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ABSTRACT

This paper studies the role of activation functions in learning modular addition
with two-layer neural networks. We first show that sine activations achieve bet-
ter expressiveness than ReLU activations, in the sense that the width of ReLU
networks must scale linearly with the number of summands m to interpolate,
whereas sine networks need only two neurons. We then provide a novel Natarajan-
dimension generalization bound for sine networks, which in turn leads to a nearly
optimal sample complexity of O(p) for ERM over constant width sine networks,
where p is the modulus. We also provide a margin-based generalization for sine
networks in the overparametrized regime. We empirically validate the better gen-
eralization of sine networks over ReLU networks and our margin theory.

1 INTRODUCTION

Most modern neural networks use nonperiodic activations such as ReLU or GELU, a choice that
is highly effective on vision and language benchmarks. When the target has inherently periodic
structure, however, this choice can be statistically and computationally mismatched: approximating
periodic functions with nonperiodic networks may require substantially larger width or depth than
architectures that encode periodic features or activations (Rahaman et al., [2019; Rahimi & Recht,
2007; Tancik et al.l [2020).

We study this mismatch through a standard testbed in deep learning: modular addition. Given m
input tokens in {0,...,p — 1}, the label is their sum modulo p. This task generalizes k-parity
and is widely used to probe how networks represent and discover algorithms, as well as to study
grokking—delayed generalization after a long memorization phase (Power et al.| 2022)). Mechanistic
analyses report Fourier-like internal circuits for models that solve modular addition, where tokens
are embedded as phases and addition is implemented as rotation on the unit circle. Distinct learning
procedures (“clock” vs. “pizza”) emerge under different hyperparameters and architectures (Nanda
et al., 2023} Zhong et al., [2023). These observations suggest a simple design principle: when the
task is periodic, an explicit periodic inductive bias should help.

Periodic representations already play a central role across machine learning. Sinusoidal positional
encodings is historically canonical in Transformers (Vaswani et al.,|2017)); ROPE encodes positions
as complex rotations, mapping offsets to phase differences and imposing a periodic bias preserving
attention geometry (Su et al.,[2021)). Fourier and random features mitigate spectral bias and improve
high-frequency fidelity (Rahimi & Recht, 2007} |Tancik et al., 2020} |Rahaman et al., 2019); and si-
nusoidal activations (SIREN) enable compact implicit neural representations for images, audio, and
PDEs (Sitzmann et al., 2020). In 3D view synthesis (NeRF), Fourier positional encodings are key
to recovering fine detail from coordinates (Mildenhall et al., |2020), and spectral parameterizations
power operator-learning methods for PDEs (L1 et al., |2021). These examples point to a general
hypothesis:

On periodic tasks, periodic bias increases expressivity and makes learning provably easier.

We formalize and test this hypothesis in a minimal yet nontrivial setting: two-layer multi-
layer perceptrons (MLPs) trained on modular addition with one-hot encoding and a shared,
position-independent input embedding (so the network observes bag-of-tokens counts). We compare
standard ReLU activations with periodic sine activations, and analyze 0—1 multiclass classification
in both the underparameterized and overparameterized regimes.
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‘We summarize our contributions below:

1. Expressivity: compact periodic circuits and a sharp ReLU contrast. We construct an
explicit two-neuron sine MLP that computes modular addition exactly under the shared
embedding (Theorem [4.1I), and we give a high-margin variant with width d = 2p. In
contrast, any ReLU MLP that realizes modular addition exactly must have width Q(m/p),
i.e., growing at least linearly with the number of summands m (Theorem [4.2)).

2. Unified underparameterized generalization for broad activations. Via a multiclass
Natarajan-dimension analysis based on pairwise reduction, we prove uniform convergence
bounds for two-layer MLPs with a wide family of activations—piecewise-polynomial
(incl. ReLU), trigonometric-polynomial (incl. sine), and rational-exponential (incl. sig-

moid/SiLU/QuickGELU). The resulting sample complexity is é(dp) with width d and vo-
cabulary size p (Theorem [5.9} Table[T).

3. Width-independent margin guarantees for overparameterized networks. Under
spectral- and Frobenius-norm constraints for ReLU and a ||V'||1 o constraint for sine, we
establish multiclass, width-independent margin generalization bounds. Our sine construc-

tion attains large normalized margins, leading to population error O(p/+/n) when the nor-
malized margin is (1) (Theorem . In contrast, the best known ReLU interpolants
achieve normalized margins that decay exponentially with m, yielding substantially weaker
bounds under comparable norms (Theorem[6.3)).

4. Near-optimal ERM sample complexity for constant-width sine networks. We prove
that any interpolating algorithm over constant-width sine MLPs has sample complexity

O(p) (Theorem .

5. Experiments mirroring the theory. With matched architectures, datasets, and training
budgets, sine networks consistently generalize better than ReLU MLPs on modular addi-
tion in both regimes; in the overparameterized regime, improved normalized margins track
improved test accuracy (Figures[TH3).

2 RELATED WORK

Modular arithmetic as a probe of algorithmic learning and grokking. Delayed generalization
(“grokking”) was popularized on modular arithmetic (Power et al.| 2022)). Mechanistic analyses
have reverse-engineered Fourier-feature circuits for this task: token embeddings form phases on
the unit circle and addition is implemented as rotation (Nanda et al.| [2023), with distinct learned
procedures (“clock” vs. “pizza”) depending on models and hyperparameters (Zhong et al., [2023)).
For two-operand modular addition (m=2), recent theory supports a transition from an early kernel
regime to later feature learning (Mohamadi et al. 2024)), consistent with broader effective-theory
accounts of grokking dynamics (Liu et al., 2022a). Margin-based analyses further show that Fourier
features naturally emerge on modular addition (Morwani et al.l 2024; |Li et al., [2025). Together
these results indicate that neural networks trained on modular arithmetic often adopt periodic in-
ternal representations, motivating architectures with explicit periodic bias. Grokking dynamics also
interact with optimizer choice and regularization (e.g., “slingshot” instabilities for adaptive methods
and optimizer-dependent time-to-grok) (Thilak et al.} 2022} [Tveit et al.,|2025). Beyond algorithmic
data, grokking-like phenomena have been observed more broadly (Liu et al.,|2022b).

Periodic representations and encodings. Periodic structure is a long-standing ingredient in modern
architectures. Transformers rely on sinusoidal or rotary positional encodings (Vaswani et al.| [ 2017;
Su et al.; 2021)). Random Fourier features and sinusoidal encodings mitigate spectral bias by turning
the effective NTK of coordinate networks into a stationary kernel with a tunable spectrum (Rahimi &
Recht, [2007;Tancik et al.,[2020; Rahaman et al.,[2019). Periodic activations (SIREN) enable implicit
neural representations that preserve derivatives for images, audio, and PDEs (Sitzmann et al.,|2020),
while spectral parameterizations underpin neural operators for PDEs (L1 et al., 2021). We bring
these periodic ideas to a clean algorithmic setting: under shared embeddings, sine activations align
with the periodicity of modular addition, yielding compact exact constructions and improved sample
complexity.

Mechanistic and optimization-centric accounts. Mechanistic reverse-engineering reveals mul-
tiple circuit families that implement modular addition (Nanda et al., 2023} [Zhong et al., [2023)).
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Optimization analyses connect representation choice to margin maximization and feature selec-
tion (Morwani et al., 2024; |L1 et al., 2025), and link late generalization to optimizer dynamics
and regularization (Thilak et al., 2022; |Abbe et al., 2023 T'veit et al., 2025). Our results formalize
the benefit of aligning periodic architectural bias with task structure in a minimal two-layer MLP,
providing both constructive and statistical advantages.

Capacity and generalization of networks. Across network classes with L layers, W parameters,
and U units, upper and lower bounds on capacity arise from separate techniques: lower bounds
are obtained via “bit-extraction,” while upper bounds follow from growth-function arguments that
count sign patterns (Bartlett et al.,2017b). For piecewise-linear activations, one has nearly matching
bounds Q (W Llog(W/L)) < VCdim(F) < O (W Llog W) (Bartlett et al., 2017b). For piecewise-
polynomial activations, classical results give VCdim(F) = O(WL* + W Llog W) (Anthony &
Bartlett,2009), while refined arguments yield VCdim(F) = O(WU) together with the lower bound
VCdim(F) = Q(W Llog(W/L)) (Bartlett et al., [2017b). For Pfaffian activations (including sig-
moid and tanh), one obtains capacity bounds that are polynomial in W (Karpinski & Macintyre,
1997; |Anthony & Bartlett, [2009). The growth-function approach has a long history: bounding the
number of sign patterns generated by real polynomials yields VC-style capacity bounds for semi-
algebraic hypothesis classes (Warren, (1968} |Goldberg & Jerrum, |1995; |Anthony & Bartlett, |2009).
In the multiclass setting, uniform convergence is governed by the Natarajan-dimension (Natarajan,
1989; |[Haussler & Long| [1995} Shalev-Shwartz & Ben-David, 2014). We adapt these tools to dis-
crete shared-embedding two-layer MLPs, obtaining width-independent generalization guarantees
that cover ReLU and sinusoidal units.

Learning parity and modular structure with gradient methods. Parity functions are orthogonal
characters and underlie hardness results for Statistical Query algorithms (Kearns} [1998; Blum et al.,
1994; Reyzin| [2020; |O’Donnell, 2014). Noise-tolerant learning of parity (LPN) appears computa-
tionally hard in general; sub-exponential algorithms are known but no polynomial-time algorithm
is known (Blum et al., 2003). Recent works connect optimization dynamics to the difficulty of
high-order interactions and to the hardness of learning fixed parities with neural networks (Abbe
et al.,[2023; |Vempala & Wilmes, [2019;|Shoshani & Shamir, 2025)).

Implicit bias of optimizers. The optimizer induces implicit regularization (Gunasekar et al.|[2018).
For AdamW, recent analyses characterize convergence to KKT points of an /.,-constrained problem,
leading to /.. -type max-margin geometry (Xie & Lil2024;Zhang et al., 2024)). For Muon, emerging
analyses indicate spectral-norm constraints and an associated max-margin bias in spectral geometry,
aligning with reports that Muon accelerates grokking (Chen et al.l 2025} [Fan et al.| 2025} Tveit
et al.| [2025). Guided by this perspective, our overparameterized analysis yields width-free margin
guarantees under norms aligned with these optimizer-induced geometries.

Margin-based generalization guarantee. A substantial line of work relates generalization in
overparameterized networks to empirical margins and layerwise scale, rather than parameter
counts (Neyshabur et al) 2018b). Prior results include spectral and entrywise Lo j-normalized
bounds for networks with Lipschitz activations (Bartlett et al., [2017al); margin bounds normal-
ized by the Frobenius norm for homogeneous activations (Golowich et al.,|2017); entrywise L1 -
normalized margin bounds for Lipschitz activations (Golowich et al., 2017)); and a PAC-Bayesian
variant robust to weight perturbations (Neyshabur et al.,2018a). Path norms offer rescaling-invariant
capacity control and, in two-layer settings, are closely connected to Barron-space viewpoints;
Path-SGD encourages small path norms, often associated with larger margins and improved test
performance (Neyshabur et al., 2015b; |E et al., 2022; Neyshabur et al., 2015a; |Gonon et al., [2024)).
Collectively, these insights motivate our width-independent multiclass margin bounds.

Gradient descent and empirical margins. In separable classification with cross-entropy, gradi-
ent methods continue decreasing loss primarily by scaling logits, thereby enlarging margins: in
linear models the iterates align with the hard-margin solution while norms diverge (Soudry et al.,
2018)). For positively homogeneous networks, gradient flow maximizes a layer-normalized margin
and converges in direction to a KKT point of the corresponding constrained margin problem (Lyu &
L1, 2020; J1 & Telgarsky, [2020); mean-field analyses show analogous max-margin behavior in wide
two-layer logistic models (Chizat & Bach| 2020). Beyond exact homogeneity, once risk is small,
normalized margins still increase and the direction converges to KKT points; scale-normalizing
mechanisms such as BatchNorm reintroduce uniform/max-margin biases (Ji & Telgarsky, 2020;
Cao et al.[ 2023} |Cai et al., 2025)).
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3 MODEL SETUP

Notation. For p € N>, let [p] := {0,...,p — 1} and e; denote the i-th standard basis vector in
RP. For nonnegative f,g, we write f(n) = O(g(n)) (resp. f(n) = Q(g(n))) if there exists an
absolute constant C' > 0 such that for all n > 0, f(n) < Cg(n) (resp. f(n) > Cg(n)). We write
f(n) = B(g(n)) if both O and 2 hold. We write f(n) = O(g(n)) to suppress absolute constants

(independent of the model architecture and data) and polylog factors. The symbols Q( ) and 6( )
are defined analogously.

Task and data. Fix integers m,p,d € N with p > 2 and Vocabulary Vv ={0,1,...,p — 1}.

Each example is a length-m sequence s1.,,, € [p]™ with sq,.. m R Unif ([p]). We use one-
hot encoding and a shared, position-independent input embedding SO the network observes only the
bag-of-tokens vector

m
= Zesi €{0,1,...,m}?, |z]l1 = m.
i=1
The effective instance space is

m+p—1
= {ze{0,1,....m}": ||zll; = m}, |X|—< pfl >

Labels are modular sums y = (37", s;) (mod p) € {0,...,p — 1}. Let D denote the induced
population distribution on X' x [p]. Training data are

S = {(a®,y)} i pn

Model. We study width-d two-layer MLPs with shared input embedding, comparing standard ReLU
to periodic sine activations. Let parameters be § = (W, V) € © := R¥P x RP*?, For activation
o € {ReLU,sin} applied elementwise,

s'(x) = Vo(Wz) € RP, ho(x) = argren?)](sg(x),
Elp

with any fixed deterministic tie-break (e.g., smallest index), so hy is well-defined for all 8. The
hypothesis class is
o ={s':0=WV)co}.

