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ABSTRACT

The growing demand for automated writing assistance in diverse academic do-
mains highlights the need for robust Chinese Grammatical Error Correction
(CGEC) systems that can adapt across disciplines. However, existing CGEC
research largely lacks dedicated benchmarks for multi-disciplinary academic
writing, overlooking continual learning (CL) as a promising solution to handle
domain-specific linguistic variation and prevent catastrophic forgetting. To fill
this crucial gap, we introduce CL2GEC, the first Continual Learning bench-
mark for Chinese Literature Grammatical Error Correction, designed to evaluate
adaptive CGEC across multiple academic fields. Our benchmark includes 10,000
human-annotated sentences spanning 10 disciplines, each exhibiting distinct lin-
guistic styles and error patterns. CL2GEC focuses on evaluating grammatical
error correction in a continual learning setting, simulating sequential exposure to
diverse academic disciplines to reflect real-world editorial dynamics. We eval-
uate large language models under sequential tuning, parameter-efficient adapta-
tion, and four representative CL algorithms, using both standard GEC metrics and
continual learning metrics adapted to task-level variation. Experimental results
reveal that regularization-based methods mitigate forgetting more effectively than
replay-based or naive sequential approaches. Our benchmark provides a rigor-
ous foundation for future research in adaptive grammatical error correction across
diverse academic domains.

1 INTRODUCTION

Chinese Grammatical Error Correction (CGEC) has evolved rapidly alongside the surge of large lan-
guage models (LLMs) (Ye et al., 2025b; \Qingsong et al., [2025) and intelligent writing assistants |L1
et al.| (2022); Qiu et al.[(2025)); [L1 et al.| (2024b)); [Zhang et al.| (2025). Most existing CGEC bench-
marks, however, are (1) learner or general domain oriented Zhang et al.| (2022)); Ma et al.| (2022)), and
(2) evaluated in a static setting Xu et al.|(2022);|Ye et al.[(2023b;|2024)). As aresult, they offer limited
insight into how CGEC models behave in high-stakes professional domains, especially in scientific
manuscripts where style, terminology, and error distribution vary markedly across disciplines.

We argue that real-world scientific writing introduces an under-explored challenge for CGEC: con-
tinual domain adaptation |Wu et al.| (2024); |Guan et al.| (2025). In practice, CGEC systems is ex-
pected to ingest papers from, e.g., Physics this month and Humanities next month, continually re-
fining its internal knowledge without access to all past data. The threat of catastrophic forgetting |L1
et al.| (20244a)), widely studied in vision Shmelkov et al.[|(2017) and NLP tasks |Shao & Feng|(2022),
has received almost no attention in CGEC, leaving an open question: Can modern LLMs retain
grammatical knowledge while sequentially adapting to new scientific disciplines?

Addressing this question is crucial for three reasons. First, academia encompasses hundreds of
sub-fields whose linguistic conventions differ in syntax and terminology, significantly challenging
current LLMs. Second, annotation budgets are usually fragmented by discipline, making one-shot
and full-data retraining impractical. Third, reliable cross-domain grammars underpin downstream
tasks such as automatic reviewing |Pang et al.| (2025), plagiarism detection |Quidwai et al.| (2023),
and literature summarization |Li et al.| (2024d)).
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Figure 1: The correction examples in CL2GEC.

Therefore, to systematically study CGEC under the context of continual learning (CL), we present
CL2GEC, the first Continual Learning benchmark for Chinese Literature Grammatical Error
Correction. The CL?GEC benchmark contains 10,000 sentences evenly sampled from 10 academic
disciplines, each sentence paired with up to three independent human references. The corpus was
curated from China National Knowledge Infrastructure (CNKI cleaned for copyright, and double-
checked by professional editors to reflect authentic error patterns. We release both a canonical split
(train/dev/test) and a sequence of 10 task partitions that simulate chronological arrival of disciplines,
enabling controlled CL evaluation. CL?GEC aims to set a new standard for evaluating and advanc-
ing lifelong grammatical error correction in the era of domain-diverse scientific communication.

Our proposed CL2GEC allows researchers to probe a spectrum of model abilities, mainly including
(1) in-domain grammatical accuracy, (2) cross-discipline transfer, and (3) resistance to catastrophic
forgetting. Consequently, the benchmark fills a vital gap between generic CGEC datasets and real-
world academic editing.

Empirically, we benchmark several representative continual learning strategies, including naive se-
quential fine-tuning, LoR A-based adaptation (Hu et al.|[2021)), and four CL algorithms (EWC (Kirk-
patrick et al., 2017), GEM (Lopez-Paz & Ranzato, 2017, LwF (Li & Hoiem, [2016), OGD (Fara-
jtabar et al.| 2019)). Our comprehensive experiments reveal that while these methods significantly
mitigate catastrophic forgetting compared to naive sequential approaches, the optimal strategies
vary. We observe a nuanced impact of task ordering on knowledge retention and transfer, including
unexpected interference between semantically related disciplines and a trade-off between precision
and recall depending on the task sequence.

We highlight our main contributions as follows:

+ We introduce CL2GEC, the first large-scale and multi-discipline benchmark tailored to Chinese
literature grammatical error correction in the context of continual learning.

* We devise task-specific CL metrics (Average Performance, Backward Transfer) adapted to CGEC,
and provide a reproducible evaluation suite.

* We conduct extensive LLM experiments, revealing critical limitations of existing CL methods and
establishing solid baselines for future work.

'https://www.cnki.net/
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2 RELATED WORK

2.1 CHINESE GRAMMATICAL ERROR CORRECTION

Chinese grammatical error correction (CGEC) has developed from early sequence-to-sequence
(Seq2Seq) models (Ye et al.,[2023a};|2025a; |1 et al.,|[2025)), which model correction as a generation
task. These approaches benefited from pretraining and syntactic priors but were mainly applied to
general learner corpora.

