprehensibility and trustworthiness in saliency maps. Details of qualitative study and results are
provided in Appendix I.

5 LIMITATIONS

Our experiments are conducted on three popular datasets such as FMNIST, CIFAR-10, and Ima-
geNette. As model complexity and dataset size grow, especially with higher class counts, adversar-
ial training becomes increasingly difficult (Zhang et al., 2019). Maintaining both high accuracy and
robustness in such settings presents a significant challenge. Additionally, while we explored several
local and non-local smoothing filters, the choice of the optimal filter remains largely empirical and
task-dependent.

6 CONCLUSION

In this paper, we explore the connection between model training strategies and quality of explana-
tions, and propose a simple modification to adversarial training to improve the comprehensibility
of saliency maps. Through a comprehensive study, we established that the quality of saliency maps
is tied to the sensitivity of a model, with adversarially trained models producing sparser but unsta-
ble explanations. Incorporating local feature-map smoothing during adversarial training enhances
stability and faithfulness without sacrificing sparsity. Our work underscores that meaningful and
faithful explanations are tied to the model training strategy. By shedding light on the trade-offs be-
tween robustness of a model and saliency map quality, we advocate for the designing models that
strike a balance between performance and saliency map comprehensibility.

1An Institutional Review Board (IRB) approval was granted by our institution prior to interviewing human
subjects for our qualitative study.
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A DATASET AND TRAINING

FMNIST (Xiao et al., 2017): The Fashion MNIST dataset consists of 28x28 pixel grayscale
images of various clothing items and accessories. It contains a total of 70,000 images, divided into
a training set of 60,000 examples and a test set of 10,000 examples. Similar to (Chalasani et al.,
2020), we train a neural network consisting of two convolutional layers with 32 and 64 filters,
respectively, each followed by 2x2 max-pooling and a fully connected layer of 1024. We use the
Adam optimizer with a learning rate of 0.001, a batch size of 32 and 50 training epochs.

CIFAR-10 (Krizhevsky et al., 2009): CIFAR-10 consists of 60,000 32x32 pixel color im-
ages, with each image belonging to one of ten different classes. These classes include common
objects and animals such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. Similar to (Chalasani et al., 2020), we use a wide Residual Network (Zagoruyko
& Komodakis, 2016) for training CIFAR-10 with the following hyperparameter settings: batch
size=128, momentum optimizer with momentum = 0.9, and weight decay = 5e-4, training steps
= 70000. We use an adaptive learning rate where the learning rate is set to 0.1 for the first 40000
steps, 0.01 for 40000-50000 steps, and 0.001 for the remaining steps. The wide residual network is
trained with 28 layers and widen factor of 10.

ImageNette (Howard, 2020): ImageNette is a 10-class subset of ImageNet (Deng et al.,
2009) with 9469 training images and 3925 test images. We use the 320-pixel resolution images
(for the shortest side) and randomly resize and crop them to 224x224 pixels during training.
We use the standard ResNet-18 model architecture for training on the dataset. We use Ranger
optimizer (Wright, 2019) with an initial learning rate of 8e-03 and epsilon 1e-6. We train the models
from scratch for 200 epochs and employ the early stopping criterion to select the best-performing
model for evaluation.

A.1 ADVERSARIAL TRAINING

Adversarial training (Goodfellow et al., 2015) is a machine learning technique that involves train-
ing a model in the presence of adversarial examples. Adversarial examples are inputs specifically
designed to mislead or deceive the model, causing the model to make incorrect predictions. The
goal of adversarial training is to improve the robustness and generalization of a model against such
perturbed examples. To perform adversarial training, we generate adversarial examples that are pro-
duced from natural samples x ∈ Rd by adding a perturbation vector δ ∈ Rd. The perturbation
vector differs based on the type of attack employed. We use the PGD (Madry et al., 2018) attack
to obtain adversarial perturbations. PGD is an iterative attack where the perturbation is computed
multiple times with small steps. The hyper-parameters of PGD attack in our adversarial training:
for FMNIST and CIFAR-10, ϵ ∈ {0.01, 0.03, 0.06, 0.1}, attack step size = ϵ/10, and number of
iterations = 40; for ImageNette ϵ = 1/255, step size = 0.00784 and number of iterations = 20. Other
training hyperparameters are kept as explained in Appendix A.

B SMOOTHING FILTERS

A generic convolutional neural network with a feature map smoothing block is presented in Fig-
ure 14. The smoothing block consists of local or non-local filtering operations. All feature-map
smoothed models are trained with the same hyper-parameter settings as explained in Appendix A.
We use with the following filters in the paper:
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Figure 14: A generic convolutional neural network with a feature-map smoothing block.
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B.1 LOCAL SMOOTHING:

Local smoothing applies filtering operations to a neighborhood of a feature map. We use the follow-
ing local smoothing filters in our approach:

• Mean filter: A mean filter, equivalent to an average pooling with a stride of 1, replaces
each feature with the average of nearby features within a defined kernel. This smoothing
effect reduces noise and enhances robustness to spatial variations. For an input feature map
(I) of size HxW and a K-sized kernel, the output feature map O(u, v) is calculated using
Eqn. 8:

O(u, v) =
1

K2

K−1∑
i=0

K−1∑
j=0

I(u+ i, v + j) (8)

Here, u and v represent spatial coordinates in the output feature map, ranging from 0 to
H −K and 0 to W −K respectively. I(u + i, v + j) denotes the feature value at spatial
location (u+ i, v + j) in the input feature map. This operation is applied independently to
each channel of the input feature map.