Training. We minimize the empirical cross-entropy over S = Dy, using mini-batches, treating
s%(x) as logits for the p-class problem with labels in [p]. Optimization uses AdamW and Muon;
implementation details and hyperparameters are provided in Appendix [B]

4 EXPRESSIVITY OF SINE AND RELU MLPs

We begin by comparing expressivity under our shared, position-independent input embedding. A
two-neuron sine MLP computes modular addition exactly, whereas ReLU MLPs require width that
grows with the number of summands. Proofs are provided in Section[F.I.T]and Section

Theorem 4.1 (Low-width construction for sine MLP). There exists a construction with hidden di-
mension d = 2 and sine activation that realizes Y ., s; mod p forall x = (s1," - , $ym) € X.
Theorem 4.2 (Necessary width for modular addition with ReLU). Let o(t) = max{¢,0}. If
ho(x) = arg maxy s (z) realizes modular addition exactly on X, then necessarily

m

d > ——1.

p
However, the remarkable expressivity of sine-activated MLPs does not ensure generalization. In
fact, even a constant-size sine-activated MLP realizes a one-parameter hypothesis class on N with
infinite VC-dimension:

Example 4.3 (Lemma 7.2 (Anthony & Bartlett, [2009)); see also Appendlx' The class F = {x —
sgn(sin(ax)) : a € RT} of functions defined on N has VCdim(F') = oc.

Thus, expressivity alone does not imply generalization. Leveraging the structure of our discrete,
bounded-input, we establish uniform convergence bounds that scale linearly with parameter counts.
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5 GENERALIZATION IN THE UNDERPARAMETERIZED REGIME

We provide uniform-convergence guarantees for two-layer MLPs with a broad family of activations
under shared embeddings. Informally, our proof counts sign patterns induced by pairwise mar-
gins via growth-function bounds in the parameter space, echoing classical arguments of (Warren,
1968 |Goldberg & Jerrum, |1995) with the multiclass reduction to the Natarajan-dimension (Shalev-
Shwartz & Ben-David, 2014; |Anthony & Bartlett, 2009). Intuitively, it determines the richness of
the output class of the model. Proof details are in Appendix [E]

Definition 5.1 (Shattering and VC-dimension). Let B C {—1,+1}Z be a binary hypothesis class
on a domain Z. A finite set T' C Z is shattered by B if every labeling of T is realized by some
be B,ie., B, ={-1,+1}". The VC-dimension of B, denoted VCdim(B), is

VCdim(B) = sup{ |T|: T C Z is finite and shattered by B },

with the convention that VCdim(B) = oo if sets of arbitrarily large finite size are shattered.

Definition 5.2 (Growth function). Let B C {—1,+1}Z be a binary hypothesis class on a domain
Z. For m € N, the growth function of B is

p(m) = Inax{ ’B‘T’ TCZ, T = m}.
Definition 5.3 (Shattering and Natarajan-dimension). Let H C [p]* be a multiclass hypothesis
class. A finite set S C X is Natarajan-shattered by H if there exist f1, fo € [p]® with fi(z) # fa(z)

for all z € S, such that for every selector b : S — {1, 2} there is hy, € H with hy(x) = fi(q)(2) for
all z € S. The Natarajan-dimension of H, denoted Ndim(H), is

Ndim(#H) = sup{|S|: S C X is finite and Natarajan-shattered by A },

with the convention that Ndim (%) = oo if sets of arbitrarily large finite size are Natarajan-shattered.

Definition 5.4 (Network class and pairwise reduction). Let Hg C [p]X be a p-class network class
realized by score vectors s?(x) = (s{(z),...,sf(z)) € RP, 6 € ©, z € X, and a fixed, determinis-
tic tie-breaking rule for arg max:

ho(x) = argmaxsf(z).
£e(p]

Define the pairwise reduction on the domain
Zpair = A x{(i,) € [p] x [p] :i < j}
by the reduction class Go C {—1,+1}Zvair for Hg of functions

if s9(x) > s (x
go(x, 1, §) = sgn (s{(z) — s7(x)) = {Jri ii S;Exi - ééx;

The lemma below connects the Natarajan-dimension to the growth function of the reduction class,
which is a key tool in this section.

Lemma 5.5 (Natarajan shattering and the growth function). If S = {2, ..., 2™} C X is
Natarajan-shattered by a p-class network class He, then

2" < Tlge(np(p —1)/2),
where Gg is the reduction class of He.

Definition 5.6 (Piecewise-polynomial activation). A function o : R — R is piecewise polynomial
with at most L > 1 pieces and maximal piece degree r > 1 if there exist breakpoints

—00=byg<by <---<bp_1<b, =+
and polynomials Py, ..., Py, with deg P, < r such that o(t) = Py(t) for all t € (by_1,b], £ € [L].
Definition 5.7 (Trigonometric-polynomial activation). Let K € Nj. A functiono : R — Risa
trigonometric polynomial of degree at most K if
K
o(t) =ap+ Z(ak cos(kt) + by sin(kt))
k=1
for some real coefficients ag, (ax)r<k, (bk)r<k-
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Table 1: Comparison of existing capacity bounds for two-layer MLPs with W trainable parameters
and width d. Notation O(-) hides polylog factors. Input types affect expressiveness because richer
inputs permit higher capacity. Bold entries are this paper’s contributions; precise references for
externally sourced VC-dimension bounds are collected in Appendix E}

Activation Input type VCdinl] Ndim
Piecewise linear real inputs |® W log W | e(W)
Piecewise polynomial real inputs |@(W log(W ))l (W)
Pfaffian, incl. standard sigmoid real inputs O(@*wW=) —
Standard sigmoid real inputs QW log W) |Q(WlogW)|
Standard sigmoid discrete, bounded inputs |Q(W), (’)(W)l |®(W)|
Sine discrete, unbounded inputs @] 00
Trigonometric polynomial discrete, bounded inputs — O(W)
Rational exponential discrete, bounded inputs — O(W)

Definition 5.8 (Polynomial-rational-exponential activation). Fix &k € R\ {0}, ¢ > 0, 7 > 0,
a,b € R, and a polynomial P with degree r := deg P € Ny. Define

ae®t +b

cekt + 1

Theorem 5.9 (Uniform convergence for broad activation families). Let o be one of: piecewise-
polynomial (Def. [5.6), trigonometric-polynomial (Def. [5.7), or polynomial-rational-exponential

(Def. -) Let H, be the corresponding two-layer class. Then for every § € (0, 1), with proba-
bility at least 1 — § over the random draw of Digin ~ D",

a(t) = P(t)

heH, n

dp + log(1/6
sup |Px yvy~p(h(X) #Y) = Px v )nDpun (A(X) # Y)‘ < O( (/)>
As direct corollaries of Theorem[5.9] we have:
Corollary 5.10. Two-layer MLPs with activation ReLU (o(t) = max{0,t}), monomial (o(t) =
t™), sine (o(t) = sint), Sigmoid (o(t) = ﬁ), SiLU (o(t) = tsigmoid(t)), QuickGELU (o (t) =
t sigmoid(5t), 8 > 0) have sample complexity 5(dp).
Corollary 5.11 (Sample complexity upper bound for ERM with constant-width sine networks). Fix
a constant width d > 2. With probability at least 1 — & over the random draw of Dy ~ D", for
all interpolating solutions 6,

Pix,yyoplhg(X) #Y] < 6( p"HOg(l/(S)>)

n
where 5() hides polylogarithmic factors in n, m, and § .
Consequently, the sample complexity is 5(;))

The bound in Theorem[5.11]is essentially near-optimal. Intuitively, if an algorithm fails to observe a
constant fraction of the total p classes, learning is information-theoretically impossible. We formal-
ize this via a PAC lower bound in Theorem [D.6] where we apply a uniformly random permutation
to the labels so the learner does not know which output index corresponds to which residue class.

6 GENERALIZATION IN OVERPARAMETERIZED REGIME

From a uniform-convergence bound, two-layer sine MLPs admit better generalization guarantees
than ReLU networks. However, those bounds scale with the hidden width. A natural question is:

'VC-dimension lower bounds are existential: for given size and depth budgets, there exists a network that
shatters a set of the claimed cardinality. Upper bounds are universal: they hold for every network in the family.



Under review as a conference paper at ICLR 2026

as the width becomes very large, what happens? We show margin-based bounds that are width-
independent.

Let v; (j € [p]) be the j-th row of V, we use the norm ||V||1 & = max; ||v;|1 (maximum row
¢1-norm), ||V ||2 for the spectral norm, and ||W || 7 for the Frobenius norm.

Definition 6.1 (Empirical margin). For a labeled example (z,y) with y € [p] and score vector
s%(x) € RP, define the multiclass margin

Yo(z,y) = sh(z) — max sp(x).

For a finite sample S = {(2("),y(")}7_,, define its margin as

vo(S) = m[m] 79(33(2'),3/(2')).
1€(n

We say the classifier interpolates S if 4 (.S) > 0.

Theorem 6.2 (Two-layer sin MLP, margin-based generalization). Consider the two-layer MLP
s%(z) = Vsin(Wz) € RP on X. Fix 6 € (0,1) and assume d > 2p. With probability at least
1— 0 over the random draw of D,y ~ D", for all interpolating solutions 0 with normalized margin

~ Dhrain .
Y6 ,sin += % = Q(1), it holds that

Pix,yyep [ho(X) #Y] < 5(]9 1) ,

n

where 6() hides polylogarithmic factors in n, m, and 5.

Theorem 6.3 (Two-layer ReLU MLP, margin-based generalization). Assume p > m and n > m?,
n > 17. Fix 6 € (0,1). Suppose the width satisfies d > 64pm= T2 4.67™. With probability at
least 1 — § over the random draw of Diyin ~ D", for all interpolating solutions 0 with normalized

i~ . Y6(Dtrain) __ 1 1 .
Margin g ReLU *= VLWl =0 /b mitm¥rse3am , it holds that

P(x,yy~plhe(X) #Y] < 5(pm1'5m+2'56-34m\/ m) :
n

where 6() hides polylogarithmic factors in n and 5",

The proofs proceed by first applying an ¢, vector-contraction bound (Foster & Rakhlin, [2019)
for the Rademacher complexity. For sine MLPs, we then bound the contracted complexity via the
standard Dudley entropy integral, after estimating covering numbers for sine networks. For ReLU
MLPs, we invoke a key technical lemma for positively homogeneous activations that enables a layer-
wise peeling argument within the Rademacher complexity, following (Golowich et al.l [2017). See
Appendix [H|for details.

7 EXPERIMENTS

To empirically investigate and confirm our proposed theory, we conduct experiments with two-layer
sine and ReLU MLPs on modular addition under various settings. Full setup details and additional
figures are deferred to Appendix

Underparameterized regime. We evaluate our sample complexity predictions by training matched
architectures that differ only in their nonlinearity (sine vs. ReLU), using AdamW with zero weight
decay on identical datasets and with identical optimization hyperparameters (Figure [T). Across
widths and training sizes, sine networks consistently outperform ReLU in both training and test
accuracy, attaining a given accuracy at substantially smaller widths. For a fixed training set size,
reducing the width—provided it remains sufficient for optimization—improves test accuracy for
both activations, consistent with our uniform convergence guarantee in Section 3}

Overparameterized regime. To verify the margin-based bounds in Section[6] we train wide two-
layer MLPs with Muon and sweep over decoupled weight decay rates. For sine models we apply
weight decay only to the second layer; for ReLU we decay both layers. We report the 0.5%-quantile
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Underparameterized Regime — m=3, p=97
(a) Train — sine (b) Train — RelLU

24k4  1.00 1.00 1.00 1.00 1.00 1.00

1.0

20k 1.00 1.00 1.00 1.00 1.00 1.00

16k- 100 1.00 1.00 1.00 1.00 1.00

12k{ 100 1.00 1.00 1.00 1.00 1.00

Train size

8k — 1.00 1.00 1.00 1.00 1.00 1.00

4k 082 1.00 1.00 1.00 1.00 1.00

Accuracy

24k4 100 1.00 1.00 1.00 1.00 1.00

20k 1.00 1.00 1.00 1.00 1.00 1.00

16k4 100 1.00 1.00 1.00 1.00 1.00

12k{ 100 1.00 1.00 1.00 1.00 1.00

Train size

0.0

16 32 64 128 256 512
d

Figure 1: Accuracies for two-layer sine and ReLU MLPs in the underparameterized regime.

rather than the minimum margin because the latter is often dominated by rare outliers; a small
quantile yields a stable large-margin proxy and, by Corollary@ only adds an additive 0.5% term
to the population error. We log training and test accuracies, the 0.5%-quantile of the training margin

7351511% = Quantiley g5 { Yoz, y(i))}:;l, together with normalized margins that factor out layer
scales: oo o
ReLU: Arey = Lino, Sine: g = L‘“O
IV Iz (Wl ‘ V1100

Figures 2]and 3] show that, as weight decay increases through a moderate range, normalized margins
grow and test accuracy improves; with excessively large decay, training accuracy falls and gener-
alization degrades. These trends align with the prediction that, in the overparameterized regime,
generalization is governed by effective layer scales and margins.

