

000 PROVABLE BENEFITS OF SINUSOIDAL ACTIVATION 001 FOR MODULAR ADDITION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 This paper studies the role of activation functions in learning modular addition
010 with two-layer neural networks. We first establish a sharp expressivity gap: sine
011 MLPs admit width-2 exact realizations for any fixed length m and, **with bias**,
012 **width-2 exact realizations uniformly over all lengths**. In contrast, the width of
013 ReLU networks must scale linearly with m to interpolate, **and they cannot simultaneously**
014 **fit two lengths with different residues modulo p** . We then provide a novel
015 Natarajan-dimension generalization bound for sine networks, yielding nearly opti-
016 mal sample complexity $\tilde{O}(p)$ for ERM over constant-width sine networks. We
017 also derive width-independent, margin-based generalization for sine networks in
018 the overparametrized regime and validate it. Empirically, sine networks generalize
019 consistently better than ReLU networks across regimes and **exhibit strong length**
020 **extrapolation**.
021

022 1 INTRODUCTION 023

024 Most modern neural networks use *nonperiodic* activations such as ReLU or GELU, a choice that
025 is highly effective on vision and language benchmarks. When the target has inherently periodic
026 structure, however, this choice can be statistically and computationally mismatched: approximating
027 periodic functions with nonperiodic networks may require substantially larger width or depth than
028 architectures that encode periodic features or activations (Rahaman et al., 2019; Rahimi & Recht,
029 2007; Tancik et al., 2020). Beyond in-distribution generalization, models can degrade under distri-
030 bution shift, especially at sequence lengths longer than training. Compositional tests (SCAN, CFQ)
031 and long-context suites (LRA) expose brittleness and sensitivity to positional encoding (Lake &
032 Baroni, 2018; Keysers et al., 2020; Tay et al., 2021).
033

034 We study this mismatch through a standard testbed in deep learning: *modular addition*. Given m
035 input tokens in $\{0, \dots, p - 1\}$, the label is their sum modulo p . This task generalizes k -parity
036 and is widely used to probe how networks represent and discover algorithms, as well as to study
037 *grokking*—delayed generalization after a long memorization phase (Power et al., 2022). Mechanistic
038 analyses report *Fourier-like* internal circuits for models that solve modular addition, where tokens
039 are embedded as phases and addition is implemented as rotation on the unit circle. Distinct learning
040 procedures (“clock” vs. “pizza”) emerge under different hyperparameters and architectures (Nanda
041 et al., 2023; Zhong et al., 2023). These observations suggest a simple design principle: when the
042 task is periodic, an *explicit periodic inductive bias* should help.
043

044 Periodic representations already play a central role across machine learning. Sinusoidal positional
045 encodings are historically canonical in Transformers (Vaswani et al., 2017); ROPE encodes positions
046 as complex rotations, mapping offsets to phase differences and imposing a periodic bias preserving
047 attention geometry (Su et al., 2021). Fourier and random features mitigate spectral bias and im-
048 prove high-frequency fidelity (Rahimi & Recht, 2007; Tancik et al., 2020; Rahaman et al., 2019);
049 sinusoidal activations (SIREN) enable compact implicit neural representations for images, audio,
050 and PDEs (Sitzmann et al., 2020). In 3D view synthesis (NeRF), Fourier positional encodings are
051 key to recovering fine detail from coordinates (Mildenhall et al., 2020), and spectral parameteriza-
052 tions power operator-learning methods for PDEs (Li et al., 2021b). These observations motivate the
053 following hypothesis:

On periodic tasks, periodic bias increases expressivity and makes learning provably easier.

We formalize and test this hypothesis in a minimal yet nontrivial setting: two-layer MLPs trained on a modular addition task with one-hot inputs and a shared, position-independent embedding. While the underlying principle implies broader utility, we restrict our theoretical validation to this testbed to derive sharp separation results. We compare ReLU and sinusoidal activations and analyze the multiclass 0–1 loss in underparameterized, overparameterized, and out-of-distribution regimes.

We summarize our contributions below:

1. **Sharp expressivity gap between sine and ReLU networks.** Sine MLPs achieve exact modular addition with width-2 for any fixed length m (Thm. 4.1) and, with bias, width-2 exact realizations uniformly over all lengths (Thm. 4.2). Without bias, a length-agnostic construction of width $\lfloor (p-1)/2 \rfloor$ attains population accuracy $1 - \frac{1}{p}$ for odd p and accuracy $1 - \frac{2}{p}$ for even p (Thm. 4.2). In contrast, ReLU MLPs require width at least $\frac{m-p}{p+2} = \Omega(m/p - 1)$ for exact realization at length m (Thm. 4.3) and cannot simultaneously fit two lengths m_1, m_2 with $m_1 \not\equiv m_2 \pmod{p}$ (Thm. 4.4).
2. **Unified underparameterized generalization for broad activations.** Via a multiclass Natarajan-dimension analysis based on pairwise reduction, we prove uniform convergence bounds for two-layer MLPs with a wide family of activations—piecewise-polynomial (include ReLU), trigonometric-polynomial (include sine), and rational-exponential (include sigmoid/SiLU/QuickGELU). The resulting sample complexity is $\tilde{\Theta}(dp)$ with width d and vocabulary size p (Thm. 5.6; Tab. 1).
3. **Width-independent margin guarantees for overparameterized networks.** Under spectral- and Frobenius-norm constraints for ReLU and a $\|V\|_{1,\infty}$ constraint for sine, we establish multiclass, width-independent margin generalization bounds. Our sine construction attains large normalized margins, leading to population error $\tilde{\mathcal{O}}(p/\sqrt{n})$ when the normalized margin is $\Omega(1)$ (Thm. 6.2). In contrast, the best known ReLU interpolants achieve normalized margins that decay exponentially with m , yielding substantially weaker bounds under comparable norms (Thm. 6.3).
4. **Near-optimal ERM sample complexity for constant-width sine networks.** We prove that any interpolating algorithm over constant-width sine MLPs has sample complexity $\tilde{\mathcal{O}}(p)$ (Cor. 5.8).
5. **Empirical validation of our theory.** With matched architectures, datasets, and training budgets, sine MLPs consistently outperform ReLU MLPs on modular addition across under- and overparameterized regimes; in the latter, larger normalized margins track improved test accuracy (Figs. 1–3). Sine MLPs also retain near-perfect accuracy far beyond training lengths, while ReLU MLPs collapse to chance (Figs. 4–5). These advantages extend to Transformers, where sine activations demonstrate significantly better sample efficiency than ReLU and GELU baselines (Fig. 6).

2 RELATED WORK

Modular arithmetic as a probe of algorithmic learning and grokking. Delayed generalization (“grokking”) was first highlighted on modular arithmetic (Power et al., 2022). Reverse-engineering reveals Fourier-style internal mechanisms—tokens represented as phases and addition as rotation (Nanda et al., 2023; Zhong et al., 2023)—while a unifying view shows MLPs and transformers can implement an approximate CRT with coset-tracking neurons using only $\mathcal{O}(\log p)$ frequencies (McCracken et al., 2025). For $m=2$, analyses indicate an initial kernel regime followed by feature learning (Mohamadi et al., 2024), consistent with effective-theory explanations of grokking (Liu et al., 2022a). Margin-based perspectives explain the emergence of Fourier features (Morwani et al., 2024; Li et al., 2025), and optimizer/regularization choices modulate the dynamics (Thilak et al., 2022), with related phenomena observed beyond algorithmic data (Liu et al., 2022b). Fourier-style embeddings accelerate modular-addition learning and reduce grokking (Zhou et al., 2024a). These observations motivate architectures with an explicit periodic bias.

Periodic representations and encodings. Periodic structure is widely used in modern models: sinusoidal and rotary positional encodings (Vaswani et al., 2017; Su et al., 2021); random Fourier features and sinusoidal encodings to address spectral bias (Rahimi & Recht, 2007; Tancik et al., 2020;

108 Rahaman et al., 2019); and periodic activations for implicit neural representations (SIREN) (Sitz-
 109 mann et al., 2020). Spectral parameterizations underlie NeRF and neural operators (Mildenhall
 110 et al., 2020; Li et al., 2021b). We instantiate this bias in a minimal algorithmic setting—two-layer
 111 MLPs with shared embeddings—showing that sine activations align with modular addition and en-
 112 able compact constructions with favorable sample complexity.

113
Capacity and generalization. Classical tools bound expressivity via growth functions and
 114 sign-pattern counting for semialgebraic classes (Warren, 1968; Goldberg & Jerrum, 1995; An-
 115 thony & Bartlett, 2009), while multiclass uniform convergence is governed by the Natarajan di-
 116 mension (Natarajan, 1989; Haussler & Long, 1995; Shalev-Shwartz & Ben-David, 2014). For
 117 piecewise-linear/polynomial networks, nearly tight VC bounds scale like $\Theta(WL \log W)$ up to
 118 factors (Bartlett et al., 2017b). We adapt these techniques to integer-valued shared-embedding
 119 inputs and analyze both ReLU and sine units, obtaining uniform-convergence bounds and
 120 width-independent margin guarantees tailored to our setting.

121
Margins, overparameterization, and length generalization. In overparameterized regimes,
 122 margins and layerwise norms are more predictive of generalization than raw width (Neyshabur
 123 et al., 2018b). Representative results include spectral-norm and $L_{2,1}$ analyses (Bartlett et al., 2017a),
 124 size-independent Rademacher bounds under Frobenius and $L_{1,\infty}$ controls (Golowich et al., 2017),
 125 and PAC-Bayesian robustness to weight noise (Neyshabur et al., 2018a). Length extrapolation is a
 126 distinct stressor: SCAN/CFQ and LRA expose brittleness and positional-encoding sensitivity (Lake
 127 & Baroni, 2018; Keysers et al., 2020; Tay et al., 2021); ALiBi and Hard-ALiBi improve scaling
 128 with length (Press et al., 2022; Jelassi et al., 2024), whereas scaling alone often fails and per-
 129 formance can follow term frequency rather than structure (Zhou et al., 2024b; Razeghi et al., 2022).
 130 Our analysis and experiments show that periodic activations provide a principled route to strong
 131 length extrapolation.

3 MODEL SETUP

132
Notation. For an integer $p \geq 2$, let $[p] := \{0, \dots, p-1\}$ and e_i denote the i -th standard basis
 133 vector of \mathbb{R}^p . For nonnegative f, g , we write $f(n) = \mathcal{O}(g(n))$ (respectively $f(n) = \Omega(g(n))$)
 134 if there exists an absolute constant $C > 0$ such that for all $n \geq 0$, $f(n) \leq Cg(n)$ (respectively
 135 $f(n) \geq Cg(n)$). We use $f(n) = \Theta(g(n))$ when both bounds hold. We write $f(n) = \tilde{\mathcal{O}}(g(n))$ to
 136 suppress absolute constants (independent of the model architecture and data) and polylog factors.
 137 The symbols $\tilde{\Omega}(\cdot)$ and $\tilde{\Theta}(\cdot)$ are defined analogously.

138
Task and data. Fix an integer $p \geq 2$ and vocabulary $\mathcal{V} = [p]$. Each example is a length- m sequence
 139 $s_{1:m} \in [p]^m$ with $s_1, \dots, s_m \stackrel{\text{i.i.d.}}{\sim} \text{Unif}([p])$. We use one-hot encoding and a shared, position-
 140 independent input embedding, so the network observes only the bag-of-tokens vector

$$141 \quad x = \sum_{i=1}^m e_{s_i} \in \{0, 1, \dots, m\}^p, \quad \|x\|_1 = m.$$

142 The effective instance space¹ is defined as

$$143 \quad \mathcal{X}_m = \{x \in \{0, 1, \dots, m\}^p : \|x\|_1 = m\}, \quad |\mathcal{X}_m| = \binom{m+p-1}{p-1}.$$

144 Labels are modular sums $y \equiv (\sum_{i=1}^m s_i) \pmod{p} \in [p]$. Let \mathcal{D}_m denote the induced population
 145 distribution on $\mathcal{X}_m \times [p]$. Given n training samples we draw

$$146 \quad S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_m^n.$$

147
Model. We study two-layer MLPs of width d with a shared input embedding, comparing standard
 148 ReLU and sinusoidal activations. Parameters are $\theta = (W, V)$ with $W \in \mathbb{R}^{d \times p}$ and $V \in \mathbb{R}^{p \times d}$. For
 149 $x \in \mathbb{R}^p$ and an activation $\sigma \in \{\text{ReLU}, \text{sin}\}$, the score vector² is $s^\theta(x) = V\sigma(Wx) \in \mathbb{R}^p$.

