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ABSTRACT

This paper studies the role of activation functions in learning modular addition
with two-layer neural networks. We first establish a sharp expressivity gap: sine
MLPs admit width-2 exact realizations for any fixed length m and, with bias,
width-2 exact realizations uniformly over all lengths. In contrast, the width of
ReLU networks must scale linearly withm to interpolate, and they cannot simulta-
neously fit two lengths with different residues modulo p. We then provide a novel
Natarajan-dimension generalization bound for sine networks, yielding nearly op-
timal sample complexity Õ(p) for ERM over constant-width sine networks. We
also derive width-independent, margin-based generalization for sine networks in
the overparametrized regime and validate it. Empirically, sine networks generalize
consistently better than ReLU networks across regimes and exhibit strong length
extrapolation.

1 INTRODUCTION

Most modern neural networks use nonperiodic activations such as ReLU or GELU, a choice that
is highly effective on vision and language benchmarks. When the target has inherently periodic
structure, however, this choice can be statistically and computationally mismatched: approximating
periodic functions with nonperiodic networks may require substantially larger width or depth than
architectures that encode periodic features or activations (Rahaman et al., 2019; Rahimi & Recht,
2007; Tancik et al., 2020). Beyond in-distribution generalization, models can degrade under distri-
bution shift, especially at sequence lengths longer than training. Compositional tests (SCAN, CFQ)
and long-context suites (LRA) expose brittleness and sensitivity to positional encoding (Lake &
Baroni, 2018; Keysers et al., 2020; Tay et al., 2021).

We study this mismatch through a standard testbed in deep learning: modular addition. Given m
input tokens in {0, . . . , p − 1}, the label is their sum modulo p. This task generalizes k-parity
and is widely used to probe how networks represent and discover algorithms, as well as to study
grokking—delayed generalization after a long memorization phase (Power et al., 2022). Mechanistic
analyses report Fourier-like internal circuits for models that solve modular addition, where tokens
are embedded as phases and addition is implemented as rotation on the unit circle. Distinct learning
procedures (“clock” vs. “pizza”) emerge under different hyperparameters and architectures (Nanda
et al., 2023; Zhong et al., 2023). These observations suggest a simple design principle: when the
task is periodic, an explicit periodic inductive bias should help.

Periodic representations already play a central role across machine learning. Sinusoidal positional
encodings are historically canonical in Transformers (Vaswani et al., 2017); ROPE encodes positions
as complex rotations, mapping offsets to phase differences and imposing a periodic bias preserving
attention geometry (Su et al., 2021). Fourier and random features mitigate spectral bias and im-
prove high-frequency fidelity (Rahimi & Recht, 2007; Tancik et al., 2020; Rahaman et al., 2019);
sinusoidal activations (SIREN) enable compact implicit neural representations for images, audio,
and PDEs (Sitzmann et al., 2020). In 3D view synthesis (NeRF), Fourier positional encodings are
key to recovering fine detail from coordinates (Mildenhall et al., 2020), and spectral parameteriza-
tions power operator-learning methods for PDEs (Li et al., 2021b). These observations motivate the
following hypothesis:

On periodic tasks, periodic bias increases expressivity and makes learning provably easier.
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We formalize and test this hypothesis in a minimal yet nontrivial setting: two-layer MLPs trained on
a modular addition task with one-hot inputs and a shared, position-independent embedding. While
the underlying principle implies broader utility, we restrict our theoretical validation to this testbed
to derive sharp separation results. We compare ReLU and sinusoidal activations and analyze the
multiclass 0–1 loss in underparameterized, overparameterized, and out-of-distribution regimes.

We summarize our contributions below:

1. Sharp expressivity gap between sine and ReLU networks. Sine MLPs achieve exact
modular addition with width-2 for any fixed length m (Thm. 4.1) and, with bias, width-2
exact realizations uniformly over all lengths (Thm. 4.2). Without bias, a length-agnostic
construction of width ⌊(p−1)/2⌋ attains population accuracy 1− 1

p for odd p and accuracy
1 − 2

p for even p (Thm. 4.2). In contrast, ReLU MLPs require width at least m−p
p+2 =

Ω(m/p− 1) for exact realization at length m (Thm. 4.3) and cannot simultaneously fit two
lengths m1,m2 with m1 ̸≡ m2 (mod p) (Thm. 4.4).

2. Unified underparameterized generalization for broad activations. Via a multiclass
Natarajan-dimension analysis based on pairwise reduction, we prove uniform convergence
bounds for two-layer MLPs with a wide family of activations—piecewise-polynomial (in-
clude ReLU), trigonometric-polynomial (include sine), and rational–exponential (include
sigmoid/SiLU/QuickGELU). The resulting sample complexity is Θ̃(dp) with width d and
vocabulary size p (Thm. 5.6; Tab. 1).

3. Width-independent margin guarantees for overparameterized networks. Under
spectral- and Frobenius-norm constraints for ReLU and a ∥V ∥1,∞ constraint for sine, we
establish multiclass, width-independent margin generalization bounds. Our sine construc-
tion attains large normalized margins, leading to population error Õ(p/

√
n) when the nor-

malized margin is Ω(1) (Thm. 6.2). In contrast, the best known ReLU interpolants achieve
normalized margins that decay exponentially withm, yielding substantially weaker bounds
under comparable norms (Thm. 6.3).

4. Near-optimal ERM sample complexity for constant-width sine networks. We prove
that any interpolating algorithm over constant-width sine MLPs has sample complexity
Õ(p) (Cor. 5.8).

5. Empirical validation of our theory. With matched architectures, datasets, and train-
ing budgets, sine MLPs consistently outperform ReLU MLPs on modular addition across
under- and overparameterized regimes; in the latter, larger normalized margins track im-
proved test accuracy (Figs. 1-3). Sine MLPs also retain near-perfect accuracy far beyond
training lengths, while ReLU MLPs collapse to chance (Figs. 4-5). These advantages ex-
tend to Transformers, where sine activations demonstrate significantly better sample effi-
ciency than ReLU and GELU baselines (Fig. 6).

2 RELATED WORK

Modular arithmetic as a probe of algorithmic learning and grokking. Delayed generalization
(“grokking”) was first highlighted on modular arithmetic (Power et al., 2022). Reverse-engineering
reveals Fourier-style internal mechanisms—tokens represented as phases and addition as rota-
tion (Nanda et al., 2023; Zhong et al., 2023)—while a unifying view shows MLPs and transform-
ers can implement an approximate CRT with coset-tracking neurons using only O(log p) frequen-
cies (McCracken et al., 2025). For m=2, analyses indicate an initial kernel regime followed by fea-
ture learning (Mohamadi et al., 2024), consistent with effective-theory explanations of grokking (Liu
et al., 2022a). Margin-based perspectives explain the emergence of Fourier features (Morwani et al.,
2024; Li et al., 2025), and optimizer/regularization choices modulate the dynamics (Thilak et al.,
2022), with related phenomena observed beyond algorithmic data (Liu et al., 2022b). Fourier-style
embeddings accelerate modular-addition learning and reduce grokking (Zhou et al., 2024a). These
observations motivate architectures with an explicit periodic bias.

Periodic representations and encodings. Periodic structure is widely used in modern models: si-
nusoidal and rotary positional encodings (Vaswani et al., 2017; Su et al., 2021); random Fourier fea-
tures and sinusoidal encodings to address spectral bias (Rahimi & Recht, 2007; Tancik et al., 2020;
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Rahaman et al., 2019); and periodic activations for implicit neural representations (SIREN) (Sitz-
mann et al., 2020). Spectral parameterizations underlie NeRF and neural operators (Mildenhall
et al., 2020; Li et al., 2021b). We instantiate this bias in a minimal algorithmic setting—two-layer
MLPs with shared embeddings—showing that sine activations align with modular addition and en-
able compact constructions with favorable sample complexity.

Capacity and generalization. Classical tools bound expressivity via growth functions and
sign-pattern counting for semialgebraic classes (Warren, 1968; Goldberg & Jerrum, 1995; An-
thony & Bartlett, 2009), while multiclass uniform convergence is governed by the Natarajan di-
mension (Natarajan, 1989; Haussler & Long, 1995; Shalev-Shwartz & Ben-David, 2014). For
piecewise-linear/polynomial networks, nearly tight VC bounds scale like Θ(WL logW ) up to
factors (Bartlett et al., 2017b). We adapt these techniques to integer-valued shared-embedding
inputs and analyze both ReLU and sine units, obtaining uniform-convergence bounds and
width-independent margin guarantees tailored to our setting.

Margins, overparameterization, and length generalization. In overparameterized regimes,
margins and layerwise norms are more predictive of generalization than raw width (Neyshabur
et al., 2018b). Representative results include spectral-norm and L2,1 analyses (Bartlett et al., 2017a),
size-independent Rademacher bounds under Frobenius and L1,∞ controls (Golowich et al., 2017),
and PAC-Bayesian robustness to weight noise (Neyshabur et al., 2018a). Length extrapolation is a
distinct stressor: SCAN/CFQ and LRA expose brittleness and positional-encoding sensitivity (Lake
& Baroni, 2018; Keysers et al., 2020; Tay et al., 2021); ALiBi and Hard-ALiBi improve scaling
with length (Press et al., 2022; Jelassi et al., 2024), whereas scaling alone often fails and perfor-
mance can follow term frequency rather than structure (Zhou et al., 2024b; Razeghi et al., 2022).
Our analysis and experiments show that periodic activations provide a principled route to strong
length extrapolation.

3 MODEL SETUP

Notation. For an integer p ≥ 2, let [p] := {0, . . . , p − 1} and ei denote the i-th standard basis
vector of Rp. For nonnegative f, g, we write f(n) = O(g(n)) (respectively f(n) = Ω(g(n)))
if there exists an absolute constant C > 0 such that for all n ≥ 0, f(n) ≤ Cg(n) (respectively
f(n) ≥ Cg(n)). We use f(n) = Θ(g(n)) when both bounds hold. We write f(n) = Õ(g(n)) to
suppress absolute constants (independent of the model architecture and data) and polylog factors.
The symbols Ω̃(·) and Θ̃(·) are defined analogously.

Task and data. Fix an integer p ≥ 2 and vocabulary V = [p]. Each example is a length-m sequence
s1:m ∈ [p]m with s1, . . . , sm

i.i.d.∼ Unif([p]). We use one-hot encoding and a shared, position-
independent input embedding, so the network observes only the bag-of-tokens vector

x =

m∑
i=1

esi ∈ {0, 1, . . . ,m}p, ∥x∥1 = m.

The effective instance space1 is defined as

Xm =
{
x ∈ {0, 1, . . . ,m}p : ∥x∥1 = m

}
, |Xm| =

(
m+ p− 1

p− 1

)
.

Labels are modular sums y ≡
(∑m

i=1 si
)
(mod p) ∈ [p]. Let Dm denote the induced population

distribution on Xm × [p]. Given n training samples we draw

S =
{
(x(i), y(i))

}n
i=1

i.i.d.∼ Dn
m.

Model. We study two-layer MLPs of width d with a shared input embedding, comparing standard
ReLU and sinusoidal activations. Parameters are θ = (W,V ) with W ∈ Rd×p and V ∈ Rp×d. For
x ∈ Rp and an activation σ ∈ {ReLU, sin}, the score vector2 is sθ(x) = V σ(Wx) ∈ Rp.

1In the out-of-domain regime, it is extended to X :=
⋃

m≥2 Xm.
2Unless otherwise noted, MLPs are defined without first-layer bias. When bias is used, we write θ =

(W,V, b) and define sθ(x) = V σ(Wx+ b), where b ∈ Rd.
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We refer to networks with σ = sin as sine networks and those with σ = ReLU as ReLU networks.

The induced predictor is hθ(x) = uargmaxℓ∈[p]s
θ
ℓ (x) =

{
ℓ, if sθℓ (x) > sθk(x) for all k ̸= ℓ,

⊥, otherwise,
where ⊥ denotes an invalid prediction (counted as an error). The predictor returns a valid label only
if the maximum score is unique, so hθ is well defined. The hypothesis class of score functions is

HΘ = { sθ : θ = (W,V ) ∈ Rd×p × Rp×d }.

Training. We minimize the empirical cross-entropy loss over S = Dtrain, treating sθ(x) as the logits
for the p-class classification problem with labels in [p]. Optimization employs AdamW and Muon;
implementation details and hyperparameters are provided in App. C.

4 EXPRESSIVITY OF SINE AND RELU MLPS

We establish a sharp expressivity gap for modular addition under a shared, position-independent
embedding. For sine MLPs, we provide explicit constructions showing they are highly efficient:
width-2 suffices for exact realization at any fixed length, and with bias, for all lengths simultane-
ously (Thms. 4.1–4.2). Conversely, we prove that ReLU MLPs face fundamental limitations: their
width must scale linearly with sequence length m to interpolate, and they fail to generalize across
incongruent lengths (Thms. 4.3–4.4). We outline the logic of these proofs in App. D and provide
full details in App. E.

Theorem 4.1 (Exact realization at fixed length by a width-2 sine network). For any fixedm ≥ 2 and
p ≥ 2, there exists a width-2 sine network sθ(x) = V sin(Wx) that exactly realizes Y ≡

(∑m
i=1 si

)
(mod p) for all x = (s1, · · · , sm) ∈ Xm, i.e., P(X,Y )∼Dm

[
hθ(X) = Y

]
= 1.

Theorem 4.2 (Uniform-in-length expressivity of sine networks). Fix p ≥ 2 and consider two-layer
sine MLPs with prediction rule hθ(x) = uargmaxℓ∈[p]s

θ
ℓ (x).

With bias. There exists a width-2 sine network sθ(x) = V sin(Wx + b) that exactly realizes
Y ≡

(∑m
i=1 si

)
(mod p) for all m ≥ 2, that is,

P(X,Y )∼Dm

[
hθ(X) = Y

]
= 1.

Without bias. There exists a sine network sθ(x) = V sin(Wx) of width d =
⌊
(p− 1)/2

⌋
such that,

for all m ≥ 2,

1. If p is odd, then P(X,Y )∼Dm

[
hθ(X) = Y

]
≥ 1− 1

p .

2. If p is even, then P(X,Y )∼Dm

[
hθ(X) = Y

]
≥ 1− 2

p .

Theorem 4.3 (Width lower bound for modular addition with ReLU networks). If a ReLU network
sθ(x) = V ReLU(Wx) exactly realizes modular addition on Xm, then necessarily

d ≥ m− p
p+ 2

= Ω

(
m

p
− 1

)
.

Theorem 4.4 (Impossibility of exact realization at two incongruent lengths for ReLU networks).
Let m1,m2 with m1 ̸≡ m2 (mod p). There is no ReLU network sθ(x) = V ReLU(Wx) such that

hθ(x) = y(x) for all x ∈ Xm1
∪ Xm2

.

However, high expressivity does not guarantee generalization. Indeed, constant-size sine networks
can shatter infinite sets when inputs are unbounded:

Example 4.5 (Lem. 7.2 (Anthony & Bartlett, 2009); see also App. H.2). The class F = {x 7→
sgn(sin(ax)) : a ∈ R+} of functions defined on N has VCdim(F ) =∞.

Leveraging the structure of our integer-valued, bounded input space, the following section estab-
lishes generalization via uniform-convergence bounds that scale linearly with parameter counts.

4
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5 GENERALIZATION IN THE UNDERPARAMETERIZED REGIME

We establish uniform convergence guarantees for two-layer MLPs with shared embeddings across
a broad class of activations. We characterize the learnability of these models via the Natarajan
dimension. Our proof strategy bounds the growth function by counting sign patterns induced by
pairwise margins (Lem. G.6) and invokes the Multiclass Fundamental Theorem (Thm. G.18). We
provide a high-level roadmap of this reduction in App. D and detailed proofs in App. G.
Definition 5.1 (VC-dimension). The VC-dimension of B ⊆ {−1,+1}Z , denoted VCdim(B), is the
maximal size of a set T ⊂ Z that is shattered by B, meaning the restriction of B to T realizes all
sign patterns: B|T = {−1,+1}T .

Definition 5.2 (Natarajan-dimension). The Natarajan-dimension of H ⊆ [p]X , denoted Ndim(H),
is the maximal size of a set S ⊂ X that is N-shattered by H. A set S is N-shattered if there exist
f1, f2 : S → [p] with f1(x) ̸= f2(x) such that for every binary selector b ∈ {1, 2}S , there is some
h ∈ H satisfying h(x) = fb(x)(x) for all x ∈ S.
Definition 5.3 (Piecewise-polynomial activation). A function σ : R → R is piecewise polynomial
with at most L ≥ 1 pieces and maximal piece degree r ≥ 1 if there exist breakpoints

−∞ = b0 < b1 < · · · < bL−1 < bL = +∞
and polynomials P1, . . . , PL with degPℓ ≤ r such that σ(t) = Pℓ(t) for all t ∈ (bℓ−1, bℓ], ℓ ∈ [L].
Definition 5.4 (Trigonometric-polynomial activation). Let K ∈ N0. A function σ : R → R is a
trigonometric polynomial of degree at most K if

σ(t) = a0 +

K∑
k=1

(
ak cos(kt) + bk sin(kt)

)
for some real coefficients a0, (ak)k≤K , (bk)k≤K .
Definition 5.5 (Polynomial–rational–exponential activation). Fix k ∈ R \ {0}, c ≥ 0, τ > 0,
a, b ∈ R, and a polynomial P with degree r := degP ∈ N0. Define

σ(t) = P (t)
aekt + b

cekt + τ
.

Theorem 5.6 (Uniform convergence for broad activation families). Let σ be one of: piecewise-
polynomial (Def. 5.3), trigonometric-polynomial (Def. 5.4), or polynomial–rational–exponential
(Def. 5.5). Let Hσ be the corresponding two-layer class. Then for every δ ∈ (0, 1), with proba-
bility at least 1− δ over the random draw of the training set Dtrain ∼ Dn

m,

sup
h∈Hσ

∣∣∣P(X,Y )∼Dm
[h(X) ̸= Y ]− P(X,Y )∼Dtrain [h(X) ̸= Y ]

∣∣∣ ≤ Õ(√dp+ log(1/δ)

n

)
.

As direct corollaries of Thm. 5.6, we have:
Corollary 5.7. Two-layer MLPs with activation ReLU (σ(t) = max{0, t}), monomial (σ(t) = tm),
sine (σ(t) = sin t), Sigmoid (σ(t) = et

et+1 ), SiLU (σ(t) = t sigmoid(t)), QuickGELU (σ(t) =

t sigmoid(βt), β > 0) have sample complexity Õ(dp).
Corollary 5.8 (Sample-complexity upper bound for ERM with constant-width sine networks). Fix
a constant width d ≥ 2. With probability at least 1 − δ over the random draw of the training set
Dtrain ∼ Dn

m, for all interpolating ERM solutions θ̂:

P(X,Y )∼Dm

[
hθ̂(X) ̸= Y

]
≤ Õ

(√
p+ log(1/δ)

n

)
,

where Õ(·) hides polylogarithmic factors in n, m, and δ−1. Consequently, the sample complexity is
Õ(p).
Remark 5.9 (Near-optimality). Cor. 5.8 is nearly optimal for label-permutation equivariant algo-
rithms (Def. F.2): it matches the information-theoretic lower bound Ω(p) established in Thm. F.11.
Rmk. F.3 provides notable examples of label-permutation equivariant learners, including AdaGrad,
Adam, and GD/SGD with momentum under i.i.d. final-layer initialization.
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Table 1: Capacity bounds for two-layer MLPs with W parameters and width d. Θ̃(·) suppresses
polylog factors in W , d, and the bound on the input. Bold entries are our contributions; Natarajan
lower bounds come from Thm. H.2 and upper bounds from Thm. H.6. Full details are in App. H.

Activation Input type VCdim3 Ndim

Piecewise linear real-valued Θ(W logW ) Θ̃(W )
Piecewise polynomial real-valued Θ(W log(W )) Θ̃(W )
Pfaffian, incl. standard sigmoid real-valued O(d2W 2) —
Standard sigmoid real-valued Ω(W logW ) Ω(W logW )
Standard sigmoid integer-valued, bounded Ω(W ), Õ(W ) Θ̃(W )
Sine integer-valued, unbounded ∞ ∞
Trigonometric polynomial integer-valued, bounded — Õ(W )
Rational exponential integer-valued, bounded — Õ(W )

6 GENERALIZATION IN THE OVERPARAMETERIZED REGIME

Uniform-convergence yields stronger bounds for two-layer sine MLPs than for ReLU networks, yet
these still scale with hidden width. What happens as width becomes very large? To bridge this gap,
we establish width-independent, margin-based generalization bounds. Our analysis builds on the
ℓ∞ vector-contraction bound for Rademacher complexity (Foster & Rakhlin, 2019). For sine MLPs,
we control the contracted complexity via the Dudley entropy integral and covering numbers adapted
to periodic activations. For ReLU MLPs, we leverage positive homogeneity to apply a layer-wise
peeling argument (Golowich et al., 2017). We provide a high-level roadmap of these logical steps in
App. D before detailing the full proofs in App. J.

Let vj denote the j-th row of V for j ∈ [p]. We write ∥V ∥1,∞ := maxj∈[p] ∥vj∥1 (the maximum
row ℓ1-norm), ∥V ∥2 for the spectral norm, and ∥W∥F for the Frobenius norm.
Definition 6.1 (Empirical margin). Let (x, y) be a labeled example with y ∈ [p] and score vector
sθ(x) ∈ Rp. The multiclass margin is γθ(x, y) := sθy(x) − maxk∈[p]\{y} s

θ
k(x).