8 CONCLUSION

We show a provable benefit of learning periodic tasks with sine activations over standard ReL.U
activations. On modular addition with shared, position-independent embeddings, a width-2 sine
MLP exactly implements the task, whereas ReLU MLPs require width that grows at least lin-
early with m, separating the two families in representational efficiency. On the statistical side,
our Natarajan-dimension analysis yields uniform convergence bounds of ©(dp) for broad activation
families (Theorem [5.9); specialized to sine with constant width and using realizability, any inter-
polating learner achieves nearly optimal ©(p) sample complexity (Theorem . In the overpa-
rameterized regime, we prove width-independent, margin-based generalization guarantees for sine
networks under the natural ||V ||1 o scaling; larger-margin interpolants achieve sample complexity
0(]92) (Theorem . Empirically, we observe that sine networks train and generalize consistently
reliably than ReLU MLPs, and larger normalized margins track better generalization (Figures [I}-
B). Together, these results support a clear design principle: when the target is periodic, encoding
periodic structure in the architecture, both increases expressivity and makes learning easier.
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Overparameterized Regime — m=3, p=97, activation=sine, train size=3072
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Figure 2: Two-layer sine networks in the overparameterized regime. Clockwise from the top-left:
Layer norm, Normalized margin, Test accuracy, Standard deviation of Test accuracy.

Overparameterized Regime — m=3, p=97, activation=RelLU, train size=10000
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Figure 3: Two-layer ReLU networks in the overparameterized regime (panels as in Fig. [2).
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A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

Tool and scope. We used Gemini 2.5 Pro and GPT-5 (high) as general-purpose assist tools for
(1) code assistance (e.g., suggesting small snippets, refactoring, debugging hints, writing doc-
strings/comments, and drafting unit-test scaffolds) and (ii) writing assistance (e.g., copy-editing,
grammar/fluency improvements, and localized rephrasing for clarity). Prompts sometimes included
short excerpts of our own draft text or code necessary to request the above assistance.

What the LLM did not do. The LLM did not originate the paper’s core research ideas, hypotheses,
methodological designs, experimental protocols, analyses, or conclusions; it did not write sections
containing novel scientific claims; and it did not determine which results to report or how to interpret
them.

Verification and oversight. All LLM-suggested text and code were independently reviewed and
edited by the authors. For code, the authors carefully checked and verified correctness (including
running and testing LLM-suggested snippets before inclusion). Any factual statements in edited
prose were cross-checked by the authors against our own results or appropriate sources. No LLM
outputs were accepted without human scrutiny.

Assessment of significance. While the LLM provided editing assistance and code-level suggestions,
its role does not rise to the level of a contributing author under the ICLR policy. The intellectual
contributions (problem formulation, algorithmic design, experiments, and interpretation) are those
of the human authors.

Reproducibility note. LLM assistance was limited to improving clarity and developer ergonomics;
it does not affect the reproducibility of our methods or results. All final code and experiments are
authored, verified, and maintained by the authors.

B EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

In this section, we explain the configuration used in all experiments.
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B.1 EXPERIMENTAL SETUP

Data. For each run we generate a static training set of size n once and reshuffle it every epoch; the
test set contains 10,000 i.i.d. samples.

Initialization and reproducibility. We fix seeds {1337, 1338, 1339} and report averages over seeds
for metrics. All weights are initialized i.i.d. A/(0,0.012). This ensures consistent model initializa-
tions and that smaller training sets are strict subsets of larger ones within a given sweep.

Precision and implementation. All experiments are implemented in PyTorch with TF32 disabled
and float 32 throughout. We log with Weights & Biases. Each run uses a single NVIDIA GPU
(RTX,A4000/A6000, RTX,5000/6000,Ada, L40S, A100, H100, or H200).

Optimizers and hyperparameters in underparameterized regime. We use AdamW with a con-
stant learning rate 10~ and zero weight decay. All other AdamW hyperparameters are left at their
PyTorch defaults (betas (0.9,0.999), ¢ = 10~8). We do not use learning-rate schedules, warmup, or
gradient clipping.

Optimizers and hyperparameters in overparameterized regime. We use Muon with constant
learning rate 10~ and vary the decoupled weight decay. Momentum, Nesterov, and Newton—Schulz
steps are left at the library defaults (momentum 0.95, Nesterov enabled, 5 Newton—Schul steps). We
do not use learning-rate schedules, warmup, or gradient clipping.

Batches. We use mini-batchs and the batch size is 1024. We train for 300, 000 epochs. Where we
compare activations, we match (m, p, d, n) and optimizer settings.

Training. We use mini-batch training and the batch size is 1024. We train for up to 300,000 epochs
and report the final metrics after training.

Metrics. We report train/test accuracy, the generalization gap, and the 0.5th-percentile training
margin 72:>%. We log layer norms ||W ||z, ||V||2 for ReLU and ||V ||, for sine models, enabling
the normalized margins used in Section

Normalization choices. Our denominators follow decoupled weight-decay scales: spec-
tral/Frobenius norms are natural for controlling effective layer size; note |Allr <

/rank(A) | All2 < y/min{m,n} ||A||2 for A € R™*™,

Additional results. We provide additional figures for our experiments.

Figure[d]and Figure[5|provide multiple plots for the underparameterized sweeps at (m, p) = (2, 307)
and (4, 53), respectively. In both cases, sine networks dominate ReLU at matched width and training
budget, and the advantage widens as width decreases until optimization begins to fail.

Figure[6H9] provide multiple plots for the overparameterized sweeps at (m, p) = (2,307) and (4, 53),
respectively. In both cases, as weight decay increases through a moderate range, normalized margins
grow and test accuracy improves; with excessively large decay, training accuracy falls and gener-
alization degrades. These trends align with the prediction that, in the overparameterized regime,
generalization is governed by effective layer scales and margins.
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Underparameterized Regime — m=2, p=307
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Figure 4: Underparameterized regime (m = 2, p = 307). Final train/test accuracies for two-layer
MLPs with sine vs. ReLU activations under matched budgets.

Underparameterized Regime — m=4, p=53
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Figure 5: Underparameterized regime (m = 4, p = 53). Final train/test accuracies for two-layer
MLPs with sine vs. ReLU activations under matched budgets.
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Overparameterized Regime — m=2, p=307, activation=sine, train size=5000
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Figure 6: Two-layer sine networks in the overparameterized regime.

Overparameterized Regime — m=2, p=307, activation=RelU, train size=5700
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Overparameterized Regime — m=4, p=53,
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C SOURCES FOR CAPACITY BOUNDS IN TABLE[]

Notation and scope. All entries are for two-layer MLPs (one hidden layer) with W trainable pa-
rameters and width d. Throughout, O(-) hides polylogarithmic factors.

Piecewise linear, real inputs (VCdim = ©(WW log W)). The nearly-tight bounds for piecewise-
linear networks are summarized by (Bartlett et al.l [2017b, Eq. (2)); for fixed depth L = 2 this
specializes to ©(WW log V).

Piecewise-polynomial, real inputs (VCdim = O(WlogW)). (Anthony & Bartlett, 2009,
Thm. 8.8) prove an upper bound of O(W L log W + W L?) for networks with piecewise-polynomial
activations of bounded degree and a bounded number of pieces; in the depth-2 case this simplifies
to O(W log W). A matching lower bound of Q(W log W) for two-layer linear-threshold networks
(a special case with degree 0) appears in (Anthony & Bartlett, | 2009, Thm. 6.4). Using a refined bit-
extraction technique, (Bartlett et al.,|2017b, Thm. 3) further gives an explicit construction achieving
Q(W Llog(W/L)) for ReLU networks, which in particular gives (W log W) for depth-2 net-
works.

Pfaffian activations (incl. standard sigmoid), real inputs (VCdim = O(d2W2)). A general upper
bound O(WQkQ) for standard sigmoid networks is given in (Anthony & Bartlett, 2009, Thm. 8.13),
where k is the number of computation units; in a two-layer networks, k£ = d. The Ptatfian extension
follows from Khovanskii’s Fewnomials: the theorem underlying Lemma 8.15 (see also (Anthony
& Bartlett, 2009, §8.6)) bounds the number of connected components (Betti numbers) of semi-
Pfaffian sets defined by functions from a fixed Pfaffian chain. Plugging this component bound into
the standard growth-function argument used for the exponential case yields the same O(d?W?)
VC-dimension bound for networks whose activations lie in a fixed Pfaffian chain (with order/degree
independent of the data).

Standard sigmoid, real inputs (VCdim = (W log W)). The reduction from linear-threshold to
smooth sigmoids (Anthony & Bartlett, 2009, Thm. 6.5) implies that the two-layer linear-threshold
lower bound (Anthony & Bartlett, 2009, Thm. 6.4) carries over to standard sigmoid networks on the
same finite set of inputs. This yields (1 )lower bound, and (W log W) under the construction
of “bit extraction”(Bartlett et al., 2017b, Rmk. 4).

Standard sigmoid, discrete bounded inputs (VCdim = ©(W)). For two-layer standard sigmoid
networks with discrete inputs and first-layer fan-in < N, (Anthony & Bartlett, 2009, Thm. 8.11)

gives VCdim < 2Wlog,(60ND) = O(W). The paragraph following the theorem constructs a
two-layer linear-threshold network with VCdim = Q(W); (Anthony & Bartlett, 2009, Thm. 6.5)

transfers this lower bound to sigmoids. Hence the bound is (:)(W)

Sine, discrete unbounded inputs (VCdim = co). (Anthony & Bartlett, 2009, Lemma 7.2) shows
that {x — sgn(sin(az))} has infinite VC-dimension. Thus, restricting to two labels, the corre-
sponding multiclass Natarajan-dimension is also infinite.

Our Natarajan-dimension results. The O(W') upper bounds are established in Theorems
and [E.T3] for the piecewise, standard sigmoid, trigonometric, and rational-exponential cases.
Moreover, Lemma shows that the Natarajan-dimension is at least the VC-dimension of the
associated binary subclass,

VCdim(M) < Ndim(H),

thereby supplying matching lower bounds for the Natarajan-dimension. Because these Natarajan-
dimension lower bounds are inherited from VC-dimension lower bounds, they are existential: they
assert the existence of networks in the family attaining the stated bounds.

D A PAC LOWER BOUND FOR MULTI-CLASS CLASSIFICATION

Define the residue

r(z) = kak (mod p) € [p].
k=0
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A learner that already knows this rule needs essentially no data, as it can compute r(z) from z
exactly.

We consider the label-symmetric setting: the learner does not know which output index corresponds
to which residue class. Formally, the true rule is composed with an unknown permutation ™ € S,,.
We assume

m ~ Unif(S,) independently of the data generation,

and define f,(x) = w(r(z)). A (possibly randomized) learner A observes n i.i.d. pairs S =

{(X;,Y;)}, with X; distributed as above and Y; = f,(X;), and outputs a classifier f= A(S) :
X — [p]. Performance is measured by the population 0-1 risk

L(f;m) = Px(F(X) # f(X)),

where the probability is over an independent test draw X, and 7 (hence L(]?, 7)) is random due to
S, m, and any internal randomness of A.

Lemma D.1. If X is generated as above, then r(X) ~ Unif([p]). Hence the residues
r(X1),...,r(X,) in the sample are i.i.d. uniform on [p|.

Proof. Write r(X) = >, s; (mod p). Since s; ~ Unif([p]) is independent of S" = 31", s;
(mod p), the sum s; + 5" (mod p) is uniform on the cyclic group Z,. O

Lemma D.2. Fix any realized training set S. Let R C [p] be the set of residues that appear among
r(X1),...,7(Xp), and let U = [p] \ R with K = |U|. Conditional on S, the restriction 7|y is a
uniformly random bijection from U to [p] \ 7(R).

Proof. The prior on 7 is uniform over S, independent of the data. Observing S reveals 7(u) for all
u € R (because r(X;) is computable from X;). Conditioning on these values, all completions of 7
on U are equally likely, and there are K! of them. O

Lemma D.3 (Risk lower bound via unseen residues). Let K be the number of unseen residues
determined by S. For any learner, over the random draw of the training samples,
~ K-1
L(f;m) > Q almost surely in S,
p
where (t);+ = max{t,0}.

Proof. Condition on a realized S and its unseen set U (size K). By LemmaD.1] P(r(X) = u) =
1/p for each u € [p]. For any unseen u € U, Lemma[D.2]implies 7 (u) is uniform over a set of K
labels, independent of X given r(X) = u. Thus, for any prediction rule measurable with respect to
S and X, the success probability at residue u is at most 1/ K, so the misclassification probability is
at least (K — 1)/ K. Summing over u € U,

~ K-1 K K-1 K-1
L(fim) 2 3Pr(X) =) m o = ,
uelU p p

Lemma D.4. Let K be the number of residues in [p| not hit by r(X1), ..., 7(X,). Then

E[K] =p(1 - %)n
Var(K) < E[K],
P(K <E[K]-1t) < exp(—%f) forallt > 0.

Proof. Let I, = 1{reidue u is unseen} fOr u € [p]. By Lemma the n residues are i.i.d. uniform, so

1) = (1—g)n=: g2 (u#0).