150
¹In the out-of-domain regime, it is extended to $\mathcal{X} := \bigcup_{m \geq 2} \mathcal{X}_m$.

151
²Unless otherwise noted, MLPs are defined without first-layer bias. When bias is used, we write $\theta = (W, V, b)$ and define $s^\theta(x) = V\sigma(Wx + b)$, where $b \in \mathbb{R}^d$.

We refer to networks with $\sigma = \sin$ as *sine networks* and those with $\sigma = \text{ReLU}$ as *ReLU networks*. The induced predictor is $h_\theta(x) = \text{uargmax}_{\ell \in [p]} s_\ell^\theta(x) = \begin{cases} \ell, & \text{if } s_\ell^\theta(x) > s_k^\theta(x) \text{ for all } k \neq \ell, \\ \perp, & \text{otherwise,} \end{cases}$, where \perp denotes an invalid prediction (counted as an error). The predictor returns a valid label only if the maximum score is unique, so h_θ is well defined. The hypothesis class of score functions is

$$\mathcal{H}_\Theta = \{s^\theta : \theta = (W, V) \in \mathbb{R}^{d \times p} \times \mathbb{R}^{p \times d}\}.$$

Training. We minimize the empirical cross-entropy loss over $S = \mathcal{D}_{\text{train}}$, treating $s^\theta(x)$ as the logits for the p -class classification problem with labels in $[p]$. Optimization employs AdamW and Muon; implementation details and hyperparameters are provided in App. C.

4 EXPRESSIVITY OF SINE AND RELU MLPs

We establish a sharp expressivity gap for modular addition under a shared, position-independent embedding. For sine MLPs, we provide explicit constructions showing they are highly efficient: width-2 suffices for exact realization at any fixed length, and with bias, for all lengths simultaneously (Thms. 4.1–4.2). Conversely, we prove that ReLU MLPs face fundamental limitations: their width must scale linearly with sequence length m to interpolate, and they fail to generalize across incongruent lengths (Thms. 4.3–4.4). We outline the logic of these proofs in App. D and provide full details in App. E.

Theorem 4.1 (Exact realization at fixed length by a width-2 sine network). *For any fixed $m \geq 2$ and $p \geq 2$, there exists a width-2 sine network $s^\theta(x) = V \sin(Wx)$ that exactly realizes $Y \equiv (\sum_{i=1}^m s_i) \pmod{p}$ for all $x = (s_1, \dots, s_m) \in \mathcal{X}_m$, i.e., $\mathbb{P}_{(X,Y) \sim \mathcal{D}_m}[h_\theta(X) = Y] = 1$.*

Theorem 4.2 (Uniform-in-length expressivity of sine networks). *Fix $p \geq 2$ and consider two-layer sine MLPs with prediction rule $h_\theta(x) = \text{uargmax}_{\ell \in [p]} s_\ell^\theta(x)$.*

With bias. *There exists a width-2 sine network $s^\theta(x) = V \sin(Wx + b)$ that exactly realizes $Y \equiv (\sum_{i=1}^m s_i) \pmod{p}$ for all $m \geq 2$, that is,*

$$\mathbb{P}_{(X,Y) \sim \mathcal{D}_m}[h_\theta(X) = Y] = 1.$$

Without bias. *There exists a sine network $s^\theta(x) = V \sin(Wx)$ of width $d = \lfloor (p-1)/2 \rfloor$ such that, for all $m \geq 2$,*

1. *If p is odd, then $\mathbb{P}_{(X,Y) \sim \mathcal{D}_m}[h_\theta(X) = Y] \geq 1 - \frac{1}{p}$.*
2. *If p is even, then $\mathbb{P}_{(X,Y) \sim \mathcal{D}_m}[h_\theta(X) = Y] \geq 1 - \frac{2}{p}$.*

Theorem 4.3 (Width lower bound for modular addition with ReLU networks). *If a ReLU network $s^\theta(x) = V \text{ReLU}(Wx)$ exactly realizes modular addition on \mathcal{X}_m , then necessarily*

$$d \geq \frac{m-p}{p+2} = \Omega\left(\frac{m}{p} - 1\right).$$

Theorem 4.4 (Impossibility of exact realization at two incongruent lengths for ReLU networks). *Let m_1, m_2 with $m_1 \not\equiv m_2 \pmod{p}$. There is no ReLU network $s^\theta(x) = V \text{ReLU}(Wx)$ such that*

$$h_\theta(x) = y(x) \quad \text{for all } x \in \mathcal{X}_{m_1} \cup \mathcal{X}_{m_2}.$$

However, high expressivity does not guarantee generalization. Indeed, constant-size sine networks can shatter infinite sets when inputs are unbounded:

Example 4.5 (Lem. 7.2 (Anthony & Bartlett, 2009); see also App. H.2). *The class $\mathcal{F} = \{x \mapsto \text{sgn}(\sin(ax)) : a \in \mathbb{R}^+\}$ of functions defined on \mathbb{N} has $\text{VCdim}(\mathcal{F}) = \infty$.*

Leveraging the structure of our integer-valued, bounded input space, the following section establishes generalization via uniform-convergence bounds that scale linearly with parameter counts.

216

5 GENERALIZATION IN THE UNDERPARAMETERIZED REGIME

217

218 We establish uniform convergence guarantees for two-layer MLPs with shared embeddings across
219 a broad class of activations. We characterize the learnability of these models via the Natarajan
220 dimension. Our proof strategy bounds the growth function by counting sign patterns induced by
221 pairwise margins (Lem. G.6) and invokes the Multiclass Fundamental Theorem (Thm. G.18). We
222 provide a high-level roadmap of this reduction in App. D and detailed proofs in App. G.

223 **Definition 5.1** (VC-dimension). The *VC-dimension* of $\mathcal{B} \subseteq \{-1, +1\}^{\mathcal{Z}}$, denoted $\text{VCdim}(\mathcal{B})$, is the
224 maximal size of a set $T \subset \mathcal{Z}$ that is *shattered* by \mathcal{B} , meaning the restriction of \mathcal{B} to T realizes all
225 sign patterns: $\mathcal{B}|_T = \{-1, +1\}^T$.

226 **Definition 5.2** (Natarajan-dimension). The *Natarajan-dimension* of $\mathcal{H} \subseteq [p]^{\mathcal{X}}$, denoted $\text{Ndim}(\mathcal{H})$,
227 is the maximal size of a set $S \subset \mathcal{X}$ that is *N-shattered* by \mathcal{H} . A set S is N-shattered if there exist
228 $f_1, f_2 : S \rightarrow [p]$ with $f_1(x) \neq f_2(x)$ such that for every binary selector $b \in \{1, 2\}^S$, there is some
229 $h \in \mathcal{H}$ satisfying $h(x) = f_b(x)$ for all $x \in S$.

230 **Definition 5.3** (Piecewise-polynomial activation). A function $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is *piecewise polynomial*
231 with at most $L \geq 1$ pieces and maximal piece degree $r \geq 1$ if there exist breakpoints

232
$$-\infty = b_0 < b_1 < \dots < b_{L-1} < b_L = +\infty$$
233

234 and polynomials P_1, \dots, P_L with $\deg P_\ell \leq r$ such that $\sigma(t) = P_\ell(t)$ for all $t \in (b_{\ell-1}, b_\ell]$, $\ell \in [L]$.

235 **Definition 5.4** (Trigonometric-polynomial activation). Let $K \in \mathbb{N}_0$. A function $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is a
236 *trigonometric polynomial of degree at most K* if

237
$$\sigma(t) = a_0 + \sum_{k=1}^K (a_k \cos(kt) + b_k \sin(kt))$$
238

239 for some real coefficients $a_0, (a_k)_{k \leq K}, (b_k)_{k \leq K}$.

240 **Definition 5.5** (Polynomial–rational–exponential activation). Fix $k \in \mathbb{R} \setminus \{0\}$, $c \geq 0$, $\tau > 0$,
241 $a, b \in \mathbb{R}$, and a polynomial P with degree $r := \deg P \in \mathbb{N}_0$. Define

242
$$\sigma(t) = P(t) \frac{ae^{kt} + b}{ce^{kt} + \tau}.$$
243

244 **Theorem 5.6** (Uniform convergence for broad activation families). Let σ be one of: piecewise-
245 polynomial (Def. 5.3), trigonometric-polynomial (Def. 5.4), or polynomial–rational–exponential
246 (Def. 5.5). Let \mathcal{H}_σ be the corresponding two-layer class. Then for every $\delta \in (0, 1)$, with proba-
247 bility at least $1 - \delta$ over the random draw of the training set $\mathcal{D}_{\text{train}} \sim \mathcal{D}_m^n$,

248
$$\sup_{h \in \mathcal{H}_\sigma} \left| \mathbb{P}_{(X, Y) \sim \mathcal{D}_m} [h(X) \neq Y] - \mathbb{P}_{(X, Y) \sim \mathcal{D}_{\text{train}}} [h(X) \neq Y] \right| \leq \tilde{\mathcal{O}} \left(\sqrt{\frac{dp + \log(1/\delta)}{n}} \right).$$
249

250 As direct corollaries of Thm. 5.6, we have:

251 **Corollary 5.7.** Two-layer MLPs with activation *ReLU* ($\sigma(t) = \max\{0, t\}$), *monomial* ($\sigma(t) = t^m$),
252 *sine* ($\sigma(t) = \sin t$), *Sigmoid* ($\sigma(t) = \frac{e^t}{e^t + 1}$), *SiLU* ($\sigma(t) = t \text{ sigmoid}(t)$), *QuickGELU* ($\sigma(t) =$
253 $t \text{ sigmoid}(\beta t)$, $\beta > 0$) have sample complexity $\tilde{\mathcal{O}}(dp)$.

254 **Corollary 5.8** (Sample-complexity upper bound for ERM with constant-width sine networks). Fix
255 a constant width $d \geq 2$. With probability at least $1 - \delta$ over the random draw of the training set
256 $\mathcal{D}_{\text{train}} \sim \mathcal{D}_m^n$, for all interpolating ERM solutions $\hat{\theta}$:

257
$$\mathbb{P}_{(X, Y) \sim \mathcal{D}_m} [h_{\hat{\theta}}(X) \neq Y] \leq \tilde{\mathcal{O}} \left(\sqrt{\frac{p + \log(1/\delta)}{n}} \right),$$
258

259 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in n, m , and δ^{-1} . Consequently, the sample complexity is
260 $\tilde{\mathcal{O}}(p)$.

261 **Remark 5.9** (Near-optimality). Cor. 5.8 is nearly optimal for label-permutation equivariant algo-
262 rithms (Def. F.2): it matches the information-theoretic lower bound $\Omega(p)$ established in Thm. F.11.
263 Rmk. F.3 provides notable examples of label-permutation equivariant learners, including AdaGrad,
264 Adam, and GD/SGD with momentum under i.i.d. final-layer initialization.