• Median filter: A median filter, unlike a mean filter, computes the median value within a
small sliding window over the feature map, given by Eqn. 9. This method also removes
noise, making representations more robust. It also preserves edges and fine details as it
selects the median value. Given an input feature map I and a median filter window size K,
the output feature map O(u, v) is computed using Eqn. 9:

O(u, v) = median(I(u− K

2
: u+

K

2
, v − K

2
: v +

K

2
) (9)

Here, I(u− K
2 : u+ K

2 , v −
K
2 : v + K

2 ) represents the subset of the input feature around
(u, v) with a size of KxK. This operation is applied independently to each channel of
the input feature map. Since median filters are non-linear and non-differentiable opera-
tions, this can pose challenges when training a neural network end-to-end. We utilize the
approximation of the median filter available in Kornia eri (2020), which is differentiable.

• Gaussian filter: A Gaussian filter applies a smoothing effect to feature maps by convolving
them with a Gaussian kernel, effectively reducing Gaussian noise. This process improves
the signal-to-noise ratio and preserves edges better than mean filtering due to the Gaussian
kernel giving more weight to nearby features while still considering distant feature contri-
butions. The degree of smoothing can be adjusted by modifying the standard deviation (σ)
of the Gaussian kernel. Given an input feature map I and a Gaussian filter kernel K, the
output feature map O(u, v) is calculated with Eqn. 10:

O(u, v) = (I ∗K)(u, v) (10)

Here, ∗ denotes 2D convolution. The Gaussian kernel K is generated using a Gaussian
function with a specific standard deviation σ, defined in Eqn. 11:

K(u, v) =
1

2πσ2
e(−

u2+v2

2σ2 ) (11)

This operation is independently applied to each channel of the input feature map.

Implementation: We utilize the differentiable filters available in Kornia eri (2020). We use a 3x3
Kernel for mean, median, and Gaussian filtering. The standard deviation of the kernel for Gaussian
filtering was computed as (0.3 * ((x.shape[3] - 1) * 0.5 - 1) + 0.8, 0.3 * ((x.shape[2] - 1) * 0.5 - 1) +
0.8) where x is the input image.

B.2 NON-LOCAL SMOOTHING:

The non-local approach Buades et al. (2005) derives a smooth feature map m from an input feature
map x by calculating a weighted average of features across all spatial positions within the set L.
Eqn. 12 shows the formulation where f(xi, xj) is feature dependent weighting function and C(x) is
a normalization function.
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Table 2: Faithfulness evaluation of Vanilla Gradient (VG), Integrated Gradient (IG) & SmoothGrad
(SG)

FMNIST CIFAR-10 ImageNette

N A M1 M2 G E NG N A M1 M2 G E NG N A M1 M2 G E

VG
SIC 0.67 0.68 0.70 0.67 0.67 0.68 0.67 0.26 0.69 0.65 0.67 0.68 0.64 0.67 0.62 0.66 0.68 0.70 0.70 0.74 0.73

AIC 0.72 0.72 0.74 0.74 0.72 0.74 0.73 0.30 0.67 0.63 0.68 0.67 0.65 0.59 0.60 0.62 0.76 0.73 0.69 0.71 0.67

Faithfulness
estimate 0.45 0.82 0.86 0.73 0.86 0.72 0.81 0.07 0.16 0.13 0.19 0.14 0.17 0.16 0.07 0.32 0.38 0.40 0.34 0.36 0.42

IG
SIC 0.23 0.24 0.26 0.24 0.27 0.23 0.23 0.29 0.66 0.65 0.68 0.70 0.60 0.68 0.59 0.71 0.73 0.69 0.63 0.77 0.73

AIC 0.28 0.33 0.31 0.33 0.35 0.28 0.35 0.31 0.66 0.68 0.64 0.66 0.68 0.58 0.65 0.75 0.78 0.74 0.68 0.76 0.75

Faithfulness
estimate 0.90 0.94 0.93 0.96 0.96 0.94 0.93 0.19 0.25 0.27 0.28 0.24 0.26 0.27 0.24 0.35 0.33 0.36 0.33 0.36 0.37

SG
SIC 0.41 0.53 0.54 0.52 0.52 0.43 0.52 0.26 0.55 0.52 0.53 0.62 0.57 0.62 0.59 0.77 0.72 0.79 0.67 0.81 0.78

AIC 0.49 0.64 0.66 0.64 0.64 0.52 0.64 0.29 0.54 0.65 0.52 0.56 0.58 0.43 0.65 0.84 0.81 0.86 0.78 0.79 0.81

Faithfulness
estimate 0.86 0.90 0.90 0.92 0.90 0.82 0.90 0.33 0.56 0.55 0.59 0.54 0.56 0.56 0.72 0.77 0.75 0.76 0.73 0.66 0.71

mi =
1

C(x)
∑
∀j∈L

f(xi, xj).xj (12)

We consider the following forms of weighting function f(.):

• Non-local Gaussian Wang et al. (2018): Eqn. 13 formulates the non-local gaussian func-
tion where xT

i xj is the dot product similarity between the feature maps. The normalization
function is set as C(x) =

∑
∀x f(xi, xj).

f(xi, xj) = e(x
T
i xj) (13)

• Embedded Gaussian Wang et al. (2018): This non-local mean computes similarity in
embedding space by computing embedded versions of the feature map x. As shown in Eqn.
14, θ(xi) = Wθxi and η(xj) = Wϕxj are the two embeddings of feature map x, obtained
after 1×1 convolution. The normalization function is set as C(x) =

∑
∀x f(xi, xj).

f(xi, xj) = e(θ(xi)
T η(xj)) (14)

We use the open-source implementation of non-local means available in Github git (2018).