For a finite sample S = {(x(i), y(i))}ni=1, define the (empirical) margin of S as

γθ(S) := min
i∈[n]

γθ
(
x(i), y(i)

)
.

We say that the classifier interpolates S if γθ(S) > 0.
Theorem 6.2 (Two-layer sin MLP, margin-based generalization). Consider the two-layer MLP
sθ(x) = V sin(Wx) ∈ Rp on Xm. Fix δ ∈ (0, 1) and assume d ≥ 2p. With probability at
least 1 − δ over the random draw of the training set Dtrain ∼ Dn

m, for all interpolating solutions θ
with normalized margin γθ,sin := γθ(Dtrain)

∥V ∥1,∞
= Ω(1), it holds that

P(X,Y )∈Dm

[
hθ(X) ̸= Y

]
≤ Õ

(
p

√
1

n

)
,

where Õ(·) hides polylogarithmic factors in n, m, and δ−1.
Theorem 6.3 (Two-layer ReLU MLP, margin-based generalization). Assume p > m, n > m2, and
n ≥ 17. Fix δ ∈ (0, 1). Suppose the width satisfies d ≥ 64 pm

m
2 +2 4.67m. With probability at

least 1 − δ over the random draw of the training set Dtrain ∼ Dn
m, for all interpolating solutions θ

with normalized margin γθ,ReLU := γθ(Dtrain)
∥V ∥2∥W∥F

= Ω
(

1√
p ·

1
m1.5m+2.5 6.34m

)
, it holds that

P(X,Y )∼Dm

[
hθ(X) ̸= Y

]
≤ Õ

(
pm1.5m+2.56.34m

√
m

n

)
,

where Õ(·) hides polylogarithmic factors in n and δ−1.
3VC-dimension lower bounds are existential: for given size and depth budgets, there exists a network that

shatters a set of the claimed cardinality. Upper bounds are universal: they hold for every network in the family.
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Remark 6.4. The exponential dependence on m in Thm. 6.3 is a proof artifact rather than a fun-
damental limitation. Our interpolation guarantee uses an explicit construction akin to the “Pizza”
algorithm (Zhong et al., 2023), an implementation of the aCRT template (McCracken et al., 2025),
which certifies learnability via a mechanistic scheme (approximating periodic embeddings with Re-
LUs) but yields conservative margin estimates. Empirically (Figs. 3, 11, 13), trained ReLU networks
attain much larger margins at smaller widths, indicating that the theoretical gap arises from the in-
efficiency of this construction rather than intrinsic model constraints.

7 EXPERIMENTS

To evaluate our theory, we train two-layer MLPs with sine and ReLU activations on modular addition
under three regimes: (i) underparameterized, (ii) overparameterized—both defined by the number of
parameters relative to the training set size—and (iii) out-of-domain regime that tests extrapolation to
sequence lengths unseen during training, i.e., length extrapolation. Full setup details and additional
figures are provided in App. C.

7.1 UNDERPARAMETERIZED REGIME.

We evaluate our sample complexity predictions by training matched architectures that differ only in
their nonlinearity (sine vs. ReLU), using AdamW with zero weight decay on identical datasets and
with identical optimization hyperparameters (Fig. 1).

Sine networks are consistently more sample efficient than ReLU networks. Across widths and
training sizes, sine networks consistently outperform ReLU in both training and test accuracy, at-
taining a given accuracy at substantially smaller widths. For a fixed training set size, reducing the
width—provided it remains sufficient for optimization—improves test accuracy for both activations,
consistent with our uniform convergence guarantee in Sec. 5.

7.2 OVERPARAMETERIZED REGIME.

To validate the margin-based bounds in Sec. 6, we train wide two-layer MLPs with Muon4 and
sweep over decoupled weight decay rates. For sine models we apply weight decay only to the
second layer; for ReLU we decay both layers. We report the 0.5th-percentile rather than the
minimum margin because the latter is often dominated by rare outliers; a small quantile yields
a stable large-margin proxy and, by Cor. J.4, only adds an additive 0.5% term to the popu-
lation error. We log training and test accuracies, the 0.5th-percentile of the training margin
γ0.5%train := Percentile0.5

{
γθ(x

(i), y(i))
}n
i=1

, together with normalized margins that factor out layer

scales: ReLU: γ̂ReLU =
γ0.5%

train
∥V ∥2 ∥W∥F

, Sine: γ̂sin =
γ0.5%

train
∥V ∥1,∞

.

Normalized margins track generalization in the overparameterized regime. Figs. 2 and 3 show
that, as weight decay increases through a moderate range, normalized margins grow and test ac-
curacy improves; with excessively large decay, training accuracy falls and generalization degrades.
These trends align with the prediction that, in the overparameterized regime, generalization is gov-
erned by effective layer scales and margins.

7.3 OUT-OF-DOMAIN (OOD) REGIME (LENGTH GENERALIZATION).

We study length generalization, i.e., the ability to generalize to test datasets with sequence
lengths unseen during training. The training sequence length m is sampled uniformly from
{2, 3, 4, 5, 7, 13, 19}, and we report the population accuracy of the trained model on a uniform dis-
tribution over data of fixed lengths, for lengths up to 811.

Sine networks achieve near-perfect length generalization, while ReLU networks struggle in-
distribution. We compare the length generalization capability of MLPs with sine and ReLU acti-
vations in Fig. 4. Once the data budget exceeds a threshold, sine MLPs achieve perfect accuracy

4With decoupled weight decay, Muon’s induced spectral geometry upper bounds ∥V ∥2∥W∥F and ∥V ∥1,∞
up to dimension-dependent constants; see App. C.
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Figure 1: Accuracies for two-layer sine and ReLU MLPs in the underparameterized regime.

Figure 2: Two-layer sine networks in the overparameterized regime. Clockwise from top left: layer
norm, normalized margin, test accuracy, and standard deviation of test accuracy.

on all seen lengths and remain essentially perfect on much longer unseen lengths. In contrast,
ReLU MLPs struggle even in-domain and quickly degrade to chance-level accuracy on longer OOD
lengths. These behaviors align closely with our expressivity results in Sec. 4. Thm. 4.2 shows that
a width-2 sine network without bias can learn modular addition uniformly over all sequence lengths
with high accuracy, implying that sine MLPs can map the shared embedding to a periodic represen-
tation of the modular sum. Conversely, Thm. 4.3 implies that the required ReLU width must grow
linearly with m to interpolate, and Thm. 4.4 shows that no fixed-width ReLU network can exactly
match the ground truth at two incongruent lengths, indicating that ReLU MLPs admit no comparably
simple periodic parametrization.
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Figure 3: Two-layer ReLU networks in the overparameterized regime (panels as in Fig. 2).

Figure 4: Out-of-domain accuracies of two-layer sine and ReLU MLPs, with no bias; each heatmap
cell reports accuracy under the Best-over-WD scheme.

Bias improves the robustness of sine MLP length generalization. Figure 5 compares sine
MLPs with and without a first-layer bias. Empirically, adding the bias preserves the excellent in-
distribution performance while making length generalization more robust: accuracy remains high
over a wider range of OOD lengths and weight-decay values. This phenomenon is naturally con-
nected to our expressivity results. Thm. 4.2 shows that the bias effectively allows sines with differ-
ent phases, and thus a richer periodic basis that implicitly includes cosine-like components, which
makes it easier for the network to implement a modular rule that remains consistent across many
sequence lengths. This additional expressivity provides a plausible explanation for the more stable
and robust length generalization observed in biased sine MLPs.

7.4 TRANSFORMER BASELINE.

To verify that our observations are not specific to MLPs, we additionally train a 1-layer, 1-head
decoder-only Transformer on modular addition and vary the feed-forward activation among sine,
ReLU, and GELU.
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Figure 5: Out-of-domain accuracies for two-layer sine MLPs with and without first-layer bias.

Figure 6: Train and test accuracy on modular addition for a 1-layer, 1-head decoder-only Trans-
former with FFN activations sine, ReLU, and GELU.

Sine activation also improves sample efficiency in Transformers. Fig. 6 reports train and test ac-
curacies as a function of training-set size. Consistent with the MLP results, the sine activation attains
high test accuracy with substantially fewer samples, while ReLU and GELU require more data and
remain notably worse at moderate data budgets. This corroborates our theory across architectures:
when optimization succeeds, the sine nonlinearity yields solutions that generalize more reliably on
modular addition.

8 CONCLUSION

We establish that periodic activations offer provable advantages for learning modular addition. Our
analysis reveals a sharp expressivity gap under a shared, position-independent embedding: width-
2 sine MLPs suffice for exact modular addition (Thms. 4.1, 4.2), whereas ReLU networks re-
quire width scaling linearly with sequence length and cannot generalize across incongruent lengths
(Thms. 4.3, 4.4). We complement this with statistical guarantees, deriving Θ̃(dp) uniform conver-
gence bounds (Thm. 5.6); specialized to sine with constant width, any interpolating ERM learner
achieves nearly optimal Õ(p) sample complexity (Thm. 5.8). In the overparameterized regime,
we establish width-independent margin bounds (Thm. 6.2). Empirically, sine networks outperform
ReLU models in sample efficiency (Fig. 1), and their superior test accuracy tracks with larger nor-
malized margins in the overparameterized regime (Figs. 2–3). In the OOD regime, sine MLPs
generalize far beyond training lengths, while ReLU networks degrade to chance (Figs. 4, 5). These
benefits extend to Transformer architectures, where sine activations yield significantly better sample
efficiency than standard ReLU and GELU baselines (Fig. 6). Together, our results support a robust
design principle: encoding periodicity directly into the architecture maximizes both expressivity and
learnability for periodic tasks.
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A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

Tool and scope. We used Gemini 2.5 Pro, Gemini 3.0 Pro, and GPT-5 (high) as general-purpose
assist tools for (i) code assistance (e.g., suggesting small snippets, refactoring, debugging hints,
writing docstrings/comments, and drafting unit-test scaffolds) and (ii) writing assistance (e.g., copy-
editing, grammar/fluency improvements, and localized rephrasing for clarity). Prompts sometimes
included short excerpts of our own draft text or code necessary to request the above assistance.

What the LLM did not do. The LLM did not originate the paper’s core research ideas, hypotheses,
methodological designs, experimental protocols, analyses, or conclusions; it did not write sections
containing novel scientific claims; and it did not determine which results to report or how to interpret
them.

Verification and oversight. All LLM-suggested text and code were independently reviewed and
edited by the authors. For code, the authors carefully checked and verified correctness (including
running and testing LLM-suggested snippets before inclusion). Any factual statements in edited
prose were cross-checked by the authors against our own results or appropriate sources. No LLM
outputs were accepted without human scrutiny.

Assessment of significance. While the LLM provided editing assistance and code-level suggestions,
its role does not rise to the level of a contributing author under the ICLR policy. The intellectual
contributions (problem formulation, algorithmic design, experiments, and interpretation) are those
of the human authors.

Reproducibility note. LLM assistance was limited to improving clarity and developer ergonomics;
it does not affect the reproducibility of our methods or results. All final code and experiments are
authored, verified, and maintained by the authors.

B ADDITIONAL RELATED WORK

Mechanistic and optimization-centric perspectives. Mechanistic studies catalog multiple circuit
families that realize modular addition (Nanda et al., 2023; Zhong et al., 2023). Analyses tie the
features that emerge during training to margin maximization and frequency selection (Morwani

15

https://proceedings.mlr.press/v267/yang25ac.html
https://arxiv.org/abs/2406.03445


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

et al., 2024; Li et al., 2025), and show that optimizer choice and regularization can change the
time-to-grok and failure modes (Thilak et al., 2022; Abbe et al., 2023). Our formulation codifies
these observations by hard-wiring a periodic inductive bias in a two-layer MLP and then proving
expressivity and generalization benefits.

Capacity results beyond the main text. Lower bounds based on bit-extraction and upper bounds
via growth-function arguments together yield near-matching VC estimates for piecewise-linear
networks (Bartlett et al., 2017b). For piecewise-polynomial activations, classical results give
O(WL2 + WL logW ) upper bounds with refined scaling via unit counts (Anthony & Bartlett,
2009; Bartlett et al., 2017b). For Pfaffian activations (e.g., sigmoid, tanh), capacity is polynomial in
the parameter size (Karpinski & Macintyre, 1997; Anthony & Bartlett, 2009). These follow the gen-
eral line of bounding polynomial sign patterns (Warren, 1968; Goldberg & Jerrum, 1995; Anthony
& Bartlett, 2009), and in multiclass settings are summarized by the Natarajan dimension (Natarajan,
1989; Haussler & Long, 1995; Shalev-Shwartz & Ben-David, 2014).

Learning parity and modular structure with gradient methods. Fourier characters (parities)
drive SQ hardness: under uniform inputs, even weak learning of related classes is impossible in
the SQ model (O’Donnell, 2014; Blum et al., 1994; Kearns, 1998; Reyzin, 2020). With noise,
LPN stays difficult—BKW is sub-exponential (Blum et al., 2003). Gradient descent on shallow
nets emphasizes low-degree components, matching SQ lower bounds (Vempala & Wilmes, 2019);
training time under SGD relates to leap complexity (Abbe et al., 2023), and fixed large-support
parities can be provably hard (Shoshani & Shamir, 2025). In contrast, minibatch SGD can efficiently
learn quadratic XOR via a find-then-tune phase with near-optimal samples (Glasgow, 2023).

Implicit bias of optimizers. Optimization geometry induces solution selection (Gunasekar et al.,
2018). For AdamW, analyses identify convergence to KKT points of an ℓ∞-constrained problem,
implying an ℓ∞ max-margin bias (Xie & Li, 2024); related max-margin behavior appears for Adam
on separable data (Zhang et al., 2024). Muon has been argued to enforce effective spectral-norm
control and to favor max-margin solutions in spectral geometry (Chen et al., 2025; Fan et al., 2025).
These observations motivate the norm choices in our width-independent margin bounds.

Margin-based generalization guarantees and path-norm viewpoints. Beyond parameter
counts, generalization can be controlled by margins and layerwise scales (Neyshabur et al., 2018b).
Prior bounds include spectral and row-wise L2,1 results for Lipschitz activations (Bartlett et al.,
2017a), size-independent Rademacher bounds for positively homogeneous nets and, separately,
L1,∞ constraints for Lipschitz activations (Golowich et al., 2017), and PAC–Bayesian variants ro-
bust to weight perturbations (Neyshabur et al., 2018a). Path norms yield rescaling-invariant capacity
measures (Neyshabur et al., 2015b), connect to Barron-space approximation/estimation in two-layer
models (E et al., 2022), underpin Path-SGD (Neyshabur et al., 2015a), and extend to modern DAG
ReLU networks (Gonon et al., 2024).

Gradient descent dynamics and empirical margins. On separable data with cross-entropy,
gradient descent drives norm growth while the predictor direction converges to the hard-margin
SVM (Soudry et al., 2018). For positively homogeneous networks, gradient flow increases a
layer-normalized margin and converges to a KKT point of a margin maximization problem (Lyu
& Li, 2020); directional convergence and alignment extend to deep homogeneous settings (Ji &
Telgarsky, 2020). In the mean-field limit for infinitely wide two-layer nets, the limiting classifier
is max-margin in an appropriate function space (Chizat & Bach, 2020). For non-homogeneous net-
works, normalized margins still grow once the risk is small, with directional convergence to a KKT
point (Cai et al., 2025). BatchNorm alters the bias, encouraging more uniform margins and faster
directional convergence (Cao et al., 2023).

Additional context on OOD generalization and length extrapolation. Self-attention at fixed
size has formal expressivity limits (Hahn, 2020), while under an idealized norm-regularized in-
ference scheme, causal transformers can provably length-generalize for certain Limit Transformer
functions (Huang et al., 2025). Practical mitigations include ALiBi/Hard-ALiBi (Press et al., 2022;
Jelassi et al., 2024), prompting strategies that elicit multi-step reasoning (Wei et al., 2022), and pe-
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riodic compression for long chains of thought within a fixed context window (e.g., PENCIL) (Yang
et al., 2025).

C EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

C.1 EXPERIMENTAL SETUP

In this section, we explain the configuration used in all experiments.

Data. For each run we generate a static training set of size n once and reshuffle it at the start of
every epoch; the test set contains 10,000 i.i.d. samples from each Dm.

Initialization and reproducibility. Unless otherwise specified, we run each hyperparameter con-
figuration with three random seeds {1337, 1338, 1339} and report metrics averaged over these runs.
For each run, we generate static training and test input sequences i.i.d. with torch.randint and
initialize all weights i.i.d. from N (0, 0.012). This setup ensures reproducible initializations and,
within each sweep over training set sizes at fixed (m, p), that smaller training sets are strict subsets
of larger ones.

Precision and implementation. We implement all experiments in PyTorch, with TF32 disabled and
float32 precision throughout. Metrics are logged with Weights & Biases. Each run uses a single
NVIDIA GPU (RTX A4000 or A6000, RTX 5000 or 6000 Ada, RTX Pro 6000 Blackwell Max-Q,
L40S, A100, H100, or H200).

Training. We use mini-batch training with a fixed batch size of 1024. Models are trained for up to
300,000 epochs, and we report metrics at the final checkpoint.

C.1.1 UNDERPARAMETERIZED REGIME.

Unless otherwise specified, we use AdamW with a constant learning rate of 10−3 and zero weight
decay. All other AdamW hyperparameters are left at their PyTorch defaults (betas (0.9, 0.999),
ε = 10−8). We do not use learning rate schedules, warmup, or gradient clipping. When comparing
activations, we match (m, p, d, n) and optimizer settings. We report train and test accuracy. We
also evaluate vanilla SGD (learning rate 0.1, momentum 0, dampening 0, weight decay 0, Nesterov
disabled) in Fig. 9.

C.1.2 OVERPARAMETERIZED REGIME.

We use Muon with a constant learning rate of 10−3 and vary the decoupled weight decay. Mo-
mentum, Nesterov momentum, and Newton–Schulz steps are left at the library defaults (momentum
0.95, Nesterov enabled, 5 Newton–Schulz steps). We do not use learning rate schedules, warmup, or
gradient clipping. We report train and test accuracy and the 0.5th-percentile of the training margin,
γ0.5%train . We report the layer norms ∥W∥F and ∥V ∥2 for ReLU models, and ∥V ∥1,∞ for sine models,
enabling computation of the normalized margins used in Sec. 7.

Optimizer choice (overparameterized regime). We adopt Muon to match the norm-based de-
nominators used in our normalized margins. For any A ∈ Rm×n,

∥A∥F ≤
√

rank(A) ∥A∥2 ≤
√
min{m,n} ∥A∥2, ∥A∥1,∞ := max

i
∥Ai,:∥1 ≤

√
n max

i
∥Ai,:∥2 ≤

√
n ∥A∥2.

Hence ∥V ∥2∥W∥F and ∥V ∥1,∞ are controlled, up to explicit dimension factors, under the spectral
geometry induced by Muon with decoupled weight decay.

C.1.3 OUT-OF-DOMAIN (OOD) REGIME.

We fix the network width d = 1024 and train with the Muon optimizer at a constant learning
rate of 10−3, and vary only the decoupled weight decay. We sweep decoupled weight decay over
{0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0}, applying it to the second layer V for sine MLPs and to both
layers V and W for ReLU. When the first-layer bias is enabled for sine MLPs, we optimize the
bias with AdamW (no weight decay) while keep Muon for all other parameters. Training uses a
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static multi-length set with m ∈ {2, 3, 4, 5, 7, 13, 19}. For p = 97, the total sample budget is
n ∈ {4k, 8k, 16k, 32k, 64k}; for p = 53, n ∈ {1k, 2k, 4k, 8k, 16k}. In each case, the budget is
split as evenly as possible across the m values, and each per-m shard is reshuffled every epoch.
For evaluation, we construct—once per m and seed—fixed held-out test sets for OOD lengths
m ∈ {14, 38, 53, 97, 201, 303, 401, 512, 602, 705, 811}. We also track training and in-domain test
accuracy for m ∈ {3, 7, 13}. To ensure determinism and independence, we use independent CPU
generators seeded with seed× 1009 +m for the training data of length m and seed× 2009 +m
for the corresponding test data; this yields per-m test sets that are identical across epochs, prevents
leakage via seed collisions, and ensures that, within each m, smaller training sets are strict prefixes
of larger ones.

Reporting conventions. For some plots, we additionally use a best-over-WD scheme: for each
accuracy metric, we compute the accuracy averaged over seeds for every weight decay value and
report the maximum of these averages.

C.1.4 TRANSFORMER ARCHITECTURE AND TRAINING DETAILS

Task and tokenization. For a given modulus p and number of summands m, each example is
a sequence of length 2m: x1,+, x2,+, . . . , xm,=, where xi ∈ {0, . . . , p − 1}. The vocabulary
has size p+2 and includes two special symbols for “+” and “=”. The model predicts the residue
(
∑m

i=1 xi) mod p from the final position. We train with the standard cross-entropy loss on the last
token’s logits and report accuracy.

Embeddings. We use a single-layer decoder-only Transformer with one self-attention head. Tokens
are embedded via a learned lookup table tok emb ∈ R(p+2)×d and added to a learned positional
embedding pos emb ∈ R(2m)×d. We use fixed d = 256 in Fig. 6.

H(0) = Etok(s1:L) + Epos(1:L) ∈ RL×d.

Layer normalization. Position-wise LN over the feature dim d with trainable γ, β ∈ Rd (init
γ = 1, β = 0, ε = 10−5):

LN(h) = γ ⊙ h− µ(h)√
Var(h) + ε

+ β.