270 Table 1: Capacity bounds for two-layer MLPs with W parameters and width d . $\tilde{\Theta}(\cdot)$ suppresses
 271 polylog factors in W , d , and the bound on the input. **Bold** entries are our contributions; Natarajan
 272 lower bounds come from Thm. H.2 and upper bounds from Thm. H.6. Full details are in App. H.
 273

Activation	Input type	VCdim ³	Ndim
Piecewise linear	real-valued	$\Theta(W \log W)$	$\tilde{\Theta}(W)$
Piecewise polynomial	real-valued	$\Theta(W \log(W))$	$\tilde{\Theta}(W)$
Pfaffian, incl. standard sigmoid	real-valued	$\mathcal{O}(d^2 W^2)$	—
Standard sigmoid	real-valued	$\Omega(W \log W)$	$\Omega(W \log W)$
Standard sigmoid	integer-valued, bounded	$\Omega(W), \mathcal{O}(W)$	$\tilde{\Theta}(W)$
Sine	integer-valued, unbounded	∞	∞
Trigonometric polynomial	integer-valued, bounded	—	$\tilde{\mathcal{O}}(W)$
Rational exponential	integer-valued, bounded	—	$\tilde{\mathcal{O}}(W)$

286 6 GENERALIZATION IN THE OVERPARAMETERIZED REGIME

288 Uniform-convergence yields stronger bounds for two-layer sine MLPs than for ReLU networks, yet
 289 these still scale with hidden width. What happens as width becomes very large? **To bridge this gap,**
 290 **we establish width-independent, margin-based generalization bounds.** Our analysis builds on the
 291 ℓ_∞ vector-contraction bound for Rademacher complexity (Foster & Rakhlin, 2019). For sine MLPs,
 292 we control the contracted complexity via the Dudley entropy integral and covering numbers adapted
 293 to periodic activations. For ReLU MLPs, we leverage positive homogeneity to apply a layer-wise
 294 peeling argument (Golowich et al., 2017). We provide a high-level roadmap of these logical steps in
 295 App. D before detailing the full proofs in App. J.

296 Let v_j denote the j -th row of V for $j \in [p]$. We write $\|V\|_{1,\infty} := \max_{j \in [p]} \|v_j\|_1$ (the maximum
 297 row ℓ_1 -norm), $\|V\|_2$ for the spectral norm, and $\|W\|_F$ for the Frobenius norm.

298 **Definition 6.1** (Empirical margin). Let (x, y) be a labeled example with $y \in [p]$ and score vector
 299 $s^\theta(x) \in \mathbb{R}^p$. The multiclass margin is $\gamma_\theta(x, y) := s_y^\theta(x) - \max_{k \in [p] \setminus \{y\}} s_k^\theta(x)$.

300 For a finite sample $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$, define the (empirical) margin of S as

$$302 \gamma_\theta(S) := \min_{i \in [n]} \gamma_\theta(x^{(i)}, y^{(i)}).$$

304 We say that the classifier interpolates S if $\gamma_\theta(S) > 0$.

305 **Theorem 6.2** (Two-layer sin MLP, margin-based generalization). *Consider the two-layer MLP*
 306 $s^\theta(x) = V \sin(Wx) \in \mathbb{R}^p$ *on* \mathcal{X}_m . *Fix* $\delta \in (0, 1)$ *and assume* $d \geq 2p$. *With probability at*
 307 *least* $1 - \delta$ *over the random draw of the training set* $\mathcal{D}_{\text{train}} \sim \mathcal{D}_m^n$, *for all interpolating solutions* θ
 308 *with normalized margin* $\bar{\gamma}_{\theta, \text{sin}} := \frac{\gamma_\theta(\mathcal{D}_{\text{train}})}{\|V\|_{1,\infty}} = \Omega(1)$, *it holds that*

$$310 \mathbb{P}_{(X,Y) \in \mathcal{D}_m} [h_\theta(X) \neq Y] \leq \tilde{\mathcal{O}}\left(p \sqrt{\frac{1}{n}}\right),$$

312 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in n , m , and δ^{-1} .

314 **Theorem 6.3** (Two-layer ReLU MLP, margin-based generalization). *Assume* $p > m$, $n > m^2$, *and*
 315 $n \geq 17$. *Fix* $\delta \in (0, 1)$. *Suppose the width satisfies* $d \geq 64p m^{\frac{m}{2} + 2} 4.67^m$. *With probability at*
 316 *least* $1 - \delta$ *over the random draw of the training set* $\mathcal{D}_{\text{train}} \sim \mathcal{D}_m^n$, *for all interpolating solutions* θ
 317 *with normalized margin* $\bar{\gamma}_{\theta, \text{ReLU}} := \frac{\gamma_\theta(\mathcal{D}_{\text{train}})}{\|V\|_2 \|W\|_F} = \Omega\left(\frac{1}{\sqrt{p}} \cdot \frac{1}{m^{1.5m+2.5} 6.34^m}\right)$, *it holds that*

$$319 \mathbb{P}_{(X,Y) \sim \mathcal{D}_m} [h_\theta(X) \neq Y] \leq \tilde{\mathcal{O}}\left(p m^{1.5m+2.5} 6.34^m \sqrt{\frac{m}{n}}\right),$$

321 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in n and δ^{-1} .

323 ³VC-dimension lower bounds are existential: for given size and depth budgets, there exists a network that
 shatters a set of the claimed cardinality. Upper bounds are universal: they hold for every network in the family.

324 *Remark 6.4.* The exponential dependence on m in Thm. 6.3 is a proof artifact rather than a fundamental limitation. Our interpolation guarantee uses an explicit construction akin to the ‘‘Pizza’’ algorithm (Zhong et al., 2023), an implementation of the aCRT template (McCracken et al., 2025), which certifies learnability via a mechanistic scheme (approximating periodic embeddings with ReLUs) but yields conservative margin estimates. Empirically (Figs. 3, 11, 13), trained ReLU networks attain much larger margins at smaller widths, indicating that the theoretical gap arises from the inefficiency of this construction rather than intrinsic model constraints.

331

332 7 EXPERIMENTS

333

334 To evaluate our theory, we train two-layer MLPs with sine and ReLU activations on modular addition
 335 under three regimes: (i) underparameterized, (ii) overparameterized—both defined by the number of
 336 parameters relative to the training set size—and (iii) out-of-domain regime that tests extrapolation to
 337 sequence lengths unseen during training, *i.e.*, length extrapolation. Full setup details and additional
 338 figures are provided in App. C.

339

340

341 7.1 UNDERPARAMETERIZED REGIME.

342

343 We evaluate our sample complexity predictions by training matched architectures that differ only in
 344 their nonlinearity (sine vs. ReLU), using AdamW with zero weight decay on identical datasets and
 345 with identical optimization hyperparameters (Fig. 1).

346

347

348 **Sine networks are consistently more sample efficient than ReLU networks.** Across widths and
 349 training sizes, sine networks consistently outperform ReLU in both training and test accuracy, at-
 350 taining a given accuracy at substantially smaller widths. For a fixed training set size, reducing the
 351 width—provided it remains sufficient for optimization—improves test accuracy for both activations,
 352 consistent with our uniform convergence guarantee in Sec. 5.

353

354

355 7.2 OVERPARAMETERIZED REGIME.

356

357

358 To validate the margin-based bounds in Sec. 6, we train wide two-layer MLPs with Muon⁴ and
 359 sweep over decoupled weight decay rates. For sine models we apply weight decay only to the
 360 second layer; for ReLU we decay both layers. We report the 0.5th-percentile rather than the
 361 minimum margin because the latter is often dominated by rare outliers; a small quantile yields
 362 a stable large-margin proxy and, by Cor. J.4, only adds an additive 0.5% term to the popu-
 363 lation error. We log training and test accuracies, the 0.5th-percentile of the training margin
 364 $\gamma_{\text{train}}^{0.5\%} := \text{Percentile}_{0.5} \{ \gamma_{\theta}(x^{(i)}, y^{(i)}) \}_{i=1}^n$, together with normalized margins that factor out layer
 365 scales: ReLU: $\hat{\gamma}_{\text{ReLU}} = \frac{\gamma_{\text{train}}^{0.5\%}}{\|V\|_2 \|W\|_F}$, Sine: $\hat{\gamma}_{\text{sin}} = \frac{\gamma_{\text{train}}^{0.5\%}}{\|V\|_{1,\infty}}$.

366

367 **Normalized margins track generalization in the overparameterized regime.** Figs. 2 and 3 show
 368 that, as weight decay increases through a moderate range, normalized margins grow and test ac-
 369 curacy improves; with excessively large decay, training accuracy falls and generalization degrades.
 370 These trends align with the prediction that, in the overparameterized regime, generalization is gov-
 371 erned by effective layer scales and margins.

372

373

374 7.3 OUT-OF-DOMAIN (OOD) REGIME (LENGTH GENERALIZATION).

375

376

377 We study length generalization, *i.e.*, the ability to generalize to test datasets with sequence
 378 lengths unseen during training. The training sequence length m is sampled uniformly from
 379 $\{2, 3, 4, 5, 7, 13, 19\}$, and we report the population accuracy of the trained model on a uniform dis-
 380 tribution over data of fixed lengths, for lengths up to 811.

381

382

383 **Sine networks achieve near-perfect length generalization, while ReLU networks struggle in-**
 384 **distribution.** We compare the length generalization capability of MLPs with sine and ReLU acti-
 385 vations in Fig. 4. Once the data budget exceeds a threshold, sine MLPs achieve perfect accuracy

386

387 ⁴With decoupled weight decay, Muon’s induced spectral geometry upper bounds $\|V\|_2 \|W\|_F$ and $\|V\|_{1,\infty}$
 388 up to dimension-dependent constants; see App. C.

Figure 1: Accuracies for two-layer sine and ReLU MLPs in the underparameterized regime.

Figure 2: Two-layer sine networks in the overparameterized regime. Clockwise from top left: layer norm, normalized margin, test accuracy, and standard deviation of test accuracy.

424
425
426
427
428
429
430
431

on all seen lengths and remain essentially perfect on much longer unseen lengths. In contrast, ReLU MLPs struggle even in-domain and quickly degrade to chance-level accuracy on longer OOD lengths. These behaviors align closely with our expressivity results in Sec. 4. Thm. 4.2 shows that a width-2 sine network without bias can learn modular addition uniformly over all sequence lengths with high accuracy, implying that sine MLPs can map the shared embedding to a periodic representation of the modular sum. Conversely, Thm. 4.3 implies that the required ReLU width must grow linearly with m to interpolate, and Thm. 4.4 shows that no fixed-width ReLU network can exactly match the ground truth at two incongruent lengths, indicating that ReLU MLPs admit no comparably simple periodic parametrization.

Figure 3: Two-layer ReLU networks in the overparameterized regime (panels as in Fig. 2).

Figure 4: Out-of-domain accuracies of two-layer sine and ReLU MLPs, with no bias; each heatmap cell reports accuracy under the Best-over-WD scheme.

Bias improves the robustness of sine MLP length generalization. Figure 5 compares sine MLPs with and without a first-layer bias. Empirically, adding the bias preserves the excellent in-distribution performance while making length generalization more robust: accuracy remains high over a wider range of OOD lengths and weight-decay values. This phenomenon is naturally connected to our expressivity results. Thm. 4.2 shows that the bias effectively allows sines with different phases, and thus a richer periodic basis that implicitly includes cosine-like components, which makes it easier for the network to implement a modular rule that remains consistent across many sequence lengths. This additional expressivity provides a plausible explanation for the more stable and robust length generalization observed in biased sine MLPs.

7.4 TRANSFORMER BASELINE.

To verify that our observations are not specific to MLPs, we additionally train a 1-layer, 1-head decoder-only Transformer on modular addition and vary the feed-forward activation among *sine*, *ReLU*, and *GELU*.

Figure 5: Out-of-domain accuracies for two-layer sine MLPs with and without first-layer bias.

Figure 6: Train and test accuracy on modular addition for a 1-layer, 1-head decoder-only Transformer with FFN activations sine, ReLU, and GELU.

515 **Sine activation also improves sample efficiency in Transformers.** Fig. 6 reports train and test accuracies as a function of training-set size. Consistent with the MLP results, the sine activation attains high test accuracy with substantially fewer samples, while ReLU and GELU require more data and remain notably worse at moderate data budgets. This corroborates our theory across architectures: when optimization succeeds, the sine nonlinearity yields solutions that generalize more reliably on modular addition.