C FAITHFULNESS EVALUATION

In addition to the faithfulness evaluation using ROAD Rong et al. (2022), we evaluate faithfulness
of explanations using faithfulness estimate (Alvarez Melis & Jaakkola, 2018), Softmax Information
Curve (SIC) (Kapishnikov et al., 2019), and Accuracy Information Curve (AIC) (Kapishnikov et al.,
2019). As presented in Table 2 shows that all robust models exhibit significantly higher faithfulness
than their naturally trained counterparts, particularly on datasets like CIFAR-10 and ImageNette.
This aligns with the findings of Shah et al. (2021), which showed that naturally trained models fail
to capture the most discriminative features, often due to feature leakage.

However, while adversarial training appears to mitigate the feature leakage issue, and improves the
faithfulness of explanations, the underlying mechanisms are still not fully understood. One hypoth-
esis is that adversarial training encourages models to rely on more robust, generalizable features,
which better reflect the decision-making process across adversarial and clean inputs. However, fur-
ther research is needed to explore how adversarial training systematically reduces feature leakage
and whether it can enhance the interpretability of other types of explanations, such as counterfactual
explanations.

D EFFECT OF SMOOTHING FILTER

In Table 3, we present the results of various models on FMNIST, CIFAR-10 and ImageNette, with
both natural (benign) and adversarial (robust) accuracy. Benign accuracy measures the model per-
formance on benign (clean) test set, whereas robust accuracy evaluates how well the models detect
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Table 3: Natural and Robust Accuracy of Various FMNIST, CIFAR-10, and ImageNette Models

Dataset Models/Accuracy N A M1 M1+A M2 M2+A G G+A E E+A NG NG+A

FMNIST Benign Accuracy 89.9 79.9 88.4 80.0 88.8 80.5 89.1 80.3 89.4 81.1 89.23 81.3
Robust Accuracy 9.5 67.7 8.5 67.1 8.2 68.6 6.9 66.8 7.31 64.7 7.23 69.5

CIFAR-10 Benign Accuracy 90.9 80.5 89.7 79.6 88.6 80.1 90.2 80.8 90.6 79.6 89.9 81.9
Robust Accuracy 4.8 54.3 4.5 51.2 4.7 56.3 6.8 53.9 5.1 55.5 7.1 55.8

ImageNette Benign Accuracy 96.3 70.8 93.3 58.8 90.9 55.3 95.5 51.6 88.4 60.8 86.3 58.4
Robust Accuracy 1.6 12.2 1.2 6.5 2.3 14.3 3.7 13.5 3.1 13.9 2.5 18.9

Table 4: Result for adding smoothing block after second residual block

CIFAR-10
M1 M2 G E NG

dG (higher the better) 0.178 0.185 0.176 0.190 0.191
dRIS (lower the better) -0.605 -0.663 -0.477 -0.528 -0.621
dROS (lower the better) 0.268 0.225 0.239 0.273 0.269
dRRS (lower the better) 0.464 0.445 0.462 0.453 0.475

adversarially perturbed samples. The robust models under evaluation are trained at ϵ = 0.1 for
FMNIST and CIFAR-10 and ϵ = 1/255 for ImageNette. Evaluation is performed on a test-set
consisting of adversarial samples created using PGD attack Madry et al. (2018) at ϵ = 0.1 l∞
perturbation bound.

Across all datasets, applying smoothing filters alone did not result in significant changes in natural
or robust accuracy (≈ ±3%). The smoothing filters, when used without adversarial training, did not
drastically improve robustness or reduce natural accuracy, indicating that their primary role may be
in stabilizing feature maps without dramatically altering decision boundaries.

However, when smoothing filters were combined with adversarial training, robust accuracy im-
proved for some filters, particularly in FMNIST and CIFAR-10, where models trained with adver-
sarial samples and smoothing exhibited stronger defense against adversarial attacks. On the Ima-
geNette dataset, we observed a notable drop in benign accuracy when smoothing filters were applied
during adversarial training.

E ABLATION STUDY: POSITION OF SMOOTHING FILTERS

In this section, we investigate how the placement of smoothing filters within the network affects the
stability and sparsity of saliency maps. Specifically, we consider different positions for inserting the
smoothing filters in a CIFAR-10 network and report the results in Tables 4and 5 for Vanilla Gradient.
This CIFAR-10 Residual Network consists of three residual blocks. We add smoothing filters after
second residual block in Table 4 and after third residual block in Table 5. In Table 1, smoothing
filters are added after first residual block.

Across all residual blocks, the sparsity gain remains consistent between 0.176 to 0.192; however,
when smoothing filter is added after third residual block, there is a slight improvement in the sparsity.
Smoothing after the first block consistently yields better results in stability. Hence, to strike a balance
between stability and sparsity, we place the smoothing block after the first residual block.

Table 5: Result for adding smoothing block after third residual block

CIFAR-10
M1 M2 G E NG

dG (higher the better) 0.185 0.180 0.187 0.191 0.192
dRIS (lower the better) -0.599 -0.670 -0.470 -0.517 -0.612
dROS (lower the better) 0.271 0.221 0.235 0.276 0.261
dRRS (lower the better) 0.470 0.429 0.468 0.446 0.473
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Table 6: Sparsity and Stability Evaluations for VG, IG, and SG. Here, ↑ and ↓ indicate higher and
lower values are better.