Attention block. We apply pre-norm LayerNorm, then a single-head causal self-attention with
projections Q = HWQ, K = HWK , V = HWV (WQ,WK ,WV ∈ Rd×d, no biases). Attention
logits are scaled by 1/

√
d and masked with a lower-triangular causal mask. The attention output is

added to the residual stream.

H̃ = LN(H(0)), Q = H̃WQ, K = H̃WK , V = H̃WV ,

Mij =

{
0 j ≤ i
−∞ j > i

, P = softmax
(QK⊤
√
d

+M
)
, H(1) = H(0) + PV.

Feed-forward block. After a second pre-norm LayerNorm, we apply a two-layer MLP with expan-
sion factor 4, FFN(h) = W2 ϕ(W1h), where W1 ∈ R4d×d, W2 ∈ Rd×4d. We sweep the activation
ϕ ∈ {sine,ReLU,GELU}. The FFN output is added to the residual stream, followed by a final
LayerNorm.

Ĥ = LN(H(1)), H(2) = H(1) +W2 ϕ(W1Ĥ), H(3) = LN(H(2)).

Output layer. A learned, untied linear head Wout ∈ R(p+2)×d maps hidden states to logits in Rp+2;
we evaluate the last position only. No dropout or label smoothing is used.

Z:,t =Wout h
(3)
t ∈ Rp+2, ŷ = uargmaxc∈{0,...,p−1}Zc,L.

Overall model. For a sequence s1:L with L = 2m tokens drawn from a vocabulary of size p+2,

TFθ(s1:L) = Wout◦LN◦
(
Id+(W2◦ϕ◦W1)◦LN

)
◦
(
Id+Attn◦LN

)
◦
(
tok emb+pos emb

)
(s1:L).
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Figure 7: Underparameterized regime (m = 2, p = 307). Final train/test accuracies for two-layer
MLPs with sine vs. ReLU activations under matched budgets.

Initialization and precision. All linear and embedding weights are initialized i.i.d. N (0, σ2) with
σ = 10−2; LayerNorm scales are initialized to one and biases to zero. Training uses float32
precision without mixed precision or TF32.

Optimization and data. We generate a fixed training set of size n once per run and a fixed test set of
10,000 examples; the training set is reshuffled each epoch via index permutation. We use AdamW
with constant learning rate, decoupled weight decay, batch size 1024, and gradient-norm clipping
(1.0). We average metrics over seeds {1337, 1338, 1339}.

Strain = {(s(j), y(j))}nj=1, g ← ∇θL, g ← clip∥g∥2≤1.0(g), θ ← AdamW(θ, g; η, λ).

Hyperparameters for Fig. 6. We use (m, p, d) = (3, 97, 256), train for a fixed number of epochs
with AdamW (learning rate 10−4, weight decay 0.0, batch size 1024), and report train/test accuracy
averaged over the above seeds. The x-axis of Fig. 6 orders FFN activations as sine, ReLU, and
GELU; rows correspond to n ∈ {4k, 8k, 12k, 16k, 20k, 24k}.

C.2 ADDITIONAL RESULTS

We provide additional figures for our experiments.

Figs. 7 and 8 present multiple plots for the underparameterized sweeps at (m, p) = (2, 307) and
(4, 53), respectively. In both cases, sine networks dominate ReLU networks for matched width and
training budget, and the advantage widens as width decreases, until optimization begins to fail.

Fig. 9 reports underparameterized sweeps at (m, p) = (3, 97) with vanilla SGD. On the test set, sine
consistently outperforms ReLU at matched width and training budget, with performance peaking
at small–moderate widths and degrading at large width despite perfect training accuracy. Com-
pared with AdamW, the qualitative picture is unchanged, but SGD generalization is slower and
more learning-rate sensitive. ReLU test accuracy under SGD closely matches ReLU under AdamW,
whereas sine under SGD improves much more slowly after interpolation and never reaches the test
accuracy of sine under AdamW.

Figs. 10–13 present multiple plots for the overparameterized sweeps at (m, p) = (2, 307) and
(4, 53), respectively. In both cases, as weight decay increases through a moderate range, normal-
ized margins grow and test accuracy improves; for excessively large decay, training accuracy falls
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Figure 8: Underparameterized regime (m = 4, p = 53).

Figure 9: Underparameterized regime with Vanilla SGD (m = 3, p = 97).

and generalization degrades. These trends align with the prediction that, in the overparameterized
regime, generalization is governed by effective layer scales and margins.

Fig. 14 provides additional plots for the out-of-domain sweep, including per-length accuracies across
the weight-decay grid. Once the data budget reaches 8k examples, sine MLPs achieve perfect ac-
curacy on all seen lengths and remain essentially perfect on unseen lengths far beyond the training
support. In contrast, ReLU MLPs struggle even in-domain and quickly collapse to chance accuracy
on larger OOD lengths.
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Figure 10: Two-layer sine networks in the overparameterized regime.

Figure 11: Two-layer ReLU networks in the overparameterized regime.

Fig. 15 shows additional plots comparing out-of-domain accuracies for two-layer sine MLPs with
and without a first-layer bias. Enabling a first-layer bias in sine MLPs substantially improves ro-
bustness, leading to solutions that generalize stably and consistently.

D PROOF OUTLINES

This appendix outlines the logical structure of our theoretical results, clarifying the connections
between the main text theorems and the detailed proofs in subsequent sections.
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Figure 12: Two-layer sine networks in the overparameterized regime.

Figure 13: Two-layer ReLU networks in the overparameterized regime.

D.1 EXPRESSIVITY (SEC. 4)

Sine Networks (Thms. 4.1 and 4.2). The proofs for sine networks are constructive. The core
intuition is that the periodicity of the activation function naturally aligns with the modular arithmetic
task.

1. Encoding residues: For an input x ∈ Xm, the dot product wTx represents a sum of
integers. By choosing weights proportional to frequencies 2π/p, we ensure that inputs
summing to k and k + p map to the same phase angle on the unit circle.
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Figure 14: Out-of-domain accuracies of two-layer sine and ReLU MLPs, with no bias; each heatmap
cell reports accuracy under the Best-over-WD scheme.

Figure 15: Out-of-domain accuracies for two-layer sine MLPs with and without first-layer bias.

2. Decoding via orthogonality: A single sine neuron captures the vertical projection of this
phase. To fully distinguish p classes, a width of 2 allows the network to compute both
sine and cosine components, effectively implementing a Fourier basis that isolates specific
residues.

3. Uniformity: For Thm. 4.2, we extend this construction to hold for all lengths m simul-
taneously. With bias, we can realign the phases for any m. Without bias, we rely on a
width-⌊(p−1)/2⌋ construction that mimics a discrete Fourier transform to separate residue
classes.

ReLU Networks (Thms. 4.3 and 4.4). The proofs for ReLU networks utilize geometric counting
arguments and linear algebra.

1. Counting linear regions: A ReLU network partitions the input space into linear regions
where the function is affine. To approximate the “sawtooth” function of modular addition
exactly, the network must change slope (oscillate) Ω(m) times along specific directions.
Thm. 4.3 establishes that a width-d network cannot generate enough linear regions to match
this complexity when d is small relative to m/p.

2. Incompatibility of lengths: Thm. 4.4 demonstrates that the affine transformation required
to fit length m1 creates errors at length m2 if m1 ̸≡ m2 (mod p).
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D.2 UNDERPARAMETERIZED GENERALIZATION (SEC. 5)

Uniform Convergence (Thm. 5.6). The argument follows classical techniques (Warren, 1968;
Goldberg & Jerrum, 1995; Anthony & Bartlett, 2009; Shalev-Shwartz & Ben-David, 2014). The
proof of Thm. 5.6 proceeds via the following three-step reduction:

1. Generalization Bound via Natarajan Dimension: We first invoke the Multiclass Fun-
damental Theorem (Thm. G.18), which uniformly bounds the generalization gap by
Õ(
√
dN/n), where dN is the Natarajan dimension of the hypothesis classH.

2. Reduction to Pairwise VC-Dimension: Directly computing dN is difficult. We utilize
a reduction (Lem. G.6) which bounds the Natarajan dimension of a p-class model by the
VC-dimension of its induced binary pairwise comparisons.

3. Bounding VC-Dimension via Parameter Counting: For the activations considered
(trigonometric, piecewise-polynomial, rational-exponential), the pairwise difference func-
tion f(x, θ) = sθi (x)− sθj (x) is semi-algebraic (specifically, a polynomial or rational func-
tion of the parameters θ). We apply classical bounds on the VC-dimension of polynomial
function classes (Thm. G.11).

D.3 OVERPARAMETERIZED GENERALIZATION (SEC. 6)

Margin-based Bounds (Thms. 6.2 and 6.3). These proofs show that all interpolating networks
with large normalized margins generalize (Sec. J), and that at least one such network exists (Sec. I).

1. Rademacher Generalization Bounds: We first connect population loss with Rademacher
complexity via standard generalization bounds (Thm. J.3).

2. Ramp Loss Surrogate: We treat the 0-1 multiclassification loss as upper bounded by the
ramp loss (Cor. J.4).

3. Vector Contraction: We use the vector-contraction inequality for Rademacher complexity
(Thm. 1 of Foster & Rakhlin 2019).

4. Sine MLPs: We bound the contracted complexity using the Dudley entropy integral
(Lem. J.8) and covering numbers for sine networks (Lem. J.7), yielding a bound inde-
pendent of width d.

5. ReLU MLPs: We apply a “peeling” argument tailored to positive homogeneous functions
(Lem. 1 of Golowich et al. 2017; see Lem. J.12). This technique allows us to strip away the
activation function and bound complexity using the spectral and Frobenius norms of the
weight matrices, though the resulting bound depends on m due to the complexity of our
construction (Sec. I).

E PROOFS IN EXPRESSIVITY

Throughout, denote the ground-truth label as

y(x) :=

m∑
i=1

si (mod p) ∈ [p],

E.1 LOW-WIDTH SINE CONSTRUCTION FOR A FIXED-LENGTH INPUT (THM. 4.1)

Proof of Thm. 4.1. Let ϕ := 2π
p . Define W ∈ R2×p and V ∈ Rp×2 by, for each r ∈ [p] and q ∈ [p],

W1,r := (ϕr) (mod 2π) ∈ [−π, π), W2,r :=
(
ϕr + π

2m

)
(mod 2π) ∈ [−π, π),

Vq,1 := sin(ϕq), Vq,2 := cos(ϕq).

Adding integer multiples of 2π to coordinates of W does not change sin(Wx) because x ∈ Zp.
Therefore, for any x ∈ Xm,

sin
(
(Wx)1

)
= sin

(
ϕ

p−1∑
r=0

rxr

)
= sin(ϕy(x))
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and, since ∥x∥1 = m,

sin
(
(Wx)2

)
= sin

(
ϕ

p−1∑
r=0

rxr +
π

2m

p−1∑
r=0

xr

)
= cos(ϕy(x)).

Thus, for each q ∈ [p],

sθq(x) = Vq,1 sin(ϕy(x)) + Vq,2 cos(ϕy(x))

= sin(ϕq) sin(ϕy(x)) + cos(ϕq) cos(ϕy(x))

= cos
(
ϕ(y(x)− q)

)
.

Therefore hθ(x) = uargmaxq∈[p]s
θ
q(x) = y(x).

The margin satisfies

min
x

(
sθy(x)(x)− max

q ̸=y(x)
sθq(x)

)
= 1− cos

(
2π
p

)
≥ 8

p2
,

using 1− cos t ≥ 2
π2 t

2 for t ∈ [0, π]. Moreover, ∥W∥∞ ≤ π, ∥V ∥∞ ≤ 1.

E.2 A LENGTH-AGNOSTIC SINE NETWORK (THM. 4.2)

We will use two elementary lemmas.

Lemma E.1 (Uniformity of the modular sum). For fixed m ∈ N, if s1, . . . , sm
i.i.d.∼ Unif([p]), then

y(x) ≡
∑m

i=1 si (mod p) is uniform on [p].

Proof. Let U ∼ Unif([p]) and write Sm :=
∑m

i=1 si (mod p). For any ω := e2πi/p and t ∈
{1, . . . , p− 1}, the discrete fourier transform of Sm is

EωtSm =
(
EωtU

)m
=
(1
p

p−1∑
u=0

ωtu
)m

= 0.

Hence the discrete Fourier coefficients of Sm vanish at all nonzero frequencies, and Sm is uniform
on [p].

Lemma E.2 (Sine Gram identity on Z/pZ). Let p ≥ 2 and K := ⌊(p− 1)/2⌋. For a, b ∈ [p] define

S(a, b) :=

K∑
k=1

sin
(2πk
p

a
)
sin
(2πk
p

b
)
.

Then:

1. If p is odd,

S(a, b) =


p

4
, a ≡ b ̸≡ 0 (mod p),

−p
4
, a ≡ −b ̸≡ 0 (mod p),

0, otherwise (in particular if a = 0 or b = 0).

2. If p is even,

S(a, b) =


p

4
, a ≡ b ̸≡ 0, p2 (mod p),

−p
4
, a ≡ −b ̸≡ 0, p2 (mod p),

0, otherwise (in particular if a ∈ {0, p2} or b ∈ {0, p2}).
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Proof. Using sinu sin v = 1
2

(
cos(u− v)− cos(u+ v)

)
,

S(a, b) = 1
2

K∑
k=1

cos
(

2πk
p (a− b)

)
− 1

2

K∑
k=1

cos
(

2πk
p (a+ b)

)
.

For odd p we have K = p−1
2 and, for u ∈ [p],

T1(u) :=

K∑
k=1

cos
(

2πk
p u
)
=

{
p−1
2 , u ≡ 0,

− 1
2 , u ̸≡ 0,

which follows by taking real parts in
∑p−1

k=0 e
2πiku/p = 0 and pairing k with p− k. Thus S(a, b) =

1
2

(
T1(a− b)− T1(a+ b)

)
, yielding the stated values.

For even p we have K = p/2− 1 and, for u ∈ [p],

T0(u) :=

K∑
k=1

cos
(

2πk
p u
)
=
−1− cos(πu)

2
=


−1, u even but u ̸≡ 0,

0, u odd,
p
2 − 1, u ≡ 0,

using 1+2
∑p/2−1

k=1 cos(2πku/p)+cos(πu) = 0 for u ̸≡ 0. Hence S(a, b) = 1
2

(
T0(a−b)−T0(a+

b)
)
, which gives the stated cases. When a ∈ {0, p/2} or b ∈ {0, p/2}, every summand vanishes

(since sin(0) = sin(πk) = 0), so S(a, b) = 0.

Proof of Thm. 4.2.

With bias. Let sθ(x) = V sin(Wx+ b) and set ϕ := 2π
p . Define W ∈ R2×p and V ∈ Rp×2 by, for

each r, q ∈ {0, . . . , p− 1},
W1,r := (ϕr) (mod 2π) ∈ [−π, π), W2,r := (ϕr) (mod 2π) ∈ [−π, π),

Vq,1 := sin(ϕq), Vq,2 := cos(ϕq), b1 = 0, b2 =
π

2
.

The same calculation as in the proof of Thm. 4.1 shows that sℓ(x) = cos
(
ϕ(y(x) − ℓ)

)
. For the

correct label ℓ = y(x), the score is 1. For any incorrect label ℓ ̸= y(x), the score is strictly less than
1. Thus hθ(x) = y(x) for every m.

Without bias. Let sθ(x) = V sin(Wx), K := ⌊(p − 1)/2⌋, and α = (0, 1, . . . , p − 1)⊤ ∈ Zp.
Define a width-K sine network by

W ∈ RK×p, Wk,: =
2πk

p
α⊤ (k = 1, . . . ,K), V ∈ Rp×K , Vℓk = sin

(2πk
p

ℓ
)
.

For any x ∈ Xm, the k-th hidden unit is

ϕk(x) = sin
(2πk
p
⟨α, x⟩

)
= sin

(2πk
p

y(x)
)
,

so for ℓ ∈ [p],

sℓ(x) = (V ϕ(x))ℓ =

K∑
k=1

sin
(2πk
p

ℓ
)
sin
(2πk
p

y(x)
)
= S

(
ℓ, y(x)

)
,

with S from Lem. E.2.

If p is odd, Lem. E.2 implies: for y(x) = 0, all scores are 0. Under the strict uniqueness rule, this
counts as a tie (invalid), so the prediction is wrong. for y(x) ̸= 0, one has sy(x)(x) = p/4, which
is strictly greater than s−y(x)(x) = −p/4 and sℓ(x) = 0 otherwise. Thus the max is unique and
hθ(x) = y(x). By Lem. E.1, Y is uniform, so P[hθ(X) = Y ] = 1− 1

p for every m.

If p is even, Lem. E.2 gives: for y(x) ∈ {0, p2}, all scores are 0, resulting in a tie (invalid prediction)
for both residues. for all other residues, sy(x)(x) = p/4 is the unique maximum (strictly greater
than 0 and −p/4). By Lem. E.1, Y ∼ Unif([p]), hence P[hθ(X) = Y ] = 1− 2

p for every m.
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E.3 RELU WIDTH LOWER BOUND (THM. 4.3)

By a one-dimensional counting-path argument, we show that any ReLU MLP that exactly imple-
ments modular addition requires width Ω(m/p− 1).

Proof of Thm. 4.3. Consider the one-dimensional path of bags

x(s) := (m− s)e0 + se1, s = 0, 1, . . . ,m,

along which the true label is ℓ(s) ≡ s (mod p). Let y ∈ Rd be the first column of W and z ∈ Rd

the difference between the second and first columns, yk =Wk,1, zk =Wk,2 −Wk,1. Then the k-th
preactivation is affine in s:

ak(s) = [Wx(s)]k = (m− s)Wk,1 + sWk,2 = myk + s zk,

and the hidden unit hk(s) := ReLU(ak(s)) is continuous piecewise-affine with at most one break-
point at sk := −myk/zk (if zk ̸= 0). Consequently, for each class r ∈ [p] the score

fr(s) := sθr
(
x(s)

)
=

d∑
k=1

vr,k hk(s)

is a continuous piecewise-affine function whose breakpoint set B ⊂ [0,m] has cardinality at most d.

For r ∈ [p] define the adjacent-class margin

gr(s) := fr(s)− fr⊕1(s), r ⊕ 1 =

{
r + 1, r ≤ p− 2,

0, r = p− 1.

Each gr is continuous piecewise-affine with breakpoints contained in B. Sort B and note that [0,m]\
B has at most d+ 1 connected components.

Write Is := [s, s + 1] for s = 0, . . . ,m − 1. Call Is spoiled if Is ∩ B ̸= ∅ and clean otherwise. A
noninteger breakpoint lies in exactly one Is, an integer breakpoint j ∈ {1, . . . ,m − 1} lies in both
Ij−1 and Ij , and endpoints 0 or m lie in exactly one Is. Hence the number of spoiled Is is at most
2|B| ≤ 2d, and therefore the number of clean Is is at least m− 2d.

Exact realization of the labels along the path requires that for every integer s, the correct class score
is strictly greater than all others to avoid an invalid prediction (⊥). At step s, the label is ℓ(s), so we
must have fℓ(s)(s) > fℓ(s)⊕1(s), implying:

gℓ(s)(s) > 0.

At step s+1, the label becomes ℓ(s+1) = ℓ(s)⊕1. Thus, we must have fℓ(s)⊕1(s+1) > fℓ(s)(s+1),
implying:

gℓ(s)(s+ 1) < 0.

If Is is clean, then gℓ(s) is affine on Is. Since it is strictly positive at s and strictly negative at s+1, it
must have a nontrivial zero ts ∈ (s, s+1) by the Intermediate Value Theorem. Because Is is clean,
we have ts ∈ [0,m] \ B.

Moreover, a piecewise-affine gr can have at most one nontrivial zero in each connected component
of [0,m] \ B, hence at most d + 1 such zeros overall. Summing over r ∈ [p] gives that the number
of clean intervals satisfies

m− 2d ≤
p−1∑
r=0

(d+ 1) = p(d+ 1).

Rearranging yields

d ≥ m− p
p+ 2

= Ω
(m
p
− 1
)
.
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E.4 NO SIMULTANEOUS EXACT FIT FOR TWO LENGTHS WITH RELU (THM. 4.4)

Proof of Thm. 4.4. ReLU is positively 1-homogeneous: ReLU(αz) = αReLU(z) for all α ≥ 0.
Thus, for any α > 0 and any x ∈ Rp,

sθ(αx) = V ReLU(W (αx)) = αV ReLU(Wx) = α sθ(x),

so scaling preserves the uargmax:

hθ(αx) = hθ(x) ∀α > 0. (1)

Let e1 ∈ Rp be the first basis vector and set

x(1) := m1e1 ∈ Xm1
, x(2) := m2e1 ∈ Xm2

.

Then x(2) = m2

m1
x(1), so by equation 1, hθ(x(2)) = hθ(x

(1)). However,

y(x(1)) ≡ m1 (mod p), y(x(2)) ≡ m2 (mod p),

and m1 ̸≡ m2 (mod p) by assumption. Therefore at least one of x(1) or x(2) must be misclassified
by any θ, ruling out perfect accuracy on Xm1

∪ Xm2
.

F A PAC LOWER BOUND FOR LABEL-PERMUTATION-EQUIVARIANT
LEARNER

Although we introduced specific MLPs, the lower bound below holds for any (possibly randomized)
label-permutation-equivariant learner.