8 CONCLUSION

524 We establish that periodic activations offer provable advantages for learning modular addition. Our
525 analysis reveals a sharp expressivity gap under a shared, position-independent embedding: width-
526 2 sine MLPs suffice for exact modular addition (Thms. 4.1, 4.2), whereas ReLU networks re-
527 quire width scaling linearly with sequence length and cannot generalize across incongruent lengths
528 (Thms. 4.3, 4.4). We complement this with statistical guarantees, deriving $\tilde{\Theta}(dp)$ uniform conver-
529 gence bounds (Thm. 5.6); specialized to sine with constant width, any interpolating ERM learner
530 achieves nearly optimal $\tilde{\mathcal{O}}(p)$ sample complexity (Thm. 5.8). In the overparameterized regime,
531 we establish width-independent margin bounds (Thm. 6.2). Empirically, sine networks outperform
532 ReLU models in sample efficiency (Fig. 1), and their superior test accuracy tracks with larger nor-
533 malized margins in the overparameterized regime (Figs. 2–3). In the OOD regime, sine MLPs
534 generalize far beyond training lengths, while ReLU networks degrade to chance (Figs. 4, 5). These
535 benefits extend to Transformer architectures, where sine activations yield significantly better sample
536 efficiency than standard ReLU and GELU baselines (Fig. 6). Together, our results support a robust
537 design principle: encoding periodicity directly into the architecture maximizes both expressivity and
538 learnability for periodic tasks.

540 REFERENCES
541

542 Emmanuel Abbe, Enric Boix Adserà, and Theodor Misiakiewicz. Sgd learning on neural net-
543 works: leap complexity and saddle-to-saddle dynamics. In Gergely Neu and Lorenzo Rosasco
544 (eds.), *Proceedings of Thirty Sixth Conference on Learning Theory*, volume 195 of *Proceed-
545 ings of Machine Learning Research*, pp. 2552–2623. PMLR, 12–15 Jul 2023. URL <https://proceedings.mlr.press/v195/abbe23a.html>.

546

547 Martin Anthony and Peter L. Bartlett. *Neural Network Learning: Theoretical Foundations*. Cam-
548 bridge University Press, 2009. ISBN 978-0-521-11862-0. doi: 10.1017/CBO9780511624216.
549 Paperback reissue of the 1999 edition.

550

551 Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
552 neural networks. *arXiv preprint arXiv:1706.08498*, 2017a.

553

554 Peter L. Bartlett, Nick Harvey, Chris Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
555 pseudodimension bounds for piecewise linear neural networks. *arXiv preprint arXiv:1703.02930*,
2017b. doi: 10.48550/arXiv.1703.02930. URL <https://arxiv.org/abs/1703.02930>.

556

557 Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
558 Weakly learning dnf and characterizing statistical query learning using fourier analysis. In *Pro-
559 ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (STOC)*, pp. 421–
560 430. ACM, 1994.

561

562 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
563 statistical query model. *Journal of the ACM*, 50(4):506–519, 2003.

564

565 Yuhang Cai, Kangjie Zhou, Jingfeng Wu, Song Mei, Michael Lindsey, and Peter L. Bartlett. Im-
566 plicit bias of gradient descent for non-homogeneous deep networks. In *Proceedings of the 42nd Inter-
567 national Conference on Machine Learning (ICML)*. PMLR, 2025. URL <https://arxiv.org/abs/2502.16075>. Also available as arXiv:2502.16075.

568

569 Yuan Cao, Difan Zou, Yuanzhi Li, and Quanquan Gu. The implicit bias of batch normalization in lin-
570 ear models and two-layer linear convolutional neural networks. In *Proceedings of the 36th Confer-
571 ence on Learning Theory (COLT)*, volume 195 of *Proceedings of Machine Learning Research*, pp.
572 5699–5753. PMLR, Jul 12–15 2023. URL <https://proceedings.mlr.press/v195/cao23a.html>.

573

574 Lizhang Chen, Jonathan Li, and Qiang Liu. Muon optimizes under spectral norm constraints. *arXiv
575 preprint arXiv:2506.15054*, 2025. URL <https://arxiv.org/abs/2506.15054>.

576

577 Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
578 trained with the logistic loss. In *Proceedings of the 33rd Conference on Learning Theory (COLT)*,
579 volume 125 of *Proceedings of Machine Learning Research*, pp. 1305–1338. PMLR, 2020. URL
<https://proceedings.mlr.press/v125/chizat20a.html>.

580

581 Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function spaces for
582 neural network models. *Constructive Approximation*, 55(1):369–406, 2022. doi: 10.1007/s00365-021-09549-y. URL <https://doi.org/10.1007/s00365-021-09549-y>.

583

584 Chen Fan, Mark Schmidt, and Christos Thrampoulidis. Implicit bias of spectral descent and muon
585 on multiclass separable data. In *Proceedings of the 3rd Workshop on High-dimensional Learning
586 Dynamics (HiLD)*, 2025. URL <https://openreview.net/forum?id=tirGweSx3a>.

587

588 Dylan J. Foster and Alexander Rakhlin. ℓ_∞ vector contraction for rademacher complexity, 2019.
589 URL <https://arxiv.org/abs/1911.06468>.

590

591 Margalit Glasgow. SGD finds then tunes features in two-layer neural networks with near-optimal
592 sample complexity: A case study in the XOR problem. *arXiv preprint arXiv:2309.15111*, 2023.

593

594 Paul W. Goldberg and Mark Jerrum. Bounding the vapnik–chervonenkis dimension of concept
595 classes parameterized by real numbers. *Machine Learning*, 18(2–3):131–148, 1995. doi: 10.
596 1007/BF00993408.

594 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
 595 neural networks. *arXiv preprint arXiv:1712.06541*, 2017. URL <https://arxiv.org/abs/1712.06541>. submitted 18 December 2017, revised 17 November 2019.
 596

597 Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, and Rémi Gribonval. A path-
 598 norm toolkit for modern networks: Consequences, promises and challenges. In
 599 *The Twelfth International Conference on Learning Representations*, 2024. URL
 600 https://proceedings.iclr.cc/paper_files/paper/2024/file/b3732a13897c4cea145c3bdece80de64-Paper-Conference.pdf.
 601

602 Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
 603 terms of optimization geometry, 2018.

604 Michael Hahn. Theoretical limitations of self-attention in sequence modeling. *arXiv preprint
 605 arXiv:1906.06755*, 2020.

606 David Haussler and Philip M. Long. A generalization of sauer's lemma. *Journal of Combinatorial
 607 Theory, Series A*, 71(2):219–240, 1995. doi: 10.1016/0097-3165(95)90001-2.

608 Xinting Huang, Andy Yang, Satwik Bhattacharya, Yash Sarrof, Andreas Krebs, Hattie Zhou, Pree-
 609 tum Nakkiran, and Michael Hahn. A formal framework for understanding length generaliza-
 610 tion in transformers. In *International Conference on Learning Representations*, 2025. URL
 611 <https://arxiv.org/abs/2410.02140>. Published as a conference paper at ICLR 2025.
 612

613 Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
 614 formers are better than state space models at copying. In Ruslan Salakhutdinov, Zico Kolter,
 615 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 616 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
 617 ceedings of Machine Learning Research*, pp. 21502–21521. PMLR, 21–27 Jul 2024. URL
 618 <https://proceedings.mlr.press/v235/jelassi24a.html>.
 619

619 Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In *Advances
 620 in Neural Information Processing Systems (NeurIPS)*, 2020. URL <https://arxiv.org/abs/2006.06657>.
 621

621 Marek Karpinski and Angus Macintyre. Polynomial bounds for VC dimension of sigmoidal and
 622 general pfaffian neural networks. *Journal of Computer and System Sciences*, 54(1):169–176,
 623 1997. doi: 10.1006/jcss.1997.1477.

624 Michael Kearns. Efficient noise-tolerant learning from statistical queries. *Journal of the ACM*, 45
 625 (6):983–1006, 1998. doi: 10.1145/293347.293351.

626 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
 627 Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
 628 Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A com-
 629 prehensive method on realistic data. In *International Conference on Learning Representations
 630 (ICLR)*, 2020. arXiv:1912.09713.

631 Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
 632 skills of sequence-to-sequence recurrent networks. *arXiv preprint arXiv:1711.00350*, 2018.

633 Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
 634 networks and transformers: A case study of modular arithmetic with multiple inputs. In *Inter-
 635 national Conference on Artificial Intelligence and Statistics (AISTATS)*, 2025. arXiv:2402.09469.

636 Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than
 637 fully-connected nets? In *International Conference on Learning Representations*, 2021a. doi: 10.
 638 48550/arXiv.2010.08515. URL <https://openreview.net/forum?id=uCY5MuAxexU>.
 639 ICLR 2021 (Oral).

640 Zongyi Li, Nikola Kovachki, Kamvar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 641 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 642 equations. In *International Conference on Learning Representations (ICLR)*, 2021b.

648 Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike
 649 Williams. Towards understanding grokking: An effective theory of representation
 650 learning. In *Advances in Neural Information Processing Systems*, 2022a. URL
 651 https://proceedings.neurips.cc/paper_files/paper/2022/file/69f283a00ec6cd89e21d9366f7a79cea-Paper-Conference.pdf.
 652

653 Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnidrok: Grokking beyond algorithmic data, oct
 654 2022b. URL <https://arxiv.org/abs/2210.01117>.
 655

656 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural net-
 657 works. In *International Conference on Learning Representations (ICLR)*, 2020. URL <https://arxiv.org/abs/1906.05890>.
 658

659 Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Letourneau, Doina Precup, and Jonathan
 660 Love. Uncovering a universal abstract algorithm for modular addition in neural networks, 2025.
 661 URL <https://arxiv.org/abs/2505.18266>.
 662

663 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 664 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.
 665

666 Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J. Sutherland. Why do you grok? A
 667 theoretical analysis of grokking modular addition. *arXiv preprint arXiv:2407.12332*, 2024.
 668

669 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*.
 MIT Press, 2nd edition, 2018.
 670

671 Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M. Kakade.
 Feature emergence via margin maximization: Case studies in algebraic tasks. In *International
 672 Conference on Learning Representations (ICLR)*, 2024. Spotlight.
 673

674 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 675 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.
 676

677 B. K. Natarajan. On learning sets and functions. *Machine Learning*, 4:67–97, October 1989. doi:
 10.1007/BF00114804.
 678

679 Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-SGD: Path-normalized op-
 680 timization in deep neural networks. In *Advances in Neural Information Processing Systems
 681 28 (NeurIPS 2015)*, pp. 2422–2430, 2015a. URL <https://proceedings.neurips.cc/paper/2015/hash/eaa32c96f620053cf442ad32258076b9-Abstract.html>.
 682

683 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neu-
 684 ral networks. In *Proceedings of The 28th Conference on Learning Theory*, volume 40 of
 685 *Proceedings of Machine Learning Research*, pp. 1376–1401. PMLR, 2015b. URL <https://proceedings.mlr.press/v40/Neyshabur15.html>.
 686

687 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-bayesian
 688 approach to spectrally-normalized margin bounds for neural networks. In *International Confer-
 689 ence on Learning Representations (ICLR)*, 2018a. URL <https://arxiv.org/abs/1707.09564>.
 690

691 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
 692 understanding the role of over-parametrization in generalization of neural networks, 2018b.
 693

694 Ryan O’Donnell. *Analysis of Boolean Functions*. Cambridge University Press, Cambridge, UK,
 695 2014. ISBN 978-1-107-03832-5. doi: 10.1017/CBO9781139814782.
 696

697 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
 698 eralization beyond overfitting on small algorithmic datasets. *arXiv preprint arXiv:2201.02177*,
 699 2022.
 700

701 Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 enables input length extrapolation. In *International Conference on Learning Representations
 (ICLR)*, 2022. arXiv:2108.12409.

702 Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler, Min Lin, Fred Hamprecht,
 703 Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In *Proceed-
 704 ings of the 36th International Conference on Machine Learning (ICML)*, 2019. URL <https://proceedings.mlr.press/v97/rahaman19a.html>.
 705

706 Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In *Advances in Neural
 707 Information Processing Systems (NeurIPS)*, 2007.