Vanilla Gradient (VG) Integrated Gradient (IG) SmoothGrad (SG)
A M1 M2 G E NG A M1 M2 G E NG A M1 M2 G E NG

dG ↑ 0.10 0.10 0.10 0.10 0.11 0.09 0.02 0.03 0.02 0.01 0.01 0.02 0.08 0.08 0.08 0.08 0.08 0.08
dRIS ↓ -0.30 -0.40 -0.35 -0.39 -0.39 -0.42 -0.29 -0.62 -0.74 -0.60 -0.84 -0.81 -0.33 -0.36 -0.46 -0.10 -0.49 -0.52
dROS ↓ -0.24 -0.31 -0.26 -0.30 -0.30 -0.32 -0.13 -0.22 -0.52 -0.24 -0.52 -0.56 -0.42 -0.50 -0.49 -0.40 -0.47 -0.53
dRRS ↓ 0.28 0.21 0.25 0.19 0.19 0.18 0.24 0.17 -0.25 0.04 -0.35 -0.24 0.06 0.03 0.02 0.05 0.01 -0.09

F ADDITIONAL EXPERIMENTS

In this section, we demonstrate the effects of robust training strategy on saliency map quality for a
different network, VGG16 Simonyan & Zisserman (2015) on CIFAR-10. We train a VGG-16 con-
volutional neural network for 120 epochs using stochastic gradient descent (SGD) with momentum,
a learning rate of 0.1, and weight decay of 5e-4. The model consists of five convolutional blocks
with batch normalization, ReLU activations, max-pooling layers, and a fully connected classifier.
The training utilizes a learning rate scheduler, which reduces the learning rate by a factor of 0.1
every 30 epochs. For adversarial training, we use the same hyperparameter (PGD attack at ϵ = 0.1).
The hyperparameters for smoothing blocks are also kept as discussed before. Similar to previous
sections, we train following models for VGG network: naturally-trained (N), adversarially-trained
(A), adversarial training with mean-filter smoothing (M1), adversarial training with median-filter
smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training with
embedded filter smoothing (E), and adversarial training with non-local gaussian smoothing (NG). .

Next to evaluate sparsity, and stability, for each model, we compute explanations using Vanilla Gra-
dient (VG), Integrated Gradient (IG), and SmoothGrad (SG), and then compute its sparseness using
Gini index (G) (Chalasani et al., 2020), and its stability using relative input stability (RIS), relative
output stability (ROS) and relative representation stability (RRS) (Agarwal et al., 2022). Similar
to Chalasini et al. (Chalasani et al., 2020), we compare the sparsity and stability improvement
of saliency maps with respect to the naturally trained model (N). Specifically, for a given training
method (M), we compute the following metrics that quantify the improvement in sparseness (dG),
relative input stability (dRIS), relative output stability (dROS), and relative representation stability
(dRRS) of the explanation method ϕ(.) ∈ {V G, IG, SG}:

dG[ϕ(x)] = GM [ϕ(x)]−GN [ϕ(x)] (15)

dRIS[ϕ(x)] = RISM [ϕ(x)]−RISN [ϕ(x)] (16)

dROS[ϕ(x)] = ROSM [ϕ(x)]−ROSN [ϕ(x)] (17)

dRRS[ϕ(x)] = RRSM [ϕ(x)]−RRSN [ϕ(x)] (18)

Table 6 shows the results of sparsity and stability evaluation of saliency maps generated by Vanilla
Gradient (VG), Integrated Gradient (IG), and SmoothGrad (SG) across a variety of models in VGG
network. We can observe that all explanation methods show positive dG values across all models,
indicating that the saliency maps become sparser when used with robust, adversarially trained VGG
models. The sparsity gain, however, remains relatively stable across models, with only slight vari-
ations. This suggests that while robust training introduces sparsity, the choice of smoothing filter
does not significantly impact the sparsity of explanations.

In terms of input and output stability (dRIS and dROS), we observe that models enhanced with
smoothing filters (M1, M2, G, E, NG) consistently exhibit better stability compared to the adversar-
ially trained baseline (A). This is particularly pronounced in the IG and SG methods, where stability
improvements are more significant. The introduction of smoothing filters, such as median and Gaus-
sian, mitigates the instability of explanations seen in the baseline model, resulting in more reliable
and interpretable saliency maps.
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G CONDITIONS AFFECTING THE TIGHTNESS OF STABILITY BOUNDS

The stability bounds presented in Section 3.1 serve as indicators of the relationship between model
sensitivity and attribution stability. However, these bounds are inherently approximate and depend
on several factors, including model architecture, the input data distribution, and the type of pertur-
bation applied. Here, we discuss some conditions under which these bounds may become tighter or
looser.

1. Model Nonlinearity and Activation Function: The nonlinearity of the model, particu-
larly the choice of activation function H , influences the bounds’ tightness. For activation
functions with bounded gradients, such as sigmoid or tanh, the change in H ′(⟨w,x⟩) is lim-
ited, leading to more consistent attributions across small perturbations and therefore tighter
stability bounds. Specifically, for sigmoid, H(z) = 1

1+e−z and H ′(z) = H(z)(1−H(z)),
both of which remain bounded as H(z) approaches 0 or 1. Conversely, for ReLU activation,
H(z) = max(0, z) with H ′(z) = 1 when z > 0 and 0 otherwise, the gradient can change
abruptly across input perturbations. Thus, for perturbations where x is shifted across the
activation boundary, H ′(⟨w,x⟩) may vary significantly, producing looser bounds.

2. Magnitude and Type of Input Perturbations: The type and scale of input perturbations
can also impact bound tightness. For small perturbations, such as Gaussian noise with
n ∼ N (0, σ2), the output change is typically small, and stability bounds remain tight.
However, larger perturbations, such as stronger adversarial attack, often result in more
significant output shifts |F (x′)− F (x)|, leading to looser bounds.

3. Smoothness of Model Parameters: Weight regularization techniques, such as weight de-
cay, result in smoother gradients, reducing the sensitivity of F (x) to input changes. For in-
stance, regularized models with smaller gradient norms tend to have tighter stability bounds
as H ′(⟨w,x⟩) ·w varies less across the input space. Consequently, the bounds for VG, SG,
and IG become tighter, as regularization reduces model sensitivity.