With the advent of large language models (LLMs) (Kuang et al., [2025} [Li et al., [2024c)), recent
work has explored their capabilities for CGEC (Wang et al.| 2024} |Xiao et al.l |2024)). Closed- and
open-source LLMs have been evaluated through in-context learning and instruction tuning, showing
improved fluency and generalization across error types. ScholarGEC (Kong & Wang, |[2025) further
investigates controllability in academic writing by combining error detection and correction within
a multi-task framework.

While prior work focuses on enhancing model performance under static settings, relatively little
attention has been paid to domain transfer or continual adaptation. Our CL2?GEC benchmark
addresses this gap by providing a multi-discipline scientific dataset and evaluating models under
domain-incremental settings, enabling more systematic assessment of generalization in CGEC.

2.2 CONTINUAL LEARNING FOR NLP

Continual learning (CL) aims to enable models to learn from sequentially arriving tasks while mit-
igating catastrophic forgetting (De Lange et al.l [2021}; [Xing et al.| 2024). Existing approaches are
typically grouped into three categories: regularization-based, replay-based, and architectural-based.

Regularization-based methods introduce constraints on parameter updates to preserve knowledge
of prior tasks. For example, Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2019) enforces
gradient orthogonality, Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) penalizes
changes to parameters deemed important, and Gradient Episodic Memory (GEM) (Lopez-Paz &
Ranzato, 2017 maintains an episodic buffer to avoid loss increases on earlier tasks. Learning with-
out Forgetting (LwF) (L1 & Hoiem, [2016) mitigates forgetting through distillation from previous
model snapshots.

Replay-based methods explicitly revisit past knowledge by reusing stored samples or their ap-
proximations. The simplest variant is Experience Replay, which replays examples from a memory
buffer, while more advanced approaches use generative replay or replay-based distillation such as
SEEKR (He et al., 2024)).

Architectural-based methods adapt the model structure to integrate new information, either by
allocating task-specific components or expanding capacity. A representative example is Progressive
Prompts (Razdaibiedina et al., [2023)), which incrementally composes task-specific prompts into a
composite representation.

While these approaches have been widely studied in NLP, grammatical error correction (GEC)
presents unique challenges: it requires not only accuracy but also fluency and domain sensitiv-
ity. To our knowledge, continual learning has not been systematically explored for Chinese GEC
(CGEC). Our work addresses this gap by introducing the first continual CGEC benchmark, enabling
controlled evaluation across diverse academic disciplines.

3 CL2GEC BENCHMARK

3.1 PROBLEM DEFINITION

Grammatical Error Correction (GEC) aims to transform an ungrammatical sentence X =
{x1,29,..., 27} into its grammatically correct counterpart Y = {y1, ya, ...,y } while preserv-
ing the original semantics. Typically formulated as a sequence-to-sequence task, GEC models are
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trained to minimize the negative log-likelihood of the corrected output:

T/
Lope =—» log P(y: | Yy, X). (1)
t=1
Continual Learning (CL) addresses the challenge of learning from a stream of tasks {D1, ..., Dy}

ne

without access to previous task data. In the supervised setting, each task D; = {(zf, y!)}1, is
presented sequentially, and the model is trained to accumulate knowledge over time while avoiding
catastrophic forgetting. Let fo be a model with parameters ©. The goal of CL is to optimize
performance across all tasks:

N
mgxz Z log Po(y | x). (2)

t=1 (z,y)€D;

Evaluation in CL involves metrics such as Average Performance and Backward Transfer, which
measure the model’s ability to retain and transfer knowledge across tasks.

The CL?GEC Task We define CL2GEC as a domain-specific Grammatical Error Correction
(GEC) benchmark formulated under the continual learning (CL) paradigm. The dataset is composed
of grammatically erroneous academic sentences collected from 10 distinct disciplines (e.g., law,
medicine, philosophy), with each domain corresponding to a sequential task:

Dy = {(X. Y}y 3)

Each pair consists of an erroneous sentence X! and its corrected version Y;'. Unlike typical GEC
tasks trained on all data simultaneously, CL2GEC is formulated as a continual learning benchmark
where the model learns sequentially from each domain and only replays a small subset of previous
data. This setup simulates real-world constraints such as limited storage and privacy, requiring the
model to maintain performance across diverse domains without catastrophic forgetting.

3.2 BENCHMARK CONSTRUCTION

Data Collection. We crawl full-text PDFs from the China National Knowledge Infrastructure
(CNKIﬂ the largest Chinese academic repository. To capture broad domain diversity, we target
10 first-level disciplines: Law, Management, Education, Economics, Science, History, Agriculture,
Literature, Art, and Philosophy. The dataset is designed to be highly diverse and multi-disciplinary,
ensuring comprehensive coverage of academic writing. These 10 first-level disciplines are further
subdivided into a total of 100 second-level disciplines, providing a granular representation of aca-
demic writing. For instance, the Agriculture discipline includes sub-disciplines such as Agricultural
Resources and Environment (164 instances). The detailed breakdown of all disciplines and their in-
stance counts can be found in the Tablem For each discipline, we randomly sample 1,000 sentences,
yielding a balanced corpus of 10,000 instances. This one-to-one ratio eliminates domain-size bias
and guarantees that subsequent continual-learning curricula are not dominated by any single field.
To ensure a standardized evaluation, we provide a canonical split for each discipline: 800 training
examples, 100 development examples, and 100 test examples.

Table 1: Error Type Statistics by First-Level Discipline.