708

709 Yasaman Razeghi, Robert L. Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
 710 term frequencies on few-shot numerical reasoning. In *Findings of the Association for Com-
 711 putational Linguistics: EMNLP 2022*, pp. 840–854, Abu Dhabi, United Arab Emirates, 2022.
 712 doi: 10.18653/v1/2022.findings-emnlp.59. URL <https://aclanthology.org/2022.findings-emnlp.59/>.
 713

714

715 Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applications. *CoRR*,
 716 abs/2004.00557, 2020. doi: 10.48550/arXiv.2004.00557. URL <https://arxiv.org/abs/2004.00557>.
 717

718 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to
 719 Algorithms*. Cambridge University Press, 2014. doi: 10.1017/CBO9781107298019.
 720

721 Itamar Shoshani and Ohad Shamir. Hardness of learning fixed parities with neural networks, 2025.
 722 URL <https://arxiv.org/abs/2501.00817>. v2, last revised 8 Jan 2025.
 723

724 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
 725 zstein. Implicit neural representations with periodic activation functions. In *Advances in Neural
 726 Information Processing Systems (NeurIPS)*, 2020.

727 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 728 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19:1–57,
 729 2018. URL <https://jmlr.org/papers/v19/18-188.html>.
 730

731 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 732 hanced transformer with rotary position embedding. *arXiv preprint arXiv:2104.09864*, 2021.
 733

734 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 735 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
 736 networks learn high frequency functions in low dimensional domains. In *Advances in Neural
 737 Information Processing Systems (NeurIPS)*, 2020.

738 Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Long range arena: A benchmark for
 739 efficient transformers. In *International Conference on Learning Representations (ICLR)*, 2021.
 740 arXiv:2011.04006.

741 Vimal Thilak, Eta Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
 742 slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
 743 *arXiv preprint arXiv:2206.04817*, 2022.
 744

745 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 746 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
 747 mation Processing Systems (NeurIPS)*, 2017.

748 Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural networks: Poly-
 749 nomial convergence and SQ lower bounds. In *Proceedings of the Thirty-Second Conference on
 750 Learning Theory (COLT)*, volume 99 of *Proceedings of Machine Learning Research*, pp. 3115–
 751 3117. PMLR, 2019. URL <https://proceedings.mlr.press/v99/vempala19a.html>.
 752

753 Hugh E. Warren. Lower bounds for approximation by nonlinear manifolds. *Transac-
 754 tions of the American Mathematical Society*, 133(1):167–178, 1968. doi: 10.1090/S0002-9947-1968-0226281-1.
 755

756 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chen,
 757 Ed Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
 758 language models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
 759 arXiv:2201.11903.

760 Shuo Xie and Zhiyuan Li. Implicit bias of AdamW: ℓ_∞ norm constrained optimization. In *Proceed-
 761 ings of the 41st International Conference on Machine Learning (ICML)*, 2024.

763 Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li. Pencil: Long thoughts with
 764 short memory. In *Proceedings of the 42nd International Conference on Machine Learning*, vol-
 765 ume 267 of *Proceedings of Machine Learning Research*, pp. 71092–71156. PMLR, 2025. URL
 766 <https://proceedings.mlr.press/v267/yang25ac.html>.

767 Chenyang Zhang, Difan Zou, and Yuan Cao. The implicit bias of Adam on separable data. *arXiv
 768 preprint arXiv:2406.10650*, 2024.

770 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
 771 in mechanistic explanation of neural networks. In *Advances in Neural Information Processing
 772 Systems (NeurIPS)*, 2023.

773 Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use
 774 fourier features to compute addition. *arXiv preprint arXiv:2406.03445*, 2024a. doi: 10.48550/
 775 arXiv.2406.03445. URL <https://arxiv.org/abs/2406.03445>.

776 Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
 777 formers can achieve length generalization but not robustly. *arXiv preprint arXiv:2402.09371*,
 778 2024b. doi: 10.48550/arXiv.2402.09371.

781 A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

783 **Tool and scope.** We used Gemini 2.5 Pro, Gemini 3.0 Pro, and GPT-5 (high) as general-purpose
 784 assist tools for (i) code assistance (e.g., suggesting small snippets, refactoring, debugging hints,
 785 writing docstrings/comments, and drafting unit-test scaffolds) and (ii) writing assistance (e.g., copy-
 786 editing, grammar/fluency improvements, and localized rephrasing for clarity). Prompts sometimes
 787 included short excerpts of our own draft text or code necessary to request the above assistance.

788 **What the LLM did not do.** The LLM did not originate the paper’s core research ideas, hypotheses,
 789 methodological designs, experimental protocols, analyses, or conclusions; it did not write sections
 790 containing novel scientific claims; and it did not determine which results to report or how to interpret
 791 them.

792 **Verification and oversight.** All LLM-suggested text and code were independently reviewed and
 793 edited by the authors. For code, the authors carefully checked and verified correctness (including
 794 running and testing LLM-suggested snippets before inclusion). Any factual statements in edited
 795 prose were cross-checked by the authors against our own results or appropriate sources. No LLM
 796 outputs were accepted without human scrutiny.

797 **Assessment of significance.** While the LLM provided editing assistance and code-level suggestions,
 798 its role does not rise to the level of a contributing author under the ICLR policy. The intellectual
 799 contributions (problem formulation, algorithmic design, experiments, and interpretation) are those
 800 of the human authors.

801 **Reproducibility note.** LLM assistance was limited to improving clarity and developer ergonomics;
 802 it does not affect the reproducibility of our methods or results. All final code and experiments are
 803 authored, verified, and maintained by the authors.

805 B ADDITIONAL RELATED WORK

808 **Mechanistic and optimization-centric perspectives.** Mechanistic studies catalog multiple circuit
 809 families that realize modular addition (Nanda et al., 2023; Zhong et al., 2023). Analyses tie the
 features that emerge during training to margin maximization and frequency selection (Morwani

810 et al., 2024; Li et al., 2025), and show that optimizer choice and regularization can change the
 811 time-to-grok and failure modes (Thilak et al., 2022; Abbe et al., 2023). Our formulation codifies
 812 these observations by hard-wiring a periodic inductive bias in a two-layer MLP and then proving
 813 expressivity and generalization benefits.

814
 815 **Capacity results beyond the main text.** Lower bounds based on bit-extraction and upper bounds
 816 via growth-function arguments together yield near-matching VC estimates for piecewise-linear
 817 networks (Bartlett et al., 2017b). For piecewise-polynomial activations, classical results give
 818 $\mathcal{O}(WL^2 + WL \log W)$ upper bounds with refined scaling via unit counts (Anthony & Bartlett,
 819 2009; Bartlett et al., 2017b). For Pfaffian activations (e.g., sigmoid, tanh), capacity is polynomial in
 820 the parameter size (Karpinski & Macintyre, 1997; Anthony & Bartlett, 2009). These follow the gen-
 821 eral line of bounding polynomial sign patterns (Warren, 1968; Goldberg & Jerrum, 1995; Anthony
 822 & Bartlett, 2009), and in multiclass settings are summarized by the Natarajan dimension (Natarajan,
 823 1989; Haussler & Long, 1995; Shalev-Shwartz & Ben-David, 2014).

824
 825 **Learning parity and modular structure with gradient methods.** Fourier characters (parities)
 826 drive SQ hardness: under uniform inputs, even weak learning of related classes is impossible in
 827 the SQ model (O’Donnell, 2014; Blum et al., 1994; Kearns, 1998; Reyzin, 2020). With noise,
 828 LPN stays difficult—BKW is sub-exponential (Blum et al., 2003). Gradient descent on shallow
 829 nets emphasizes low-degree components, matching SQ lower bounds (Vempala & Wilmes, 2019);
 830 training time under SGD relates to leap complexity (Abbe et al., 2023), and fixed large-support
 831 parities can be provably hard (Shoshani & Shamir, 2025). In contrast, minibatch SGD can efficiently
 832 learn quadratic XOR via a find-then-tune phase with near-optimal samples (Glasgow, 2023).

833
 834 **Implicit bias of optimizers.** Optimization geometry induces solution selection (Gunasekar et al.,
 835 2018). For AdamW, analyses identify convergence to KKT points of an ℓ_∞ -constrained problem,
 836 implying an ℓ_∞ max-margin bias (Xie & Li, 2024); related max-margin behavior appears for Adam
 837 on separable data (Zhang et al., 2024). Muon has been argued to enforce effective spectral-norm
 838 control and to favor max-margin solutions in spectral geometry (Chen et al., 2025; Fan et al., 2025).
 839 These observations motivate the norm choices in our width-independent margin bounds.

840
 841 **Margin-based generalization guarantees and path-norm viewpoints.** Beyond parameter
 842 counts, generalization can be controlled by margins and layerwise scales (Neyshabur et al., 2018b).
 843 Prior bounds include spectral and row-wise $L_{2,1}$ results for Lipschitz activations (Bartlett et al.,
 844 2017a), size-independent Rademacher bounds for positively homogeneous nets and, separately,
 845 $L_{1,\infty}$ constraints for Lipschitz activations (Golowich et al., 2017), and PAC-Bayesian variants ro-
 846 bust to weight perturbations (Neyshabur et al., 2018a). Path norms yield rescaling-invariant capacity
 847 measures (Neyshabur et al., 2015b), connect to Barron-space approximation/estimation in two-layer
 848 models (E et al., 2022), underpin Path-SGD (Neyshabur et al., 2015a), and extend to modern DAG
 849 ReLU networks (Gonon et al., 2024).

850
 851 **Gradient descent dynamics and empirical margins.** On separable data with cross-entropy,
 852 gradient descent drives norm growth while the predictor direction converges to the hard-margin
 853 SVM (Soudry et al., 2018). For positively homogeneous networks, gradient flow increases a
 854 layer-normalized margin and converges to a KKT point of a margin maximization problem (Lyu
 855 & Li, 2020); directional convergence and alignment extend to deep homogeneous settings (Ji &
 856 Telgarsky, 2020). In the mean-field limit for infinitely wide two-layer nets, the limiting classifier
 857 is max-margin in an appropriate function space (Chizat & Bach, 2020). For non-homogeneous net-
 858 works, normalized margins still grow once the risk is small, with directional convergence to a KKT
 859 point (Cai et al., 2025). BatchNorm alters the bias, encouraging more uniform margins and faster
 860 directional convergence (Cao et al., 2023).

861
 862 **Additional context on OOD generalization and length extrapolation.** Self-attention at fixed
 863 size has formal expressivity limits (Hahn, 2020), while under an idealized norm-regularized in-
 864 ference scheme, causal transformers can provably length-generalize for certain Limit Transformer
 865 functions (Huang et al., 2025). Practical mitigations include ALiBi/Hard-ALiBi (Press et al., 2022;
 866 Jelassi et al., 2024), prompting strategies that elicit multi-step reasoning (Wei et al., 2022), and pe-

864 **riodic compression for long chains of thought within a fixed context window (e.g., PENCIL) (Yang
865 et al., 2025).**

867 C EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

868 C.1 EXPERIMENTAL SETUP

871 In this section, we explain the configuration used in all experiments.

873 **Data.** For each run we generate a static training set of size n once and reshuffle it at the start of
874 every epoch; the test set contains 10,000 i.i.d. samples from each \mathcal{D}_m .

875 **Initialization and reproducibility.** Unless otherwise specified, we run each hyperparameter
876 configuration with three random seeds {1337, 1338, 1339} and report metrics averaged over these runs.
877 For each run, we generate static training and test input sequences i.i.d. with `torch.randint` and
878 initialize all weights i.i.d. from $\mathcal{N}(0, 0.01^2)$. This setup ensures reproducible initializations and,
879 within each sweep over training set sizes at fixed (m, p) , that smaller training sets are strict subsets
880 of larger ones.

881 **Precision and implementation.** We implement all experiments in PyTorch, with TF32 disabled and
882 `float32` precision throughout. Metrics are logged with Weights & Biases. Each run uses a single
883 NVIDIA GPU (RTX A4000 or A6000, RTX 5000 or 6000 Ada, RTX Pro 6000 Blackwell Max-Q,
884 L40S, A100, H100, or H200).