4. Dataset-Specific Characteristics: Datasets with high intraclass variability introduce more
variable responses to perturbations, increasing |F (x′)−F (x)|. As a result, stability bounds
may become looser due to the variability in F (x) across samples.

H STUDY ON RECEPTIVE FIELD EXPANSION

To measure the receptive field effect in the smoothing block, we conduct an additional experiment
on CIFAR-10 where we modify the feature smoothing block so that it performs only a convolution
(identify or randomly initialized). This modified setup ensures that there is only an expansion of the
receptive field without filtering operations and it can provide a baseline study to analyze the effect
of receptive field expansion on its own. Table 7 shows the results for Vanilla Gradient (VG) when
compared with the best performing model.

Table 7: Sparsity and Stability evaluation for Vanilla Gradients. Here, M2: adversarial training with
median smoothing, Identity: adversarial training with feature smoothing block consisting of identify
convolution but no smoothing filter and Random: adversarial training with feature smoothing block
consisting of randomly initialized convolution but no smoothing filters

Models M2 Identity Random
Sparsity (dG) (hgiher is better) 0.18 0.16 0.15
Relative input stability (dRIS) (lower is better) -0.68 -0.41 -0.36
Relative output stability (dROS) (lower is better) 0.21 0.07 0.06
Relative representation stability (dRRS) (lower is better) 0.43 0.41 0.43

The results in the table show that:

1. The ‘M2‘ model still achieves the best sparsity, indicating that the smoothing operation
in addition to the convolutional operation helps the model to learn a smaller number of
discriminative features.

2. The ‘M2‘ model performs significantly better in input stability. This indicates that smooth-
ing filters provide stability in saliency maps with respect to input.
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1

2 3

Figure 15: A test image and corresponding saliency maps for models used in the survey.

Table 8: Wilcoxon and ANOVA test results on the survey

Wilcoxon (p-value) one-way ANOVA
1 vs 2 2 vs 3 1 vs 3 F-stat p value

Sufficiency 9.79E-41 4.26E-14 3.71E-27 200.38 7.82E-72
Trust 5.56E-39 3.24E-11 3.89E-24 193.86 6.58E-70

3. Interestingly, the ‘M2‘ model does not achieve the best score in output stability. This
suggests that while smoothing helps in stabilizing attributions with respect to inputs and
internal representations, it might not directly translate to stability at the model’s output
layer. The expanded receptive field introduced by the identity or random convolutions
likely contributes to this improvement.

4. The ‘Identity‘ model achieves the best representation stability but only marginally outper-
forming ‘M2‘.

Overall, the inclusion of smoothing operations still provides a competitive advantage in improving
the quality of saliency maps with respect to sparsity, input stability and representation stability.

I ON QUALITATIVE STUDY

Our quantitative studies show that robust models produce sparse explanations at the expense of
stability. The inclusion of local feature-map smoothing enhances the stability without a significant
reduction in sparsity, striking a balance between sparsity and stability in the resulting saliency maps.
In this section, we present our analysis of how effectively end-users understand the saliency maps
of different model training strategies based on the level of sparsity. We conducted an experiment
involving human subjects where participants were asked to interpret the saliency maps from two
image datasets: FMNIST and CIFAR-10. Their responses were recorded and assessed using the
Hoffman et al. satisfaction scale Hoffman et al. (2018)2.

Survey Methodology: Comprehension of explanations and their impact is known to be significantly
influenced by the expertise of its end-users Wang & Yin (2021). Hence, we interviewed 65 graduate
students (Ph.D./Masters) with a minimum of one year of experience in computer vision. The main
goal was to determine if the information conveyed by saliency maps was sufficient to understand
and trust the underlying model behavior.

We initiated our study by explaining how to read the saliency maps in the context of image classifi-
cation tasks, emphasizing the meaning behind different pixel colors. Once participants understood
the concept of the saliency maps, we showed them a set of ten images, each accompanied by its
respective saliency maps generated from three distinct models: a naturally trained model, an ad-
versarially trained model, and an adversarially trained model with feature map smoothing (median
filter), resulting in a total of 60 image-saliency map pairs. To avoid bias, the order of the saliency

2An Institutional Review Board (IRB) approval was granted by our institution prior to interviewing human
subjects for our qualitative study.
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Test Case 1: Observe the image from class "Sandal" and its corresponding saliency map and 
answer the questions that follow.

Rate your agreement with the statement: The given explanation has sufficient information 
i.e. the pixel distribution in the heatmap are enough to understand the model prediction. 
1: Strongly disagree 5: Strongly agree.

1
2
3
4
5

Rate your agreement with the statement: Given this heatmap, I can trust this model in its 
classification task. 
1: Strongly disagree 5: Strongly agree

1
2
3
4
5

Figure 16: A sample of question from the survey.

maps presentation was randomized, and the participants did not know the model that produced each
saliency map. We then asked them to complete a survey based on the Hoffman et al. satisfaction
scale Hoffman et al. (2023). This survey included two questions for each image-saliency map pair:
1) “Does the given explanation have sufficient information?” and 2) “Given this heatmap, do you
trust the model’s classification?”. Participants rated their agreement on a scale from 1 (strongly dis-
agree) to 5 (strongly agree) (See Figure 16 for a sample). After reviewing the saliency maps from
each model individually, we showed the participants saliency maps from all three models side-by-
side, and asked them to select the most comprehensible explanation (as shown in Figure 15). We
also collected free-text answers by asking them to explain the reason behind their selection.