Definition F.1 (Learning algorithm; Def. 3.1 in (Li et al., 2021a)). A (possibly randomized) super-
vised learning algorithmAmaps a training sample S = {(x(i), y(i))}ni=1 ∈ (X×Y)n to a hypothesis
ĥ = A(S) : X → Y . For randomized A, the output is a distribution over hypotheses; two random-
ized algorithms are considered the same if their induced output distributions on functions coincide
for every input sample.

Definition F.2 (Label-permutation equivariance). Let S(Y) be the group of permutations of the
label space Y . A learning algorithm A is label-permutation equivariant if, for every dataset S =
{(x(i), y(i))}ni=1 and every σ ∈ S(Y),

A
(
{(x(i), σ(y(i)))}ni=1

)
= σ ◦ A(S) as functions X → Y.

For randomized A, equality is in distribution of the output functions.

Remark F.3 (Notable algorithms for label-permutation equivariance). Def. F.2 parallels (Li et al.,
2021a, Def. 3.2) but with the group acting on labels rather than inputs. Their Appendix C criterion
(Thm. C.1; Rem. C.1 for adaptive methods) applies verbatim to actions on output coordinates: with
an i.i.d. final-layer initialization, the learner is label-permutation equivariant. Thus AdaGrad and
Adam satisfy this. Since orthogonal equivariance strictly contains permutation equivariance, the
same reasoning shows GD/SGD with momentum are label-permutation equivariant under i.i.d. final-
layer initialization (Li et al., 2021a, Table 1).

The ground-truth labeling function is

f(x) =

p−1∑
k=0

k xk (mod p) ∈ [p].

A learner that already knows this rule requires essentially no data, since it can compute f(x) exactly
from x.

We capture label symmetry by requiring that the learner be label-permutation–equivariant. For the
analysis, we use the following standard symmetrization device.
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Lemma F.4 (Equivariant symmetrization). Fix a (possibly randomized) label-permutation-
equivariant algorithm A and a realized sample S = {(Xi, f(Xi))}ni=1. For any σ ∈ S([p]) define
the symmetrized output

f̂σ := σ−1 ◦ A
(
{(Xi, σ(f(Xi)))}ni=1

)
.

Then for deterministic A one has f̂σ = A(S) for every σ; for randomized A, f̂σ has the same
distribution as A(S). Consequently, for any event E depending on the learned function,

P
[
E(A(S))

]
= P

[
E(f̂Σ)

]
when Σ ∼ Unif(Sp) is independent of S.

Proof. Deterministic case: by equivariance A(σ(S)) = σ ◦ A(S), hence σ−1 ◦ A(σ(S)) = A(S).

Randomized case: for each fixed σ, label-permutation equivariance implies A(σ(S)) d
= σ ◦ A(S).

Therefore σ−1 ◦A(σ(S)) d
= A(S). With Σ independent of S, f̂Σ has the same distribution asA(S).

We will therefore analyze f̂Σ for a uniform random permutation Σ, and, by Lem. F.4, this entails no
loss of generality for the original (unsymmetrized) learner.

We measure performance by the population 0–1 risk against the canonical rule f ,

L(f̂) = PX

[
f̂(X) ̸= f(X)

]
,

where X ∼ DX is an independent test draw and f̂ is random due to S, Σ, and any internal random-
ness of A.

Lemma F.5. If X is generated as above, then f(X) ∼ Unif([p]). Hence f(X1), . . . , f(Xn) are
i.i.d. uniform on [p].

Proof. There exist random variables s1, . . . , sm ∈ [p] such that

Xk =

m∑
i=1

1{si = k} (k = 0, . . . , p− 1).

Therefore

f(X) =

p−1∑
k=0

kXk ≡
m∑
i=1

si (mod p).

Notice that s1 ∼ Unif([p]) and s1 ⊥ (s2, . . . , sm). Let T :=
∑m

i=2 si (mod p). Then (s1 +
T ) mod p is uniform on [p], so f(X) ∼ Unif([p]). The i.i.d. statement follows from the i.i.d. draws
of Xi.

Lemma F.6. Fix any realized training set S. Let R ⊆ [p] be the set of residues that appear among
f(X1), . . . , f(Xn), and let U = [p] \ R with K = |U |. Conditional on S and on the values
{Σ(u) : u ∈ R} revealed by the permuted sample Σ(S), the restriction Σ|U is a uniformly random
bijection from U to [p] \ Σ(R).

Proof. Σ is uniform over Sp, independent of the data. Conditioning on {Σ(u) : u ∈ R} leaves all
completions of Σ on U equally likely. There are K! such completions.

Lemma F.7 (Risk lower bound via unseen residues). Let K be the number of unseen residues
determined by S. For any (possibly randomized) label-permutation-equivariant learner, over the
random draw,

EΣ

[
L(f̂Σ) | S

]
≥ K − 1

p
.

Proof. Condition on a realized S and its unseen set U (size K). By Lem. F.5, P [f(X) = u] = 1/p
for each u ∈ [p]. For any unseen u ∈ U , Lem. F.6 implies Σ(u) is uniform over a set of K labels,
independent of X given f(X) = u. Thus, for any prediction rule measurable with respect to S, Σ,
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and X , the success probability at residue u is at most 1/K, so the misclassification probability is at
least (K − 1)/K. Summing over u ∈ U ,

EΣ

[
L(f̂Σ) | S

]
≥
∑
u∈U

P [f(X) = u] · K − 1

K
=
K

p
· K − 1

K
=
K − 1

p
.

Lemma F.8. Let K be the number of residues in [p] not hit by f(X1), . . . , f(Xn). Then

E[K] = p
(
1− 1

p

)n
,

Var(K) ≤ E[K],

P[K ≤ E[K]− t] ≤ exp

(
−2t2

n

)
for all t ≥ 0.

Proof. Let Iu = 1{residue u is unseen} for u ∈ [p]. By Lem. F.5, the n residues are i.i.d. uniform,
so

P [Iu = 1] =
(
1− 1

p

)n
=: q, P [Iu = Iv = 1] =

(
1− 2

p

)n
=: q2 (u ̸= v).

Thus E[K] =
∑

u E[Iu] = pq and

Var(K) =
∑
u

Var(Iu)+
∑
u̸=v

Cov(Iu, Iv) = pq(1−q)+p(p−1)(q2−q2) ≤ pq(1−q) ≤ pq = E[K],

since (1−2/p)n ≤ (1−1/p)2n. For concentration, expose the independent residues Zi = f(Xi) ∈
[p]. The mapping (Z1, . . . , Zn) 7→ K is 1-Lipschitz (changing one residue can alter the number of
unseen residues by at most 1), so McDiarmid’s inequality yields the tail bound.

Lemma F.9 (Logarithmic inequality). For x ∈ (0, 1), log(1 − x) ≥ − x
1−x . Hence, for integers

p ≥ 2 and all n ≥ 0, (
1− 1

p

)n
≥ exp

(
− n

p− 1

)
.

Proof. Define h(x) = log(1− x) + x
1−x . Then h′(x) = x

(1−x)2 ≥ 0 and h(0) = 0, so h(x) ≥ 0 on
(0, 1).

Lemma F.10 (Permutation exposure martingale bound). Let U = {u1, . . . , uK} ⊆ [p] and consider
a real-valued function G of the random restriction Σ|U , where Σ|U : U → [p] \Σ(R) is a uniformly
random bijection (conditional on S). Reveal Σ(u1), . . . ,Σ(uK) sequentially and let Mi = E[G |
Σ(u1), . . . ,Σ(ui)]. If for all i one has

|Mi −Mi−1| ≤ ci,

then for all t ≥ 0,

P[G ≤ E[G]− t] ≤ exp

(
− 2t2∑K

i=1 c
2
i

)
.

Proof. (Mi)i∈N is a Doob martingale with bounded differences; apply Azuma–Hoeffding.

Theorem F.11 (PAC lower bound for label-permutation-equivariant learner). Fix ε ∈ (0, 12 ) and
δ ∈ (0, 12 ). There exists an integer p0 = p0(ε, δ) such that for all p ≥ p0, every label-permutation-
equivariant learner A that (with probability at least 1 − δ over the random draw of the training
samples S and any internal randomness) achieves population risk at most ε against the canonical
rule f must use

n ≥ (p− 1)
(
log

1

ε
− 1
)
= Ω(p).
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Equivalently, for every n ≤ (p− 1)
(
log 1

ε − 1
)

and every such learner,

P
[
L(f̂) ≤ ε

]
≤ exp

(
− (e− 1)2

2 log(1/ε)
ε2 p

)
+ exp(−c1 ε p) + exp

(
− c2 ε

2 p

log(1/ε)

)
, (2)

for absolute constants c1, c2 > 0. In particular, P
[
L(f̂) ≤ ε

]
≤ δ for all sufficiently large p.

Proof of Thm. F.11. By Lem. F.4, it suffices to analyze f̂Σ with Σ ∼ Unif(Sp) independent of S,
since L(f̂Σ) has the same distribution as L(A(S)). Fix S and let U be the unseen residue set,
|U | = K. Consider G(Σ) = L(f̂Σ) with X ∼ DX independent of (S,Σ). Changing Σ(ui) can
only swap at most two preimages, so it cannot affect the event f̂Σ(X) = f(X) unless f(X) equals
one of those two preimages, which has probability at most 2/p by Lem. F.5. Hence in Lem. F.10 we
may take ci = 2/p, so for all t ≥ 0,

PΣ

[
L(f̂Σ) ≤ EΣ[L | S]− t

∣∣∣ S] ≤ exp
(
− p2t2

2K

)
. (3)

Here and below, probabilities PΣ[· | S] are over the random restriction Σ|U (conditional on S), while
X ∼ DX is independent of (S,Σ).

By Lem. F.7, EΣ[L | S] ≥ (K − 1)/p. Set

t = max

{
K − 1

p
− ε, 0

}
.

Plugging this into equation 3 yields the conditional bound

PΣ

[
L(f̂Σ) ≤ ε | S

]
≤ 1{K ≤ εp+ 1} + exp

(
−
(
max {(K − 1)− εp, 0}

)2
2K

)
. (4)

Let µ = E[K] = p(1− 1
p )

n. By Lem. F.9, for n ≤ (p− 1)
(
log 1

ε − 1
)
,

µ ≥ p exp
(
− n

p− 1

)
≥ p exp

(
− log

1

ε
+ 1
)

= e εp.

By Lem. F.8 (McDiarmid over the n i.i.d. residues),

P
(
K ≤ εp+ 1

)
≤ exp

(
− 2(µ− εp− 1)2

n

)
. (5)

Since µ ≥ eεp, for all p ≥ 2
(e−1)ε we have µ− εp− 1 ≥ e−1

2 εp. Using also n ≤ p log(1/ε) gives
from equation 5

P
(
K ≤ εp+ 1

)
≤ exp

(
− (e− 1)2

2 log(1/ε)
ε2 p

)
.

Split on {K ≥ µ/2} vs. {K < µ/2}. By Lem. F.8 with t = µ/2,

P
[
K < µ/2

]
≤ exp

(
− µ2

2n

)
≤ exp

(
− c2 ε

2 p

log(1/ε)

)
(6)

for a universal c2 > 0, since µ ≥ eεp and n ≤ p log(1/ε). On {K ≥ µ/2} we have K ≥ e
2εp and

thus, for all sufficiently large p,(
(K − 1)− εp

)2
2K

≥
(
( e2 − 1)εp− 1

)2
e εp

≥ c1 ε p

for a universal c1 > 0. Hence

E

[
exp
(
−
(
max{(K − 1)− εp, 0}

)2
2K

)]
≤ exp(−c1 εp) + exp

(
− c2 ε

2 p

log(1/ε)

)
. (7)
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Taking expectations in equation 4 and since n ≤ p log(1/ε),

P
[
L(f̂Σ) ≤ ε

]
≤ exp

(
− ((e− 1)εp)2

2n

)
+ exp(−c1 εp) + exp

(
− c2 ε

2 p

log(1/ε)

)
≤ exp

(
− (e− 1)2

2 log(1/ε)
ε2 p

)
+ exp(−c1 εp) + exp

(
− c2 ε

2 p

log(1/ε)

)
.

Finally, by Lem. F.4, L(f̂Σ) has the same distribution as L(f̂), yielding equation 2. In particular,
for any δ ∈ (0, 12 ), choosing p ≥ p0(ε, δ) sufficiently large makes the right-hand side at most δ.

This shows that if P
[
L(f̂) ≤ ε

]
≥ 1− δ then necessarily n > (p− 1)(log(1/ε)− 1), proving the

sample-complexity lower bound n = Ω(p).

G PROOFS IN UNDERPARAMETERIZED DOMAIN

G.1 UPPER BOUND OF NATARAJAN-DIMENSION

Let X be an instance space, let p ∈ N with p ≥ 2, and let [p] = {1, . . . , p} be the label set. Fix a
domain U and a function class F . For a finite T ⊆ U , write F|T := { f|T : f ∈ F } for its restriction
and |F|T | for the number of distinct labelings on T realized by F .

Definition G.1 (Growth function). Let B ⊆ {−1,+1}Z be a binary hypothesis class on a domain
Z . For n ∈ N, the growth function of B is

ΠB(n) := max
{ ∣∣B|T ∣∣ : T ⊆ Z, |T | = n

}
.

Definition G.2 (Network class and pairwise reduction). LetHΘ ⊆ ([p]∪{⊥})X be a network class
realized by score vectors sθ(x) = (sθ1(x), . . . , s

θ
p(x)) ∈ Rp, θ ∈ Θ, x ∈ X . The predictor is defined

by strict maximization:

hθ(x) = uargmaxℓ∈[p]s
θ
ℓ (x) =

{
ℓ, if sθℓ (x) > sθk(x) for all k ̸= ℓ,

⊥, otherwise,

Define the pairwise reduction on the domain
Zpair := X × {(i, j) ∈ [p]× [p] : i < j}

by the binary reduction class GΘ ⊆ {−1,+1}Zpair forHΘ consisting of functions

gθ(x, i, j) = sgn
(
sθi (x)− sθj (x)

)
=

{
+1, if sθi (x) ≥ sθj (x),
−1, if sθi (x) < sθj (x).

Definition G.3 (Number of realized multiclass labelings). For S = {x(1), . . . , x(n)} ⊂ X and
hypothesis classH ⊆ [p]X , define

ΛH(S) :=
∣∣H|S

∣∣ =
∣∣∣{ (h(x(1)), . . . , h(x(n))) ∈ [p]n : h ∈ H

}∣∣∣ .
The lemma below connects the Natarajan-dimension to the growth function of the reduction class,
which is a key tool in this section.
Lemma G.4 (Natarajan shattering and labelings). If a finite set S = {x(1), . . . , x(n)} ⊂ X is
Natarajan-shattered by a hypothesisH ⊂ [p]X , then ΛH(S) ≥ 2n.

Proof of Lem. G.4. By Def. 5.2, there exist f1, f2 ∈ [p]S with f1(x) ̸= f2(x) for all x ∈ S such
that for every selector b : S → {1, 2} there is hb ∈ H with hb(x) = fb(x)(x) for all x ∈ S. Define
Φ : {1, 2}S → H|S by Φ(b) = hb|S .

If b ̸= b′, pick x0 ∈ S with b(x0) ̸= b′(x0). Then
Φ(b)(x0) = hb(x0) = fb(x0)(x0) ̸= fb′(x0)(x0) = hb′(x0) = Φ(b′)(x0),

so Φ(b) ̸= Φ(b′). Thus Φ is injective and

ΛH(S) = |H|S | ≥ |Φ({1, 2}
S)| = |{1, 2}S | = 2|S| = 2n.
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Lemma G.5 (Labelings and pairwise reduction). Fix S = {x(1), . . . , x(n)} ⊂ X and a hypothesis
classHΘ ⊆ [p]X . Then

ΛHΘ
(S) ≤ ΠGΘ

(
n p(p− 1)/2

)
.

Proof of Lem. G.5. Set

T := S × {(i, j) ∈ [p]× [p] : i < j} ⊂ Zpair.

For each h ∈ (HΘ)|S define the fiber

W (h) := {θ ∈ Θ : hθ |S = h}, and A(h) := { gθ |T : θ ∈W (h) } ⊆ (GΘ)|T .

Now we will show that if h ̸= h′, then A(h) ∩A(h′) = ∅.
Pick x ∈ S with h(x) = i and h′(x) = j ̸= i. Without loss of generality, assume i < j. For any
θ ∈W (h), the predictor yields a valid output i, which implies strict maximality: sθi (x) > sθk(x) for
all k ̸= i. In particular, sθi (x) > sθj (x), hence gθ(x, i, j) = +1.

Conversely, for any θ′ ∈ W (h′), the predictor yields j, which implies sθ
′

j (x) > sθ
′

i (x). Therefore,
sθ

′

i (x) < sθ
′

j (x), hence gθ′(x, i, j) = −1.

Thus every element of A(h) has +1 and every element of A(h′) has −1 at the coordinate (x, i, j) ∈
T , so A(h) ∩A(h′) = ∅.
Since |(HΘ)|S | ≤ pn < ∞ and each A(h) ̸= ∅, fix an arbitrary choice function Ψ selecting one
element of A(h) for each h ∈ (HΘ)|S . Then the map

Ψ : (HΘ)|S −→ (GΘ)|T , h 7−→ Ψ(h)

is well-defined and injective. Therefore,

ΛHΘ
(S) = |(HΘ)|S | ≤ |(GΘ)|T | ≤ ΠGΘ

(|T |) = ΠGΘ

(
n
(
p
2

))
= ΠGΘ

(
n p(p− 1)/2

)
.

Together with Lems. G.4 and G.5, we have Lem. G.6:

Lemma G.6 (Natarajan shattering and the growth function). If S = {x(1), . . . , x(n)} ⊂ X is
Natarajan-shattered by a p-class network classHΘ, then

2n ≤ ΠGΘ

(
n p(p− 1)/2

)
,

where GΘ is the reduction class ofHΘ.

Definition G.7 (k-combination of sgn(F)). Let Z be any domain and let F ⊆ RRD×Z be a class
of real-valued functions of the form (a, z) 7→ f(a, z), with a ∈ RD and z ∈ Z . A binary classH ⊆
{−1,+1}Z is a k-combination of sgn(F) if there exist a Boolean map g : {−1,+1}k → {−1,+1}
and functions f1, . . . , fk ∈ F such that for every h ∈ H there is a ∈ RD with

h(z) = g
(
sgn(f1(a, z)), . . . , sgn(fk(a, z))

)
for all z ∈ Z.

We say f ∈ F is CD in its parameters if, for every fixed z, the map a 7→ f(a, z) is CD.
Definition G.8 (Regular zero-set intersections; Def. 7.3 (Anthony & Bartlett, 2009)). For differen-
tiable f1, . . . , fk : RD → R, the family {f1, . . . , fk} has regular zero-set intersections if for every
nonempty I ⊆ {1, . . . , k}, the Jacobian of (fi)i∈I has full row rank |I| at every a with fi(a) = 0
for all i ∈ I .
Definition G.9 (Solution set components bound; Def. 7.5 (Anthony & Bartlett, 2009)). Let G be
a set of real-valued functions on RD. We say G has solution set components bound B if for any
1 ≤ k ≤ D and any {f1, . . . , fk} ⊆ G that has regular zero-set intersections,

CC

(
k⋂

i=1

{ a ∈ RD : fi(a) = 0 }

)
≤ B,

where CC(·) is the number of connected components.
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Theorem G.10 (General Growth function upper bound; Thm. 7.6 (Anthony & Bartlett, 2009)). Let
F ⊆ RRD×Z be closed under addition of constants, assume every f ∈ F is CD in a, and let

G :=
{
a 7→ f(a, z) : f ∈ F , z ∈ Z

}
.

If G has a solution set components bound B and H ⊆ {−1,+1}Z is a k-combination of sgn(F),
then for all N ≥ D/k,

ΠH(N) ≤ B

D∑
i=0

(
Nk

i

)
≤ B

(
eNk
D

)D
.

Theorem G.11 (General Growth function upper bound; Thm. 8.3 (Anthony & Bartlett, 2009)). Let
F ⊆ RRD×Z be a class of functions mapping from RD×Z to R such that, for all z ∈ Z and f ∈ F ,
the map a 7→ f(a, z) is a polynomial on RD of degree at most r. Suppose thatH is a k-combination
of sgn(F). Then, if N ≥ D/k,

ΠH(N) ≤ 2

(
2eNkr

D

)D

.

Remark G.12. If N < D/k, we have a trivial bound ΠH(N) ≤ 2N < 2D/k ≤ 2D, so for all
N ∈ N, ΠH(N) ≤ max

{
2D, 2

(
2eNkr

D

)D}
.

Lemma G.13 (Absorbing log n; Lem. A.2 (Shalev-Shwartz & Ben-David, 2014)). Let A ≥ 1,
B ≥ 0, and u > 0. If u < A log u+B, then

u < 4A log
(
2A
)
+ 2B.

Lemma G.14 (Trigonometric Sum Polynomialization). Let p ≥ 1 and m ≥ 0 be integers. For any
vector of non-negative integers x = (x1, . . . , xp) such that

∑p
v=1 xv = m, there exist polynomials

Sx, Cx ∈ Z[c1, s1, . . . , cp, sp]

of total degree at most m that satisfy

Sx(c1, s1, . . . , cp, sp) = sin
( p∑

v=1

xvαv

)
and Cx(c1, s1, . . . , cp, sp) = cos

( p∑
v=1

xvαv

)
for all real angles α1, . . . , αp, where cv := cos(αv) and sv := sin(αv).

Proof of Lem. G.14. We prove the lemma by induction on m =
∑p

v=1 xv . The uniqueness of the
polynomials is guaranteed by the deterministic recursive construction.