885 **Training.** We use mini-batch training with a fixed batch size of 1024. Models are trained for up to
886 300,000 epochs, and we report metrics at the final checkpoint.

888 C.1.1 UNDERPARAMETERIZED REGIME.

890 Unless otherwise specified, we use AdamW with a constant learning rate of 10^{-3} and *zero* weight
891 decay. All other AdamW hyperparameters are left at their PyTorch defaults (betas (0.9, 0.999),
892 $\varepsilon = 10^{-8}$). We do not use learning rate schedules, warmup, or gradient clipping. When comparing
893 activations, we match (m, p, d, n) and optimizer settings. We report train and test accuracy. We
894 also evaluate vanilla SGD (learning rate 0.1, momentum 0, dampening 0, weight decay 0, Nesterov
895 disabled) in Fig. 9.

896 C.1.2 OVERPARAMETERIZED REGIME.

898 We use Muon with a constant learning rate of 10^{-3} and vary the decoupled weight decay. Mo-
899 mentum, Nesterov momentum, and Newton–Schulz steps are left at the library defaults (momentum
900 0.95, Nesterov enabled, 5 Newton–Schulz steps). We do not use learning rate schedules, warmup, or
901 gradient clipping. We report train and test accuracy and the 0.5th-percentile of the training margin,
902 $\gamma_{\text{train}}^{0.5\%}$. We report the layer norms $\|W\|_F$ and $\|V\|_2$ for ReLU models, and $\|V\|_{1,\infty}$ for sine models,
903 enabling computation of the normalized margins used in Sec. 7.

904 **Optimizer choice (overparameterized regime).** We adopt Muon to match the norm-based de-
905 nominators used in our normalized margins. For any $A \in \mathbb{R}^{m \times n}$,

$$907 \|A\|_F \leq \sqrt{\text{rank}(A)} \|A\|_2 \leq \sqrt{\min\{m, n\}} \|A\|_2, \quad \|A\|_{1,\infty} := \max_i \|A_{i,:}\|_1 \leq \sqrt{n} \max_i \|A_{i,:}\|_2 \leq \sqrt{n} \|A\|_2.$$

909 Hence $\|V\|_2 \|W\|_F$ and $\|V\|_{1,\infty}$ are controlled, up to explicit dimension factors, under the spectral
910 geometry induced by Muon with decoupled weight decay.

912 C.1.3 OUT-OF-DOMAIN (OOD) REGIME.

914 We fix the network width $d = 1024$ and train with the Muon optimizer at a constant learning
915 rate of 10^{-3} , and vary only the decoupled weight decay. We sweep decoupled weight decay over
916 $\{0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0\}$, applying it to the second layer V for sine MLPs and to both
917 layers V and W for ReLU. When the first-layer bias is enabled for sine MLPs, we optimize the
bias with AdamW (no weight decay) while keep Muon for all other parameters. Training uses a

918 static multi-length set with $m \in \{2, 3, 4, 5, 7, 13, 19\}$. For $p = 97$, the total sample budget is
 919 $n \in \{4k, 8k, 16k, 32k, 64k\}$; for $p = 53$, $n \in \{1k, 2k, 4k, 8k, 16k\}$. In each case, the budget is
 920 split as evenly as possible across the m values, and each per- m shard is reshuffled every epoch.
 921 For evaluation, we construct—once per m and seed—fixed held-out test sets for OOD lengths
 922 $m \in \{14, 38, 53, 97, 201, 303, 401, 512, 602, 705, 811\}$. We also track training and in-domain test
 923 accuracy for $m \in \{3, 7, 13\}$. To ensure determinism and independence, we use independent CPU
 924 generators seeded with $\text{seed} \times 1009 + m$ for the training data of length m and $\text{seed} \times 2009 + m$
 925 for the corresponding test data; this yields per- m test sets that are identical across epochs, prevents
 926 leakage via seed collisions, and ensures that, within each m , smaller training sets are strict prefixes
 927 of larger ones.

928 **Reporting conventions.** For some plots, we additionally use a *best-over-WD* scheme: for each
 929 accuracy metric, we compute the accuracy averaged over seeds for every weight decay value and
 930 report the maximum of these averages.

932 C.1.4 TRANSFORMER ARCHITECTURE AND TRAINING DETAILS

934 **Task and tokenization.** For a given modulus p and number of summands m , each example is
 935 a sequence of length $2m$: $x_1, +, x_2, +, \dots, x_m, =$, where $x_i \in \{0, \dots, p-1\}$. The vocabulary
 936 has size $p+2$ and includes two special symbols for “+” and “=”. The model predicts the residue
 937 $(\sum_{i=1}^m x_i) \bmod p$ from the final position. We train with the standard cross-entropy loss on the last
 938 token’s logits and report accuracy.

939 **Embeddings.** We use a single-layer *decoder-only* Transformer with one self-attention head. Tokens
 940 are embedded via a learned lookup table $\text{tok_emb} \in \mathbb{R}^{(p+2) \times d}$ and added to a learned positional
 941 embedding $\text{pos_emb} \in \mathbb{R}^{(2m) \times d}$. We use fixed $d = 256$ in Fig. 6.

$$942 \quad H^{(0)} = E_{\text{tok}}(s_{1:L}) + E_{\text{pos}}(1:L) \in \mathbb{R}^{L \times d}.$$

945 **Layer normalization.** Position-wise LN over the feature dim d with trainable $\gamma, \beta \in \mathbb{R}^d$ (init
 946 $\gamma = \mathbf{1}$, $\beta = \mathbf{0}$, $\varepsilon = 10^{-5}$):

$$947 \quad \text{LN}(h) = \gamma \odot \frac{h - \mu(h)}{\sqrt{\text{Var}(h) + \varepsilon}} + \beta.$$

950 **Attention block.** We apply pre-norm LayerNorm, then a single-head causal self-attention with
 951 projections $Q = HW_Q$, $K = HW_K$, $V = HW_V$ ($W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$, no biases). Attention
 952 logits are scaled by $1/\sqrt{d}$ and masked with a lower-triangular causal mask. The attention output is
 953 added to the residual stream.

$$954 \quad \tilde{H} = \text{LN}(H^{(0)}), \quad Q = \tilde{H}W_Q, \quad K = \tilde{H}W_K, \quad V = \tilde{H}W_V,$$

$$956 \quad M_{ij} = \begin{cases} 0 & j \leq i \\ -\infty & j > i \end{cases}, \quad P = \text{softmax}\left(\frac{QK^\top}{\sqrt{d}} + M\right), \quad H^{(1)} = H^{(0)} + PV.$$

959 **Feed-forward block.** After a second pre-norm LayerNorm, we apply a two-layer MLP with expan-
 960 sion factor 4, $\text{FFN}(h) = W_2 \phi(W_1 h)$, where $W_1 \in \mathbb{R}^{4d \times d}$, $W_2 \in \mathbb{R}^{d \times 4d}$. We sweep the activation
 961 $\phi \in \{\text{sine}, \text{ReLU}, \text{GELU}\}$. The FFN output is added to the residual stream, followed by a final
 962 LayerNorm.

$$963 \quad \hat{H} = \text{LN}(H^{(1)}), \quad H^{(2)} = H^{(1)} + W_2 \phi(W_1 \hat{H}), \quad H^{(3)} = \text{LN}(H^{(2)}).$$

965 **Output layer.** A learned, untied linear head $W_{\text{out}} \in \mathbb{R}^{(p+2) \times d}$ maps hidden states to logits in \mathbb{R}^{p+2} ;
 966 we evaluate the last position only. No dropout or label smoothing is used.

$$968 \quad Z_{:,t} = W_{\text{out}} h_t^{(3)} \in \mathbb{R}^{p+2}, \quad \hat{y} = \text{uargmax}_{c \in \{0, \dots, p-1\}} Z_{c,L}.$$

970 **Overall model.** For a sequence $s_{1:L}$ with $L = 2m$ tokens drawn from a vocabulary of size $p+2$,

$$971 \quad \text{TF}_\theta(s_{1:L}) = W_{\text{out}} \circ \text{LN} \circ (\text{Id} + (W_2 \phi \circ W_1) \circ \text{LN}) \circ (\text{Id} + \text{Attn} \circ \text{LN}) \circ (\text{tok_emb} + \text{pos_emb})(s_{1:L}).$$

Figure 7: Underparameterized regime ($m = 2, p = 307$). Final train/test accuracies for two-layer MLPs with sine vs. ReLU activations under matched budgets.

Initialization and precision. All linear and embedding weights are initialized i.i.d. $\mathcal{N}(0, \sigma^2)$ with $\sigma = 10^{-2}$; LayerNorm scales are initialized to one and biases to zero. Training uses `float32` precision without mixed precision or `TF32`.

Optimization and data. We generate a *fixed* training set of size n once per run and a fixed test set of 10,000 examples; the training set is reshuffled each epoch via index permutation. We use AdamW with constant learning rate, decoupled weight decay, batch size 1024, and gradient-norm clipping (1.0). We average metrics over seeds {1337, 1338, 1339}.

$$S_{\text{train}} = \{(s^{(j)}, y^{(j)})\}_{j=1}^n, \quad g \leftarrow \nabla_{\theta} \mathcal{L}, \quad g \leftarrow \text{clip}_{\|g\|_2 \leq 1.0}(g), \quad \theta \leftarrow \text{AdamW}(\theta, g; \eta, \lambda).$$

Hyperparameters for Fig. 6. We use $(m, p, d) = (3, 97, 256)$, train for a fixed number of epochs with AdamW (learning rate 10^{-4} , weight decay 0.0, batch size 1024), and report train/test accuracy averaged over the above seeds. The x-axis of Fig. 6 orders FFN activations as *sine*, *ReLU*, and *GELU*; rows correspond to $n \in \{4k, 8k, 12k, 16k, 20k, 24k\}$.

C.2 ADDITIONAL RESULTS

We provide additional figures for our experiments.

Figs. 7 and 8 present multiple plots for the underparameterized sweeps at $(m, p) = (2, 307)$ and $(4, 53)$, respectively. In both cases, sine networks dominate ReLU networks for matched width and training budget, and the advantage widens as width decreases, until optimization begins to fail.

Fig. 9 reports underparameterized sweeps at $(m, p) = (3, 97)$ with vanilla SGD. On the test set, sine consistently outperforms ReLU at matched width and training budget, with performance peaking at small–moderate widths and degrading at large width despite perfect training accuracy. Compared with AdamW, the qualitative picture is unchanged, but SGD generalization is slower and more learning-rate sensitive. ReLU test accuracy under SGD closely matches ReLU under AdamW, whereas sine under SGD improves much more slowly after interpolation and never reaches the test accuracy of sine under AdamW.

Figs. 10–13 present multiple plots for the overparameterized sweeps at $(m, p) = (2, 307)$ and $(4, 53)$, respectively. In both cases, as weight decay increases through a moderate range, normalized margins grow and test accuracy improves; for excessively large decay, training accuracy falls

and generalization degrades. These trends align with the prediction that, in the overparameterized regime, generalization is governed by effective layer scales and margins.

Fig. 14 provides additional plots for the out-of-domain sweep, including per-length accuracies across the weight-decay grid. Once the data budget reaches 8k examples, sine MLPs achieve perfect accuracy on all seen lengths and remain essentially perfect on unseen lengths far beyond the training support. In contrast, ReLU MLPs struggle even in-domain and quickly collapse to chance accuracy on larger OOD lengths.

Figure 10: Two-layer sine networks in the overparameterized regime.

Figure 11: Two-layer ReLU networks in the overparameterized regime.

Fig. 15 shows additional plots comparing out-of-domain accuracies for two-layer sine MLPs with and without a first-layer bias. Enabling a first-layer bias in sine MLPs substantially improves robustness, leading to solutions that generalize stably and consistently.

D PROOF OUTLINES

This appendix outlines the logical structure of our theoretical results, clarifying the connections between the main text theorems and the detailed proofs in subsequent sections.