Discipline Total Errors Word Omission Word Misuse Redundancy P ation Errors S Blend Ambiguity/Logic Others
Education 3,950 836 (212%) 1,159 (29.3%) 541 (13.7%) 468 (11.8%) 213 (5.4%) 43 (1.1%) 690 (17.5%)
Management 3,215 845 (26.3%) 1,232 (38.3%) 457 (14.2%) 379 (11.8%) 172 (5.4%) 48 (1.5%) 82 (2.5%)
History 2,890 688 (23.8%) 911 (31.5%) 454 (15.7%) 352 (12.2%) 177 (6.1%) 36 (1.2%) 272 (9.4%)
Law 3,420 645 (18.9%) 1,002 (29.3%) 452 (13.2%) 496 (14.5%) 173 (5.1%) 68 (2.0%) 584 (17.1%)
Science 4,105 930 (22.7%) 1,288 (31.4%) 579 (14.1%) 442 (10.8%) 218 (5.3%) 59 (1.4%) 589 (14.3%)
Philosophy 3215 624 (19.4%) 1,171 (36.4%) 503 (15.6%) 414 (12.9%) 208 (6.5%) 56 (1.7%) 239 (7.5%)
Economics 3,450 751 (21.8%) 1,127 (32.7%) 517 (15.0%) 431 (12.5%) 201 (5.8%) 61 (1.8%) 362 (10.5%)
Agriculture 2,980 773 (25.9%) 953 (32.0%) 412 (13.8%) 386 (12.9%) 161 (5.4%) 44 (1.5%) 251 (8.4%)
Literature 2,715 595 (21.9%) 1,031 (38.0%) 401 (14.8%) 367 (13.5%) 151 (5.6%) 42 (1.6%) 128 (4.7%)
Art 2,145 503 (23.5%) 935 (43.6%) 436 (20.3%) 289 (13.5%) 170 (7.9%) 19 (0.9%) 52 (2.4%)

https://www.cnki.net/
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Data Cleaning. Because CNKI only provides PDF files, a dedicated preprocessing pipeline is
required. The overall cleaning procedure is executed by a trained annotation team and guarantees
that every remaining sentence is grammatically self-contained and suitable for correction.

1. PDF — JSON conversion. We convert each PDF into a structured JSON file that preserves sen-
tence boundaries, section tags, and positional metadata. This machine-readable format facilitates
downstream filtering and reproducibility.

2. Section filtering. Only the abstract and main body are retained. Other sections like references,
acknowledgements are discarded. These sections contain the bulk of scientific exposition and
therefore the majority of grammar-related errors relevant to writing assistance.

3. Sentence segmentation. The retained text is split into sentence-level units using LTP Che et al.
(2021)), enabling sentence-level GEC evaluation.

4. Noise removal. Inline citations, sub-titles, mathematical equations, tables, figures, and their
captions are stripped. Eliminating non-linguistic tokens avoids misleading the error-detection
models and prevents annotators from spending time on irrelevant content.

5. Anonymisation. All personal, institutional, and document identifiers are redacted to comply
with privacy regulations and facilitate open release.

Data Annotation. Given the low error density in scholarly writing, fully manual annotation would
be prohibitively expensive. We therefore adopt a human-in-the-loop strategy that combines auto-
matic grammatical error detection, LLM pre-correction, human annotation, and expert validation.

1. Automatic grammatical error detection. 6 well-trained CGEC models (including GEC-
ToR |Omelianchuk et al.|(2020) and fine-tuned Chinese-BART |Shao et al.|(2021)) are first applied
to the cleaned corpus. Only sentences flagged consistently by all detectors are kept. This con-
sensus voting filters out roughly 95% of grammatically correct lines, concentrating annotation
effort on the 5% most error-prone candidates and dramatically cutting both LLM invocation and
human labor.

2. LLM pre-correction. The shortlisted sentences are passed to GPT-40 Hurst et al.[(2024), which
produces a candidate correction for each error span. These machine suggestions serve as weak
references, giving annotators a standardising correction style across workers.

3. Human annotation. We recruit senior undergraduates or graduates with majors that match the
corresponding discipline, ensuring domain awareness. After extensive training on pilot samples,
annotators correct each sentence while consulting the detector output and GPT-40 suggestions.
Every instance is independently revised by at least two annotators, which both improves recall
and exposes stylistic alternatives.

4. Expert validation. Domain experts (including the paper authors) perform 100% manual review
of the double-annotated data. They refine erroneous edits, reconcile conflicts, and may add sup-
plementary references when multiple acceptable rewrites exist. The outcome is a high-precision,
multi-reference gold annotation set.

This multi-stage pipeline maximises annotation quality and cost-effectiveness: automatic error de-
tection minimises wasted effort, LLM pre-correction accelerates human editing, dual annotation
guarantees inter-annotator agreement, and expert review delivers publication-grade reliability.

3.3 EVALUATION PROCEDURE AND METRICS

We evaluate model performance in a continual learning setting using both standard GEC metrics and
continual learning metrics.

3.3.1 EVALUATION PROTOCOL

Let {T1,...,Tn} denote the sequence of N = 10 tasks, corresponding to our ten academic dis-
ciplines. In this continual learning setup, models are trained sequentially on discipline-specific
training sets. To assess robustness to domain shift, we consider two curricula: (i) a semantically
ordered sequence and (ii) a randomly shuffled sequence.
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After learning each task 7}, the model is evaluated on all tasks from 73 up to 7T;. We record the
following scores: (1) @; ;, the performance on the current task 7; immediately after training; (2) Q;_;
(j < 1), the performance on a past task 75 after training on 73; and (3) Q 5, the final performance
on each task T after completing the entire sequence of IV tasks.

3.3.2 STANDARD GEC METRICS

We evaluate grammatical error correction (GEC) performance using the ChERRANT scorer (Zhang
et al.| 2022)), which extends ERRANT to Chinese by performing character-level alignment and edit
classification. For each evaluation result (); j;, ChERRANT computes Precision (P), Recall (R), and
Fp 5 by classifying edits as true positives, false positives, or false negatives.