Base Case (m = 0):
If m = 0, then x = 0 is the only possible vector. The sum of angles is

∑
xvαv = 0. The defined

polynomials are S0 = 0 and C0 = 1. These are integer-coefficient polynomials of degree 0. They
correctly evaluate to sin(0) = 0 and cos(0) = 1.

Inductive Step:
Assume the claim holds for all vectors y with component sum m − 1. Let x be a vector with
component sum m. Let u = min{v | xv > 0} and define y = x − eu. The components of y sum
to m− 1. By the induction hypothesis, there exist polynomials Sy and Cy with integer coefficients
and degree at most m− 1 that represent sin(

∑
yvαv) and cos(

∑
yvαv).

We define Sx and Cx as per the recursion:

Sx := suCy + cuSy Cx := cuCy − suSy

1. Coefficients and Degree: Since Sy and Cy have integer coefficients, and su, cu are vari-
ables, Sx and Cx are also polynomials with integer coefficients. Their total degrees are
bounded by:

deg(Sx) ≤ 1 + max(deg(Cy),deg(Sy)) ≤ 1 + (m− 1) = m

The same bound holds for deg(Cx).
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2. Trigonometric Identity: By the angle-addition identities and the induction hypothesis:

Sx = sin(αu) cos
( p∑

v=1

yvαv

)
+ cos(αu) sin

( p∑
v=1

yvαv

)
= sin

(
αu +

p∑
v=1

yvαv

)
= sin

( p∑
v=1

xvαv

)
Similarly,

Cx = cos(αu) cos
( p∑

v=1

yvαv

)
− sin(αu) sin

( p∑
v=1

yvαv

)
= cos

(
αu +

p∑
v=1

yvαv

)
= cos

( p∑
v=1

xvαv

)
This completes the induction.

G.1.1 PIECEWISE-POLYNOMIAL ACTIVATIONS

Theorem G.15 (Two-layer piecewise-polynomial activations). Let σ be as in Def. 5.3. For the
two-layer MLP defined in the model setup,

Ndim(HΘ) ≤ 2dp (6 log(6dp) + log(2eL) + 2 log(epr)) = Õ(dp)

Proof of Thm. G.15. Let S = {x(1), . . . , x(n)} ⊂ Xm be Natarajan-shattered. By Lem. G.6, this
implies 2n ≤ ΠGΘ

(
n
(
p
2

))
. The parameter space W ∈ Rdp is partitioned into regions by the zero sets

of {wix
(j) − bℓ} for j ∈ [n], i ∈ [d], ℓ ∈ [L− 1]. The number of regions, RS , is the number of sign

patterns on a sample of size m = nd(L− 1) by affine functions of W .

Notice that
{
w 7→ sgn (wx− bℓ) : w ∈ R1×p, x ∈ S, ℓ ∈ [L− 1]

}
⊂ {−1,+1}Xm is a 1-

combination of sgn
({
w 7→ (wx− bℓ) : w ∈ R1×p, x ∈ S, ℓ ∈ [L− 1]

}
⊂ RXm

)
.

By Thm. G.11, RS ≤ max

{
2dp, 2

(
2e·nd(L−1)

dp

)dp}
. Within each region, sθi (x) − sθj (x) is a

polynomial in θ ∈ R2dp of degree at most r + 1. Let N = n
(
p
2

)
, D = 2dp. The growth function is

bounded by the product of the number of regions and the maximum growth function within a region.
Applying Thm. G.11 in each region:

ΠGΘ
(N) ≤ RS ·max

R
ΠR(N) ≤ max

{
2dp, 2

(
2e · nd(L− 1)

dp

)dp
}
max

{
22dp, 2

(
eN(r + 1)

dp

)2dp
}

Substituting N = np(p−1)
2 into the inequality 2n ≤ ΠGΘ(N) gives 2n ≤ (2enL)

dp
(enpr)

2dp
.

Taking the logarithm of both sides yields

n ≤ 3dp log(n)/ log(2) + dp(log(2eL) + 2 log(epr))/ log(2).

Lem. G.13 implies that

n ≤ 2dp (6 log(6dp) + log(2eL) + 2 log(epr)) / log(2) = Õ(dp).
Take supreum over S yields the result.

G.1.2 TRIGONOMETRIC-POLYNOMIAL ACTIVATIONS

Theorem G.16 (Two-layer trigonometric-polynomial activations). Let σ be as in Def. 5.4. For the
two-layer MLP from the model setup,

Ndim(HΘ) ≤ 2dp
(
6 log(6dp) + 2 log

(
ep(Km+ 1)

))
= Õ(dp).

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Proof of Thm. G.16. Let S = {x(1), . . . , x(n)} ⊂ Xm be Natarajan-shattered. By Lem. G.6, this
implies 2n ≤ ΠGΘ

(
n
(
p
2

))
.

For j ∈ [d], v ∈ [p] set cj,v := cos(wj,v) and sj,v := sin(wj,v), and regard

a :=
(
V, (cj,v)j,v, (sj,v)j,v

)
∈ R3dp

as the (relaxed) parameter vector; ignoring the constraints c2j,v + s2j,v = 1 can only increase the
growth function. For any (i, y ̸= y′),

sθy(x
(i))− sθy′(x(i)) =

d∑
j=1

(Vyj − Vy′j)σ(⟨wj , x
(i)⟩).

Writing σ as in Def. 5.4 and applying Lem. G.14 to kx(i) shows that each term cos(k⟨wj , x
(i)⟩) and

sin(k⟨wj , x
(i)⟩) is a polynomial in

(
(cj,v)v, (sj,v)v

)
of degree at most km ≤ Km. Hence every

pairwise margin is a polynomial in a of degree at most Km+ 1.

The reduction class GΘ is a 1-combination of sgn(F) with F being a family of polynomials of
degree at most Km + 1 in D = 3dp parameters. Applying Thm. G.11 with N = n

(
p
2

)
, k = 1,

r = Km+ 1,

ΠGΘ
(N) ≤ max

{
2D, 2

(2eNr
D

)D}
≤ 2 (pKnm)

3dp
.

Combine with 2n ≤ ΠGΘ
(N), take logs: n log(2) ≤ log(2) + 3dp log(pKm) + 3dp log(n). Use

Lem. G.13 to absorb the log n term, yielding

n ≤ 12dp log(6dp)/ log(2) + 2 (log(2) + 3dp log(pKm)) / log(2) = Õ (dp)

Taking the supremum over shattered S gives the claim.

G.1.3 RATIONAL-EXPONENTIAL ACTIVATIONS

Theorem G.17 (Two-layer polynomial–rational–exponential activations). Let σ be as in Def. 5.5.
For the two-layer MLP from the model setup,

Ndim(HΘ) ≤ 2dp
(
6 log(6dp) + 2 log

(
ep(dm+ r + 1)

))
= Õ(dp).

Proof of Thm. G.17. Let S = {x(1), . . . , x(n)} ⊂ Xm be Natarajan-shattered and set N := n
(
p
2

)
.

For each example i and hidden unit j, put zj,i := ek⟨wj ,x
(i)⟩ > 0. Since c ≥ 0 and τ > 0, the

product

Di(W ) :=

d∏
j=1

(
czj,i + τ

)
> 0.

Multiplying any pairwise margin Gi,y,y′ := sθy(x
(i)) − sθy′(x(i)) by Di(W ) preserves its sign and

yields

Ĝi,y,y′(W,V ) = Di(W )Gi,y,y′(W,V ) =

d∑
j=1

(Vyj − Vy′j)P (⟨wj , x
(i)⟩)(azj,i + b)

∏
ℓ ̸=j

(czℓ,i + τ).

Introduce relaxed variables uj,v := ekwj,v ∈ (0,∞). Then

zj,i = ek⟨wj ,x
(i)⟩ =

p∏
v=1

u
x(i)
v

j,v ,

a monomial of total degree m in Uj := (uj,1, . . . , uj,p). Consequently, each summand in Ĝi,y,y′ is
a product of: (i) a linear term in V ; (ii) the degree-r polynomial P (⟨wj , x

(i)⟩) in Wj ; (iii) a factor
(azj,i+b)

∏
ℓ ̸=j(czℓ,i+τ) of total degree dm in the U -variables. Thus every Ĝi,y,y′ is a polynomial

in
a :=

(
V, (uj,v)j,v, (wj,v)j,v

)
∈ R3dp
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of degree at most ρ := dm + r + 1. Treating a as the parameter vector, the reduction class GΘ is
a 1-combination of sgn(F) with F being a family of polynomials of degree at most ρ in D = 3dp
parameters. Applying Thm. G.11 with k = 1, D = 3dp, N = n

(
p
2

)
,

ΠGΘ(N) ≤ max
{
2D, 2

(2eNρ
D

)D}
≤ (np(dm+ r + 1))

3dp
.

Combine with Lem. G.6 and absorb the log n term via Lem. G.13 to obtain

n ≤ 12dp log(6dp/ log(2))/ log(2) + 6dp log(p(dm+ r + 1))/ log(2) = Õ(dp)
Taking the supremum over shattered S gives the claim.

G.1.4 UNIFORM CONVERGENCE GUARANTEES

Let Hσ ⊆ [p]X be a multiclass hypothesis class with Natarajan-dimension Ndim(Hσ) < ∞. Let
h ∈ H, denote by P(x,y)∈D [h(x) ̸= y] the population 0–1 risk and by P(x,y)∈Dtrain [h(x) ̸= y] the
empirical 0–1 risk computed from an i.i.d. sample of size n.
Theorem G.18 (The Multiclass Fundamental Theorem, Thm. 29.3 of (Shalev-Shwartz & Ben–
David, 2014), Uniform convergence). There exists a universal constant C > 0 such that, for every
δ ∈ (0, 1), with probability at least 1− δ,

sup
h∈Hσ

∣∣P(x,y)∈D [h(x) ̸= y]− P(x,y)∈Dtrain [h(x) ̸= y]
∣∣ ≤ C

√
Ndim(Hσ) log p+ log(1/δ)

n
.

Proof of Thm. 5.6. By Thm. G.15, G.16, G.17,Ndim(Hσ) = Õ(dp). Substituting this into the
multiclass uniform convergence bound (Thm. G.18) yields

sup
h∈Hσ

∣∣∣P(x,y)∼D
[
h(x) ̸= y

]
−P(x,y)∼Dtrain

[
h(x) ̸= y

]∣∣∣ ≤ C

√
Ndim(Hσ) log p+ log(1/δ)

n
= Õ

(√
dp+ log(1/δ)

n

)
,

where the log p factor is absorbed into Õ(·).

G.2 LOWER BOUND OF NATARAJAN-DIMENSION

Let Θ denote the backbone parameter space determined by the architecture. The multiclass hypoth-
esis class is

H =
{
hθ,V : θ ∈ Θ, V ∈ Rp×d

}
.

Definition G.19 (Associated binary class). We consider the binary (realizable) subclass of halfs-
paces in the representation:

M =
{
x 7→ 1

{
⟨v, fθ(x)⟩ ≥ 0

}
: (θ, v) ∈ Θ× Rd

}
⊆ {0, 1}X .

Lemma G.20 (VC-dimension is bounded by the Natarajan-dimension). For the multiclass hypoth-
esis classH with p ≥ 2,

VCdim
(
M
)
≤ Ndim(H).

Proof. Let S ⊆ X be a finite set that is VC-shattered byM.

Fix f1, f2 ∈ [p]S by f1(x) ≡ 1 and f2(x) ≡ 2 for all x ∈ S (possible since p ≥ 2). Let b : S →
{1, 2} be an arbitrary selector. Define the induced binary labeling

yb(x) = 1{b(x) = 1} ∈ {0, 1} (x ∈ S).
Since S is VC-shattered byM, there exist θb ∈ Θ and vb ∈ Rd such that

yb(x) = 1
{
⟨vb, fθb(x)⟩ ≥ 0

}
for all x ∈ S.

Construct Vb ∈ Rp×d such that the first row is vb, and all remaining rows are 0. Then, for each
x ∈ S,

hθb,Vb
(x) =

{
1, if yb(x) = 1 (b(x) = 1),

2, if yb(x) = 0 (b(x) = 2),
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i.e., hθb,Vb
(x) = fb(x)(x) for all x ∈ S. Since b was arbitrary, S is Natarajan-shattered by H

with witnesses (f1, f2). Therefore |S| ≤ Ndim(H). Taking the supremum over all such S gives
VCdim(M) ≤ Ndim(H).

H CAPACITY BOUNDS IN TAB. 1

Notation and scope. All entries are for two-layer MLPs (one hidden layer) with W trainable pa-
rameters and width d. Throughout, Θ̃(·) hides polylogarithmic factors in W , d, and the bound M
on the input.

H.1 TWO-LAYER MLP SETUP IN TAB. 1

Model. For width d, input dimension n, output dimension K ≥ 1, and elementwise activation σ.
The score map is

sθ(x) = V2 σ(V1x) ∈ RK , V1 ∈ Rd×n, V2 ∈ RK×d

Total parameters
W = Kd+ dn

and the table reports bounds as functions of W .

Input regimes. All constraints apply to the vector entering the first linear layer.

1. Real-valued: X = Rn.

2. Integer-valued, bounded by M : X = {x ∈ Zn : ∥x∥∞ ≤M}.
3. Integer-valued, unbounded: X = Zn.

Representation, scores, and hypothesis classes. Let Θ = {(V1, V2) : V1 ∈ Rd×n, V2 ∈ RK×d}.
We write the learned representation and scores as

fθ(x) = σ(V1x) ∈ Rd, sθ(x) = V2 fθ(x) ∈ RK .

For K ≥ 2 (multiclass), the hypothesis class is

H =
{
hθ : X → [K] ∪ {⊥}, hθ(x) = ψuargmax

(
sθ(x)

) ∣∣∣ θ ∈ Θ
}
,

where ψuargmax(u) returns the index of the unique maximum of the vector u, or ⊥ (invalid) if the
maximum is not unique.

Definition H.1 (Associated binary class restated; Def. G.19). We consider the binary (realizable)
subclass of halfspaces in the representation:

M =
{
x 7→ 1

{
⟨v, fθ(x)⟩ ≥ 0

}
: (θ, v) ∈ Θ× Rd

}
⊆ {0, 1}X .

Bound on integer inputs. In the bounded–integer regime we fix M ∈ N and take

X = {x ∈ Zn : ∥x∥∞ ≤M}.

Throughout, Θ̃(·) and Õ(·) hide polylogarithmic factors in W , d, and (when applicable) M .

Output Type and Complexity Measure. Predictions are obtained from scores via a fixed decoder:

1. VC-dimension (binary subclass): take K = 1 and ψsign(z) = sgn(z) (assigning
sgn(0) = 1); VCdim is measured on {ψsign◦ sθ}.

2. Natarajan dimension (multiclass): take any K ≥ 2 and ψuargmax (strict uniqueness) as
defined above; Ndim is measured on {ψuargmax◦ sθ}.
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Scope of the table. Tab. 1 concerns the general class above, only the total parameter count W and
the width d matter for the rates.

H.2 SOURCES FOR THE VC-DIMENSION BOUNDS

Piecewise linear, real-valued (VCdim = Θ(W logW )). The nearly-tight bounds for piecewise-
linear networks are summarized by (Bartlett et al., 2017b, Eq. (2)); for fixed depth L = 2 this
specializes to Θ(W logW ).

Piecewise-polynomial, real-valued (VCdim = Θ(W logW )). (Anthony & Bartlett, 2009,
Thm. 8.8) prove an upper bound ofO(WL logW +WL2) for networks with piecewise-polynomial
activations of bounded degree and a bounded number of pieces; in the depth-2 case this simplifies
to O(W logW ). A matching lower bound of Ω(W logW ) for two-layer linear-threshold networks
(a special case with degree 0) appears in (Anthony & Bartlett, 2009, Thm. 6.4). Using a refined bit-
extraction technique, (Bartlett et al., 2017b, Thm. 3) further gives an explicit construction achieving
Ω(WL log(W/L)) for ReLU networks, which in particular gives Ω(W logW ) for depth-2 net-
works.

Pfaffian activations (incl. standard sigmoid), real-valued (VCdim = O(d2W 2)). A general
upper bound O

(
W 2k2

)
for standard sigmoid networks is given in (Anthony & Bartlett, 2009,

Thm. 8.13), where k is the number of computation units; in a two-layer networks, k = d. The
Pfaffian extension follows from Khovanskii’s Fewnomials: the theorem underlying Lemma 8.15
(see also (Anthony & Bartlett, 2009, §8.6)) bounds the number of connected components (Betti
numbers) of semi-Pfaffian sets defined by functions from a fixed Pfaffian chain. Plugging this com-
ponent bound into the standard growth function argument used for the exponential case yields the
same O(d2W 2) VC-dimension bound for networks whose activations lie in a fixed Pfaffian chain
(with order/degree independent of the data).

Standard sigmoid, real-valued (VCdim = Ω(W logW )). The reduction from linear-threshold
to smooth sigmoids (Anthony & Bartlett, 2009, Thm. 6.5) implies that the two-layer linear-threshold
lower bound (Anthony & Bartlett, 2009, Thm. 6.4) carries over to standard sigmoid networks on the
same finite set of inputs. This yields Ω(W )lower bound, and Ω(W logW ) under the construction
of “bit extraction”(Bartlett et al., 2017b, Rmk. 4).

Standard sigmoid, integer-valued bounded inputs (VCdim = Θ̃(W )). For two-layer standard
sigmoid networks with integer-valued inputs and first-layer fan-in ≤ N , (Anthony & Bartlett, 2009,
Thm. 8.11) gives VCdim ≤ 2W log2(60ND) = Õ(W ). The paragraph following the theorem
constructs a two-layer linear-threshold network with VCdim = Ω(W ); (Anthony & Bartlett, 2009,
Thm. 6.5) transfers this lower bound to sigmoids. Hence the bound is Θ̃(W ).

Sine, integer-valued unbounded inputs (VCdim =∞). (Anthony & Bartlett, 2009, Lemma 7.2)
shows that {x 7→ sgn(sin(ax))} has infinite VC-dimension. Thus, restricting to two labels, the
corresponding multiclass Natarajan-dimension is also infinite.

H.3 NATARAJAN-DIMENSION LOWER BOUNDS

We now transfer known VC-dimension lower bounds for the binary subclass to the multiclass setting
via Lem. G.20.

Theorem H.2 (Natarajan-dimension lower bounds for two-layer MLPs). Consider the two-layer
MLP family in App. H.1, with width d, total parameter count W = Kd + dn, and K ≥ 2 classes
decoded by ψargmax. Let H denote the resulting multiclass hypothesis class and let M be the
associated binary subclass of halfspaces in the learned representation (Def. G.19). Then

Ndim(H) ≥ VCdim(M),

and, in particular, for the activation/input regimes appearing in Tab. 1 for which VC-dimension
lower bounds are known, the following existential lower bounds hold:
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1. Piecewise linear, real-valued inputs: Ndim(H) ≥ Ω
(
W logW

)
.

2. Piecewise polynomial, real-valued inputs: Ndim(H) ≥ Ω
(
W logW

)
.

3. Standard sigmoid, real-valued inputs: Ndim(H) ≥ Ω
(
W logW

)
.

4. Standard sigmoid, integer-valued bounded inputs: Ndim(H) ≥ Ω(W ).

5. Sine, integer-valued unbounded inputs: Ndim(H) =∞.

All bounds are stated for the two-layer architecture in App. H.1.

Proof. By Lem. G.20, VCdim(M) ≤ Ndim(H), whereM is the binary subclass.

It remains to instantiate VCdim(M) in each regime. By construction (Def. G.20 and App. H.1),M
is exactly the binary two-layer network class used in the VC-dimension entries of Tab. 1. Therefore,
from Sec. H.2:

1. For piecewise-linear and piecewise-polynomial activations with real-valued inputs,
VCdim(M) ≥ Ω(W logW ), yielding the first two claims.

2. For standard sigmoids with real-valued inputs, VCdim(M) ≥ Ω(W logW ), yielding the
third claim.

3. For standard sigmoids with bounded integer inputs, VCdim(M) ≥ Ω(W ), yielding the
fourth claim.

4. For sine activations with unbounded integer inputs, the binary subclass has infinite VC-
dimension, hence Ndim(H) =∞.

These bounds are existential: for each (W,d) there exist network parameters achieving the stated
shattering.

H.4 NATARAJAN-DIMENSION UPPER BOUNDS

We restate the Natarajan-dimension upper bounds for the two-layer MLP in App. H.1. Throughout,
the score map is sθ(x) = V2 σ(V1x) ∈ RK with width d, output size K ≥ 2. The proofs are
essentially the same as in Thms. G.15, G.17, and G.16, with only the notational substitution of the
updated score map and parameter count.
Theorem H.3 (Piecewise-polynomial activations, real-valued inputs). Assume the model of
App. H.1 with scores sθ(x) = V2 σ(V1x) ∈ RK , prediction by ψuargmax, and total parameters
W = dn+Kd. Let σ be piecewise-polynomial on R with at most L pieces and maximal piece de-
gree r, where L, r are absolute constants (do not grow with n, d,K). For the input domain X = Rn,
the multiclass hypothesis classH = {ψuargmax◦ sθ} satisfies

Ndim(H) ≤ Õ(W ),

where Õ(·) hides polylogarithmic factors in W , d (and in the structural constants L, r).
Theorem H.4 (Polynomial–rational–exponential activations (incl. logistic sigmoid), bounded inte-
ger-valued inputs). Assume the model of App. H.1 with scores sθ(x) = V2 σ(V1x) ∈ RK , prediction
by ψuargmax, and total parameters W = dn+Kd. Let σ be of the form in Def. 5.5, i.e.,

σ(t) = P (t)
aekt + b

cekt + τ
,

with fixed scalars k ∈ R \ {0}, c ≥ 0, τ > 0, a, b ∈ R, and degP ≤ r, where r is an absolute
constant (do not grow with n, d,K,M ). For the input domain X = {x ∈ Zn : ∥x∥∞ ≤ M} with
M ∈ N, the multiclass hypothesis classH = {ψuargmax◦ sθ} satisfies

Ndim(H) ≤ Õ(W ),

where Õ(·) hides polylogarithmic factors in W , d, M (and in the structural constant r).
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Theorem H.5 (Trigonometric-polynomial activations, bounded integer-valued inputs). Assume the
model of App. H.1 with scores sθ(x) = V2 σ(V1x) ∈ RK , prediction by ψuargmax, and total pa-
rameters W = dn +Kd. Let σ be a trigonometric polynomial of degree at most T , where T is an
absolute constant. For the input domain X = {x ∈ Zn : ∥x∥∞ ≤ M} with M ∈ N, the multiclass
hypothesis classH = {ψuargmax◦ sθ} satisfies

Ndim(H) ≤ Õ(W ),

where Õ(·) hides polylogarithmic factors in W , d, M (and in the structural constant T ).