P(qul):(l—l)n =:gq, ’

p

=

&
[

&
[
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Thus E[K] = " E[I,] = pg. Moreover,
Var(K) = ZVar(Iu) —i—ZCOV(Iu,Iv) =pq(1—q)+p(p—1)(q2 — ¢*).
u u#v

Since (1 — %) <(1- ]%)2, we have g2 < ¢, hence Var(K) < pq(1 — q) < pg = E[K]. For

concentration, expose the independent residues Z; = r(X;) € [p]. The mapping (Z1,...,Z,) — K
is 1-Lipschitz (changing one residue can alter the number of unseen residues by at most 1), so
McDiarmid’s inequality yields the stated tail bound. O

Lemma D.5 (A logarithmic inequality). For x € (0,1), log(1 — x) > —3%-. Hence, for integers

p > 2andalln >0,
I n
(1) = ool ;)
P p—1

Proof. Define h(z) = log(1l — x) + ==. Then h/(x) = =z = Oand h(0) =0, s0 h(x) > 0 on

(0,1). O

Theorem D.6 (PAC lower bound). Fix e € (0, %) and 6 € (0, %) There exists an integer pg =
po(e, ) such that for all p > po, every learner A that (with probability at least 1 — 0 over the draw
of S and the internal randomness) achieves population risk at most € must use

n > (p—1) (10g§*1> = Q(p).

Equivalently, for everyn < (p — 1)(logé — 1) and every learner,

IP(L(]?; m) <e) < exp (— 2(160;(11)/6) 52p> , (1)

s0 ]P’(L(f; ) <€) < 0 for all sufficiently large p.

Proof. By Lemma the event {L(f;7) < £} implies { K < p + 1}. Hence
P(L(f;m) <e) < P(K <ep+1).

_ _ 1\n
Let p = E[K] = p(1 — 3)". By Lemma

n
B> peXP(**)-
p—1

Assume n < (p — 1)(log 2 — 1). Then

1
w > pexp(—logf—i—l) = pece.
€

Sett = p—(ep+1) > pe(e—1)—1. For all p large enough (depending only on€), t > % pe(e—1).
By Lemma D.4] (McDiarmid),

P(K<ep+1) = (K <p—t) < exp<—2nt2> < exp<—2(160;(11)/2€)52p>,

where in the last inequality we used ¢ > ipes(e — 1) and n < (p — 1)log? < plogl. This
(e=1)?

proves equation Therefore, the following statement holds since exp(— TTog(i/5)

g2 p) decays
exponentially in p.
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E PROOFS IN NATARAJAN-DIMENSION

E.1 UPPER BOUND OF NATARAJAN-DIMENSION

Let X' be an instance space, let p € N with p > 2, and let [p] = {1,...,p} be the label set. Fix a
domain ¢/ and a function class F. For a finite T' C U, write }"T = f|T : f € F} forits restriction
and | F),.| for the number of distinct labelings on T realized by F.

Definition E.1 (Number of realized multiclass labelings). For S = {x(l), . 7x(”)} C X and
hypothesis class H# C [p]*, define

An(S) = |H,| = H(h(x<1>),...,h<x<n>)) e " he?—[}’.

Lemma E.2 (Natarajan shattering and labelings). If a finite set S = {zM), ... 2™} Cc X is
Natarajan-shattered by a hypothesis H C [p]*, then Ay (S) > 2™

Proof of Lemma[E2] By Deﬁnition there exist f1, fo € [p|® with fi(z) # fa(z) forallz € S
such that for every selector b : S — {1,2} there is hy € H with hy(z) = fy)(z) forall z € S.

Define @ : {1,2}% — H|, by ®(b) = hy|s.
If b # b, pick zg € S with b(xg) # b'(zo). Then
D(b) (o) = h(20) = fo(zo)(T0) 7 for (z0) (T0) = hiv (z0) = () (20),
so ®(b) # ®(b'). Thus P is injective and
An(S) = Hs| = 10({1,2}%)] = [{1,2}%] = 21 = 2.
O

Lemma E.3 (Labelings and pairwise reduction). Fix S = {1, ..., 2™} C X and a hypothesis
class Ho C [p]. Then

A3 (S) < Tgo(np(p—1)/2).

Proof of Lemma|E3) Set
T = Sx{j) €l x pl: i<} € Zpuir
For each h € (He)), define the fiber
W) = {0 €O : hoo =R}, and A(h) = {gu, : 0€ W)} € (Go),-

Now we will show that if & # &/, then A(h) N A(R') = 0.
Pick z € S with h(z) = i and h/(x) = j # i. Without loss of generality, assume i < j. For

any § € W (h), the tie-breaking rule implies s¢(z) > s%(x), hence go(x,i,j) = +1. For any

0" € W(I'), we have 5% (z) > s¢'(z), hence gy (z,7,j) = —1. Thus every element of A(h) has
+1 and every element of A(h') has —1 at the coordinate (x,,7) € T, so A(h) N A(R') = 0.

Since |(He)|s| < p™ < oo and each A(h) # 0, fix an arbitrary choice function ¥ selecting one
element of A(h) for each h € (Hg)|,. Then the map

v . (H@)‘S — (g@)‘T, hb—)@(h)
is well-defined and injective. Therefore,

Ao (S) = [(Ho)s| < [(Go)irl < Mg (IT]) = Tge(n(h)) = Hge(np(p —1)/2).

Together with Lemmas and[E.3] we have Lemmal[5.5]
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Definition E.4 (k-combination of sgn(F)). Let Z be any domain and let F C RE”XZ be g class of
real-valued functions of the form (a, 2) + f(a,z), witha € RP and z € Z. A binary class H C
{—1,+1}2 is a k-combination of sgn(F) if there exist a Boolean map g : {—1,+1}* — {—1,+1}
and functions fi, ..., fr € F such that for every h € H there is a € R” with

h(z) = g(sen(fi(a,z)),...,sgn(fr(a,z))) forall z € Z.

We say f € Fis CP in its parameters if, for every fixed z, the map a — f(a, z) is CP.

Definition E.5 (Regular zero-set intersections (Def. 7.3 (Anthony & Bartlett,2009))). For differen-
tiable f1,..., fx : RP — R, the family {fi, ..., fi} has regular zero-set intersections if for every
nonempty I C {1,...,k}, the Jacobian of (f;);cs has full row rank |I| at every a with f;(a) = 0
forall: € 1.

Definition E.6 (Solution set components bound (Def. 7.5 (Anthony & Bartlett, 2009))). Let G be
a set of real-valued functions on R”. We say G has solution set components bound B if for any

1<k < Dandany {fi,..., fr} C G that has regular zero-set intersections,
k
cc(ﬁ{a eRP: fi(a) = 0}) < B,
i=1

where CC(+) is the number of connected components.
Theorem E.7 (General Growth function upper bound (Thm. 7.6 (Anthony & Bartlett, 2009))). Let
F C RR”XZ pe closed under addition of constants, assume every f € F is CP in a, and let

G :={aw fla,2): fEF, z€Z}.

If G has a solution set components bound B and H C {—1,+1}7 is a k-combination of sgn(F),

then for all N > D /k,
D
Nk D
< < e Nk
HH(N)BZ._EO(i>B(D) .

Theorem E.8 (General Growth function upper bound (Thm. 8.3 (Anthony & Bartlett, 2009))). Let

FC RE”XZ pe g class of functions mapping from RP x Z to R such that, forall z € Z and f € F,
the map a — f(a, z) is a polynomial on RP of degree at most r. Suppose that H is a k-combination
of sgn(F). Then, if N > D/k,

D
Ty (N) < 2(2611\)7kr> .

Remark E.9. If N < D/k, we have a trivial bound Ty (N) < 2V < 2P/F < 2P 5o forall N € N,
Iy (N) < max{2D,2 (M;#)D}.

Lemma E.10 (Absorbing logn (Lem. A.2 (Shalev-Shwartz & Ben-David, 2014))). Let A > 1,
B >0,andu> 0. Ifu < Alogu + B, then

u < 4Alog(2A) + 2B.

Lemma E.11 (Trigonometric Sum Polynomialization). Let p > 1 and m > 0 be integers. For any
vector of non-negative integers x = (Z1, ..., x,) such that 22:1 x, = m, there exist polynomials

S,L;C,L S Z[Cla317 ... )Cpﬂsl)}

of total degree at most m that satisfy

p p

Sz(c1, 815+ ,Cp, Sp) :sin( E xvav> and Cy(c1,81,...,Cp, Sp) :cos( E xvav>
v=1 v=1
for all real angles o, . . ., o, where ¢, := cos(a,) and s, := sin(ay,).

Proof of Lemma We prove the lemma by induction on m = .25:1 x,. The uniqueness of the
polynomials is guaranteed by the deterministic recursive construction.
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Base Case (m = 0):

If m = 0, then = 0 is the only possible vector. The sum of angles is > x,a, = 0. The defined
polynomials are So = 0 and Cp = 1. These are integer-coefficient polynomials of degree 0. They
correctly evaluate to sin(0) = 0 and cos(0) = 1.

Inductive Step:

Assume the claim holds for all vectors y with component sum m — 1. Let x be a vector with
component sum m. Let v = min{v | z, > 0} and define y = = — e,,. The components of y sum
to m — 1. By the induction hypothesis, there exist polynomials S, and C), with integer coefficients
and degree at most m — 1 that represent sin(D>  y, ) and cos(>_ yyau,).

We define S, and C,, as per the recursion:
Sy = 8,0y + ¢Sy Cy = c,Cy — 54,5y
1. Coefficients and Degree: Since S, and C, have integer coefficients, and s,,, ¢, are vari-

ables, S, and C, are also polynomials with integer coefficients. Their total degrees are
bounded by:

deg(S;) <1+ max(deg(Cy),deg(Sy)) <1+ (m—1)=m
The same bound holds for deg(C,,).

2. Trigonometric Identity: By the angle addition formulas and the induction hypothesis:

P P
Sy = sin(ay,) cos (Z yvav) + cos(ay,) sin (Z yva1)>
v=1 v=1
P P
= sin (au + Zyuav) = sin (vaav)

v=1 v=1

Similarly,
p p
Cy = cos(ay,) cos (Z yuav) — sin(ay,) sin (Z )
v=1 v=1
p
= COS (au + Zyvav) = COS (vaav>
v=1 v=1
This completes the induction. O

E.1.1 PIECEWISE-POLYNOMIAL ACTIVATIONS

Theorem E.12 (Two-layer piecewise-polynomial activations). Let o be as in Definition[5.6] For the
two-layer MLP defined in the model setup,

Ndim(He) < 2dp (61og(6dp) + log(2eL) + 2log(epr)) = O(dp)

Proof of Theorem[E.12} Let S = {z(),... 2(™} C X be Natarajan-shattered. By Lemma
this implies 2" < Ilg,(n(})). The parameter space W € R is partitioned into regions by the zero
sets of {w;z) — by} for j € [n],i € [d], £ € [L — 1]. The number of regions, Ry, is the number of
sign patterns on a sample of size m = nd(L — 1) by affine functions of W.

Notice that {w — sgn(wz —by) :w e R*P x € S, 0 € [L —1} c {-1,+1}" is a 1-
combination of sgn ({w — (wz — by) : w € RY*P,z € S,0 € [L — 1]} CRY).

h < dp o (2end(L—1)\% thi h reci 0 0/ N -
By Theorem [E.8] Rg < max {297 2 (T) . Within each region, s} (x) — s7(z) is a

polynomial in 6 € R?% of degree at most r + 1. Let N = n(}), D = 2dp. The growth function is
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bounded by the product of the number of regions and the maximum growth function within a region.
Applying Theorem [E.§in each region:

. N dp 2dp
g, (N) < RS‘mngHR(N) < maX{QdP,Q <2€nd(Ll)> }max {22dp,2 <6]V(T+1)) }

dp dp
i et o bt s g oo (V) s 22 Genk T enar
n < 3dplog(n)/log(2) + dp(log(2eL) + 2log(epr))/ log(2).
Lemma [E.T0]implies that
n < 2dp (61og(6dp) + log(2eL) + 2log(epr)) /log(2) = O(dp).
Take supreum over S yields the result.
O

E.1.2 TRIGONOMETRIC-POLYNOMIAL ACTIVATIONS

Theorem E.13 (Two-layer trigonometric-polynomial activations). Let o be as in Definition For
the two-layer MLP from the model setup,

Ndim(He) < 2dp(6 log(6dp) + 2log(ep(Km + 1))) = O(dp).

Proof of Theorem[E.I3} Let S = {z™M,... (™} C X be Natarajan-shattered. By Lemma [5.5
this implies 2" < TIg,(n(3)).

For j € [d],v € [p] set ¢j,, := cos(w; ) and s, ,, = sin(wj,,), and regard
a = (V. (¢jw)jws (8j0)j0) € R

as the (relaxed) parameter vector; ignoring the constraints c?m + s?v = 1 can only increase the
growth function. For any (i,y # y'),

d
sy (@) = sy @) = 3_ (Vi = Vy)o(fuwy ).

Jj=1

Writing o as in Definition and applying Lemma to kz() shows that each term
cos(k(w;,z")) and sin(k(w;, zV)) is a polynomial in ((c; y)v, (Sj,4)s) of degree at most km <
K'm. Hence every pairwise margin is a polynomial in a of degree at most K'm + 1.

The reduction class Gg is a 1-combination of sgn(F) with F being a family of polynomials of
degree at most K'm + 1 in D = 3dp parameters. Applying Theoremwith N = n(g), k=1,
r=Km+1,

2eNr

g, (N) < max{2D,2< )D} < 2(pKnm)>® .