To summarize performance across tasks, we compute averages independently for each metric M €
{P ) Ra E 0.5}:

N
QM =g ek @
j=1

Here Q%‘? denotes the final score on task T under metric M. Importantly, Fp 5 is averaged directly
across tasks rather than recomputed from the averaged P and R.

3.3.3 CONTINUAL LEARNING METRICS

To capture retention and overall competence under sequential training, we adopt two standard con-
tinual learning metrics, computed separately for each M € {P, R, Fy 5}.

Backward Transfer (BWT). BWT measures the average change in performance on past tasks
from immediately after training to the end of the sequence. Negative values indicate forgetting,
while non-negative values indicate retention or positive transfer:

N-1

) 1 ) )

M) _ (M) (M)

BWT! )—N_lz( Ny~ Qi) ®)
Jj=1

Average Task Performance (AvgPerf). AvgPerf measures the model’s overall GEC ability across
all tasks after completing the full training sequence:

N
1
AvgPerf™) = =3 QY. (6)
Jj=1

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Backbones. All experiments use Qwen2.5-7B-Instruct (Qwen et al., 2025) and Llama3-8B-
Instruct (Llama Team), [2024) as backbone models, chosen for their strong Chinese-language per-
formance and robust instruction-following capabilities.

Task Sequences and Evaluation. To comprehensively assess the impact of task order on continual
learning performance, we conducted experiments using two distinct training sequences:

1. Randomized Order: The 10 academic disciplines are presented in a randomly shuffled order.
To ensure robustness and account for variance, this process is repeated across 5 different random
permutations. We report the average results across these runs.

2. Semantically Similar Order: The tasks are arranged based on their semantic similarity. This
sequence simulates a smoother domain transition and is used to investigate the effect of gradual
domain shift on catastrophic forgetting.The definition and computation of similarity, as well as
the resulting task order, are detailed in the Appendix.
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Table 2: Main Results of CL Strategies on CL2?GEC, Random (Rnd) vs. Semantic (Sem) Order.

Model Strategy GEC (Rnd) GEC (Sem) AvgPerf (Rnd) AvgPerf (Sem) BWT (Rnd) BWT (Sem)

P R Fo.s P R Fo.5 P R Fo.s P R Fo.5 P R Fos P R Fos

SeqFT  59.25 10.71 2991 52.10 12.61 31.08 50.92 1197 29.57 46.70 14.84 31.18 8.13 -120 -040 095 -0.13 0.63
LoRA 6542 13.00 3554 64.18 13.03 34.83 62.80 11.33 32.02 61.70 12.92 3394 454 161 401 177 155 3.00
Replay  58.78 11.49 31.13 47.04 11.22 26.90 50.85 12.58 29.93 48.00 13.89 30.89 575 -1.73 -0.65 -4.31 -1.64 -4.17
EWC 67.34 13.00 3552 64.26 1297 3476 64.88 1140 32.11 61.70 12.93 3394 444 160 400 194 140 2.77
GEM 67.33 13.10 35.65 64.34 13.00 34.82 64.86 1142 32.17 61.77 1293 3396 441 170 411 199 145 284
LwF 62.86 13.22 34.89 63.73 1298 34.75 58.60 12.84 33.36 61.36 13.84 3524 3.10 0.0l 0.69 095 0.50 0.96
OGD 67.78 1230 34.44 62.77 14.43 36.53 63.15 13.38 3497 62.07 1518 37.08 4.85 -1.32 -0.81 -1.71 0.78 0.61

Qwen2.5
7B-Instruct

SeqFT 4540 9.10 24.14 45.60 9.98 26.01 35.15 10.73 22.52 36.56 11.03 24.00 6.11 -2.02 -1.32 4.03 -024 0.78
LoRA 6421 11.11 31.62 56.80 12.98 33.03 5893 11.36 3098 56.32 12.85 3232 7.51 -0.22 0.64 -1.67 197 2.62
Replay  37.31 10.07 23.70 34.32 9.56 22.17 30.00 10.39 20.79 27.90 10.77 2046 7.41 -0.60 250 7.73 -052 2.64
EWC 63.82 11.00 31.34 57.06 13.11 3329 58.80 11.33 3091 5635 12.91 3238 7.63 -0.22 0.67 -234 196 2.55
GEM 64.46 11.12 31.71 57.94 13.16 33.53 5897 11.35 30.99 56.28 12.82 3226 8.13 -0.12 096 -0.67 2.19 3.16
LwF 59.75 11.18 3098 59.79 10.18 29.80 57.24 11.60 30.86 58.99 11.56 3129 3.04 -043 0.06 0.09 0.87 1.53
OGD 60.37 12.89 33.54 57.99 13.42 33.89 57.12 12.92 32.74 56.56 12.74 3237 3.15 -0.05 049 -1.07 230 292

LLaMA3
8B-Instruct

Models are sequentially adapted to the 10 disciplines according to these task sequences. For each
run, evaluation is conducted after training on each task, following the procedure outlined in the
evaluation section. The final results for the randomized order are averaged over the 5 permutations.
Evaluation is performed using official CGEC scoring scripts.

4.2 CONTINUAL LEARNING METHODS

We investigate the performance of various continual learning methods applied to the domain-specific
GEC task. Given that our task requires adapting a large language model to a series of distinct yet
related domains, we focus on a strategy combining Parameter-Efficient Tuning (PET) with estab-
lished continual learning algorithms. To this end, we benchmark the following four categories of
adaptation strategies:

* Sequential Finetuning (SeqFT): A naive baseline where the model is trained on each task in
sequence without any specific mechanism to retain prior knowledge. This approach provides a
lower bound for performance and highlights the problem of catastrophic forgetting.