Figure 12: Two-layer sine networks in the overparameterized regime.

Figure 13: Two-layer ReLU networks in the overparameterized regime.

D.1 EXPRESSIVITY (SEC. 4)

Sine Networks (Thms. 4.1 and 4.2). The proofs for sine networks are constructive. The core intuition is that the periodicity of the activation function naturally aligns with the modular arithmetic task.

1. **Encoding residues:** For an input $x \in \mathcal{X}_m$, the dot product $w^T x$ represents a sum of integers. By choosing weights proportional to frequencies $2\pi/p$, we ensure that inputs summing to k and $k + p$ map to the same phase angle on the unit circle.

Figure 14: Out-of-domain accuracies of two-layer sine and ReLU MLPs, with no bias; each heatmap cell reports accuracy under the Best-over-WD scheme.

Figure 15: Out-of-domain accuracies for two-layer sine MLPs with and without first-layer bias.

2. **Decoding via orthogonality:** A single sine neuron captures the vertical projection of this phase. To fully distinguish p classes, a width of 2 allows the network to compute both sine and cosine components, effectively implementing a Fourier basis that isolates specific residues.

3. **Uniformity:** For Thm. 4.2, we extend this construction to hold for all lengths m simultaneously. With bias, we can realign the phases for any m . Without bias, we rely on a width- $\lfloor (p-1)/2 \rfloor$ construction that mimics a discrete Fourier transform to separate residue classes.

ReLU Networks (Thms. 4.3 and 4.4). The proofs for ReLU networks utilize geometric counting arguments and linear algebra.

1. **Counting linear regions:** A ReLU network partitions the input space into linear regions where the function is affine. To approximate the ‘sawtooth’ function of modular addition exactly, the network must change slope (oscillate) $\Omega(m)$ times along specific directions. Thm. 4.3 establishes that a width- d network cannot generate enough linear regions to match this complexity when d is small relative to m/p .

2. **Incompatibility of lengths:** Thm. 4.4 demonstrates that the affine transformation required to fit length m_1 creates errors at length m_2 if $m_1 \not\equiv m_2 \pmod{p}$.

1242 D.2 UNDERPARAMETERIZED GENERALIZATION (SEC. 5)
12431244 **Uniform Convergence (Thm. 5.6).** The argument follows classical techniques (Warren, 1968;
1245 Goldberg & Jerrum, 1995; Anthony & Bartlett, 2009; Shalev-Shwartz & Ben-David, 2014). The
1246 proof of Thm. 5.6 proceeds via the following three-step reduction:1247 1. **Generalization Bound via Natarajan Dimension:** We first invoke the Multiclass Fun-
1248 damental Theorem (Thm. G.18), which uniformly bounds the generalization gap by
1249 $\tilde{\mathcal{O}}(\sqrt{d_N/n})$, where d_N is the Natarajan dimension of the hypothesis class \mathcal{H} .
1250 2. **Reduction to Pairwise VC-Dimension:** Directly computing d_N is difficult. We utilize
1251 a reduction (Lem. G.6) which bounds the Natarajan dimension of a p -class model by the
1252 VC-dimension of its induced binary pairwise comparisons.
1253 3. **Bounding VC-Dimension via Parameter Counting:** For the activations considered
1254 (trigonometric, piecewise-polynomial, rational-exponential), the pairwise difference func-
1255 tion $f(x, \theta) = s_i^\theta(x) - s_j^\theta(x)$ is semi-algebraic (specifically, a polynomial or rational func-
1256 tion of the parameters θ). We apply classical bounds on the VC-dimension of polynomial
1257 function classes (Thm. G.11).
12581259 D.3 OVERPARAMETERIZED GENERALIZATION (SEC. 6)
12601261 **Margin-based Bounds (Thms. 6.2 and 6.3).** These proofs show that all interpolating networks
1262 with large normalized margins generalize (Sec. J), and that at least one such network exists (Sec. I).
12631264 1. **Rademacher Generalization Bounds:** We first connect population loss with Rademacher
1265 complexity via standard generalization bounds (Thm. J.3).
1266 2. **Ramp Loss Surrogate:** We treat the 0-1 multiclassification loss as upper bounded by the
1267 ramp loss (Cor. J.4).
1268 3. **Vector Contraction:** We use the vector-contraction inequality for Rademacher complexity
1269 (Thm. 1 of Foster & Rakhlin 2019).
1270 4. **Sine MLPs:** We bound the contracted complexity using the Dudley entropy integral
1271 (Lem. J.8) and covering numbers for sine networks (Lem. J.7), yielding a bound inde-
1272 pendent of width d .
1273 5. **ReLU MLPs:** We apply a “peeling” argument tailored to positive homogeneous functions
1274 (Lem. 1 of Golowich et al. 2017; see Lem. J.12). This technique allows us to strip away the
1275 activation function and bound complexity using the spectral and Frobenius norms of the
1276 weight matrices, though the resulting bound depends on m due to the complexity of our
1277 construction (Sec. I).
12781279 E PROOFS IN EXPRESSIVITY
12801281 Throughout, denote the ground-truth label as
1282

1283
$$y(x) := \sum_{i=1}^m s_i \pmod{p} \in [p],$$

1284
1285

1286 E.1 LOW-WIDTH SINE CONSTRUCTION FOR A FIXED-LENGTH INPUT (THM. 4.1)
12871288 *Proof of Thm. 4.1.* Let $\phi := \frac{2\pi}{p}$. Define $W \in \mathbb{R}^{2 \times p}$ and $V \in \mathbb{R}^{p \times 2}$ by, for each $r \in [p]$ and $q \in [p]$,

1289
$$W_{1,r} := (\phi r) \pmod{2\pi} \in [-\pi, \pi], \quad W_{2,r} := (\phi r + \frac{\pi}{2m}) \pmod{2\pi} \in [-\pi, \pi],$$

1290
$$V_{q,1} := \sin(\phi q), \quad V_{q,2} := \cos(\phi q).$$

1291

1292 Adding integer multiples of 2π to coordinates of W does not change $\sin(Wx)$ because $x \in \mathbb{Z}^p$.
1293 Therefore, for any $x \in \mathcal{X}_m$,

1294
$$\sin((Wx)_1) = \sin\left(\phi \sum_{r=0}^{p-1} r x_r\right) = \sin(\phi y(x))$$

1295

1296 and, since $\|x\|_1 = m$,

1298
$$\sin((Wx)_2) = \sin\left(\phi \sum_{r=0}^{p-1} rx_r + \frac{\pi}{2m} \sum_{r=0}^{p-1} x_r\right) = \cos(\phi y(x)).$$

1300
1301 Thus, for each $q \in [p]$,

1302
$$\begin{aligned} s_q^\theta(x) &= V_{q,1} \sin(\phi y(x)) + V_{q,2} \cos(\phi y(x)) \\ &= \sin(\phi q) \sin(\phi y(x)) + \cos(\phi q) \cos(\phi y(x)) \\ &= \cos(\phi(y(x) - q)). \end{aligned}$$

1303 Therefore $h_\theta(x) = \text{uargmax}_{q \in [p]} s_q^\theta(x) = y(x)$.

1304 The margin satisfies

1305
$$\min_x \left(s_{y(x)}^\theta(x) - \max_{q \neq y(x)} s_q^\theta(x) \right) = 1 - \cos\left(\frac{2\pi}{p}\right) \geq \frac{8}{p^2},$$

1306 using $1 - \cos t \geq \frac{2}{\pi^2} t^2$ for $t \in [0, \pi]$. Moreover, $\|W\|_\infty \leq \pi$, $\|V\|_\infty \leq 1$. \square

1316 E.2 A LENGTH-AGNOSTIC SINE NETWORK (THM. 4.2)

1317 We will use two elementary lemmas.

1318 **Lemma E.1** (Uniformity of the modular sum). *For fixed $m \in \mathbb{N}$, if $s_1, \dots, s_m \stackrel{\text{i.i.d.}}{\sim} \text{Unif}([p])$, then $y(x) \equiv \sum_{i=1}^m s_i \pmod{p}$ is uniform on $[p]$.*

1319 *Proof.* Let $U \sim \text{Unif}([p])$ and write $S_m := \sum_{i=1}^m s_i \pmod{p}$. For any $\omega := e^{2\pi i/p}$ and $t \in \{1, \dots, p-1\}$, the discrete fourier transform of S_m is

1320
$$\mathbb{E} \omega^{tS_m} = (\mathbb{E} \omega^{tU})^m = \left(\frac{1}{p} \sum_{u=0}^{p-1} \omega^{tu}\right)^m = 0.$$

1321 Hence the discrete Fourier coefficients of S_m vanish at all nonzero frequencies, and S_m is uniform on $[p]$. \square

1322 **Lemma E.2** (Sine Gram identity on $\mathbb{Z}/p\mathbb{Z}$). *Let $p \geq 2$ and $K := \lfloor (p-1)/2 \rfloor$. For $a, b \in [p]$ define*

1323
$$S(a, b) := \sum_{k=1}^K \sin\left(\frac{2\pi k}{p} a\right) \sin\left(\frac{2\pi k}{p} b\right).$$

1324 *Then:*

1325 *1. If p is odd,*

1326
$$S(a, b) = \begin{cases} \frac{p}{4}, & a \equiv b \not\equiv 0 \pmod{p}, \\ -\frac{p}{4}, & a \equiv -b \not\equiv 0 \pmod{p}, \\ 0, & \text{otherwise (in particular if } a = 0 \text{ or } b = 0\text{).} \end{cases}$$

1327 *2. If p is even,*

1328
$$S(a, b) = \begin{cases} \frac{p}{4}, & a \equiv b \not\equiv 0, \frac{p}{2} \pmod{p}, \\ -\frac{p}{4}, & a \equiv -b \not\equiv 0, \frac{p}{2} \pmod{p}, \\ 0, & \text{otherwise (in particular if } a \in \{0, \frac{p}{2}\} \text{ or } b \in \{0, \frac{p}{2}\}\text{).} \end{cases}$$

1350 *Proof.* Using $\sin u \sin v = \frac{1}{2}(\cos(u - v) - \cos(u + v))$,

$$1352 \quad 1353 \quad 1354 \quad S(a, b) = \frac{1}{2} \sum_{k=1}^K \cos\left(\frac{2\pi k}{p}(a - b)\right) - \frac{1}{2} \sum_{k=1}^K \cos\left(\frac{2\pi k}{p}(a + b)\right).$$

1355 For odd p we have $K = \frac{p-1}{2}$ and, for $u \in [p]$,

$$1356 \quad 1357 \quad 1358 \quad T_1(u) := \sum_{k=1}^K \cos\left(\frac{2\pi k}{p}u\right) = \begin{cases} \frac{p-1}{2}, & u \equiv 0, \\ -\frac{1}{2}, & u \not\equiv 0, \end{cases}$$

1359 which follows by taking real parts in $\sum_{k=0}^{p-1} e^{2\pi i k u/p} = 0$ and pairing k with $p - k$. Thus $S(a, b) = \frac{1}{2}(T_1(a - b) - T_1(a + b))$, yielding the stated values.