Immediate by combining Thms. H.3, H.4, and H.5, we have

Theorem H.6 (Õ(W ) Natarajan dimension upper bound for two-layer MLPs). Consider the model
of App. H.1 with scores sθ(x) = V2 σ(V1x) ∈ RK , where V1 ∈ Rd×n, V2 ∈ RK×d, and total
parameters W = dn + Kd. Prediction is by ψuargmax. Assume throughout that all structural
constants below are absolute (do not grow with n, d,K,M ):

1. σ is piecewise-polynomial with at most L pieces and maximal piece degree r on R, and
X = Rn;

2. σ is polynomial–rational–exponential whose polynomial factor P (t) has degree at most s,
and X = {x ∈ Zn : ∥x∥∞ ≤M};

3. σ is a trigonometric-polynomial of degree at most T , and X = {x ∈ Zn : ∥x∥∞ ≤M}.

Then the multiclass hypothesis classH = {ψuargmax◦ sθ} satisfies

Ndim(H) ≤ Õ(W ),

where Õ(·) hides polylogarithmic factors in W , d, and, when applicable, M (as well as in the
structural constants L, r, T, s).

I HIGH-MARGIN INTERPOLATING SOLUTIONS

In this section, we present high-margin interpolating solutions for two-layer MLPs with sine and
ReLU activations for a fixed length.

I.1 SINE ACTIVATION σ(z) = sin z

Theorem I.1 (High margin, d = 2p). There exists a construction with hidden dimension d = 2p
and sine activation computes

∑m
i=1 si mod p for all x = (s1, · · · , sm) ∈ Xm, achieving margin

γ = p and ∥V ∥2 =
√
p, ∥W∥F ≤ π

√
2p.

Proof. Index hidden units by h ∈ {1, . . . , 2p} and group them as (2k − 1, 2k) for frequencies
k ∈ {1, . . . , p}. Let ϕk = 2πk

p .

First-Layer Weights W ∈ R2p×p. For each k ∈ {1, . . . , p} and r ∈ [p],

W2k−1,r =
(
ϕkr
)
mod 2π ∈ [−π, π), W2k,r =

(
ϕkr +

π
2m

)
mod 2π ∈ [−π, π).

Then
(Wx)2k−1 = ϕkS, (Wx)2k = ϕkS + π

2 ,

and
σ
(
(Wx)2k−1

)
= sin(ϕkS), σ

(
(Wx)2k

)
= cos(ϕkS).

The first layer satisfies ∥W∥∞ ≤ π, hence ∥W∥F ≤ π
√
(2p)p = π

√
2 p.

Second-Layer Weights V ∈ Rp×2p. For each q ∈ [p] and k ∈ {1, . . . , p},

Vq, 2k−1 = sin(ϕkq), Vq, 2k = cos(ϕkq).
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Verification For the q-th output,

sθq(x) =

p∑
k=1

[
sin(ϕkq) sin(ϕkS) + cos(ϕkq) cos(ϕkS)

]
=

p∑
k=1

cos
(
ϕk(S − q)

)
= ℜ

(
p∑

k=1

e i 2πk
p (S−q)

)

=

{
p, S ≡ q (mod p),

0, otherwise.

Hence hθ(x) = S mod p with margin γ = p. The construction achieves 100% accuracy with width
d = 2p and satisfies ∥W∥∞ ≤ π, ∥V ∥∞ ≤ 1.

Lemma I.2 (Singular values of V ). In the high-margin construction, all singular values of V are
exactly

√
p, so ∥V ∥2 =

√
p.

Proof. Compute V V ⊤ entrywise. For q, r ∈ [p],

(V V ⊤)qr =

p∑
k=1

(
sin(ϕkq) sin(ϕkr) + cos(ϕkq) cos(ϕkr)

)
=

p∑
k=1

cos
(
ϕk(q − r)

)
(using cos(a− b) = cos a cos b+ sin a sin b)

= ℜ

(
p∑

k=1

e i 2πk
p (q−r)

)

=

{
0, if q − r ̸≡ 0 mod p

p, if q − r ≡ 0 mod p

Therefore all eigenvalues of V V ⊤ are exactly p, so all singular values of V are exactly
√
p. In

particular, the spectral norm is ∥V ∥2 =
√
p.

I.2 RELU ACTIVATION σ(z) = ReLU(z)

For a multi-index a = (a1, . . . , as) ∈ Zs
≥0, denote |a| :=

∑s
i=1 ai.

Lemma I.3 (Polynomial sign polarization). For s ≥ 1,

x1x2 · · ·xs =
1

s! 2s

∑
ε∈{±1}s

( s∏
i=1

εi

)( s∑
i=1

εixi

)s
.

Proof. Multinomial expansion gives( s∑
i=1

εixi

)s
=
∑
|k|=s

s!

k1! · · · ks!

s∏
i=1

(εixi)
ki .

Multiplying by
∏s

j=1 εj and summing over ε gives

∑
ε∈{±1}s

( s∏
j=1

εj

)( s∑
i=1

εixi

)s
=
∑
|k|=s

s!

k1! · · · ks!
xk1
1 · · ·xks

s

∑
ε∈{±1}s

s∏
i=1

ε ki+1
i .

Observe that∑
ε∈{±1}s

s∏
i=1

ε ki+1
i =

s∏
i=1

(
(+1)ki+1 + (−1)ki+1

)
=

{
2s, if each ki + 1 is even,
0, otherwise.
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Because |k| = s and each ki ≥ 1 must be odd so that
∑

ε∈{±1}s

∏s
i=1 ε

ki+1
i ̸= 0, the only

possibility is k = (1, . . . , 1).

Therefore, ∑
ε∈{±1}s

( s∏
i=1

εi

)( s∑
i=1

εixi

)s
= s!2sx1x2 · · ·xs.

Dividing by s! 2s yields the stated identity.

Lemma I.4 (Uniform ReLU–spline approximation of power functions). Let s ≥ 1, and ε > 0.
Partition [−1, 1] uniformly with knots zk = −1 + 2k

N , k = 0, 1, . . . , N . Let g be the linear spline
that interpolates fs(z) = zs at these knots. Then

∥fs − g∥L∞([−1,1]) ≤
s(s− 1)

2N2
.

Moreover, g admits an exact one-hidden-layer ReLU representation on [−1, 1] of the form

Φs(z) =

M∑
i=1

ci ReLU(aiz − bi),

with at most M ≤ N + 1 units and

|ai| ≤ 1, |bi| ≤ 1, |ci| ≤ max

{
s+ 1

2 ,
2 s(s− 1)

N

}
.

Choosing

N ≥ max

{
1,

⌈√
s(s− 1)

2ε

⌉}
ensures ∥fs − g∥L∞([−1,1]) ≤ ε. Thus, the number of required ReLU units to achieve accuracy ε is

M = O
(

s√
ε

)
.

Proof. The case s = 1 is trivial since f1(z) = z is linear and equals its linear spline interpolant.

For s ≥ 2, fs ∈ C2([−1, 1]) with f ′′s (z) = s(s − 1)z s−2 and ∥f ′′s ∥L∞([−1,1]) = s(s − 1). Fix
z ∈ [zk, zk+1] and define

φ(t) = fs(t)− g(t)−
fs(z)− g(z)

(z − zk)(z − zk+1)
(t− zk)(t− zk+1).

Then φ(zk) = φ(zk+1) = φ(z) = 0 and, by Rolle’s theorem, there exists ξz ∈ (zk, zk+1) such that

|fs(z)− g(z)| =
∣∣∣∣f ′′s (ξz)2

(z − zk)(zk+1 − z)
∣∣∣∣ .

Hence, with h = 2
N ,

max
z∈[zk,zk+1]

|fs(z)− g(z)| ≤ 1
2 ∥f

′′
s ∥L∞

h2

4
=
s(s− 1)

2N2
.

Taking the maximum over k yields the stated uniform bound.

For the ReLU representation, write h = 2
N and set the interval slopes

mk =
z s
k+1 − z s

k

h
, k = 0, . . . , N−1, γj = mj−mj−1 =

z s
j+1 − 2z s

j + z s
j−1

h
, j = 1, . . . , N−1.

Then g admits the exact expansion on [−1, 1]:

g(z) = c1 ReLU(z + 1) + c2 ReLU(1− z) +
N−1∑
j=1

γj ReLU(z − zj),
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with

c2 =
fs(−1)

2
=

(−1)s

2
, c1 = m0 +

(−1)s

2
,

and (a1, b1) = (1,−1), (a2, b2) = (−1,−1), (aj+2, bj+2) = (1, zj) for j = 1, . . . , N − 1.

Since |zj | ≤ 1, we have |ai| ≤ 1 and |bi| ≤ 1. By the mean value theorem, |m0| ≤ ∥f ′s∥L∞ = s,
hence |c1| ≤ s+ 1

2 and |c2| ≤ 1
2 ≤ s+

1
2 .

Moreover, define Ψ ∈ C2[zj − h, zj + h] where

Ψ(t) = fs(t)−
(
fs(zj) +

fs(zj + h)− fs(zj − h)
2h

(t− zj) +
fs(zj + h)− 2fs(zj) + fs(zj − h)

2h2
(t− zj)2

)
.

By Rolle’s theorem,

γj =
fs(zj + h)− 2fs(zj) + fs(zj − h)

h
= h f ′′s (ξj) for some ξj ∈ (zj − h, zj + h),

so |γj | ≤ h ∥f ′′s ∥L∞ = 2
N s(s− 1). Counting two boundary hinges and N − 1 interior hinges gives

M ≤ N + 1 units.

Lemma I.5 (Polarized Newton expansion for fcos and fsin). Let m ≥ 1. For angles (θ1, . . . , θm),
define

Ck =

m∑
i=1

cos(kθi), Sk =

m∑
i=1

sin(kθi).

Let

Km :=
{
k = (k1, . . . , km) ∈ Zm

≥0 :

m∑
j=1

j kj = m
}
.

We index
ε = (ε1,1, . . . , ε1,k1

, ε2,1, . . . , εm,km
) ∈ {±1}|k|.

For p = (p1, . . . , pm) we denote p ≤ k if 0 ≤ pj ≤ kj . Then

fcos = cos
( m∑
i=1

θi

)
=
∑

k∈Km

∑
p≤k

|p|−|k| even

∑
ε∈{±1}|k|

αk,p,εG
|k|
k,p,ε

fsin = sin
( m∑
i=1

θi

)
=
∑

k∈Km

∑
p≤k

|p|−|k| odd

∑
ε∈{±1}|k|

βk,p,εG
|k|
k,p,ε

Where

Gk,p,ε =

m∑
j=1

( pj∑
ℓ=1

εj,ℓ

)
Cj +

m∑
j=1

( kj∑
ℓ=pj+1

εj,ℓ

)
Sj

αk,p,ε =
(−1)m−

∑
kj∏m

j=1 kj !j
kj

(−1)
|k|−|p|

2

 m∏
j=1

(
kj
pj

) 1

|k|! 2|k|

(
m∏
j=1

kj∏
ℓ=1

εj,ℓ

)

βk,p,ε =
(−1)m−

∑
kj∏m

j=1 kj !j
kj

(−1)
|k|−|p|−1

2

 m∏
j=1

(
kj
pj

) 1

|k|! 2|k|

(
m∏
j=1

kj∏
ℓ=1

εj,ℓ

)

and thus
|αk,p,ε| = |βk,p,ε| =

1(∏m
j=1 j

kj

)(∏m
j=1 pj !(kj − pj)!

)
|k|!2|k|

≤ 1

2
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Furthermore, for Ntot(m), the total amount of triples (k, p, ε) (with k ∈ Km, p ≤ k, ε ∈ {±1}|k|),

Ntot(m) =
∑

k∈Km

2|k|
m∏
j=1

(kj + 1) ∈ [m2m, 13m2m].

Proof. Let zj = eiθj for j = 1, . . . ,m. The k-th power sum is Zk =
∑m

j=1 z
k
j = Ck + iSk. Let

em =
∏m

j=1 zj = ei
∑m

j=1 θj be the m-th elementary symmetric polynomial in z1, . . . , zm. The
target functions are fcos = ℜ(em) and fsin = ℑ(em).

Newton’s sum identities provide a formula expressing em as a polynomial in the power sums
Z1, . . . , Zm:

em = P (Z1, . . . , Zm) =
∑

k∈Km

ck

m∏
j=1

Z
kj

j

where the coefficients ck are given by ck = (−1)m−
∑

kj∏m
j=1 kj !j

kj
.

Binomial expansion yields

m∏
j=1

Z
kj

j =

m∏
j=1

(Cj+iSj)
kj =

∑
p≤k

m∏
j=1

((
kj
pj

)
C

pj

j (iSj)
kj−pj

)
=
∑
p≤k

i|k|−|p|

 m∏
j=1

(
kj
pj

) m∏
j=1

C
pj

j S
kj−pj

j


For each pair of (p, k), where p ≤ k and k ∈ Km, let

s :=

m∑
j=1

kj = |k|, xj,ℓ :=

{
Cj , 1 ≤ ℓ ≤ pj ,
Sj , pj < ℓ ≤ kj .

List the s variables as (x1,1, . . . , x1,k1
, x2,1, . . . , xm,km

). Applying Lem. I.3 to x1 · · ·xs =∏m
j=1 C

pj

j S
kj−pj

j gives

m∏
j=1

C
pj

j S
kj−pj

j =
1

|k|! 2|k|
∑

(εj,ℓ)∈{±1}|k|

(
m∏
j=1

kj∏
ℓ=1

εj,ℓ

)(
m∑
j=1

( pj∑
ℓ=1

εj,ℓ

)
Cj+

m∑
j=1

( kj∑
ℓ=pj+1

εj,ℓ

)
Sj

)|k|

Therefore,

em =
∑

k∈Km

ck

m∏
j=1

Z
kj

j

=
∑

k∈Km

ck
∑
p≤k

i|k|−|p|

 m∏
j=1

(
kj
pj

) m∏
j=1

C
pj

j S
kj−pj

j


=
∑

k∈Km

ck
∑
p≤k

i|k|−|p|

 m∏
j=1

(
kj
pj

) 1

|k|! 2|k|
∑

(εj,ℓ)∈{±1}|k|

(
m∏
j=1

kj∏
ℓ=1

εj,ℓ

)(
m∑
j=1

( pj∑
ℓ=1

εj,ℓ

)
Cj +

m∑
j=1

( kj∑
ℓ=pj+1

εj,ℓ

)
Sj

)|k|

Separate Real and Imaginary part yields the polarized Newton expansion for fcos and fsin.

For j ≥ 1,

∑
kj≥0

(kj + 1) 2kj tjkj =
∑
r≥0

(r + 1)(2tj)r =
1

(1− 2tj)2
.

Multiplying over j gives the ordinary generating function

F (t) :=
∑
m≥0

Ntot(m)tm =
∏
j≥1

1

(1− 2tj)2
=

1

(1− 2t)2
·H(t),
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where

H(t) :=
∏
j≥2

(1− 2tj)−2 =
∑
r≥0

hrt
r, hr ≥ 0.

Since (1− 2t)−2 =
∑

n≥0(n+ 1)2ntn, the Cauchy product gives

Ntot(m) =

m∑
r=0

hr (m− r + 1) 2m−r ≤ (m+ 1)2m
∞∑
r=0

hr 2
−r = (m+ 1)2mH

(
1
2

)
.

Here H( 12 ) =
∏

j≥2(1− 21−j)−2 =
∏

r≥1(1− 2−r)−2 <∞ is a finite absolute constant.

By Bernoulli’s inequality, for all xi ∈ [0, 1],
(1− x1)(1− x2) · · · (1− xs) ≥ 1− (x1 + x2 + · · ·+ xs).

Now observe that
∏

r≥1(1− 2−r) = 3
8

∏
r≥3(1− 2−r), we have∏

r≥1

(1− 2−r) =
3

8

∏
r≥3

(1− 2−r) ≥ 3

8
(1−

∞∑
r=3

2−r) =
9

32

Therefore,

H( 12 ) ≤
1

(9/32)2
=

1024

81
≤ 13

Thus

Ntot(m) ≤ H
(
1
2

)
(m+ 1) 2m ≤ 13m2m.

On the other hand, taking just the term k = (m, 0, 0, . . . ) ∈ Km yields

Ntot(m) ≥ 2 |k|
∏
j

(kj + 1) = 2m(m+ 1) ≥ m2m,

so m2m ≤ Ntot(m) ≤ 13m2m.

We are finally able to provide interpolations for ReLU networks, whose embedding weights echoes
with “Pizza” algorithm in (Zhong et al., 2023).
Theorem I.6 (ReLU construction). Fix integers m ≥ 1 and p ≥ 2. On

Xm = {x ∈ {0, 1, . . . ,m}p : ∥x∥1 = m},
let the target be y(x) ≡ (

∑m
i=1 si) mod p for x =

∑m
i=1 esi . For any τ ∈ (0, 14 ], there exists a

two-layer ReLU network sθ(x) = V σ(Wx) ∈ Rp such that, for all x ∈ Xm,

hθ(x) = uargmaxq∈[p]s
θ
q(x) = y(x), sθy(x)(x)− max

q ̸=y(x)
sθq(x) ≥ (1− 4τ) p.

Moreover, the width d is bounded by

d ≤ 13pm2m
(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
, (8)

and the weights satisfy the bounds

∥W∥∞ ≤
2

m
, ∥W∥F ≤

2

m
p

√
13m2m

(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
, ∥V ∥∞ ≤

(m+ 1
2 )m

2m

m! 2m
.

(9)
In addition, the second layer enjoys the spectral-norm bound

∥V ∥2 ≤
√
p

√
13m2m

(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
·
√
2(m+ 1

2 )m
2m

m! 2m
. (10)

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Proof. For t ∈ Z, define c⟨t⟩, s⟨t⟩ ∈ Rp by c⟨t⟩r = cos(2πtr/p) and s⟨t⟩r = sin(2πtr/p) for r =
0, . . . , p− 1. For x =

∑m
i=1 esi and any j ≥ 1,

m∑
i=1

cos
(
j 2πνp si

)
= ⟨c⟨νj⟩, x⟩,

m∑
i=1

sin
(
j 2πνp si

)
= ⟨s⟨νj⟩, x⟩, ν ∈ [p].

Fix ν ∈ [p] and apply Lem. I.5 to θ(ν)i = 2πνsi/p. The multi-indices are κ = (κ1, . . . , κm) ∈ Km

and π = (π1, . . . , πm) ≤ κ, and write r := |κ| =
∑

j κj . Define

u(ν)κ,π,ε =

m∑
j=1

( πj∑
ℓ=1

εj,ℓ

)
c⟨νj⟩ +

m∑
j=1

( κj∑
ℓ=πj+1

εj,ℓ

)
s⟨νj⟩.

Then
Cν(x) =

∑
κ,π,ε

|π|−|κ| even

ακ,π,ε ⟨u(ν)κ,π,ε, x⟩r, Sν(x) =
∑
κ,π,ε

|π|−|κ| odd

βκ,π,ε ⟨u(ν)κ,π,ε, x⟩r,

with
|ακ,π,ε| = |βκ,π,ε| =

1(∏m
j=1 j

κj

)(∏m
j=1 πj ! (κj − πj)!

)
r! 2r

≤ 1

r! 2r
.

As |⟨c⟨νj⟩, x⟩|, |⟨s⟨νj⟩, x⟩| ≤ m, we have |⟨u(ν)κ,π,ε, x⟩| ≤ mr and thus z
(ν)
κ,π,ε(x) :=

⟨u(ν)κ,π,ε, x⟩/(mr) ∈ [−1, 1].
By Lem. I.4, for each r ∈ {1, . . . ,m} and δ > 0 there exists

Φr(z) =

Mr∑
i=1

cr,i ReLU(ar,iz − br,i), |ar,i|, |br,i| ≤ 1,

such that sup|z|≤1 |zr − Φr(z)| ≤ δ and

Mr ≤
m√
2δ

+ 2, |cr,i| ≤ r + 1
2 . (11)

In Equation 11, summing |α| (or |β|) over ε ∈ {±1}r and summing over π ≤ κ factorizes:∑
π≤κ

ε∈{±1}r

|ακ,π,ε| =
1

r!
· 2r∏m

j=1 j
κj κj !

.