* Parameter-Efficient Tuning (LoRA): We apply Low-Rank Adaptation with rank 8. This serves
as a lightweight adaptation approach.

* Replay-based Methods: To mitigate forgetting, we implement experience replay by retaining
2%, 5%, or 10% of training data from previous tasks.

* Continual Learning Algorithms: For our single-domain GEC task, we combine Parameter-
Efficient Tuning (LoRA) with a set of representative continual learning algorithms to achieve supe-
rior results. We evaluate four such approaches: EWC (Elastic Weight Consolidation) (Kirkpatrick
et al.l [2017), which regularizes important parameters; LwF (Learning without Forgetting) (L1 &
Hoiem, 2016), which uses knowledge distillation; GEM (Gradient Episodic Memory) (Lopez-Paz
& Ranzato}|2017)), which constrains gradient updates; OGD (Orthogonal Gradient Descent) (Fara-
jtabar et al.,|2019), which minimizes task interference through orthogonal updates.

5 ANALYSIS

Our analysis of experiments at the CL2GEC benchmark reveals several critical insights into the
efficacy of continual learning (CL) strategies for large language models that perform Grammatical
Error Correction (GEC). We discuss the three dimensions (GEC, AvgPerf, and BWT) and the impact
of the two task orders. The results highlight not only the performance of different methods but also
the crucial impact of model choice and task ordering.
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5.1 OVERALL PERFORMANCE

Across both backbones and task orders, continual learning (CL) strategies clearly outperform se-
quential fine-tuning and generally surpass LoRA, while Replay remains unreliable. This highlights
the particular sensitivity of grammatical error correction (GEC) to catastrophic forgetting and the
necessity of mechanisms that explicitly preserve previously acquired knowledge. Among the back-
bones, Qwen2.5-7B-Instruct consistently achieves higher scores than LLaMA3-8B-Instruct, sug-
gesting that multilingual pretraining provides stronger inductive biases for this task; nevertheless,
the relative ordering of methods remains stable across models, underscoring the robustness of the
observed trends. LoRA serves as a strong baseline by constraining updates to a low-rank subspace,
which alleviates the most severe forgetting, but its stability decreases under semantically ordered
tasks, showing that parameter-efficient adaptation alone cannot fully prevent drift. CL methods
systematically close this gap by directly addressing task interference, yielding more consistent per-
formance across domains and curricula.

5.2 CONTINUAL LEARNING STRATEGIES

While CL methods uniformly outperform the baselines, their strengths diverge systematically ac-
cording to algorithmic design.

Projection-based methods (OGD) emphasize forward plasticity. By enforcing gradient orthog-
onality, OGD effectively incorporates new error patterns from diverse domains and achieves the
strongest overall performance. This comes at the expense of weaker backward transfer, reflecting its
bias toward adaptability rather than long-term retention.

Constraint-based methods (GEM, EWC) prioritize stability. GEM attains the strongest back-
ward transfer, consistent with its objective of constraining updates to protect earlier tasks—a natural
fit for GEC, where many grammatical structures recur across domains. EWC provides a more bal-
anced trade-off, maintaining competitive final performance while offering robust retention.

Distillation-based methods (LwF) provide moderate but consistent gains. By distilling predic-
tions from earlier tasks, LwWF reduces forgetting without requiring memory storage. It consistently
improves over LoRA, though generally trails OGD and GEM in overall performance.

Replay is less effective in this setting. A small memory buffer fails to capture the structural diver-
sity of GEC errors, leading to unstable performance across task orders. Constraint- or projection-
based methods appear more effective than raw memory in this benchmark.
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5.3 IMPACT OF TASK ORDER

Task ordering exerts a nuanced yet systematic influence on continual learning outcomes. For average
performance, semantic curricula generally improve recall and F 5 across most strategies, but often
lead to a decline in precision. This pattern is also observable in GEM, EWC, and Replay, suggesting
that exposure to related tasks encourages the model to generalize more broadly, increasing coverage
(recall) at the expense of specificity (precision). This trade-off may reflect greater ambiguity in
correction boundaries across similar domains. By contrast, random orderings present a more diverse
distribution of topics, which may sharpen task boundaries, yielding higher precision but weaker
cross-task generalization.

The effect on backward transfer (BWT) is more model-dependent. For Qwen2.5-7B-Instruct,
semantic ordering often reduces BWT, indicating that consecutive exposure to similar domains
may amplify interference and limit the reuse of prior knowledge. In contrast, LLaMA3-8B-
Instruct frequently shows improved BWT under semantic order—for instance with GEM and
LoRA—suggesting that it benefits from redundancy across related tasks, possibly consolidating rep-
resentations that were less well established during pretraining. These results highlight that task-order
effects are not universal but are mediated by both the model’s inductive biases and the mechanisms
of the CL strategy.

5.4 CASE STUDY: GEM UNDER DIFFERENT TASK ORDERS

To better understand the dynamics of continual learning, we conduct a detailed case study of the
GEM strategy using Fo 5 and BWT heatmaps (Figures [2Jand[d). These visualizations provide a fine-
grained view of how knowledge is preserved or overwritten as training progresses across tasks. For
clarity, we present only the semantic-order results in the main text; the corresponding random-order
heatmaps are included in the appendix.

Fo.5 performance stability. The heatmap in Figure 2] tracks Fy 5 scores for each test subject (y-
axis) after successive training tasks (x-axis, ordered from left to right). GEM maintains strong and
relatively stable performance across the sequence, confirming its effectiveness in mitigating catas-
trophic forgetting. Compared to random ordering (Appendix, Figure ??), semantic ordering yields
smoother performance transitions, indicating that related tasks reinforce one another and support
more predictable accumulation of knowledge.