In Table 8, we present the results of two statistical tests, the Wilcoxon signed-rank test Woolson
(2007) and one-way ANOVA Cuevas et al. (2004), for inspecting if there is a significant difference
between the trust and sufficiency metrics of the three different models, (1) a naturally trained model,
(2) an adversarially-trained model, and (3) an adversarial-trained feature-map smoothed model. The
extremely small p-values (less than 0.001) suggest that there are significant differences between both
“sufficiency” and “trust” metrics of saliency maps across the three models.

J RELATIONSHIP BETWEEN ATTRIBUTION STABILITY AND MODEL
SENSITIVITY

Consider a single-layer DNN with the form F (x) = H(⟨w,x⟩), where H is a differentiable scalar-
valued activation function (e.g., sigmoid), ⟨w,x⟩ is the dot product between the weight vector w
and input x ∈ Rd.

J.1 RELATIONSHIP FOR VANILLA GRADIENT (VG)SIMONYAN ET AL. (2014)

Let x ∈ Rd denote an input image. The Vanilla Gradient (VG) explanation for a model F is
computed as,

V G(x) =
∂Fc(x)

∂x
(19)
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For a single-layer DNN with the form F (x) = H(⟨w,x⟩), where H is a differentiable scalar-valued
activation function, ⟨w,x⟩ is the dot product between the weight vector w and input x ∈ Rd, the
VG can be computed by applying the chain rule as follows:

V G(x) =
∂H(⟨w,x⟩)
∂⟨w,x⟩

.
∂⟨w,x⟩

∂x
= H ′(⟨w,x⟩).w (20)

Here, H ′(⟨w,x⟩) is the gradient of activation function H with respect to the ⟨w,x⟩. Let z = ⟨w,x⟩
and H(z) = 1

1+exp(−z) be a sigmoid activation function then,

H ′(z) =
exp(−z)

(1 + exp(−z))2
(21)

=
1

1 + exp(−z)
(1− 1

1 + exp(−z)
)

= H(z)(1−H(z))

Then, the VG attribution for an input x is given by

V GF (x) = H(⟨w,x⟩)(1−H(⟨w,x⟩)).w (22)

Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of
inputs x where the model prediction is locally consistent. Then, the VG attribution for an input x′

is given by

V GF (x′) = H(⟨w,x′⟩)(1−H(⟨w,x′⟩)).w (23)

The stability of the VG attribution is computed as the norm of the difference between the attribution
of the original image and its noisy counterpart and can be expressed as

∆ = ||V GF (x′)− V GF (x)||1 (24)

Substituting the expressions for V GF (x) and V GF (x′), and simplifying, we obtain

∆ = ||V GF (x′)− V GF (x)||1
= ||H(⟨w,x′⟩)(1−H(⟨w,x′⟩))w −H(< w,x >)(1−H(⟨w,x⟩)).w||1

= ||
(
H(⟨w,x′⟩)(1−H(⟨w,x′⟩))−H(⟨w,x⟩)(1−H(⟨w,x⟩))

)
w||1

= ||
(
F (x′)(1− F (x′))− F (x)(1− F (x))

)
w||1

= ||
(
(F (x′)− F (x))(1− F (x′)− F (x))

)
w||1

(25)

Bounding this by the magnitude of the change in model prediction,

∆ ≤ ||
(
F (x′)− F (x)

)
w||1

∆ ≤ ||F (x′)− F (x)||1.||w||1
(26)

Assuming w to be constant for a given model, the stability of the VG attribution is a direct result of
the sensitivity of the model ||F (x′)− F (x)||.
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J.2 RELATIONSHIP FOR INTEGRATED GRADIENT (IG) SUNDARARAJAN ET AL. (2017)

The feature attribution score computed by Integrated Gradient (IG) for feature i of input image
x ∈ Rd with baseline u, model F is given by:

IGF
i (x,u) = (xi − ui).

∫ 1

α=0

∂iF (u+ α(x− u))∂α (27)

For an input image x, IG returns a vector IGF (x,u) ∈ Rd with scores that quantify the contribution
of xi to the model prediction F (x). For a single layer network F (x) = H(⟨w,x⟩) where H is a
differentiable scalar-valued function and ⟨w,x⟩ is the dot product between the weight vector w and
input x ∈ Rd, IG attribution has a closed form expression Chalasani et al. (2020).

For given x, u and α, let us consider v = u+ α(x− u). If the single-layer network is represented
as F (x) = H(⟨w,x⟩) where H is a differentiable scalar-valued function, ∂iF (v) can be computed
as:

∂iF (v) =
∂F (v)

vi

=
∂H(⟨w,v⟩)

∂vi

= H ′(z)
∂⟨w,v⟩
∂vi

= wiH
′(z) (28)

Here, H ′(z) is the gradient of the activation H(z) where z = ⟨w,v⟩. To compute ∂F (v)
∂α :

∂F (v)

∂α
=

d∑
i=1

(
∂F (v)

∂vi

∂vi
∂α

) (29)

We can substitute value of ∂vi

∂α = (xi − ui) and ∂iF (v) from Eq. 28 to Eq. 29.

∂F (v)

∂α
=

d∑
i=1

[wiH
′(z)(xi − ui)]

= ⟨x− u,w⟩H ′(z) (30)

This gives:
dF (v) = ⟨x− u,w⟩H ′(z)∂α (31)

Since ⟨x− u,w⟩ is scalar,

H ′(z)∂α =
dF (v)

⟨x− u,w⟩
(32)

Eq. 32 can be used to rewrite the integral in the definition of IGF
i (x) in Eq. 27,

∫ 1

α=0

∂iF (v)∂α =

∫ 1

α=0

wiH
′(z)∂z [From Eqn. 28]

=

∫ 1

α=0

wi
dF (v)

⟨x− u,w⟩

=
wi

⟨x− u,w⟩

∫ 1

α=0

dF (v)

=
wi

⟨x− u,w⟩
[F (x)− F (u)] (33)
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Hence, we obtain the closed form for Integrated Gradient from its definition in Eqn. 27 as

IGF
i (x,u) = [F (x)− F (u)]

(xi − ui)wi

⟨x− u,w⟩

IGF (x,u) = [F (x)− F (u)]
(x− u)⊙w

⟨x− u,w⟩
(34)

Here, ⊙ is the entry-wise product of two vectors.

Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of
inputs x where the model prediction is locally consistent. The stability of the IG attribution can be
computed using Eqn. 35.

∆ = ||IGF (x′,u)− IGF (x,u)||1 (35)

This is equivalent to,

∆ ≈ ||IGF (x′,x)||1

=
∣∣∣∣∣∣[F (x′)− F (x)]

(x′ − x)⊙w

⟨x′ − x,w⟩

∣∣∣∣∣∣
1

=
∣∣∣∣∣∣[F (x′)− F (x)]

∆x ⊙w

⟨∆x,w⟩

∣∣∣∣∣∣
1

(36)

Assuming w to be constant for a given model, we can conclude from Eqn. 36 that the sensitivity of
the IG attribution is a direct result of the sensitivity of the model ||F (x′)− F (x)||.

J.3 RELATIONSHIP FOR SMOOTHGRAD (SG) SMILKOV ET AL. (2017)

To compute SmoothGrad (SG) (Smilkov et al., 2017), we introduce Gaussian noise n ∼ N (0, σ2)
to the input x and compute the input-gradient for multiple noisy samples xk = x + nk for k =
1, . . . , N , where N is the number of noise samples.

SG(x) =
1

N

N∑
k=1

∂F (xk)

∂xk
(37)

SG explanation is then obtained by averaging the explanations. Since SG is a simple averaging of
Vanilla Gradient, the relationship for SG follows from relationship of VG, as shown in Section J.1.

K EVALUATION METRICS

Below, we discuss evaluation metrics used in our experiments.

K.1 SPARSITY CHALASANI ET AL. (2020)

We measure the sparsity of the attribution vector ϕ(x) by computing its Gini index, available in
Quantus Hedström et al. (2023). Given a vector of attribution ϕ(x) ∈ Rd, the absolute of the vector
is first sorted in non-decreasing order, and the Gini index is computed using Eqn. 38.

G(ϕ(x)) = 1− 2

d∑
k=1

ϕ(x)(k)
||ϕ(x)||1

d− k + 0.5

d
(38)

The formula calculates a weighted sum of fractions, where each fraction represents the contribution
of the k-th largest element to the overall sparsity. The formula assigns greater weight to larger
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elements and smaller weight to smaller elements. The Gini Index values lie in between [0, 1]; A
value of 1 indicates perfect sparsity, where only one element in the vector ϕi(x) > 0. The sparsity
is zero if all the vectors are equal to some positive value.

K.2 STABILITY AGARWAL ET AL. (2022)

The stability metric measures how similar explanations are for similar inputs. Relative input stability
(given by Eqn. 39) is measured as the difference between two attribution vectors ϕ(x) and ϕ(x′) with
respect to the difference between the two inputs x and x′. x′ is computed by perturbing x. A lower
RIS value shows that explanations are similar for similar inputs.

RIS = maxx′
||ϕ(x)−ϕ(x′)

ϕ(x) ||
max(|| x−x′

x ||p, ϵmin)

∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(39)

Relative input stability only measures the difference in input space and does not measure whether
there was a change in the logic path of a network for a perturbed input. Relative representation
stability (given by Eqn. 40) uses the internal representation of the model (a(.)) to compute the
stability.

RRS = maxx′
||ϕ(x)−ϕ(x′)

ϕ(x) ||
max(||a(x)− a(x′)||p, ϵmin)

∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(40)

Relative output stability (given by Eqn. 41) measures the difference between two attribution vectors
ϕ(x) and ϕ(x′) with respect to the difference between the model logits for two inputs z(x) and z(x′)
when x is perturbed to produce x′. A lower ROS value shows that explanations are similar for similar
inputs.

ROS = maxx′
||ϕ(x)−ϕ(x′)

ϕ(x) ||
max(||z(x)− z(x′)||p, ϵmin)

∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(41)

Nx in Eqn. 39, Eqn. 40 and Eqn. 41 indicates a neighborhood of inputs x′ similar to x. We use the
implementation of the stability metrics available in Quantus Hedström et al. (2023).

K.3 FAITHFULNESS

Faithfulness estimate Alvarez Melis & Jaakkola (2018): The faithfulness metric measures the
influence of attributed features on model prediction. If the features attributed to an explanation
method truly capture the model behavior, the influence should be high. Influence is measured with
a correlation metric where a given image is iteratively modified to compute the correlation between
the sum of attributions and the difference in model prediction. We use the implementation of the
faithfulness estimate available in Quantus Hedström et al. (2023).

Performance Information Curves (PIC) Kapishnikov et al. (2019): Performance Informa-
tion Curves (PIC) is analogous to the area under Receive Operating Characteristics (ROC) curves,
proposed by Kapishnikov et al., to measure the quality of saliency maps. There are two variants of
PIC: Area Under Softmax Information Curve (SIC) and Area Under Accuracy Information Curve
(AIC). To measure PIC, we take a blurred version of a given image and then unblur the pixels
by adding features that are deemed important by an attribution method. We measure the entropy
of the unblurred image and model performance and then map the model performance result as a
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function of the entropy. The two variants of the PIC, AIC, and SIC, differ in the model performance
metric used to compute the area under the curve. AIC uses the accuracy of images and SIC uses the
proportion of the softmax. We use the implementation shared by the authors of the original paper
PAIR (2021).