Summing over κ ∈ Km with |κ| = r and using the classical cycle-index identity∑
κ∈Km

|κ|=r

1∏m
j=1 j

κj κj !
=

1

m!

[
m
r

]
,

where
[
m
r

]
are the unsigned Stirling numbers of the first kind.

Now we have ∑
κ,ε
π≤κ

|ακ,π,ε| =
m∑
r=1

2r

r!m!

[
m
r

]
,

∑
κ,ε
π≤κ

|βκ,π,ε| =
m∑
r=1

2r

r!m!

[
m
r

]
.

As each power is approximated within δ and |⟨u, x⟩| ≤ mr, the uniform error is bounded by
m∑
r=1

2r(mr)r

r!m!

[
m
r

]
· δ.

We choose

δ :=
τ

Λm
, Λm :=

m∑
r=1

2r(mr)r

r!m!

[
m
r

]
,

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

which ensures max{|Cν − Ĉν |, |Sν − Ŝν |} ≤ τ uniformly on X for all ν.

We now prove by induction on m that[
m
r

]
≤
(
m− 1

r − 1

)
m!, 1 ≤ r ≤ m. (12)

For m = 1, both sides equal 1. Assume equation 12 holds for m − 1. Using the recurrence[
m
r

]
=
[
m−1
r−1

]
+ (m− 1)

[
m−1
r

]
,[

m
r

]
≤
(
m− 2

r − 2

)
(m− 1)! + (m− 1)

(
m− 2

r − 1

)
(m− 1)!

= (m− 1)!
[(m− 2

r − 2

)
+ (m− 1)

(
m− 2

r − 1

)]
≤ m (m− 1)!

(
m− 1

r − 1

)
=

(
m− 1

r − 1

)
m!,

since
(
m−1
r−1

)
=
(
m−2
r−2

)
+
(
m−2
r−1

)
. This proves equation 12.

Using equation 12 and Stirling’s lower bound r! ≥ (r/e)r, we have

Λm ≤
m∑
r=1

2r(mr)r

r!

(
m− 1

r − 1

)
≤

m∑
r=1

(2em)r
(
m− 1

r − 1

)
= (2em)

m−1∑
t=0

(
m− 1

t

)
(2em)t = (2em) (1+2em)m−1.

Hence
1√
2δ

=

√
Λm

2τ
≤
√
em

τ
(1 + 2em)

m−1
2 . (13)

For x ∈ X , ⟨1, x⟩ = m. So

ReLU
(
ar,iz

(ν)
κ,π,ε(x)− br,i

)
= σ

(〈ar,i
mr

u(ν)κ,π,ε −
br,i
m

1, x
〉)

,

Each spline unit is a single ReLU of a linear form. Explicitly, W ∈ Rd×p has rows Wj,: =
ar,i

mr u
(ν)
κ,π,ε − br,i

m 1 for j = (ν, κ, π, ε, i) with r = |κ| and u
(ν)
κ,π,ε =

∑m
t=1

(∑πt

ℓ=1 εt,ℓ
)
c⟨νt⟩ +∑m

t=1

(∑κt

ℓ=πt+1 εt,ℓ
)
s⟨νt⟩. Since ∥u(ν)κ,π,ε∥∞ ≤ r and |ar,i|, |br,i| ≤ 1, each coordinate obeys

|Wj,t| ≤ |ar,i|
mr r +

|br,i|
m ≤ 1

m + 1
m = 2

m , hence ∥W∥∞ ≤ 2
m .

For class q ∈ [p] and hidden index (ν, κ, π, ε, i) set

Vq,(ν,κ,π,ε,i) =
[
cos
(
2πν
p q
)
ακ,π,ε + sin

(
2πν
p q
)
βκ,π,ε

]
(mr)r cr,i,

so that sθq(x) =
∑p−1

ν=0

[
cos( 2πνp q) Ĉν(x) + sin( 2πνp q) Ŝν(x)

]
. Let q⋆ ≡ (

∑
i si) mod p. Discrete

Fourier orthogonality gives s⋆q(x) =
∑p−1

ν=0 cos(
2πν
p (
∑

i si − q)) = 1{q = q⋆}p. Since each mode
is within τ , we have maxq |sθq(x)− s⋆q(x)| ≤ 2pτ and thus the claimed margin (1− 4τ)p.

For each fixed ν ∈ [p], by Lem. I.5, there are Ntot(m) triples (κ, π, ε), each contributes at most Mr

units, with Mr bounded in equation 11. Hence for each ν, the width is at most Ntot(m)
(

m√
2δ

+ 2
)
.

Summing over ν = 0, 1, . . . , p− 1 and using equation 13,

d ≤ pNtot(m)
( m√

2δ
+ 2
)
≤ pNtot(m)

(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
,

and the bound Ntot(m) ≤ 13m2m gives equation 8.

Thus, ∥W∥F ≤ ∥W∥∞
√
dp ≤ 2

mp

√
13m2m

(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
.

Finally, using |α|, |β| ≤ 1/(r! 2r) and equation 11,

|Vq,(ν,κ,π,ε,i)| ≤ |cr,i| (mr)r ·
1

r! 2r
≤

(r + 1
2 )(mr)

r

r! 2r
,
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so taking the maximum over all hidden indices yields equation 9.

For the spectral norm, denote the matrix

T =
(
c⟨0⟩ c⟨1⟩ s⟨1⟩ · · · c⟨p−1⟩ s⟨p−1⟩)

So

TT⊤ = c(0)c(0)⊤ +

p−1∑
ν=1

(
c(ν)c(ν)⊤ + s(ν)s(ν)⊤

)
= pIp, and thus ∥T∥2 =

√
p.

Index the hidden units by j = (ν, κ, π, ε, i), with r = |κ|. For that unit, the corresponding column
of V was

V:,j =
[
ακ,π,ε(mr)

rcr,i
]
c⟨ν⟩ +

[
βκ,π,ε(mr)

rcr,i
]
s⟨ν⟩.

Hence V:,j is a linear combination of the two columns of Sν .

Define B ∈ R(2p−1)×d, for each column j = (ν, κ, π, ε, i),

Bk,j =


ακ,π,ε(mr)

rcr,i, k = 0 and ν = 0,

ακ,π,ε(mr)
rcr,i, k = 2ν with ν ∈ {1, . . . , p− 1},

βκ,π,ε(mr)
rcr,i, k = 2ν − 1 with ν ∈ {1, . . . , p− 1},

0, otherwise.

One has V = TB, and each column bj of B has support in at most two rows (one when ν = 0).
Thus,

∥bj∥2 =
√
α2
κ,π,ε + β2

κ,π,ε · |cr,i| (mr)r ≤
√
2 (r + 1

2 )(mr)
r

r! 2r
≤
√
2 (m+ 1

2 )m
2m

m! 2m
.

Let nν be the number of hidden units at frequency ν. From the construction,

nν ≤ Ntot(m)
( m√

2δ
+ 2
)
≤ 13m 2m

(
m
√

em
τ (1 + 2em)

m−1
2 + 2

)
.

Since BB⊤ is block diagonal across frequencies, ∥B∥2 = maxν ∥Bν∥2 ≤ maxν
√
nν ·

√
2(m+

1
2 )m

2m

m! 2m . Therefore

∥V ∥2 ≤ ∥T∥2 ∥B∥2 ≤
√
p
√

max
ν

nν ·
√
2 (m+ 1

2 )m
2m

m! 2m
,

which gives equation 10.

Corollary I.7 (Explicit two-layer ReLU construction for m = 2). Fix p ≥ 2. Define the input set

X2 =
{
x ∈ {0, 1, 2}p : ∥x∥1 = 2

}
.

There exists a two-layer ReLU network sθ(x) = V σ(Wx) ∈ Rp of width d = 36p such that, for all
x ∈ X2,

hθ(x) = uargmaxq∈[p]s
θ
q(x) =

( 2∑
i=1

si

)
mod p, sθy(x)(x)− max

q ̸=y(x)
sθq(x) ≥

25

49
p+

20

49
.

Moreover, the weights satisfy

∥W∥∞ ≤ 1, ∥V ∥∞ ≤ 34
7 , ∥V ∥2 ≤ 11

√
p.
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Proof. For ν ∈ [p] let c⟨ν⟩, s⟨ν⟩ ∈ Rp be defined by c⟨ν⟩r = cos(2πνr/p) and s⟨ν⟩r = sin(2πνr/p).
For inputs x ∈ X , write

Ck = ⟨c⟨kν⟩, x⟩, Sk = ⟨s⟨kν⟩, x⟩ (k = 1, 2).

From Lem. I.5, for any θ1, θ2 ∈ R,

cos(θ1 + θ2) =
1

2
(C2

1 − S2
1 − C2) = 2(

1

2
C1)

2 − 2(
1

2
S1)

2 − 1

2
C2

sin(θ1 + θ2) = C1S1 −
1

2
S2 = 4

((
C1 + S1

4

)2

−
(
C1 − S1

4

)2
)
− 1

2
S2

For ∥x∥1 = 2, we have C1

2 ,
S1

2 ,
C1±S1

4 ∈ [−1, 1].

Let Φ2 be the piecewise-linear interpolant of z2 on the uniform grid zk = −1 + 2k
7 , k = 0, . . . , 7.

Using Lem. I.4 with s = 2, N = 7, ∥Φ2 − z2∥L∞([−1,1]) ≤ 1/49, and Φ2(z) =∑8
i=1 ci ReLU(aiz − bi), where

i 1 2 3 4 5 6 7 8
(ai, bi) (1,−1) (−1,−1) (1,− 5

7 ) (1,− 3
7 ) (1,− 1

7 ) (1, 17 ) (1, 37 ) (1, 57 )
ci − 17

14
1
2

4
7

4
7

4
7

4
7

4
7

4
7

We now construct a two-layer ReLU MLP with total width d = 36p.

First layer. For r ∈ [p] and i = 1, . . . , 8 define

w(ν,1,i)
r = ai

2 c
⟨ν⟩
r − bi

2 , w(ν,2,i)
r = ai

2 s
⟨ν⟩
r − bi

2 ,

w(ν,3,i)
r = ai

4

(
c⟨ν⟩r + s⟨ν⟩r

)
− bi

2 , w(ν,4,i)
r = ai

4

(
c⟨ν⟩r − s⟨ν⟩r

)
− bi

2 ,

w
(ν,C±

2 )
r = ± 1

2 c
⟨2ν⟩
r , w

(ν,S±
2 )

r = ± 1
2 s

⟨2ν⟩
r .

Then σ(⟨w(ν,1,i), x⟩) = ReLU(aiC1/2 − bi), etc. Since |ai| ≤ 1, |bi| ≤ 1, and |c⟨ν⟩r |, |s⟨ν⟩r | ≤ 1,
we have ∥W∥∞ ≤ 1.

Second layer. For q ∈ [p], ν ∈ [p] set

Vq,(ν,1,i) = +2ci cos(2πνq/p), Vq,(ν,2,i) = − 2ci cos(2πνq/p),

Vq,(ν,3,i) = +4ci sin(2πνq/p), Vq,(ν,4,i) = − 4ci sin(2πνq/p),
i = 1, . . . , 8,

and
Vq,(ν,C±

2 ) = ∓ cos(2πνq/p), Vq,(ν,S±
2 ) = ∓ sin(2πνq/p).

We have ∥V ∥∞ ≤ max{|4ci|, 1} = 34
7 .

Let T = [ c⟨0⟩ c⟨1⟩ s⟨1⟩ · · · c⟨p−1⟩ s⟨p−1⟩ ] and write V = TB. Then

TT⊤ = c⟨0⟩c⟨0⟩⊤ +

p−1∑
ν=1

(
c⟨ν⟩c⟨ν⟩⊤ + s⟨ν⟩s⟨ν⟩⊤

)
= p Ip,

so ∥T∥2 =
√
p.

Each hidden unit loads a single row in B, hence BB⊤ is diagonal. The largest row norm equals√
2
∑8

i=1(4ci)
2 + 2 =

√
5874
7 , so

∥V ∥2 ≤ ∥T∥2 ∥B∥2 ≤ 11
√
p.

Finally, define

Ĉν(x) = 2Φ2

(
C1

2

)
− 2Φ2

(
S1

2

)
− 1

2C2, Ŝν(x) = 4Φ2

(
C1+S1

4

)
− 4Φ2

(
C1−S1

4

)
− 1

2S2,
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and logits sθq(x) =
∑p−1

ν=0

[
cos(2πνq/p) Ĉν(x) + sin(2πνq/p) Ŝν(x)

]
. Since ∥Φ2 − z2∥∞ ≤ 1/49

and ν = 0 contributes a class-independent offset, for ν ≥ 1,

|Ĉν − Cν | ≤ 4/49 and |Ŝν − Sν | ≤ 8/49.

Therefore,

max
q
|sθq(x)− s⋆q(x)| ≤ 12

49 (p− 1) +
2

49
,

where s⋆q(x) =
∑p−1

ν=0 cos
(
2πν(

∑
i si − q)/p

)
satisfies s⋆y(x)(x) = p and s⋆q(x) = 0 if q ̸= y(x).

The margin follows:

sθy(x)(x)− max
q ̸=y(x)

sθq(x) ≥ p− 2

(
12
49 (p− 1) +

2

49

)
=

25

49
p+

20

49
.

J MARGIN BOUNDS VIA ℓ∞ VECTOR CONTRACTION

J.1 MARGIN SURROGATES AND EMPIRICAL γ-MARGIN ERROR

Given scores s ∈ Rp for an example with label y ∈ [p], the sample margin error

ϕy(s) = max
k ̸=y

(sk − sy)

The γ-ramp loss
ψγ(u) = min{1, max{0, 1 + u/γ}} ∈ [0, 1].

The map u 7→ ψγ(u) is 1/γ-Lipschitz on R, and ϕy is 2-Lipschitz w.r.t. ∥ · ∥∞ (changing any
coordinate of s by at most ε changes ϕy by at most 2ε), hence

gy := ψγ ◦ ϕy is 2
γ -Lipschitz w.r.t. ∥ · ∥∞, gy ∈ [0, 1].

Definition J.1 (Empirical Margin Error). For a score function sθ and sample S = {(x(i), y(i))}ni=1,
the empirical γ-margin error is

R̂γ(s
θ;S) =

1

n

n∑
i=1

1

{
sθ
(
x(i)
)
y(i) ≤ γ + max

j ̸=y(i)
sθ
(
x(i)
)
j

}
.

For an interpolating solution, it suffices to take γ = γθ(S), the minimum sample margin, in which
case R̂γ(s

θ;S) = 0.

Definition J.2 (Empirical Rademacher complexity). Let S =
{
zi = (x(i), y(i))

}n
i=1

be fixed, and
let G ⊂ [0, 1]Z . Let ϵ = (ϵ1, . . . , ϵn) be i.i.d. Rademacher variables (P[ϵi = 1] = P[ϵi = −1] =
1/2). The empirical Rademacher complexity of G on S is

RS(G) =
1

n
Eϵ

[
sup
g∈G

n∑
i=1

ϵi g(zi)

]
.

Theorem J.3 (Rademacher Generalization Bounds, Thm. 3.3 of (Mohri et al., 2018)). Let D be the
true distribution, G ⊂ [0, 1]Z and let S = (z1, . . . , zn) ∼ Dn. With probability at least 1 − δ over
S, the following holds simultaneously for all g ∈ G:

Ez∼D[g(z)] ≤
1

n

n∑
i=1

g(zi) + 2RS(G) + 3

√
ln(2/δ)

2n
,

where RS(G) is the empirical Rademacher complexity of G on S.

Apply Thm. J.3 with G = Fγ := {(x, y) 7→ ψγ ◦ϕy(f(x)) : f ∈ F}, and note 1{uargmaxifi(x) ̸=
y} ≤ ψγ◦ϕy

(
f(x)

)
. That yields the following corollary:
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Corollary J.4 (Rademacher complexity and Multiclassification).

P(x,y)∈D
[
f(x) ̸= y

]
≤ R̂γ(f) + 2RS(Fγ) + 3

√
ln(2/δ)

2n
. (14)

Let S = {(x(i), y(i))}ni=1 be the training sample generated from the true distribution and write

Q2(S) =
(

1
n

n∑
i=1

∥x(i)∥22
)1/2

.

J.2 MARGIN BOUNDS FOR SINE MLP

Definition J.5 (Covering Number for sets). Let (X, d) be a metric space, F ⊆ X a non-empty
subset, and r > 0. The covering number of F , denoted N (F, d, r), is

N (F, d, r) = min

{
k ∈ N | ∃{x1, . . . , xk} ⊆ X such that F ⊆

k⋃
i=1

Bd(xi, r)

}
,

where Bd(x, r) = {y ∈ X | d(x, y) ≤ r} is the closed ball of radius r centered at x.

Definition J.6 (Empirical L2 covering number of a function class). Let F ⊆ {f : X → R} be a
class of real-valued functions and let x1:n = (x1, . . . , xn) ∈ Xn. Define the empirical L2 metric

d2,x1:n
(f, g) :=

( 1
n

n∑
i=1

(
f(xi)− g(xi)

)2)1/2
.

For ε > 0, the empirical L2 covering number of F at scale ε with respect to the sample x1:n is

N2(ε,F , x1:n) := min
{
k ∈ N : ∃ f1, . . . , fk such that F ⊆

k⋃
j=1

Bd2,x1:n
(fj , ε)

}
,

where Bd2,x1:n
(f, ε) = {g : d2,x1:n(f, g) ≤ ε}.

Lemma J.7 (Covering the box [−π, π)p by Euclidean balls). Fix p ∈ N and r > 0. Then

N
(
[−π, π)p, ∥ · ∥2, r

)
≤
⌈π√p

r

⌉p
.

Proof. Covering numbers are translation invariant: for any a ∈ Rp, N (F, ∥ · ∥2, r) = N (F + a, ∥ ·
∥2, r). Hence it suffices to cover [0, 2π)p.

Set the grid step h := 2r/
√
p and the number of points per dimension m :=

⌈
2π/h

⌉
=
⌈
π
√
p/r
⌉
.

Along each coordinate, place grid points with a half-step offset from the origin:

G1 :=
{
(j + 1

2 )h : j = 0, 1, . . . ,m− 1
}
,

so |G1| = m. Let the full grid be the Cartesian product G := G p
1 ; then |G| = mp.

Given any point x ∈ [0, 2π)p, choose g ∈ G by rounding each coordinate of x to the nearest
point in G1 (breaking ties arbitrarily). By construction, the distance from any coordinate xi to its
corresponding grid point gi is at most half the grid step, so ∥x− g∥∞ ≤ h/2 = r/

√
p. We have

∥x− g∥2 ≤
√
p ∥x− g∥∞ ≤

√
p · r√

p
= r.

Therefore, the set of closed ℓ2-balls {B2(g, r) : g ∈ G} covers the box [0, 2π)p, and

N
(
[0, 2π)p, ∥ · ∥2, r

)
≤ |G| = mp =

(⌈π√p
r

⌉)p
.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Lemma J.8 (Standard Dudley entropy integral ). Assume that all Fx1:n
⊂ Rn. Let Rn(F) be the

empirical Rademacher number of F on x1:n. We have:

Rn(F) ≤ inf
α≥0

(
4α+ 12

∫ ∞

α

√
logN2(ϵ,F , x1:n)

n
dϵ

)
Theorem J.9 (Width-independent multiclass margin bound for the sine MLP). Consider the two-
layer sine network with parameters θ = (W,V ) ∈ Rd×p × Rp×d, where the output matrix satisfies
∥V ∥∞ ≤ S1. Then for any γ > 0 and δ ∈ (0, 1), with probability at least 1 − δ over the random
draw of the training samples S, the following holds simultaneously for all such θ:

P(X,Y )∼D
[
hθ(X) ̸= Y

]
≤ R̂γ

(
sθ
)
+ Õ

(
S1

γ
· p√

n

)
+ Õ

(
1√
n

)
.

Proof. Because inputs are bag of words (x ∈ {0, 1, . . . ,m}p with ∥x∥1 = m), shifting any element
of W by 2πk (k ∈ Z) does not change sθ(x) = V sin(Wx). Hence without loss of generality, each
element of W may be reduced to modulo 2π to [−π, π) with no effect on the model output. This
periodic reduction is the core argument in the sine analysis.

Notice that gy := ψγ ◦ ϕy is 2
γ -Lipschitz w.r.t. ∥ · ∥∞ and gy ∈ [0, 1]. Applying Thm. J.3 with

G = Fγ := (x, y) 7→ gy(s
θ(x)) : θ and recalling 1{uargmaxf ̸= y} ≤ gy , we obtain

P
[
hθ(X) ̸= Y

]
≤ R̂γ(s

θ) + 2RS(Fγ) + 3

√
ln(2/δ)

2n
. (15)

ℓ∞ vector contraction. Let S := {sθ : θ = (W,V ), ∥V ∥∞ ≤ S1, W ∈ [−π, π)d×p} and denote
the coordinate classes

S|j :=
{
x 7→ v⊤j sin(Wx) : ∥vj∥1 ≤ S1, W ∈ [−π, π)d×p

}
.