Combine with 2" < Ilg, (N), take logs: nlog(2) < log(2) 4 3dplog(pKm) + 3dplog(n). Use
Lemma [E.I0]to absorb the log n term, yielding

n < 12dplog(6dp)/log(2) + 2 (log(2) + 3dplog(pKm)) /log(2) = O (dp)

Taking the supremum over shattered S gives the claim. O

E.1.3 RATIONAL-EXPONENTIAL ACTIVATIONS

Theorem E.14 (Two-layer polynomial-rational-exponential activations). Let o be as in Defini-
tion For the two-layer MLP from the model setup,

Ndim(He) < 2dp(6 log(6dp) + 2log (ep(dm + 1 + 1))) = O(dp).
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Proof of Theorem[E14} Let S = {zM), ..., z(™} C X be Natarajan-shattered and set N := n(5).

For each example ¢ and hidden unit j, put z;; = ekwie™) 5 0. Since ¢ > 0and 7 > 0, the
product

d
ch”—FT > 0.

Multiplying any pairwise margin G , ,» = s, (x( )) — s () by D;(W) preserves its sign and
yields

Giy W, V) = Di(W)Giy oy (W, V) = > (Vs = Vi ) P((wj, 2)) (az s + b) [ [ (czei + 7).
=1 =y

Introduce relaxed variables u; ,, := e*¥i-v € (0, 00). Then

(i) u (%)
o Jk(wj,atty Ty
zj; = e = (e
v=1
a monomial of total degree m in U; := (u;1,...,u;,). Consequently, each summand in G; ,, .+ is
G Lo ey Ugip Y5y

a product of: (i) a linear term in V; (ii) the degree-r polynomial P((wj, 2@®)) in W (iii) a factor
(azji+0b) Hf#j (cze,i +7) of total degree dm in the U-variables. Thus every G; , . is a polynomial
in

a = (V, (’Ltjﬂ,)jw, (ij)j,v) c R3dp

of degree at most p := dm + r + 1. Treating a as the parameter vector, the reduction class Gg is
a 1-combination of sgn(F) with F being a family of polynomials of degree at most p in D = 3dp
parameters. Applying Theoremwith k=1,D =3dp, N = n(g),

2eNp\D
oo (N) < maX{fﬂ(%) b < am + o+ 1))
Combine with Lemma|[5.5]and absorb the log n term via Lemma [E.10]to obtain

n < 12dplog(6dp/ log(2))/ log(2) + 6dplog(p(dm + r + 1))/ log(2) = O(dp)

Taking the supremum over shattered .S gives the claim. O

E.1.4 UNIFORM CONVERGENCE GUARANTEES

Let H, C [p]* be a multiclass hypothesis class with Natarajan-dimension Ndim(#,) < oo. Let
h € H, denote by P, ,yep(h(x) # y) the population 0-1 risk and by P, ,)ep,.., (h(x) # y) the
empirical 0—1 risk computed from an i.i.d. sample of size n.

Theorem E.15 (Thm. 29.3 of (Shalev-Shwartz & Ben-David, 2014}, Uniform convergence). There
exists a universal constant C' > 0 such that, for every 6 € (0, 1), with probability at least 1 — 4,

\/Ndim(?—lg) logp + log(1/6) .

n

hseu7_ll) |P(r e (h() # ) — Pz y)eD,., (M) # y)’ <C

Proof of Theorem[5.9) By Theorem [E.12} [E.13} [E.14, Ndim(#,) = O(dp). Substituting this into
the multiclass uniform convergence bound (Theorem [E.15)) yields

Ndim(#,) logp + log(1/6) _ 5( dp+1og(1/5)>

sup ‘P(xy ND( (z )#y) (z.y) ND““"( () #y)‘ = C\/

heH, n n

where the log p factor is absorbed into O(-). O
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E.2 LOWER BOUND OF NATARAJAN-DIMENSION

Let © denote the backbone parameter space determined by the architecture. The multiclass hypoth-
esis class is
H={hoy : 0€0, VeR*}

Definition E.16 (Associated binary class). We consider the binary (realizable) subclass of halfs-
paces in the representation:

M = {J;»—)l{{u fo(@)) > 0} - (9,v)e@de} c {0,1}%.

Lemma E.17 (VC-dimension is bounded by the Natarajan-dimension). For the multiclass hypothe-
sis class H withp > 2,
VCdim(M) < Ndim(H).

Proof. Let S C X be a finite set that is VC-shattered by M.

Fix f1, f2 € [p]® by fi(x) = 1 and fo(x) = 2 for all € S (possible since p > 2). Letb: S —
{1, 2} be an arbitrary selector. Define the induced binary labeling

w(z) = 1{b(z) =1} € {0,1}  (z€59).
Since S is VC-shattered by M, there exist 6, € © and v, € R such that
y(x) = 1{(w, fo,(x)) >0} forallz €S.

Construct V;, € RP*? guch that the first row is vp, and all remaining rows are 0. Then, for each
zeSs,
1, ify(x)=1(b(x)=1),
hoy v () — if g )_ (b )_ )
2, ifyp(z) =0 (b(z) = 2),

ie., hg,v,(z) = fy@)(x) forall z € S. Since b was arbitrary, S is Natarajan-shattered by H

with witnesses (f1, f2). Therefore |S| < Ndim(#). Taking the supremum over all such S gives
VCdim(M) < Ndim(H).

O
F CONSTRUCTION OF INTERPOLATION SOLUTIONS

F.1 SINE ACTIVATION o(z) = sin z

In this section, we provide interpolating solutions for both two-layer sine and ReLU MLPs.

F.1.1 A LOW WIDTH CONSTRUCTION
Proof of Theorem[.1} Activation is o(z) =sinz. Let S =) ./" | s; and ¢ = %’T

First Layer Weights 1 € R?*?, For each input coordinate 7 € {0,...,p — 1},

Wi, = (¢r) mod 27 € [-m,7), Wa, = (¢7+ 5=) mod 27 € [—m, ).

Then the pre-activations are

(W:I:)l = ¢S7 (Wx)2 = ¢S+ ga

so the hidden units are

o((Wz)1) = sin(¢9), o((Wz)2) = cos(¢S).

Second Layer Weights V' € RP*2, For each class ¢ € {0,...,p — 1},
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Vg1 = sin(éq), Va2 = cos(¢q).

Verification For the ¢-th output,

Sg(x) = Vg,15in(¢S) + Vg 2 cos(oS)
= sin(¢q) sin(pS) + cos(¢q) cos(pS)
= cos(¢(S — q)).

Thus hg(x) = argmax, SZ(Q:) = S mod p. This construction achieves 100% accuracy with width
d = 2, margin v = Q(1/p?), and satisfies |W | < 7, |V < 1. O

F.1.2 A HIGH MARGIN CONSTRUCTION

Theorem F.1 (High margin, dy = 2p). There exists a construction with hidden dimension dy = 2p
and sine activation computes y .-, s; mod p for all v = (s1, -+ ,8y,) € X, achieving margin

y=pand |V|2 = /b [Wllr < 7v2p.

Proof. Index hidden units by h € {1,...,2p} and group them as (2k — 1,2k) for frequencies
ke{l,...,p} Let gy = %.

First Layer Weights W € R?P*P_Foreach k € {1,...,p}andr € {0,...,p— 1},

Wok—1,r = ((ﬁkr) mod 27 € [—7, 7), Wagr = (gzﬁkr + ﬁ) mod 27 € [—7, 7).

Then
(Wx)ap—1 = ¢S, (W) = ¢pS + I,

and
o(Wx)ap—1) = sin(¢r5), o((Wx)ar) = cos(¢rS).

The first layer satisfies || ||o < 7, hence |W||r < 7/(2p)p = 7v/2p.
Second Layer Weights VV € RP*?P, Foreach ¢ € {0,...,p—1}and k € {1,...,p},

Vg, 26—1 = sin(¢rq), Vq, 26 = cos(Prq).

Verification For the ¢-th output,

sg(x) = Z [sin(qﬁkq) sin(¢xS) + cos(¢rq) cos(d)kS)]

P
cos(¢r(S — q)) = %(Z eiz‘;k(S_Q)>
k=1

, S=q (modp),
, otherwise.

E
Il
-

Il
o
i ME
A

o3

|

Hence hg(x) = S mod p with margin v = p. The construction achieves 100% accuracy with width
d = 2p and satisfies [|W||oo <7, ||V ]|oo < 1. 0

Lemma F.2 (Singular values of V). In the high-margin construction, all singular values of V are
exactly \/p, so |V |2 = /p.
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Proof. Compute VV T entrywise. For ¢,7 € {0,...,p — 1},

|
M=

(VVT)qT (sin(d)kq) sin(¢gr) + cos(drq) cos(qbkr))

B
I

1

Il
Fﬁe

os (¢r(qg — 1)) (by cos(a — b) = cosacosb + sinasin b)

>
I

1

(g
k=1

_J0, ifg—r#0 modp
~\lp, ifg—r=0 modp

Therefore all eigenvalues of V'V T are exactly p, so all singular values of V are exactly /p- In
particular, the spectral norm is ||V |2 = /p.

F.2 RELU ACTIVATION o(z) = ReLU(z)

For a multi-index a = (a1, .. .,as) € 2%, denote a| := >77_, a;.

Lemma F.3 (Polynomial sign polarization). For s > 1,

iz 2 ([Ie)(See)"

ec{*1}s i=1 i=1

Ty Ty =

Proof. Multinomial expansion gives

(;”) Z k:1 B 'H ivi)’

Multiplying by H;:l €; and summing over € gives

Z (H EJ) (Z ;T Z) |Z_S e .. xf Z f[gikhLl-

ee{£l}s j=1 ee{£1}si=1

Observe that

Z ﬁakiﬂ _ ﬁ((+1)k,¢+1 n (_l)k,;+1) _ {28, if each k; + 1 is even,
i=1

e{£1}si=1 0, otherwise.
€ S 1=

Because |k| = s and each k; > 1 must be odd so that }°_ ;. I, eFi T £ 0, the only
possibility is k = (1,...,1).
Therefore,
Z <H Ei) (Z Eixi) =s512°v129 - - .
ec{+1}s i=1 i=1
Dividing by s! 2° yields the stated identity.
O
Lemma F.4 (Uniform ReLU-spline approximation of power functions). Let s > 1, and € > 0.

Partition [—1, 1] uniformly with knots z, = —1 + %, k=0,1,...,N. Let g be the linear spline
that interpolates fs(z) = z° at these knots. Then

5(5—1).

_ <
1fs = glleeq-1) = —553
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Moreover, g admits an exact one-hidden-layer ReLU representation on [—1, 1] of the form

M
D, (z) = Z ¢i ReLU(a;z — b;),
i=1
with at most M < N + 1 units and
2 —1
al<1, Bl<1 lal< max{s+ L (N>}

Choosing

N > max{l, { 5(8_1)—‘}
2e

ensures || fs — gllo_(=1,1]) < €. Thus, the number of required ReLU units to achieve accuracy ¢ is
M=0(z).

Proof. The case s = 1 is trivial since f1(z) = z is linear and equals its linear spline interpolant.

For s > 2, f, € C?([—1,1]) with f/(z) = s(s — 1)z*"2 and || f/ || (-1,1) = s(s — 1). Fix
z € |2k, zk+1] and define
fs(2) = 9(2)

o(t) = fs(t) —g(t) — (z — z1)(z — 2g41)

Then ¢(zx) = ¢(zr+1) = ¢(2) = 0 and, by Rolle’s theorem, there exists &, € (2, zx+1) such that

(t — 2)(t = zk+1)-

fe (&
15 - @) = | 28 (- i - ).
: _ 2
Hence, with h = s
h?  s(s—1)
(2) — < Lyfr —_—=——".
Taking the maximum over k yields the stated uniform bound.
For the ReL.U representation, write h = % and set the interval slopes
P 25, =225 425
mg = k+1h k? k:(),...;N*la ’Y]:mjim]—lz - hj ’ 1’ ]:177N71
Then g admits the exact expansion on [—1, 1]:
N-1
9(2) = 1 ReLU(z + 1) + ca ReLU(1 — 2) + > _ 7 ReLU(z — ),
j=1
e LD _ (1) (1)
(=1 —1)s 1)
Q=" T Ty €1 =mo + 5

and (al,bl) = (].7 —1), (a27b2) = (—1, —1), (aj+2,bj+2) = (].,Zj) fOI‘j = ]., e ,N — 1

Since |z;| < 1, we have |a;| < 1 and |b;| < 1. By the mean value theorem, |mg| < ||fi||lz.. = s,
hence |c1] < s+ 4 and |z < § < s+ 3.

Moreover, define U € C?[z; — h, z; + h] where

W(t) = fo(t)— <fs(zj) ACES h);hfs(zj —h)

(tfzj) +

fS(Zj+h)*2fS(Zj)+fS(zj7h) 2
on? (t —z) >

By Rolle’s theorem,
_ fs(zg+h) —2fs(25) + fs(z — h)
Vi = h
so [v;| < k| f/|lL.. = % s(s — 1). Counting two boundary hinges and N — 1 interior hinges gives
M < N + 1 units.