K.4 ROAD: REMOVE AND DEBIAS RONG ET AL. (2022)

ROAD measures the accuracy of a model on the provided test set at each step of an iterative process
of removing k most important pixels. Removal of pixels is done with a noisy linear imputation to
avoid out-of-distribution samples.

We use the MoRF (Most Relevant First) removal strategy implementation of the ROAD evaluation
available in Quantus Hedström et al. (2023). Given a network F and an input sample, an attribution
method assigns an importance value to each input feature for the sample. The features are then
ordered in decreasing order of importance for MoRF. At each iteration, k most important features
are removed and the model accuracy is measured. We set k = 5 in our experiments. We prefer a
sharper drop in accuracy for a better explanation.

We use ROAD instead of Insertion/Deletion Petsiuk et al. (2018) or ROAR Hooker et al. (2019)
because Insertion/Deletion introduces artifacts and results in a distribution shift of perturbed inputs,
and ROAR requires an expensive model retraining.

K.5 SIMILARITY ADEBAYO ET AL. (2018)

Similarity measures the structural similarity between saliency maps of original and perturbed sam-
ples, given the same model prediction Adebayo et al. (2018). We measure the similarity of saliency
maps using the structural similarity index (SSIM). For each image x, we add Gaussian noise
(N (0, σ)) and generate its noisy version x’ such that the model prediction is consistent. We then
compute the saliency map of x and x’ and measure the structural similarity between the maps.

L ADDITIONAL VISUALIZATION

We provide additional visualizations on Vanilla Gradient (VG) in Figures 17, 18 and 19 for var-
ious models: naturally-trained (N), adversarially-trained (A), adversarial training with mean-filter
smoothing (M1), adversarial training with median-filter smoothing (M2), adversarial training with
Gaussian-filter smoothing (G), adversarial training with embedded filter smoothing (E), and adver-
sarial training with non-local gaussian smoothing (NG). We can observe that saliency maps from the
adversarial models (A) are sparser than the naturally trained model (N). Adversarially trained mod-
els with local feature map smoothed models (M1, M2, G) reduce the sparsity to improve stability.
The use of non-local smoothing filters (E and NG) increases the sparsity further.

We plot the saliency maps using Integrated Gradient (IG) for various models in Figures 20, 21 and
22. As illustrated, IG produces more fine-grained saliency maps than Vanilla Gradient even with a
naturally trained model. Robust models increase the sparsity of such saliency maps, compromising
stability. Adding local filters like median during adversarial training reduces sparsity to enhance
stability.

We provide illustrations for SmoothGrad (SG) in Figures 23, 24 and 25 where we can observe that
saliency maps of naturally trained models are visually sharper and coherent because of averaging.
However, using robust models increases the sparsity and produces more comprehensible saliency
maps.
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Test image N A M1 M2 G E NG

Figure 17: Additional visualization for VG (FMNIST) (N: naturally-trained, A: adversarially-
trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with median-filter,
G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter, NG:
adversarially-trained with non-local gaussian)

Test image N A M1 M2 G E NG

Figure 18: Additional visualization for VG (ImageNette) (N: naturally-trained, A: adversarially-
trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with median-filter,
G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter, NG:
adversarially-trained with non-local gaussian)
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Test image N A M1 M2 G E NG

Figure 19: Additional visualization for VG (CIFAR-10) (N: naturally-trained, A: adversarially-
trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with median-filter,
G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter, NG:
adversarially-trained with non-local gaussian)

Test image N A M1 M2 G E NG

Figure 20: Saliency maps visualization on FMNIST using IG across different models (N: naturally-
trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-
trained with median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with
embedded filter, NG: adversarially-trained with non-local gaussian).
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Test image N A M1 M2 G E NG

Figure 21: Saliency maps visualization on CIFAR-10 using IG across different models (N: naturally-
trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-
trained with median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with
embedded filter, NG: adversarially-trained with non-local gaussian).

Test image N A M1 M2 G E NG

Figure 22: Saliency maps visualization on ImageNette using IG across different mod-
els (N: naturally-trained, A: adversarially-trained, M1: adversarially-trained with mean-filter,
M2: adversarially-trained with median-filter, G: adversarially-trained with Gaussian-filter, E:
adversarially-trained with embedded filter, NG: adversarially-trained with non-local gaussian).
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Test image N A M1 M2 G E NG

Figure 23: Saliency maps visualization on FMNIST using SmoothGrad across different mod-
els (N: naturally-trained, A: adversarially-trained, M1: adversarially-trained with mean-filter,
M2: adversarially-trained with median-filter, G: adversarially-trained with Gaussian-filter, E:
adversarially-trained with embedded filter, NG: adversarially-trained with non-local gaussian).
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Figure 24: Saliency maps visualization on CIFAR-10 using SmoothGrad across different mod-
els (N: naturally-trained, A: adversarially-trained, M1: adversarially-trained with mean-filter,
M2: adversarially-trained with median-filter, G: adversarially-trained with Gaussian-filter, E:
adversarially-trained with embedded filter, NG: adversarially-trained with non-local gaussian).
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Test image N A M1 M2 G E NG

Figure 25: Saliency maps visualization on ImageNette using SmoothGrad across different mod-
els (N: naturally-trained, A: adversarially-trained, M1: adversarially-trained with mean-filter,
M2: adversarially-trained with median-filter, G: adversarially-trained with Gaussian-filter, E:
adversarially-trained with embedded filter, NG: adversarially-trained with non-local gaussian).
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