For fixed S = (x(1), . . . , x(n)) and the Lipschitz maps φi ≡ gy(i) (each 2
γ -Lipschitz w.r.t. ∥ · ∥∞),

the ℓ∞ vector contraction inequality (Thm. 1 of (Foster & Rakhlin, 2019)) gives

RS(Fγ) ≤ C
2

γ

√
pmax

j∈[p]
RS(S|j) log

3
2+δ0

( β

maxj RS(S|j)

)
, (16)

for any fixed δ0 > 0 and some C = C(δ0). Since sin(Wx) ∈ [−1, 1]d and ∥vj∥1 ≤ S1, we have

∥sθ(x)∥∞ ≤ S1, and thus β ≤ 1 + S1. (17)

Coordinate reduction via ℓ1-ℓ∞ duality. For any fixed S = (x(1), . . . , x(n)) and j ∈ [p],

nRS(S|j) = Eϵ sup
∥vj∥1≤S1

W∈Rd×p

n∑
i=1

ϵiv
⊤
j sin(Wx(i))

= Eϵ sup
∥vj∥1≤S1

W∈Rd×p

v⊤j

( n∑
i=1

ϵi sin(Wx(i))
)

≤ S1Eϵ sup
W∈Rd×p

∥∥∥ n∑
i=1

ϵi sin(Wx(i))
∥∥∥
∞

= S1Eϵ sup
w∈Rp

∣∣∣ n∑
i=1

ϵi sin(w
⊤x(i))

∣∣∣
= S1Eϵ sup

w∈Rp

n∑
i=1

ϵi sin(w
⊤x(i))

= S1Eϵ sup
w∈[−π,π)p

n∑
i=1

ϵi sin(w
⊤x(i))

= S1nRS(Fsin). (18)
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Here we used sup∥a∥1≤S1
⟨a, b⟩ = S1∥b∥∞, and denoted the single-sine family

Fsin :=
{
x 7→ sin(w⊤x) : w ∈ [−π, π)p

}
.

Rademacher complexity of the single-sine family.

Endow Fsin with the empirical L2 metric

d(w,w′)2 :=
1

n

n∑
i=1

(
sin(w⊤x(i))− sin(w′⊤x(i))

)2
.

Notice that d(w,w′) ≤ 2 for all w,w′, so for any ε ∈ (2,∞), N2(ε,Fsin, x1:n) = 1.

For any i,∣∣sin(w⊤x(i))− sin(w′⊤x(i))
∣∣ ≤ |(w − w′)⊤x(i)| ≤ ∥w − w′∥2 ∥x(i)∥2 ≤ m ∥w − w′∥2

so if ∥w − w′∥2 ≤ ε/m then d(w,w′) ≤ ε. Consequently, for any ε ∈ (0, 2],

N2(ε,Fsin, x1:n) ≤ N
(
[−π, π)p, ∥ · ∥2, ε/m

)
≤
⌈πm√p

ε

⌉p
, (19)

where we used Lem. J.7.

Applying the standard Dudley entropy integral with any α ∈ (0, 1] yields

RS(Fsin) ≤ 4α + 12

∫ 2

α

√
logN2(ε,Fsin, x1:n)

n
dε (20)

Let C := πm
√
p > 2. Then

⌈
πm

√
p

ε

⌉
≤ πm

√
p

ε + 1 ≤ 2πm
√
p

ε , for all ε ∈ (0, 2]. Thus

logN2(ε,Fsin, x1:n) ≤ log
(⌈πm√p

ε

⌉p)
≤ p log

(
2πm
√
p

ε

)
Hence for any α ∈ (0, 1],∫ 2

α

√
logN2(ε,Fsin, x1:n)

n
dε ≤

∫ 2

α

√
p

n
log

(
2πm
√
p

ε

)
dε ≤ (2− α)

√
p

n
log

(
2πm
√
p

α

)
Plugging this into equation 20 gives

RS(Fsin) ≤ 4α + 12(2− α)

√
p

n
log

(
2πm
√
p

α

)
Choosing α = 1

πmn
√
p ∈ (0, 1]. Then

log
(2πm√p

α

)
= log

(
2πm
√
p · πmn√p

)
= log(2π2m2pn),

So

RS(Fsin) ≤
4

πmn
√
p

+ 24

√
p

n

√
log (2π2m2pn) = Õ

(√
p

n

)
. (21)

Combining equation 18 and equation 21 we obtain, for every S,

max
j∈[p]

RS(S|j) ≤ S1RS(Fsin) = Õ
(
S1

√
p

n

)
. (22)

Fix δ0 = 1
2 , substituting equation 22 into equation 15 yields

P
[
hθ(X) ̸= Y

]
≤ R̂γ(s

θ) + Õ
(
S1

γ
· p√

n

)
+ Õ

(
1√
n

)
.
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J.3 MARGIN BOUNDS FOR RELU MLP

Lemma J.10. Let Z ∈ Rp×n be the data matrix whose i-th column is zi =
∑m

k=1 esi,k ∈
{0, 1, . . . ,m}p. Let Njℓ =

∑n
i=1 1 {si,j = si,ℓ}. Then ∥Z∥2F =

∑m
j=1

∑m
ℓ=1Njℓ.

Proof. Write Z =
∑m

j=1 Zj where Zj :=
(
es1,j , . . . , esn,j

)
∈ Rp×n. Then

∥Z∥2F =
〈 m∑

j=1

Zj ,

m∑
ℓ=1

Zℓ

〉
F
=

m∑
j=1

m∑
ℓ=1

tr(Z⊤
j Zℓ).

For r, c,

(Z⊤
j Zℓ)rc =

p∑
s=1

(Zj)sr(Zℓ)sc = (esr,j )
⊤esc,ℓ ,

so (Z⊤
j Zℓ)ii = (esi,j )

⊤esi,ℓ = 1 {si,j = si,ℓ}. Hence

tr(Z⊤
j Zℓ) =

n∑
i=1

1 {si,j = si,ℓ} = Njℓ,

and substituting yields ∥Z∥2F =
∑m

j=1

∑m
ℓ=1Njℓ.

Lemma J.11 (Hoeffding bound). Assume that for each i ∈ [n], the symbols (si,1, . . . , si,m) are i.i.d.
uniform on [p] := {1, . . . , p}, and that they are independent across i. Let zi =

∑m
k=1 esi,k ∈ Rp,

Z = (z1, . . . , zn) ∈ Rp×n, and x(i) := zi. Then for any δ′ ∈ (0, 1), with probability at least 1− δ′,
n∑

i=1

∥x(i)∥22 ≤ nm

(
1 +

m− 1

p

)
+m(m− 1)

√
n log(1/δ′)

2
,

and therefore

Q2(S) :=
(

1
n

n∑
i=1

∥x(i)∥22
)1/2

≤ Q2(m, p, n, δ
′) :=

[
m

(
1 +

m− 1

p

)
+m(m−1)

√
log(1/δ′)

2n

]1/2
.

Proof. For a fixed i, define

Yi :=

m∑
j,ℓ=1

1 {si,j = si,ℓ} .

Note that zi =
∑m

k=1 esi,k has coordinates zi(c) =
∑m

k=1 1 {si,k = c}, hence

∥zi∥22 =

p∑
c=1

zi(c)
2 =

p∑
c=1

( m∑
j=1

1 {si,j = c}
)( m∑

ℓ=1

1 {si,ℓ = c}
)
=

m∑
j,ℓ=1

1 {si,j = si,ℓ} = Yi.

Therefore
∑n

i=1 ∥x(i)∥22 =
∑n

i=1 ∥zi∥22 =
∑n

i=1 Yi. Observe that

E[Yi] =
m∑
j=1

E1 {si,j = si,j}+
m∑

j,ℓ=1
j ̸=ℓ

E1 {si,j = si,ℓ} = m+m(m− 1) · P [si,1 = si,2] .

Since si,1, si,2 are independent uniform on [p], P [si,1 = si,2] = 1/p, hence

E[Yi] = m
(
1 +

m− 1

p

)
, E

[ n∑
i=1

Yi

]
= nm

(
1 +

m− 1

p

)
.

Also notice that m ≤ Yi ≤ m2 and (Yi)
n
i=1 are independent, let Sn :=

∑n
i=1 Yi. Hoeffding’s

inequality for independent Yi ∈ [ai, bi] gives

P[Sn − ESn ≥ t] ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
= exp

(
− 2t2

n (m2 −m)2

)
.
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Set the right-hand side to δ′ and solve for t to get

t = (m2 −m)

√
n log(1/δ′)

2
= m(m− 1)

√
n log(1/δ′)

2
.

Therefore, with probability at least 1− δ′,

n∑
i=1

∥x(i)∥22 =

n∑
i=1

Yi ≤ nm
(
1 +

m− 1

p

)
+ m(m− 1)

√
n log(1/δ′)

2
.

Dividing by n and taking square roots yields the stated bound on Q2(S).

We now state and prove the width-independent multiclass margin bound for homogeneous activa-
tion. The main idea is to use ℓ∞ contraction to reduce the problem to the real output, and then utilize
a technical lemma from (Golowich et al., 2017). The core part of the proof is almost identical, and
is included only for completeness.

Lemma J.12 (Lem. 1 of (Golowich et al., 2017)). Let σ be a 1-Lipschitz, positive-homogeneous
activation function which is applied element-wise (such as the ReLU). Then for any class of vector-
valued functions F , and any convex and monotonically increasing function g : R→ [0,∞),

Eϵ sup
f∈F,W :∥W∥F≤R

g

(∥∥∥∥∥
m∑
i=1

ϵiσ(Wf(xi))

∥∥∥∥∥
2

)
≤ 2 · Eϵ sup

f∈F
g

(
R ·

∥∥∥∥∥
m∑
i=1

ϵif(xi)

∥∥∥∥∥
2

)
.

Theorem J.13 (Width-independent multiclass margin bound for homogeneous activation). Assume
p > m and n > m2, n ≥ 17, and σ is a 1-Lipschitz, positive-homogeneous activation function.
For any γ > 0 and δ ∈ (0, 1), with probability at least 1 − δ over the random draw of the training
samples S, the following holds simultaneously for all θ = (W,V ) with ∥V ∥2 ≤ S2 and ∥W∥F ≤ B,

P(X,Y )∈D
[
hθ(X) ̸= Y

]
≤ R̂γ

(
sθ
)
+ Õ

(
S2B

γ

√
pm

n

)
+ Õ

(
1√
n

)
.

Here Õ(·) hides factors polylogarithmic in n and δ−1.

Proof of Thm. J.13. The multiclass margin satisfies |ϕy(s) − ϕy(s
′)| ≤ 2∥s − s′∥∞ for all s, s′,

hence gy := ψγ ◦ ϕy is 2
γ -Lipschitz w.r.t. ∥ · ∥∞ and |gy| ≤ 1.

ℓ∞-vector contraction. For a vector class S ⊂ {x 7→ s(x) ∈ Rp} and L-Lipschitz maps {φi}ni=1
w.r.t. ∥ · ∥∞, a standard ℓ∞ vector contraction inequality (see, e.g., Thm. 1 in (Foster & Rakhlin,
2019)) implies that for the fixed sample S = (x(1), . . . , x(n)),

RS(φ◦S) :=
1

n
Eε

[
sup
s∈S

n∑
i=1

εi φi(s(x
(i)))

]
≤ C L

√
p max

j∈[p]
RS(S|j) log

3
2+δ0

( β

maxj RS(S|j)

)
,

(23)
for any fixed δ0 > 0, with C = Cδ0 <∞. Here

RS(S|j) :=
1

n
Eε

[
sup
s∈S

n∑
i=1

εi sj(x
(i))

]
, β ≥ sup

θ
max

i

{
|φi(s

θ(x(i)))|, ∥sθ(x(i))∥∞
}
.

Let S = {sθ : ∥V ∥2 ≤ S2, ∥W∥F ≤ B} and S|j = {x 7→ v⊤j σ(Wx) : ∥V ∥2 ≤ S2, ∥W∥F ≤
B}, where vj ∈ Rd is the j-th row of V . Fix λ > 0, to be chosen later. For any fixed x1:n, the
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Rademacher complexity can be upper bounded as

nRS(S|j) = Eϵ sup
∥V ∥2≤S2

∥W∥F≤B

n∑
i=1

ϵi v
⊤
j σ
(
Wx(i)

)

≤ Eϵ sup
∥vj∥2≤S2

∥W∥F≤B

n∑
i=1

ϵi v
⊤
j σ
(
Wx(i)

)
(Cauchy–Schwarz)

≤ 1

λ
logEϵ sup

∥vj∥2≤S2

∥W∥F≤B

exp

(
λ

n∑
i=1

ϵi v
⊤
j σ
(
Wx(i)

))

≤ 1

λ
logEϵ sup

∥vj∥2≤S2

∥W∥F≤B

exp

(
∥vj∥2 · λ

∥∥∥∥∥
n∑

i=1

ϵi σ
(
Wx(i)

)∥∥∥∥∥
2

)

≤ 1

λ
logEϵ sup

∥W∥F≤B

exp

(
S2 · λ

∥∥∥∥∥
n∑

i=1

ϵi σ
(
Wx(i)

)∥∥∥∥∥
2

)
.

Applying Lem. J.12 with the given 1-Lipschitz, positive-homogeneous σ, F = {f : f(x) = x}
(identity class), and g(t) = exp(S2λt), we obtain

1

λ
logEϵ sup

∥W∥F≤B

exp

(
S2 · λ

∥∥∥∥∥
n∑

i=1

ϵiσ
(
Wx(i)

)∥∥∥∥∥
2

)
≤ 1

λ
log

(
2Eϵ exp

(
S2 · λB

∥∥∥∥∥
n∑

i=1

ϵix
(i)

∥∥∥∥∥
2

))
.

Denote M = S2B, and define the random variable (as a function of ϵ = (ϵ1, . . . , ϵn)):

Z = M ·

∥∥∥∥∥
n∑

i=1

ϵix
(i)

∥∥∥∥∥
2

.

Then
1

λ
log (2Eϵ exp(λZ)) =

log 2

λ
+

1

λ
log (Eϵ exp (λ(Z − EZ))) + EZ.

By Jensen’s inequality,

EZ ≤ M

√√√√√Eϵ

∥∥∥∥∥
n∑

i=1

ϵix(i)

∥∥∥∥∥
2

2

 =M

√√√√√Eϵ

 m∑
i,i′=1

ϵiϵi′x⊤i xi′

 = M

√√√√ n∑
i=1

∥x(i)∥22.

Moreover, Z satisfies a bounded-difference condition

Z(ϵ1, . . . , ϵi, . . . , ϵn)− Z(ϵ1, . . . ,−ϵi, . . . , ϵn) ≤ 2M∥x(i)∥2,

and hence is sub-Gaussian with variance factor v =M2
∑n

i=1 ∥x(i)∥22, yielding

1

λ
log (Eϵ expλ(Z − EZ)) ≤ λM2

2

n∑
i=1

∥x(i)∥22.

Choosing λ =
√
2 log 2

M
√∑n

i=1 ∥x(i)∥2
2

gives

1

λ
log (2 · Eϵ exp(λZ)) ≤ M

(√
2 log 2 + 1

)√√√√ n∑
i=1

∥x(i)∥22.

Therefore,

RS(S|j) ≤ S2B
(√

2 log 2 + 1
) 1√

n

√√√√ 1

n

n∑
i=1

∥x(i)∥22 . (24)
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Controlling maxj RS(S|j) and the log term. Define the “good” subset

Xn
good(δ

′) :=
{
x1:n ∈ Xn : 1

n

n∑
i=1

∥x(i)∥22 ≤ Q2(m, p, n, δ
′)2
}
.

By Lem. J.11, with probability ≥ 1 − δ′ the realized sample satisfies x1:n ∈ Xn
good(δ

′). On this
event, equation 24 yields

0 ≤ max
j∈[p]

RS(S|j) ≤ S2B
(√

2 log 2 + 1
) 1√

n
Q2(m, p, n, δ

′). (25)

Furthermore, for any θ and x, ∥sθ(x)∥∞ ≤ ∥V ∥2 ∥σ(Wx)∥2 ≤ S2B∥x∥2, and since here x ∈
{0, 1, . . . ,m}p with ∥x∥1 = m, we have ∥x∥2 ≤ m. Thus we may take the simple, deterministic
bound

β ≤ 1 + S2Bm.

To upper bound the logarithm in equation 23 more conveniently, also define

b := 1 + S2B
√
nQ2(m, p, n, δ

′) ,

so that β ≤ b and hence log(β/t) ≤ log(b/t) for all t > 0.

Applying equation 23 with L = 2/γ and using equation 25, we obtain on the event of Lem. J.11

RS(Fγ) ≤ C
2

γ

√
p max

j∈[p]
RS(S|j) log

3
2+δ0

( β

maxj RS(S|j)

)
≤ C 2

γ

√
p max

j∈[p]
RS(S|j) log

3
2+δ0

( b

maxj RS(S|j)

)
.

Let
h(t) = t log a

(b
t

)
, a := 3

2 + δ0 >
3
2 .

Substituting δ0 = 0.5 gives a = 2. From equation 25, with t := maxj RS(S|j) we have

t ≤
√
2 log 2 + 1√

n
S2BQ2(m, p, n, δ

′) =

√
2 log 2 + 1

n

(
b− 1

)
≤
√
2 log 2 + 1

n
b.

Since n ≥ 17 ≥ e2(
√
2 log 2 + 1), we have t ≤ b e−2; on [0, be−2] the function h is increasing,

hence

h(t) ≤ h
(√

2 log 2+1
n b

)
=

√
2 log 2 + 1

n
b log2

( b

b(
√
2 log 2 + 1)/n

)
=

√
2 log 2 + 1

n
b log2

( n√
2 log 2 + 1

)
.

Therefore, for some absolute C ′ > 0,

RS(Fγ) ≤ C ′ 1

γ

√
p

n
S2B Q2(m, p, n, δ

′) log2
( n√

2 log 2 + 1

)
. (26)

Final bound. By Lem. J.11, with probability at least 1− δ′,

Q2(m, p, n, δ
′)2 = m

(
1 +

m− 1

p

)
+m(m− 1)

√
log(1/δ′)

2n
≤ 2m+m

√
log(1/δ′),

where we used p > m and n > m2. Hence Q2(m, p, n, δ
′) = Õ(

√
m). Since

1
n

∑n
i=1 ψγ(ϕy(i)(sθ(x(i)))) ≤ R̂γ(s

θ), combining equation 14 and equation 26, and taking a union
bound with the choice δ′ = δ/2 while applying Cor. J.4 with confidence parameter δ/2, yields the
stated result with overall probability at least 1− δ.

Remark J.14 (Data-dependent specialization). The bound is width-independent and depends on the
sample only through Q2(S). In our setup, x ∈ {0, 1, . . . ,m}p with ∥x∥1 = m; thus ∥x∥2 ≤ m, so
β ≤ 1 + S2Bm deterministically. We further used distributional assumptions on s1:m (e.g., i.i.d.
uniform over [p]) only to obtain sharper high-probability bounds on Q2(S).
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We are now able to prove theorems in Sec. 6:

Proof of Thm. 6.2. The proof consists of showing all networks with small training error and small
normalized margin generalize, and at least one such network exist.

In Thm. J.9, set γ = γθ(Dtrain), then the empirical γ-margin error is

R̂γ

(
sθ
)
=

1

n

n∑
i=1

1

{
f(xi)yi

≤ γ +max
j ̸=yi

f(xi)j

}
= 0.

Notice that γθ = γθ(Dtrain)
∥V ∥1,∞

, by Thm. J.9,

P(X,Y )∈D
[
hθ(X) ̸= Y

]
≤ Õ

(
1

γθ
p

√
1

n

)
+ Õ

(
1√
n

)
≤ Õ

(
p

√
1

n

)
+ Õ

(
1√
n

)
= Õ

(
p

√
1

n

)
.

When 2p ≤ d, Sec. I.1 gives a network whose normalized margin is

γθ =
γθ(Dtrain)

∥V ∥1,∞
≥ p

2p
=

1

2
= Ω(1).

Proof of Thm. 6.3. In Thm. J.13, set γ = γθ(Dtrain). Then the empirical γ-margin error is zero,

R̂γ

(
sθ
)
=

1

n

n∑
i=1

1

{
f(xi)yi

≤ γ +max
j ̸=yi

f(xi)j

}
= 0,

and Thm. J.13 gives

P(X,Y )∈D
[
hθ(X) ̸= Y

]
≤ Õ

(
1

γθ

√
pm

n

)
+ Õ

(
1√
n

)
.

Apply Thm. I.6 with τ = 0.1, which yields a margin γ(x) ≥ 0.6p on Xm and width d ≤ pCm,
where

Cm = 13m 2m
(
m
√
10em

(
1 + 2em

)m−1
2 + 2

)
.

Using (1 + 2em)(m−1)/2 ≤ (2em)(m−1)/2e1/(4e), we obtain

Cm ≤ 26
√
5 e

1
4e m

m
2 +2 (

√
8e)m ≤ 64m

m
2 +2 (4.67)m.

Thus the width condition in the statement d ≥ 64 pm
m
2 +2(4.67)m is sufficient for d ≥ pCm.

From equation 9–equation 10 in Thm. I.6,

∥W∥F ≤
2

m
p
√
Cm, ∥V ∥2 ≤

√
2p
√
Cm

(m+ 1
2 )m

2m

m! 2m
.

Write

Km := Cm

(m+ 1
2 )m

2m

m! 2m
.

Using Stirling’s lower bound m! ≥
√
2πm (m/e)m and the same (1 + 2em) bound as above gives

the clean upper bound

Km ≤
39
√
5 e1/(4e)√
4πe

m1.5m+2.5 (
√
2 e3/2)m ≤ 17m1.5m+2.5 (6.34)m.

Consequently,
∥V ∥2∥W∥F ≤ 2

√
2 p
√
pKm,

and

γθ =
γθ(Dtrain)

∥V ∥2∥W∥F
≥ 0.6 p

2
√
2 p
√
pKm

=
0.3√
2
· 1

Km
√
p
= Ω

(
1
√
p
· 1

m1.5m+2.5 (6.34)m

)
.
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