=hfl(&) forsome&; € (25 — h,zj + h),

O
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Lemma F.5 (Polarized Newton expansion for f.os and fsn). Let m > 1. For angles (61, ...,0m),
define
Cr = Zcos(k@i), Sk = Zsin(ké’i).
i=1 i=1
Let -
Ky = {k: (kiyeee k) €220 >k :m}.

j=1

We index
g = (51’1, ey €1,k15E2,15 - - - ,Em’km) S {:l:].}lkl

Forp = (p1,...,pm) wedenote p < kif0 < p; < k;. Then

fcos = COS(Z 91) = Z Z Z ak@«,EGLk,L,E
i=1

kEKm  p<k  ee{x1}Ikl

|p|— k| even
' k
fa=in(30)= Y Y Y Al
i=1 kEm  p<k  ec{+1}I*]
|p|—1k| odd
Where
Gl Z(Zm)C +Z( >
Jj=1 {4=1 Jj=1 {=p;+1
k.
_1)m*Zk.7' Lel—ip| T T
Ukpe = w75 (L Eit
D, Hj:lkj!]k] |k||2|k\ ]1_[1221_[1 J
(—1)m=2=k Lkl =lpl =1 7 o
Brp.e = w7, (— 1) ’
D,E szl k]']kJ ‘k|'2|k| ]1_[1}_[1 3.
and thus 1 1
|k p,el = |Brpel = 2

(H;'nzljkj) (H] 10l (ks — pj)! ) || 1211 2

Furthermore, for N,,;(m), the total amount of triples (k,p,€) (with k € K, p < k, e € {£1}I*]),

Nit(m) = 2"“'1_[ kj + 1) € [m2™, 13m2™).
kE’Cnl

= Cy +18Sk. Let
, Zm. The

Proof. Let z; = et .formj = 1,...,m. The k-th power sum is Z; = Z] 1 J
em = H;":l zj = €' 2.5=1% be the m-th elementary symmetric polynomial in 21, ...
target functions are f.os = R(ey) and fon = S(em).

Newton’s sum identities provide a formula expressing e,, as a polynomial in the power sums

Z]_,...,Zml
em=P(Z1,.... Zm)= Y a|] 27
kEKm  j=1

m=% k;
where the coefficients cj, are given by ¢, = i‘[l)ﬁ

Binomial expansion yields

fi- B -1 (()eren =) 5o = (1)) (B

p<k j=1 p<k j=1 j=1

30



Under review as a conference paper at ICLR 2026

For each pair of (p, k), where p < k and k € K,,,, let

m C‘7 1 <€< "
5= E k; = |k, Tjgi= ! =t=Ph
- Sj, p; < (< k‘j.

List the s variables as (Z1,1,...,%1,ky,%2,1,---s%m.k,,)- Applying Lemma to Xy Ty =
m - ~Pj gkj—p;
[I;=, C;7S; gives

jﬁcﬁ’jsﬁw:@ > (ﬁf‘[w)(i( m) i(i ej,e)sJ)lkl

(gj,0) {1}k \j=1£=1 j=1 ¢=1 j=1 f=p;+1
Therefore,
b= Y all 2
kEKm  j=1
= 3 o Sl H<ka> [[cwst
kEK, p<k j=1 \Pi j=1
m o 1 m kj m m kj k|
. ,
S et () ) 2 () (S ado-3( 3 «s)
keKm  p<k =1 \PJ ' (ej,0)e{£1}Fl \j=1,=1 Jj=1 ¢=1 j=1 t=p;+1

Separate Real and Imaginary part yields the polarized Newton expansion for fcos and fiy.

Forj > 1,

Z(kj+1)2kj 13k; :Z(r+1)(2t7) ﬁ

k;>0 r>0

Multiplying over j gives the ordinary generating function

1 1
F t) = Z ]Vtol(m)tm = H (1 —2tj)2 = (1 —2t)2 H(t)a

m>0
where
H(t):=[J-26)2=> ht",  hy>0.
j>2 r>0

Since (1 —2¢)72 =" . ,(n+ 1)2"¢", the Cauchy product gives

N(m) = he (m—r+1)2"7" < (m+1)2" Y he 27" = (m+1)2" H(3).
r=0 r=0
Here H(3) = [I;52(1— 21=5)=2 =[[s 1~ 277)72 < oo is a finite absolute constant.

By Bernoulli’s inequality, for all z; € [0, 1],
(I—z1)(l—z9) - (L —zs) >1—(z1 + 22+ -+ xy).

Now observe that I, (1 —27") = 2 [],~5(1 — 27"), we have

[Ta-2n=2TJa-27 > 0-Y2n=2

r>1 r>3 r=3
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Therefore,

1 1024
Hi)ys ——— =—""-<13
()= (o2 = 51 =

Thus

Ne(m) < H(3) (m+1)2™ < 13m2™.

On the other hand, taking just the term k = (m, 0,0, ...) € K,, yields

Nw(m) > 2H (ks +1) = 27 (m + 1) > m2™,
J
$0 m2™ < Ny (m) < 13m2™.
]

We are finally able to provide interpolations for ReLU networks, whose embedding weights echoes
with “Pizza” algorithm in (Zhong et al., 2023)).

Theorem F.6 (ReLU construction). Fix integers m > 1 andp > 2. On

X ={xe{0,1,....m}: ||z|1 = m},
let the target be y(z) = (3", s;) mod p forx = Y ", es,. Forany T € (0
two-layer ReLU network s°(x) = V o(Wx) € RP such that, for all x € X,

1

, 1) there exists a

he(x) = argmax s?(2) = y(x), s0 (x) — max $%(z) > (1—47)p.
o(x) = argmax (@) = y(a), sy (@) — max @) > (1-dr)p

Moreover, the width d is bounded by

m

d < 13pm2™ (m\/@(l + 2em) T 4 2), (2)

and the weights satisfy the bounds

2 2 m— m+ 3)m*"
Whe < 20 Wl < 2y f13mom (my 220 20m) ™5 42), Vo < P2
m m m!2
3)
In addition, the second layer enjoys the spectral-norm bound
m— \/5 m + l QO
Vi < \/13\/13m2m(m1/6;n(1+26m) = +2) . (m'—23”> 4)

Proof. For t € Z, define ¢, s() € RP by ¢t = cos(2rtr/p) and s{ = sin(2ntr/p) for r =
0,....,p—1L.Forz =3 ", e, andany j > 1,

Zcos(j%T”si) = <c<”j>,x>, Zsin(j%T”si) = (s<”j>,x>, vef0,...,p—1}.
i=1 i=1

Fix v € {0,...,p — 1} and apply Lemma to 01(”) = 2nvs;/p. The multi-indices are k =

(K1, .oy him) € Ky and = (71, ..., Tm) < £, and write 7 := [k| = 3, k. Define
m T ) m Kj )
ul) . = Z(Z 5M>C<w> n Z( S w)sw.
j=1 f=1 J=1 t=m;+1
Then

Cy(x) = Z aﬁa”;5<ufiy,2r,€7x>7.7 Sy(z) = Z ﬁ”77"75<u,‘(€y,7)r,67x>7‘7

K,T,E K,T,E
|7|—|k| even |7|—|K| odd
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with 1 1
= |ﬂf‘i7ﬂ',€| = m o m S ’," 27’ .
(Hj:1 ]“]) (Hj:l 7Tj! (Iij — 7rj) ) rlor !
As (), 2)],|(s%) 2)] < m, we have [(uh.,x)| < mr and thus z{).(z) =

(000} () € [1,1]
By Lemma|F4] for each r € {1,...,m} and § > 0 there exists

M.
(I)T(Z) = chi ReLU(ar,iZ - bni)y |ar,i|7 |brz| < 1,

i=1

such that sup|,|<; |z" — ®,(2)] < 0 and

ler] < 7+ 3. 5)

m
V24

In Equation [5} summing || (or |3]) over € € {+1}" and summing over 7 <  factorizes:

> leweel = 1 g

Upmel = 5 Fm

r<n 1= g™ ay!
ee{£1}"

Summing over x € I, with || = r and using the classical cycle-index identity

1 m,
Z H_lj"an' N M[T]’

KEK
||=r

where [ "] are the unsigned Stirling numbers of the first kind.

Now we have

m 7"

= >

.
> lanel = Zr,m, .

7T<f'i <K

As each power is approximated within § and |(u, )| < mr, the uniform error is bounded by
m
2" (mr)"
> e
— rim!
We choose

e e iyr(!mmr!)r gl

which ensures max{|C,, — C, |, |S, — §,,|} < 7 uniformly on X for all v.

We now prove by induction on m that

[T} < (T:‘L__f)m!7 1<r<m. (6)

For m = 1, both sides equal 1. Assume equation |§Iholds for m — 1. Using the recurrence [T] =
[T ]+ m =D,

= ()5 o
~on= (7 23) + -0 (07
<m(m—1)! (T_f) - <T_11) m,
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since (") = (™2) + (7). This proves equation@

Using equation[6]and Stirling’s lower bound 7! > (r/e)", we have

m

Ap < ZW(T:;) < i(Qem)T(m__l> (2em) S 1( ) (2em)! = (2em) (142em)

r=1 r=1 t=0

1 [ A fem m=1
_— = — < — (1 2 2,
Nex, 5y = . (1+ 2em) 7
Forz € X, (1,z) =m. So

ReLU(a”zK%E( ) — bm-) = a<<a” “;(«ff;,s — %1, x>> ,

mr

Hence

Each spline unit is a single ReLU of a linear form. Explicitly, W € RYP has rows W;. =

(:nr ul(il/?'rs %1 for j = (v,k,m,e, z) with r = |k| and umra =y 1(Zi 15”)C<Vt>
S - ere)s ) Since ||u,ﬂr5||Oo < rand |a,|, |b.;] < 1, each coordinate obeys
|W |§ ‘i‘rz;‘r_;'_ ‘bT'bl 7111_‘_%:E,hence ||W||oo_ m’*

For class ¢ € {0,...,p — 1} and hidden index (v, x, 7, €, 1) set
‘/q,(IJ,K,T(,E,i) = [COS(%JQ) Qp.re T Sln(zlj(J) /BK:JT,E:| (mT)T Cr.i,

so that s%(z) = 3P} [cos(””’q)@ (v )+ sm(271§”q)§ (z)]. Let ¢* = (3, 5;) mod p. Discrete
Fourier orthogonality gives s}(z) = Y0 _ COS(Q’”’ (>2:8i — q)) = 1yg—q+1p. Since each mode is
within 7, we have max, |9 (z ) — sy(2)| < 2p7 and thus the claimed margin (1 — 47)p.

For each fixed v € {0,...,p — 1}, by Lemma|[F3] there are Nyo((m) triples (k, 7, ), each con-
tributes at most M, units, w1th M, bounded in equatlon El Hence for each v, the width is at most

Ntot(m) (\/% —+ 2)

Summing over v = 0, 1,...,p — 1 and using equation[7]

d < pNtot(m)(\/%+2> < pNtot(m)<m\/§(1Jr2(am)7'1771 +2),

and the bound Nyt (m) < 13m2™ gives equation

Thus, |W ]| < |[W|leov/dp < ;p\/13m2m (m (] + 2em) T +2>
Finally, using |a/,|8] < 1/(r!2") and equation [3]

Lo o4 ey
rl2r — rl2r ’

so taking the maximum over all hidden indices yields equation 3]

| (unﬂ'az' < |C7‘,i|(mT)T.

For the spectral norm, denote the matrix
T = (c<0> D g L el 8(p—1))
So

p—1
TTT =007 4 Z (c(”)c(”)T + s(”)s(”)T) = pl,, and thus ||T'||2 = /p.

v=1

Index the hidden units by j = (v, K, 7, €,1), with = ||. For that unit, the corresponding column
of V was

34
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v 4 [ﬁmmg(mr)rcm] s

Vij = laeme(mr)e. e
Hence V. ; is a linear combination of the two columns of S,,.
Define B € R(?P~1)*4 _for each column j = (v, s, T, €, 1),
O re(mr)e;, k=0andv =0,
Qg re(mr)e.;, k=2vwithve{l,...,p—1},
Bri = Bume(mr)e, i, k=2v—1withve{l,...,p—1},
0, otherwise.

One has V' = T'B, and each column b; of B has support in at most two rows (one when v = 0).
Thus,

V2 D) VAt hmen

Hb]H2: KW8+BH7T€ |CT,i|(mr)T S rlor — m!2am

Let n, be the number of hidden units at frequency v. From the construction,

n, < Ntot(m)(\/%+2) < 13m2™ (m\/i( +2€m) +2)

Since BBT is block diagonal across frequencies, ||B|lz = max, ||B,|s < max, /n, -
1
\/E m4+= m2'm
%. Therefore
m!2

V2 (m+ Lym?m

m!2m

)

VIl < ITN21Bll2 < VP, /maxn, -

which gives equation [}
O
Corollary E.7 (Explicit two-layer ReLU construction for m = 2). Fix p > 2. Define the input set
X ={ze{0,1,2}": |z||, =2}.

There exists a two-layer ReLU network s°(z) =V o(Wx) € R? of width d = 36p such that, for all
reX,

25 20
m 0
ho(w) = arg el (@ (Zl_l SZ) odp sy (@) = ay(n) s(®) = 9P+ 3g-

Moreover, the weights satisfy

Wleo <1, V] <2, V]2 < 11/p.

Proof. Forv € {0,...,p— 1} let ¢, s € RP be defined by ci”) = cos(2mvr/p) and si”) =
sin(27wvr/p). For inputs « € X, write

Co= (") 2),  Sp=(s")2) (k=12).
From Lemma|[F13] for any 6;,6, € R,

cos(t1 +02) = %(012 -8 —Cy) = 2(301)2 - 2(%51)2 - %C’z
. 1 Ci+ S Cy—S 1
8111(91+02)01512524<<141> ( 14 1) ) 7552

Cl Sl Clﬂ:Sl e[ 171}

For ||z||; = 2, we have 5%, 3¢,
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Let ®, be the piecewise-linear interpolant of z2 on the uniform grid z, = —1 + %, k=0,...,7.