Backward transfer dynamics. Figure 4| shows the BWT matrix, where the x-axis denotes the
current training task and the y-axis denotes the previously learned test task. Semantic ordering pro-
motes strong positive transfer among related domains—for example, Literature consistently
benefits from subsequent training on other humanities disciplines, with BWT values reaching as
high as 0.196. This illustrates how semantically structured curricula can leverage domain synergies
to strengthen prior knowledge. At the same time, semantic ordering exhibits localized vulnerabil-
ity: tasks less aligned with the curriculum suffer persistent negative BWT, indicating systematic
forgetting. In contrast, random ordering (Appendix, Figure [5)) yields more scattered and less severe
negative BWT values, reducing the likelihood of any single task being consistently overwritten,
though at the cost of weaker and less predictable positive transfer.

6 CONCLUSION

We introduced CL2GEC, the first continual learning benchmark for Chinese grammatical error
correction (CGEC) in academic writing. CL?GEC simulates domain-incremental learning through
a 10-discipline corpus of 10,000 human-annotated sentences, enabling sequential training and fine-
grained evaluation of forgetting, adaptation, and transfer. We defined tailored evaluation protocols
and benchmarked strong baselines using parameter-efficient tuning and four representative CL al-
gorithms. Results show that regularization- and projection-based methods outperform sequential
fine-tuning and replay, though performance varies with task order and model backbone. We hope
CL2GEC provides a foundation for future work on adaptive GEC systems and inspires the develop-
ment of lifelong writing assistants capable of generalizing across academic domains.
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7 LIMITATIONS

Reliance on a Specific Type of Continual Learning. This work primarily evaluates
regularization-based continual learning methods like OGD and GEM. While these methods show
strong performance, other approaches such as memory-augmented or meta-learning-based methods
might offer complementary benefits. Future research could explore these alternatives for a more
comprehensive understanding of continual learning in CGEC.

Generalization to Other Languages. Our experiments focus on Chinese GEC, and the meth-
ods proposed may not directly generalize to other languages with different grammatical structures.
Further research is needed to assess the applicability of CL2GEC to languages other than Chinese.

Evaluation on Limited Model Architectures. We evaluate two large language models, Qwen2.5-
7B-Instruct and LLaMA3-8B-Instruct. However, other model architectures, including smaller mod-
els or domain-specific models, may yield different results. Expanding the evaluation to include a
wider range of architectures would provide a broader perspective on the effectiveness of continual
learning methods.

8 ETHICS STATEMENT

In this paper, we introduce the CL2GEC benchmark, which is constructed from a custom-curated
dataset. We have carefully detailed the collection, preprocessing, and annotation processes to ensure
that no unethical behavior or infringement occurred during the dataset construction. To comply with
ethical standards, we focus on data anonymization, desensitization, and the removal of any poten-
tially harmful or biased content. The texts used in our dataset are sourced from publicly available
academic materials, ensuring that the research tasks and directions proposed do not cause harm to
society.
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A APPENDIX

A.1 DATA BREAKDOWN AND SECONDARY DISCIPLINES

As described in the main text, the CL2GEC benchmark is composed of 10 primary disciplines, each
containing a number of secondary disciplines. Since the total number of secondary disciplines is
large, we focus on the most prominent ones for visualization. Figures [§and[7]show the distribution
of the top 10 most frequent secondary disciplines within each primary discipline. To visualize this
distribution, a stacked bar chart is provided, illustrating the count and proportion of these top 10
secondary disciplines within each primary discipline.

A.1.1 RANDOMIZED ORDER

The 10 academic disciplines are presented in a randomly shuffled order. To ensure robustness and
account for variance, this process is repeated across 5 different random permutations. We report the
average results across these runs.

A.1.2 SEMANTICALLY SIMILAR ORDER

The tasks are arranged based on the semantic similarity between the disciplines. The result-
ing order is designed to reflect a smoother transition between related domains, thus investigating
how gradual shifts between similar tasks affect the model’s ability to retain knowledge. The se-
mantic similarity between disciplines is computed using sentence embeddings generated by the
SentenceTransformer model. The average similarity matrix between the disciplines is pre-
sented in Table 4]

Semantic Similarity Computation We compute the semantic similarity between disciplines by
first encoding each discipline’s sentences into dense vector representations (embeddings) using the
SentenceTransformer model and then averaged to produce a single vector for each discipline.
We compute the cosine similarity between all pairs of discipline embeddings to measure how similar
they are to each other in a semantic space.

The formula for cosine similarity between two vectors vy and vy is:

Vi Vo

Cosine Slmllarlty = m
Vi||||V2

This cosine similarity value ranges from -1 (completely dissimilar) to 1 (identical). The results of
this computation are presented in Table

Conclusion of Task Ordering Based on the semantic similarity matrix, we categorize the tasks
into three groups for training order:

* Literature, History, Philosophy, and Art Group
* Education, Management, Law, and Economics Group
* Science, Agriculture Group

A.2 REPLAY STRATEGY

We further analyze the replay strategy by varying the buffer size (2%, 5%, 10%) on both Qwen2.5-
7B-Instruct and LLaMA3-8B-Instruct (Table[3)). The results reveal that replay does not scale mono-
tonically with buffer size; instead, its effectiveness peaks at small to medium buffers and is strongly
model-dependent.