Using Lemma with s = 2, N = 2 — 2o ey < 1749, and ®a(z) =
%, ¢; ReLU(a;z — b;), where

i |1 2 3 4 5 6 7 8
ab;) | (1,-1) (=1,-1) (1,-2) (1,-2) (1,-%) (1,2) (1,2) (1,2
(ZC‘z) ( 17) ( 1 ) (y) (y) (y) (!) (!) (!)
i T 14 2 7 7 7 7 7 7
We now construct a two-layer ReLU MLP with total width d = 36p.
First layer. Forr € {0,...,p— 1} andi =1,...,8 define
w(v ) — = Cﬁﬂ) _ %7 wy,w) @ S(V) 172
’UJ£V’3 i) _ a; (CS‘D> + S$V>> _ %’ U}S‘V'A’i) — %(cﬁl/> S<D>) ?1
+ +
wgVacz ) _ ﬂ:% C7<n2y>, wfﬂl’asz) — :l:% an l/>'

Then o((w™19), 2)) = ReLU(a;Cy /2 — b;), etc. Since |a;| < 1, b;] < 1, and [¢f],|s*] < 1,
we have ||W|o < 1.

Second layer. Forq € {0,...,p—1},v € {0,...,p— 1} set

Vaw,i) = +2¢; cos(2mvq/p), Vo v,2,5) = — 2¢; cos(2mvq/p),
Vo3 = +4e; sin(2mvq/p), Vw4 = —4e sin(2mvq/p),

Il
—_
0

and
Vq,(y,c;) = F cos(27vq/p), Vq,(u,sgt) = F sin(27wvq/p).

4
We have [|V]|oo < max{|4¢;|,1} = 32,
Let T = [c{9 ¢ 510 ... ¢(p=1) s(p=1)] and write V = T'B. Then

pP—
17 = 0T 4§ (T ) =,

50 [Tz = /p-
Each hidden unit loads a single row in B, hence BB is diagonal. The largest row norm equals

\/2 % (dey)? 2= VBT 5o

Vlle < I T2 [|Bll2 < 11/p.

Finally, define
éu(x) = 2@2(%) - 2@2(&) - l027 §,,(Z‘) = 4@2(%) — 4‘1’2(%) — %527

and logits s%(x) = >~ [Cos(27r1/q/p) () + sin(27vq/p) §l,(z)] Since ||®y — 22|00 < 1/49
andv =0 contrlbutes a class independent offset, for v > 1,

IC, —C,| <4/49 and |S, —S,| < 8/49.
Therefore,

2
6 _ < 12 -1
max[s,(2) = sq(@)] < 55(p — 1) + 15

where s} (z) = >0~ OCOS(QWU(Z s; — q)/p) satisfies Sy (@) = pand sp(z) = 0if ¢ # y(x).
The margin follows:

2 25 20
0 0
Sy(x)(x)*qrélﬁi)sq(z) > pz(}1 (p—1)+ 49) = EPJFE.
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G NECESSARY WIDTH FOR MODULAR ADDITION WITH RELU

By a one-dimensional counting-path argument, we show that any ReLU MLP that exactly imple-
ments modular addition requires width Q(m/p).
Proof of Theorem Consider the one-dimensional path of count vectors
) = (m — s)ey + seq, s€{0,1,...,m}.

Hence the correct label along the path is

ls) = ((m—s)-1+5-2) (modp) = (m+s) (modp),
Write y € R? for the first column of W and z € R? for the difference between the second and first
columns, i.e., yr, = Wy 1 and 2z, = Wy, o — Wy 1 for k € {1,...,d}. Along the path,

ar(s) == [Wa®)y = (m —s)Wi1 + sWio = muyp + 5 2,

80 hi(s) := o(ag(s)) is piecewise-affine in s with a single potential breakpoint at sy, := —m yx /2
when z;, # 0. Consequently, for each class r € [p] the score

d
sf(x(s)) = Zv“k hi(s)
k=1

is a univariate piecewise-affine function whose breakpoints lie in the shared set
B = {sg: 2z #0, sg = —myr/zk }, |B| < d.
Define the adjacent-class margin
gr(s) == sf(x(s)) - sf@l(x(s)), r € [p),

wherer @1l =r+1ifr <pandr ® 1 = 1if r = p. Each g, is continuous, piecewise-affine with
breakpoints in B, hence has at most || < d breakpoints and can change sign at most d + 1 times on
R.

Exact realization of modular addition implies that, for every s € {0,...,m — 1},
gg(s)(s) > (0 and gg(s)(s + 1) < 0,
because the winner at 2(*) is £(s) and at 2(5*1) is its successor £(s) © 1 = £(s + 1).

By continuity, g, has a zero crossing in (s, s +1). The m disjoint intervals (0, 1),...,(m —1,m)
therefore contain at least m zero crossings in total, each attributed to one of the p functions {g, },¢[y)-

Since for each r € [p], g, changes sign at most d + 1 times, we have
m < p(d+1)
which rearranges to d > m/p — 1. O

H MARGIN BOUNDS VIA /o, VECTOR CONTRACTION

H.1 MARGIN SURROGATES AND EMPIRICAL y-MARGIN ERROR.
Given scores s € R? for an example with label y € [p], the sample margin error
oy (s) = max(sg — sy)
y s y

The ~v-ramp loss
hy(u) = min{1, max{0, 1 +u/~v}} € [0, 1].

The map w — 1 (u) is 1/v-Lipschitz on R, and ¢, is 2-Lipschitz w.r.t. || - || (changing any
coordinate of s by at most € changes ¢, by at most 2¢), hence

y =Yy 00, is %-Lipschitz w.rt || - |loo, gy € [0,1].
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Definition H.1 (Empirical Margin Error). For a score function s’ and sample S = {(z(*), y(")}7_,,
the empirical ~v-margin error is

I 1 &
R g; [ Dy <7+ max (=),

For an interpolating solution, it suffices to take 7 = (S, the minimum sample margin, in which
case R (s%;9) = 0.
Definition H.2 (Empirical Rademacher complexity). Let S = {z = () yC ))} be fixed, and

let G C [0,1]%. Lete = (ey,...,€,) be iid. Rademacher variables (P[¢; = 1] = ]P’[ez =-1] =
1/2). The empirical Rademacher complexity of G on S is

Rs(G) = fE [sup Zez 2 ]

Theorem H.3 (Thm. 3.3 of (Mobhri et al., 2018)). Let D be the true distribution, G C [0,1]% and let
S =(z1,...,2n) ~ D" With probability at least 1 — & over S, the following holds simultaneously

forall g € G:
In(2/9)

on '

1 n
E,. < - i 2R 3
i) < 3 Pale) + 2%s(9) +
where Rg(G) is the empirical Rademacher complexity of G on S.
Apply Theorem [H.3| with G = F, := {(z,y) — 1, 0o ¢,(f(z)) : f € F}, and note
1{arg max; f;(x) 7£ y} < hyo0dy(f(x)). That yields the following corollary:
Corollary H.4 (Rademacher complexity and Multiclassification).

5, [I2/8)

Pioyyen[f(x) #y] < Ry(f) +2Rs(F,) + =

®)

Let S = {(z(®,y®)}™_, be the training sample generated from the true distribution and write
n ) 1/2
S) = (2 1=3)
i=1

H.2 MARGIN BOUNDS FOR SINE MLP

Definition H.5 (Covering Number for sets). Let (X, d) be a metric space, FF C X a non-empty
subset, and 7 > 0. The covering number of F, denoted N (F, d, 1), is

k
N(F,d,r) = min {k € N|Hzy,..., 25} C X such that F' C U Bd(mi,r)} :
i=1
where By(x,r) = {y € X | d(z,y) < r} is the closed ball of radius r centered at .

Definition H.6 (Empirical L covering number of a function class). Let F C {f : X — R} be a
class of real-valued functions and let z1.,, = (x1,...,x,) € X™. Define the empirical Ly metric

n

da,., (fr9) = (%Z(f(xi)—g(xi)p)l/l

i=1
For € > 0, the empirical Lo covering number of F at scale € with respect to the sample 1., is

k
Na(e, F,21.) = min {k €N:3fi,..., fusuchthat F C | J By, (f]-75)}7
=1

whereBd“l ( )_{g d211n(.f7 )<€}'
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Lemma H.7 (Covering the box [—m, 7)? by Euclidean balls). Fix p € Nand r > 0. Then

N([—W77T)p7||'||2yr) < FT pwp.

o T
Proof. Covering numbers are translation invariant: for any a € R?, N(F, || - ||2,7) = N(F + a, || -

|l2, 7). Hence it suffices to cover [0, 27)P.

Set the grid step h := 2r/,/p and the number of points per dimension m := [27/h| = [7/p/r].
Along each coordinate, place grid points with a half-step offset from the origin:

Gi={(+3h:j=01,...,m—1},
s0 |G| = m. Let the full grid be the Cartesian product G := G7’; then |G| = m?.

Given any point € [0,27)?, choose ¢ € G by rounding each coordinate of x to the nearest
point in GGy (breaking ties arbitrarily). By construction, the distance from any coordinate x; to its
corresponding grid point g; is at most half the grid step, so ||z — g||cc < h/2 =r/,/p. We have

.
=gl <Vplle—glle < VP — =1
[ —glla < VP llz = gllo < VP 7

Therefore, the set of closed ¢o-balls { Ba(g,7) : g € G} covers the box [0, 27)?, and
p
/P
N2 ) < [0 = = (2]

O

Lemma H.8 (Standard Dudley entropy integral ). Assume that all F,,,, C R™. Let R, (F) be the
empirical Rademacher number of F on x1.,. We have:

R, (F) < inf <4a—|—12/ \/logNQ(e’f’I1=")de>
o n

a>0

Theorem H.9 (Width-independent multiclass margin bound for the sine MLP). Consider the two-
layer sine network with parameters § = (W, V) € R¥¥P x RPX4 where the output matrix satisfies
IV loo < Sy. Then for any v > 0 and 6 € (0, 1), with probability at least 1 — & over the draw of the
training sample S, the following holds simultaneously for all such 0:

Pix.yyp[he(X) #Y] < Ro(s?) + 6(‘5;1 : \%) - 6(%).

Proof. Because inputs are bag of words (z € {0,1,...,m}” with ||z||; = m), shifting any element
of W by 27k (k € Z) does not change s?(z) = V sin(Wz). Hence without loss of generality, each
element of W may be reduced to modulo 27 to [—, 7) with no effect on the model output. This
periodic reduction is the core argument in the sine analysis.

Notice that g, := 1, o ¢, is %—Lipschitz w.rt. || - || and g, € [0,1]. Applying Theoremwith
G=F =(z,y)— gy(se(x)) : 0 and recalling Layg max f£y < gy, We obtain
In(2/0)

Plhe(X) #Y] < Ry (s?) + 208s5(F,) + 3 —r 9)

£ vector contraction. Let S := {s? : 0 = (W, V), ||V]|oo < S1, W € [—7,7)?*P} and denote
the coordinate classes

Sl; = {z— vj—-r sin(Wz) @ |vsll1 < S1, W e [—m,m)*P}.

For fixed § = (#("), ..., (™) and the Lipschitz maps ¢; = g, (each %-Lipschitz w.rt. || - [|oo)s
the ¢, vector contraction inequality (Thm. 1 of (Foster & Rakhlinl 2019)) gives

B

max; 9%5(5|j))7 (10)

2 3
Rs(Fy) < C*\/ﬁmax%(«?\j)logzm(
Y jelp]
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for any fixed o > 0 and some C = C(Jp). Since sin(Wz) € [—1,1]% and ||v;||; < S1, we have

s%(x)]|oo < Si, and thus 8 < 1+ ;. (11

Coordinate reduction via £1-£,, duality. For any fixed S = ("), ..., 2(") and j € [p],

n
nRs(S];) =Ec  sup Z eiv; sin(Wz")
lvjlli <81
WeR*P
n
=E., sup va ( Z € sin(Wx(Z))>
lvjll1<S1 i—1
WeRdxP

< S1E.  sup eisin(Wx(i))H
W22 -

n

Z € sin(wT:L’(i))’

=1

= 51E. sup
weRP

= S1E. sup Zei sin(w ' z¥)
weRP i—1

=S1E. sup Zei Sin(wa(i))
we[—m,m)P

= Smiﬁg(]—"sin). (12)

Here we used sup ), <s, (@, b) = S1[b||oc, and denoted the single-sine family
Fein = {z > sin(w’z) 1w € [-m, m)P}.