Qwen2.5-7B-Instruct achieves its best performance at a 5% buffer under random order, but both
GEC and AvgPerf decline when the buffer is enlarged to 10%. Moreover, backward transfer (BWT)
remains consistently negative, with particularly sharp degradation under semantic order, suggesting
that replay alone is insufficient to mitigate forgetting for Qwen2.5-7B-Instruct and that larger buffers
may even introduce redundancy or noise. By contrast, LLaMA3-8B-Instruct benefits more from
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Figure 5: Backward Transfer (F0.5) with Ran-
dom Ordering.

replay, with its strongest GEC and AvgPerf observed at 2% buffer, and BWT peaking around 5%
before dropping again at 10%. This indicates that smaller buffers are more effective for consolidating
past knowledge, while excessively large buffers blur task boundaries and reduce retention efficiency.

Table 3: Replay Results on CL2GEC Benchmark.

GEC (Rnd) GEC (Sem) AvgPerf (Rnd) AvgPerf (Sem) BWT (Rnd) BWT (Sem)
Model Buffer
P R Fos P R Fos P R Fos P R Fos P R Fos P R Fos
2% 56.69 11.15 30.02 50.56 12.15 30.12 49.56 12.27 29.25 4794 14.44 3127 539 -1.26 -0.61 -0.54 -0.68 -0.73
73_?:;;’1 5% 58.78 11.49 31.13 47.04 11.22 2690 50.85 12.58 29.93 48.00 13.89 30.89 5.75 -1.73 -0.65 -4.31 -1.64 -4.17
10% 5345 11.48 29.92 47.51 1218 29.13 4945 12.24 29.50 48.56 13.01 30.21 240 -1.13 -0.64 -2.97 -0.67 -0.59
2% 4524 8.60 23.71 4347 9.33 24.62 33.02 1037 21.68 34.71 11.00 23.50 13.36 -2.06 132 920 -1.10 1.31
Skli:z/t[?uit 5% 37.31 10.07 23.70 3432 9.56 22.17 30.00 10.39 20.79 27.90 10.77 20.46 741 -0.60 2.50 7.73 -0.52 2.64
10% 3725 8.85 22.06 33.54 84 20.62 2936 9.41 1993 30.61 10.02 21.01 938 -1.03 2.11 426 -094 0.74

A.3 CASE STUDY

We provide a case study of the CL2GEC benchmark across 10 disciplines. The results are visualized
in Figure [§][9][T0|[T1][T2] where each discipline is represented by a selection of annotated cases,

showing how the benchmark performs across different academic domains.

Discipline Literature History Philosophy Education Law  Science Agriculture Ec Manag t  Art

Literature 1.0000 0.2115 0.2130 0.1506 0.1418  0.0493 0.0334 0.1185 0.1406 0.1923
History 0.2115 1.0000 0.2345 0.2252 0.2059  0.0872 0.0846 0.1733 0.2139 0.1769
Philosophy 0.2130 0.2345 1.0000 0.2024 0.2388  0.0923 0.0792 0.2173 0.1999 0.1553
Education 0.1506 0.2252 0.2024 1.0000 0.2324  0.1230 0.1340 0.1869 0.2988 0.1224
Law 0.1418 0.2059 0.2388 0.2324 1.0000  0.1036 0.1019 0.2111 0.2266 0.1223
Science 0.0493 0.0872 0.0923 0.1230 0.1036  1.0000 0.2022 0.1449 0.1523 0.0758
Agriculture 0.0334 0.0846 0.0792 0.1340 0.1019  0.2022 1.0000 0.1548 0.1508 0.0338
Economics 0.1185 0.1733 0.2173 0.1869 0.2111  0.1449 0.1548 1.0000 0.2093 0.0915
Management 0.1406 0.2139 0.1999 0.2988 0.2266  0.1523 0.1508 0.2093 1.0000 0.1286
Art 0.1923 0.1769 0.1553 0.1224 0.1223  0.0758 0.0338 0.0915 0.1286 1.0000

Table 4: Semantic Similarity Matrix between Disciplines
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Figure 6: Discipline-wise Distribution of Top 10 Sub-disciplines (Part 1)
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Figure 7: Discipline-wise Distribution of Top 10 Sub-disciplines (Part 2)
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2
{

{

}

input” "HSERAEERFAEREEZ, XRRENNHESERSIRYRES, #
RELXEXAERZ AT . ",

“output”: "HREFEBARTFEREE, XERENFFEESERSIRMTE,
MRBIEXLARIRZ A B "

‘input’s SEAEK, IO BB, BRI
SRR . "

“output” EER, 1ER—FEDIENLBILAE, B0l HIMBHEREMNE
O FMREE T - Z TR, "

“input” "EWRFE L, RIEARGENKBEERHSIBEEREA. HERARTE. L
BMRFE. BESMTE. BXOFAE.

“output "ERRFE L, NIEARFACELSEEAE. BERRTE. LEH
RAE. BESMITEMBX ST E. "

2

input": "HAVEFR T BEAEBINTERMR. TRAR LMERESH#N,
MEFRBEZIAFEN N ZIRESEEZ, HOEAR EERB CHFEARILR
%O “1

"output”: "HENEFRR T BRAEB SHNITERTR. WA LMH KBS, HE
EFBRBAEFAFREA—NZIREREEZ, SO EAR LA CHFEARKE

&, "

Figure 8: Examples of CL2GEC.
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“input”: "ELE, A#—FRFIAMIEXHRENKE, ERARGERS, BEFE
MRS, BEEEHELFSEEFFREENNARE®A., BibE, mAsE—k

HEBRAR, ABEXBHARBMRTIBESHAERE, AT,

"output”: "FTIX, AT H—FRSFARNHRENKE, EEFFAIECGEE K
REXIMALAR, NEEERELFTSEEFRSEENNATREE, BB, R
BB BBRAR. B, MRARTFEIESARNKEMIAT, "

2

{

"input” "AXMRMBXETRARNF IEZ—BHNFINR, TUEFEERR
MFEINEREPREBEES. FIEN. QRN EESN, FXZRMFEZ
IR R B ERAEM,

output” "AXARMBXET, RAXNFEIEEA—MERIFNZEITTR, #BiLFE
EERRMFINEED, BIABEEN. FIEH. IFENMDERES, HEX
iz BR9RFER R ER,

}

4. BEF
{

"input” "SFEHHFMEAREXFEEIL. BHHBROMAARTR. BEEX
MRE=ZFLERIFIILFIRR, BEVHY ZEEBHFATEN REWMR.
output” "BEBEFMEIMAEIFRASE. BBV LHBHEAFTR, EER
X, ZFNEBEEILFINE, BVIIRSBEFZATEN RRMR".

b

{

“input”: "B ARFERMENEUNEE, BRRFENLKRRAHLSHL, Fik
BEMEZER, RENTEZENERZEREAENBKNLRAE. "

"output”: "RFEEZIRENMAREHE, RIAHSHAFREMEERNOER, Bt
RENTHENEERBRAENAKNERAR.

Figure 9: Examples of CL2GEC.
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5. &%=
{

"input™: "EIA R, Z2FEKIERHNARAZE T =ARENME, 232G
éﬂéi'a'{tfiw i s IR IS ANFT I K IR S .

"output”: "I LI, ZRFEKIBRHNABRRZHRT ZAARREBME, D3EE
HIBKIES . I g KIS IInE KRR,

"input”: "B AARBAE S M5, ﬁﬂ%lﬁtﬂj‘%ﬂ%?‘*"}w\lﬂ%%ﬁ’ﬂﬁ%
Bidk, XMAREMOEBREARNNRESZTHNTHNE.

“output": "IN AABRRMBES TS, MRUENFTHEFTEMADESHERE
Bidk, ZMARNEMOEBREARNRESTHNTHNE.

“input”: "EFRMINK, TEBTARERIENR, ZREN AR T E
R, REHBATHEES. HEMXUHTR.

“output": "FERKREINA, TEEIAERN NERR, ZHRENAK HEZ
MR, WEMLBATHEES. HEMXAHAR. "

"input” "ZEX B EMFRTRERBHORR. GFERET RTBOMFIRE
B, NTHhEMFRERUISHE, 2EFET. %E‘JTH'/A o UEARRAISE
B, T XERBREIRA B IR EIRNER, MTEMENREZ P, K20
BHRR, ZENEXERORR, BEBEFERES,

"output”: ":%i‘fﬁiﬁﬁ#ﬁ’?ﬁﬁﬁfimE’J%’T%ﬁ HEERH T R BNHFIRE
B, NTHENMFRER TVISHE., FAREFE. FHTHAFTUEARR
#9sEBl. —Iu?”@Fﬁ%mﬂﬁ’\]HETM/*XT%DW»RE’\HH?, MmEMNENIRIEF S F, KE
WEHRR . ZfRNFXFERNRR, KEBFRES. "

Figure 10: Examples of CL2GEC.
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{

{

{

7. REF

“input”: "BIT TEF D BERBEARS, FTELEER, ENEE, NHE—HERN
SENRFABIEEHTTE, BREUEENEAY, RSHEXMM.

"output”: "B T LEANEIERBRAR S . FREEBREEHEE, Nit—HR
WENHAPEIREHTE, NEEEIEEHEAY, HiRSHINM,

3

"input” "EEE EMRNE ENARORALKOUNER, mARETUSEEDE
BHR, BIMERESE BHRERSE. BRIERE. BENRENFEN, B~
BRAL. ",

"output™: "EEE M RNE LA RBRMHEUNER, EARETMUREEDE
BHOR, EINMERSE, EHREREH. SRR, SNRENHEILM, K=
BMRME,

“input”: "EIE FRERBNEERINE, FRENUTEFHRUNESEEER, X—
KRR TAEERY, BRERSR.
“output”: "BIE RN EARKRRNE, FRENUEEFHRULEHLBEE, X
—RRETAEERS, BRERESR. "

3

"input”: "BRERBABRMEZT, RNAEZ—VTUNITE LR EEEY, B
ERABEHFAMEN . BENHFERAARBEN. ",
"output” "B EREAB TR, RAZ—VINIFENERSEL, hfe
EAREXHANFREN. RENOFIIATBRN. ™

Figure 11: Examples of CL2GEC.
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9. ZAR%
{

input” "BEEREREBTHES, FTRNEARFNZLA=EFTHRE, &£
ZERMTREENMAENETR, EEEKMEEM, (FMREELLERTHET
BEAKPEEHER/RAER. "

‘output”: "BEERLRRBTNIE, MARENIZERTA=EZTHRE. X
RUABE LN T REEMAENRL R, BINTFROZKE. FHxEEEL
R ERWEBTRNKPEHERTEMREN ST,

2

{

"input”: "REAIF IR S AT E R H HI U FERBAR IR HEANOEE
MAREE. ",

"output": "SR EEIF IR 5 AT E A9 H IR BN TR F A ANAYE
HNARBE.

}
10. #{E
{

"input": "HEOE X HFRHARIAEARIR, XK ERH T R AKMNRE, B4
AR OESTFERBERALRAGANRESR, A OEXAER BT PREBKAFE
NEFRRABEIBE. "

"output”: "HEOESCEH A ARIAE ARIR, XL LR TR AKMER, BR
AN O E X FOLBEEA ERBIINRTST, AAM O E XL LT HEBIKAFAEN
HEFFRIMBRERR. "

2
{

"input”: "BARIRZ EAME B SN EWERMNNRHFLGETHE, BRLE
BERCA RN FAEY, RRETE.

‘output": " T RIRM EAM AR ARHRNN R LA THER, RETIRBRE
AR ENRMENGFEY, 2R BRFTL.

}

Figure 12: Examples of CL2GEC.
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