Rademacher complexity of the single-sine family.
Endow Fy;,, with the empirical Lo metric

1 — , ,
d(w, w’)Q = g Z(Sin(w—'—x(l)) _ Sin(w/—l—x(@)))Q-
=1
Notice that d(w, w’) < 2 for all w,w’, so for any € € (2, 00), Na(e, Fyin, T1:n) = 1.
For any ¢,
|sin(w'|'x(i)) — Sil’l(w/—rgp(i)” < |(u) — w’)Tx(i)\ < ||’LU _ le2 ||.’£(Z)||2 <m ||’U.) . u}/”2

so if [jw — w'||2 < &/m then d(w, w") < e. Consequently, for any ¢ € (0, 2],

Nae, Fainr1n) < N (1w |- le/m) < [T/, (13)

where we used Lemma[H.7]

Applying the standard Dudley entropy integral with any o € (0, 1] yields

2 1 ]:in 17
Rs(Fein) < dov + 12/ \/OgNQ(g’ns Tun) g (14)

log Na(&, Feins T1:n) < log([ﬂmg pr) < plog(%n;\/ﬁ>

Let C' := wm,/p > 2. Then [%\/ﬂ < %‘/ﬁ +1< 2”%\@, forall € € (0,2]. Thus
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Hence for any « € (0, 1],

/\/10g/\f2€fsm,x1n 0 </\/ QFm\f)d <(2- )\/Zlog(zmg\/ﬁ>

Plugging this into equation[T4] gives
2
Rs(Fam) < da + 12(2 - a)\/p log (7””\/15>
n «

Choosing o = ——- f € (0,1]. Then
2
1og<%\/§) = log(2mm /p - 7mn/p) = log(2m%m?pn),
So
4 P 5( [P
Re(Fsin) < 24, [ =+/log (2m2m? =0 =]. 15
) < bt [2 o Gt =6 (/2 as)
Combining equation[I2]and equation [T5] we obtain, for every S,
maxRg(S|;) < S1Rs(Fein) = 9] (Sl\/5> . (16)
J€Elp] n

Fix §p = %, substituting equationinto equation|§|yields

Plho(X) #Y] < Ry (s") + O<S1 -p> + 6(1).

v Vn n
O]
H.3 MARGIN BOUNDS FOR RELU MLP
Lemma H.10. Ler Z € RP*"™ be the data matrix whose i-th column is z; = Zzl:l €s;n €
{07 1a ... ’m}P_ Let N]f = Z?:l 181‘,;‘:81.[' Then HZ”%’ = Z;n:l ZZHZI Nje
Proof. Write Z = 3" | Z; where Z; = (e, ;,---,¢s, ;) € RP*". Then
121F = (> 2> 2ze) =D > u(z] 2).
j=1 =1 j=1¢=1
For r, c,
P
(ZJTZZ)TC = Z(Zj)sr(zé)sc = (esryj)Tesc,ga
s=1
0 (Z] Zs)ii = (es,,) " €s,, = 15, ,=s, - Hence
tr(Z] Zo) = 1si; = sie} = Ny,
i=1
and substituting yields || Z||% = >°7", >2)%; Njq. O
Lemma H.11 (Hoeffding bound). Assume that for each i € [n], the symbols (s;1,...,8im) are
i.i.d. uniform on [p] := {1,...,p}, and that they are independent across i. Let z; = Y -, s, €

RP, Z = (21,...,2,) € RP*", and 29 := z;. Then for any §' € (0, 1), with probability at least
1-46,

n ) _ !
p

i=1
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and therefore

m(l + mp_l)—km(m—l) bg(;n/él)r/z.

n ) / _
Qu(9) == (A1) < ylmopin &) =
i=1

Proof. For a fixed ¢, define

m
Yi = Z 1{81'7]' = Si7g}.
jl=1
Note that z; = ;" | e, , has coordinates z;(c) = > | 1{s; ) = c}, hence
p p m m m
20l = D220 = D0 (D Usig =) (Y Usie =¢}) = Y- Usiy = sia} = Vo
c=1 c=1 j=1 (=1 j =1
Therefore > | [[#@ )2 = 37| |22 = 31, ;. Observe that

m m
EY;] =) Elfsij=sis}+ Y El{si; =sie} =m+m(m—1)-P(si1 = 5i)-
j=1 ji=1

e
Since s; 1, S, 2 are independent uniform on [p], P(s;1 = s;,2) = 1/p, hence

= m(1+258), B[] = (1 200,

Also notice that m < Y; < m? and (Y;)!, are independent, let S,, := >, Y;. Hoeffding’s
inequality for independent Y; € [a;, b;] gives

2 2
i=1\"" ¢

Set the right-hand side to 6" and solve for ¢ to get

t = (m?—m) nlogél/é’) ~ m(m—1) /nlogél/é’)'

Therefore, with probability at least 1 — ¢,

SO Sy m—1 oy, [ los(1/d7)
;Hx I2 annm(u . >+m(m Dy

i=1
Dividing by n and taking square roots yields the stated bound on Q2(S). O

We now state and prove the width-independent multiclass margin bound for homogeneous activa-
tion. The main idea is to use £, contraction to reduce the problem to the real output, and then utilize
a technical lemma from (Golowich et al., 2017). The core part of the proof is almost identical, and
is included only for completeness.

Lemma H.12 (Lemma 1 of (Golowich et al.,[2017). Let o be a 1-Lipschitz, positive-homogeneous
activation function which is applied element-wise (such as the ReLU). Then for any class of vector-
valued functions F, and any convex and monotonically increasing function g : R — [0, 00),

> eo(W ()

=1

E. sup g <2-E.supg | R- .
FEFW:|W|lp<R = 2 fer 2

Theorem H.13 (Width-independent multiclass margin bound for homogeneous activation). Assume
p > mandn > m? n > 17, and o is a 1-Lipschitz, positive-homogeneous activation function. For
any~y > 0and § € (0,1), with probability at least 1 — § over the draw of the training sample S, the
following holds simultaneously for all 0 = (W, V') with ||V ||z < Sz and |W||r < B,

SoB  [pm

Pixyyen [ho(X) # Y] < Ry(s”) + 5(7 n) + 5(\/17;>~

m m

ZQ‘f(%‘)

=1

Here O(-) hides factors polylogarithmic in n and 5"
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Proof of Theorem[H.13] The multiclass margin satisfies |¢, (s) — ¢, (s")] < 2||s — §'||oc forall s, s/,
hence g, := 1 0 ¢y is %-Lipschitz wrt. || || and |g,| < 1.

£oo-vector contraction. For a vector class S C {x — s(z) € RP} and L-Lipschitz maps {¢;}7 ,
w.L.t. || - |loo, & standard ¢, vector contraction inequality (see, e.g., Thm. 1 in (Foster & Rakhlin,
2019)) implies that for the fixed sample S = (=), ... (™),

)
max; Rs(S|;)/’
a7

oS) fE su g ©; () < CL max Rg(S|;) log? T
Bs(e LegZ pus@?)] < CLVp maxns(s],) gt

for any fixed dp > 0, with C' = Cj, < co. Here

1 n . )
Rs(Sy) = EEE l&égZ@ﬁﬂ&: N1, B > sgpmiax{kpi(se(a:(”)ﬂ, ||39(x(’))||oo}.
€S =1

Let S = {s”: |[V]l2 < S2, [W]r < B} and S; = {z = v] o(Wa) : V]2 < Sa, [[W]|r <
B}, where v; € R4 is the j-th row of V. Fix A > 0, to be chosen later. For any fixed x.,, the
Rademacher complexity can be upper bounded as
nRs(Sl;) =E. sup Ze v;-ra(Wx(i))
IVI2<S2 5=
IWlr<B

<E. sup ZEZ vl oWzt ) (Cauchy-Schwarz)

[lv; ||2<S2 i=1
IWir<

1 n
< —logE. sup exp|A € v 0’ Wx( ))
A o, ]12<S2 P

N

IWlilr<B

1
< —logE. sup exp
A Jualo<ss

N

[0l - A

> o) )
2

2)

Applying Lemma with the given 1-Lipschitz, positive-homogeneous o, F = {f : f(z) = «}

(identity class), and g(t) = exp(S2At), we obtain
1
) < )\log<2EEexp<Sg~)\B >>
2 2

Z €0 (Wa:(i))
Denote M = S5 B, and define the random variable (as a function of € = (e1,...,€,)):

i=1
n
E e;x®
i=1

IN

1
—logE. sup exp|Se-A
A IWllr<B

Z e (Wal))

i=1

n

Z e,-x(i)

i=1

1
—logE, sup exp|Se-A
A IWllr<B

2

Then
log 2

1 log (2E. exp(AZ)) = + 1 log (E.exp (A\(Z —EZ))) + EZ.

A A A
By Jensen’s inequality,
EZ < M =M |Ec | > aeva]as| = M| > |23
ii'=1 i=1

Moreover, Z satisfies a bounded-difference condition
Z(er, o €)= Zler, o =€y 6n) < 2M || a@ |3,
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and hence is sub-Gaussian with variance factor v = M? 27;1 ||:c(i) |2, yielding

X log (Ec exp A\(Z — EZ)) @2
. __ \/2log2
Choosing A = TN EIE gives
1
X log (2-Ecexp(AZ)) < M (\/21og2 + 1)
Therefore,

(18)

Controlling max; 2R 5(S|;) and the log term. Define the “good” subset
n
oa(®) = {a1n € 4" L3723 < Qylm.pm, )2,
i=1

By Lemma , with probability > 1 — ¢’ the realized sample satisfies x1.,, € X, Ood(é’ ). On this
event, equation |18|yields

0 < maxRg(S];) < SQB( 2log 2 ) —Qy(m,p,n, ). (19)
i€lp] vn
(2)oo < |[V2|le(Wx)||2 < SoB||x||2, and since here z €
{0,1,...,m}? with ||z||; = m, we have ||z||2 < m. Thus we may take the simple, deterministic

bound
ﬂ S 1+SQBm.

To upper bound the logarithm in equation|[T7]more conveniently, also define
b = 14+ S2BvVnQy(m,p,n,?d),
so that 8 < b and hence log(5/t) < log(b/t) for all ¢ > 0.
Applying equation[17|with L = 2 / 7 and using equation[19] we obtain on the event of Lemma[H.11]

Re(F.) < C 2 Rs(S b1
(F,) \fgré?x s(8l;) log (maxj%s(sb))
2 3 ’
<C Rs(8];) log= ™ ( ———= ).
W\fgré?x s(Sl;) log (maxj-ms(sb))

Let b
h(t) = t]oga<g), a:=3+35>32.
Substituting o = 0.5 gives a = 2. From equation[19} with ¢ := max; Rs(S|;) we have
V2log2+1 — V2log2+1 V2log2+1
t< YEORRT L g B (mopn, &) = YBEE L () < YEOBIT LY
vn n n

Since n > 17 > €?(y/2log2 + 1), we have t < be™2; on [0, be~2] the function h is increasing,
hence

Vv2log2+1 b Vv2log2 +1
h(t) < h(iﬂ“’g‘”l b) - LblogQ( ) - Lblog(#)

n n b(v2log2+1)/n n V2log2 +1

Therefore, for some absolute C’ > 0,

1 /p = 2 "
<c =,/ gep N1 ) 2
Rg(F,) < C 7\[LSQ Q2(m,p,n,d") log ( 21og2+1> 20
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Final bound. By Lemma [H.11] with probability at least 1 — ¢,

Qo p,n, &) = m(l " mp‘l) om0y BT < o log (1757,

LS Ly (o (s2(x))) < R, (s%), combining equation [§|and equation and taking a union
bound with the choice ¢’ = §/2 while applying Corollary [H.4|with confidence parameter §/2, yields
the stated result with overall probability at least 1 — §. O

where we used p > m and n > m2  Hence Q,(m,p,n,8') = O(/m). Since

Remark H.14 (Data-dependent specialization). The bound is width-independent and depends on the
sample only through Q2(.S). In our setup, x € {0,1,...,m}? with ||z|; = m; thus ||z|2 < m, so
B < 14 SyBm deterministically. We further used distributional assumptions on s7.,, (e.g., i.i.d.
uniform over [p]) only to obtain sharper high-probability bounds on Q2(.5).

We are now able to prove theorems in Section|6}

Proof of Theorem[6.2] The proof consists of showing all networks with small training error and
small normalized margin generalize, and at least one such network exist.

In Theorem set ¥ = Y9(Dsrain ), then the empirical «y-margin error is

= 1
Ro(s") = — Z 1 [f(xi)yi <7+ Ij&a%f(zi)j} —0.

Notice that 7, = W, by Theorem

Pix,vyep [ho(X) # Y] S5<,y10p ;) 6(\/1%>§6(P ;>+6<;ﬁ>—6<ﬁ %

When 2p < d, Section[F.1.2] gives a network whose normalized margin is

Vﬁ(Dtrain) p 1
_ 00\ main) o P ),
Yo ||V||1,oo = 2p 92 ( )

O

Proof of Theorem@ In Theorem set 7 = ¥9(Dtrain)- Then the empirical y-margin error is
Zero,

~ 1 &
R(s!)==)"1 i)y, <Y+ ma i } =0,
+(s”) n; [f(af Jue < v+ max f(ay);
and Theorem [H.13] gives
~( 1 [pm ~( 1
P ho(X Y| < — 4 — — .
eneslin0#7] < O(5 ) + 0( )

Apply Theorem with 7 = 0.1, which yields a margin v(z) > 0.6p on X and width d < pC,,,,
where

m—1

Cr = 13m2™ (m/T0em (1+2em) > +2).
Using (1 + 2em)(m=1/2 < (2em)(m=1/2¢l/(4€) | we obtain
Cr < 265t m2 (V8e)™ < 64m%+2 (4.67)".
Thus the width condition in the statement d > 64 pm%Jr2 (4.67)™ is sufficient for d > p C,,.
From equation [3}-equation din Theorem

2
IWle < 2pV/Cn, IVl < V29 /Cn

(m + 5)m>™"
ml2m
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Write
(m + 3)m*™
ml2m
Using Stirling’s lower bound m! > v/27m (m/e)™ and the same (1 + 2em) bound as above gives
the clean upper bound

39v/5 et/ (1) ml-sm+2.5

Kp = Cy

Kp < (V2e¥/2)m < 17m! PR (6.34)™.
4dre
Consequently,
V1W< 2v2py/p K,
and
5, = VG(Dtrain) > 06p . 0.3 1 . (1 1 )
T WVERIWIF T 2V2p K, V2 Kmyp /P miemTEE (G.34)m

O
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