1362 For even p we have $K = p/2 - 1$ and, for $u \in [p]$,

$$1363 \quad 1364 \quad 1365 \quad 1366 \quad T_0(u) := \sum_{k=1}^K \cos\left(\frac{2\pi k}{p}u\right) = \frac{-1 - \cos(\pi u)}{2} = \begin{cases} -1, & u \text{ even but } u \not\equiv 0, \\ 0, & u \text{ odd,} \\ \frac{p}{2} - 1, & u \equiv 0, \end{cases}$$

1367 using $1 + 2 \sum_{k=1}^{p/2-1} \cos(2\pi k u/p) + \cos(\pi u) = 0$ for $u \not\equiv 0$. Hence $S(a, b) = \frac{1}{2}(T_0(a - b) - T_0(a + b))$, which gives the stated cases. When $a \in \{0, p/2\}$ or $b \in \{0, p/2\}$, every summand vanishes (since $\sin(0) = \sin(\pi k) = 0$), so $S(a, b) = 0$. \square

1371 *Proof of Thm. 4.2.*

1372 **With bias.** Let $s^\theta(x) = V \sin(Wx + b)$ and set $\phi := \frac{2\pi}{p}$. Define $W \in \mathbb{R}^{2 \times p}$ and $V \in \mathbb{R}^{p \times 2}$ by, for each $r, q \in \{0, \dots, p-1\}$,

$$1373 \quad 1374 \quad 1375 \quad 1376 \quad W_{1,r} := (\phi r) \pmod{2\pi} \in [-\pi, \pi], \quad W_{2,r} := (\phi r) \pmod{2\pi} \in [-\pi, \pi], \\ 1377 \quad 1378 \quad V_{q,1} := \sin(\phi q), \quad V_{q,2} := \cos(\phi q), \quad b_1 = 0, \quad b_2 = \frac{\pi}{2}.$$

1379 The same calculation as in the proof of Thm. 4.1 shows that $s_\ell(x) = \cos(\phi(y(x) - \ell))$. For the correct label $\ell = y(x)$, the score is 1. For any incorrect label $\ell \neq y(x)$, the score is strictly less than 1. Thus $h_\theta(x) = y(x)$ for every m .

1382 **Without bias.** Let $s^\theta(x) = V \sin(Wx)$, $K := \lfloor (p-1)/2 \rfloor$, and $\alpha = (0, 1, \dots, p-1)^\top \in \mathbb{Z}^p$.
1383 Define a width- K sine network by

$$1384 \quad 1385 \quad 1386 \quad W \in \mathbb{R}^{K \times p}, \quad W_{k,:} = \frac{2\pi k}{p} \alpha^\top \quad (k = 1, \dots, K), \quad V \in \mathbb{R}^{p \times K}, \quad V_{\ell k} = \sin\left(\frac{2\pi k}{p} \ell\right).$$

1387 For any $x \in \mathcal{X}_m$, the k -th hidden unit is

$$1388 \quad 1389 \quad \phi_k(x) = \sin\left(\frac{2\pi k}{p} \langle \alpha, x \rangle\right) = \sin\left(\frac{2\pi k}{p} y(x)\right),$$

1390 so for $\ell \in [p]$,

$$1391 \quad 1392 \quad 1393 \quad 1394 \quad s_\ell(x) = (V \phi(x))_\ell = \sum_{k=1}^K \sin\left(\frac{2\pi k}{p} \ell\right) \sin\left(\frac{2\pi k}{p} y(x)\right) = S(\ell, y(x)),$$

1395 with S from Lem. E.2.

1396 If p is odd, Lem. E.2 implies: for $y(x) = 0$, all scores are 0. Under the strict uniqueness rule, this
1397 counts as a tie (invalid), so the prediction is wrong. for $y(x) \neq 0$, one has $s_{y(x)}(x) = p/4$, which
1398 is strictly greater than $s_{-y(x)}(x) = -p/4$ and $s_\ell(x) = 0$ otherwise. Thus the max is unique and
1399 $h_\theta(x) = y(x)$. By Lem. E.1, Y is uniform, so $\mathbb{P}[h_\theta(X) = Y] = 1 - \frac{1}{p}$ for every m .

1400 If p is even, Lem. E.2 gives: for $y(x) \in \{0, \frac{p}{2}\}$, all scores are 0, resulting in a tie (invalid prediction)
1401 for both residues. for all other residues, $s_{y(x)}(x) = p/4$ is the unique maximum (strictly greater
1402 than 0 and $-p/4$). By Lem. E.1, $Y \sim \text{Unif}([p])$, hence $\mathbb{P}[h_\theta(X) = Y] = 1 - \frac{2}{p}$ for every m . \square

1404 E.3 RELU WIDTH LOWER BOUND (THM. 4.3)
14051406 By a one-dimensional counting-path argument, we show that any ReLU MLP that exactly imple-
1407 ments modular addition requires width $\Omega(m/p - 1)$.
14081409 *Proof of Thm. 4.3.* Consider the one-dimensional path of bags
1410

1411
$$x^{(s)} := (m - s)e_0 + se_1, \quad s = 0, 1, \dots, m,$$

1412

1413 along which the true label is $\ell(s) \equiv s \pmod{p}$. Let $y \in \mathbb{R}^d$ be the first column of W and $z \in \mathbb{R}^d$
1414 the difference between the second and first columns, $y_k = W_{k,1}$, $z_k = W_{k,2} - W_{k,1}$. Then the k -th
1415 preactivation is affine in s :

1416
$$a_k(s) = [Wx^{(s)}]_k = (m - s)W_{k,1} + sW_{k,2} = m y_k + s z_k,$$

1417

1418 and the hidden unit $h_k(s) := \text{ReLU}(a_k(s))$ is continuous piecewise-affine with at most one break-
1419 point at $s_k := -m y_k / z_k$ (if $z_k \neq 0$). Consequently, for each class $r \in [p]$ the score
1420

1421
$$f_r(s) := s_r^\theta(x^{(s)}) = \sum_{k=1}^d v_{r,k} h_k(s)$$

1422

1423 is a continuous piecewise-affine function whose breakpoint set $\mathcal{B} \subset [0, m]$ has cardinality at most d .
14241425 For $r \in [p]$ define the adjacent-class margin
1426

1427
$$g_r(s) := f_r(s) - f_{r \oplus 1}(s), \quad r \oplus 1 = \begin{cases} r + 1, & r \leq p - 2, \\ 0, & r = p - 1. \end{cases}$$

1428

1429 Each g_r is continuous piecewise-affine with breakpoints contained in \mathcal{B} . Sort \mathcal{B} and note that $[0, m] \setminus \mathcal{B}$
1430 has at most $d + 1$ connected components.
14311432 Write $I_s := [s, s + 1]$ for $s = 0, \dots, m - 1$. Call I_s *spoiled* if $I_s \cap \mathcal{B} \neq \emptyset$ and *clean* otherwise. A
1433 noninteger breakpoint lies in exactly one I_s , an integer breakpoint $j \in \{1, \dots, m - 1\}$ lies in both
1434 I_{j-1} and I_j , and endpoints 0 or m lie in exactly one I_s . Hence the number of spoiled I_s is at most
1435 $2|\mathcal{B}| \leq 2d$, and therefore the number of clean I_s is at least $m - 2d$.1436 Exact realization of the labels along the path requires that for every integer s , the correct class score
1437 is strictly greater than all others to avoid an invalid prediction (\perp). At step s , the label is $\ell(s)$, so we
1438 must have $f_{\ell(s)}(s) > f_{\ell(s) \oplus 1}(s)$, implying:

1439
$$g_{\ell(s)}(s) > 0.$$

1440

1441 At step $s+1$, the label becomes $\ell(s+1) = \ell(s) \oplus 1$. Thus, we must have $f_{\ell(s) \oplus 1}(s+1) > f_{\ell(s)}(s+1)$,
1442 implying:

1443
$$g_{\ell(s)}(s+1) < 0.$$

1444

1445 If I_s is clean, then $g_{\ell(s)}$ is affine on I_s . Since it is strictly positive at s and strictly negative at $s + 1$, it
1446 must have a *nontrivial* zero $t_s \in (s, s + 1)$ by the Intermediate Value Theorem. Because I_s is clean,
1447 we have $t_s \in [0, m] \setminus \mathcal{B}$.1448 Moreover, a piecewise-affine g_r can have at most one nontrivial zero in each connected component
1449 of $[0, m] \setminus \mathcal{B}$, hence at most $d + 1$ such zeros overall. Summing over $r \in [p]$ gives that the number
1450 of clean intervals satisfies

1451
$$m - 2d \leq \sum_{r=0}^{p-1} (d + 1) = p(d + 1).$$

1452

1453 Rearranging yields
1454

1455
$$d \geq \frac{m - p}{p + 2} = \Omega\left(\frac{m}{p} - 1\right).$$

1456

□

1458 E.4 NO SIMULTANEOUS EXACT FIT FOR TWO LENGTHS WITH RELU (THM. 4.4)
14591460 *Proof of Thm. 4.4.* ReLU is positively 1-homogeneous: $\text{ReLU}(\alpha z) = \alpha \text{ReLU}(z)$ for all $\alpha \geq 0$.
1461 Thus, for any $\alpha > 0$ and any $x \in \mathbb{R}^p$,

1462
$$s^\theta(\alpha x) = V \text{ReLU}(W(\alpha x)) = \alpha V \text{ReLU}(Wx) = \alpha s^\theta(x),$$

1463

1464 so scaling preserves the uargmax:
1465

1466
$$h_\theta(\alpha x) = h_\theta(x) \quad \forall \alpha > 0. \quad (1)$$

1467

1468 Let $e_1 \in \mathbb{R}^p$ be the first basis vector and set
1469

1470
$$x^{(1)} := m_1 e_1 \in \mathcal{X}_{m_1}, \quad x^{(2)} := m_2 e_1 \in \mathcal{X}_{m_2}.$$

1471

1472 Then $x^{(2)} = \frac{m_2}{m_1} x^{(1)}$, so by equation 1, $h_\theta(x^{(2)}) = h_\theta(x^{(1)})$. However,
1473

1474
$$y(x^{(1)}) \equiv m_1 \pmod{p}, \quad y(x^{(2)}) \equiv m_2 \pmod{p},$$

1475

1476 and $m_1 \not\equiv m_2 \pmod{p}$ by assumption. Therefore at least one of $x^{(1)}$ or $x^{(2)}$ must be misclassified
1477 by any θ , ruling out perfect accuracy on $\mathcal{X}_{m_1} \cup \mathcal{X}_{m_2}$. \square
14781479 F A PAC LOWER BOUND FOR LABEL-PERMUTATION-EQUIVARIANT
1480 LEARNER
14811482 Although we introduced specific MLPs, the lower bound below holds for any (possibly randomized)
1483 *label-permutation-equivariant* learner.1484 **Definition F.1** (Learning algorithm; Def. 3.1 in (Li et al., 2021a)). A (possibly randomized) super-
1485 viewed learning algorithm \mathcal{A} maps a training sample $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n \in (\mathcal{X} \times \mathcal{Y})^n$ to a hypothesis
1486 $\hat{h} = \mathcal{A}(S) : \mathcal{X} \rightarrow \mathcal{Y}$. For randomized \mathcal{A} , the output is a distribution over hypotheses; two random-
1487 ized algorithms are considered the same if their induced output distributions on functions coincide
1488 for every input sample.1489 **Definition F.2** (Label-permutation equivariance). Let $\mathbb{S}(\mathcal{Y})$ be the group of permutations of the
1490 label space \mathcal{Y} . A learning algorithm \mathcal{A} is *label-permutation equivariant* if, for every dataset $S =$
1491 $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and every $\sigma \in \mathbb{S}(\mathcal{Y})$,

1492
$$\mathcal{A}\left(\{(x^{(i)}, \sigma(y^{(i)}))\}_{i=1}^n\right) = \sigma \circ \mathcal{A}(S) \quad \text{as functions } \mathcal{X} \rightarrow \mathcal{Y}.$$

1493

1494 For randomized \mathcal{A} , equality is in distribution of the output functions.
14951496 *Remark F.3* (Notable algorithms for label-permutation equivariance). Def. F.2 parallels (Li et al.,
1497 2021a, Def. 3.2) but with the group acting on labels rather than inputs. Their Appendix C criterion
1498 (Thm. C.1; Rem. C.1 for adaptive methods) applies verbatim to actions on output coordinates: with
1499 an i.i.d. final-layer initialization, the learner is label-permutation equivariant. Thus AdaGrad and
1500 Adam satisfy this. Since orthogonal equivariance strictly contains permutation equivariance, the
1501 same reasoning shows GD/SGD with momentum are label-permutation equivariant under i.i.d. final-
1502 layer initialization (Li et al., 2021a, Table 1).1503 The ground-truth labeling function is
1504

1505
$$f(x) = \sum_{k=0}^{p-1} k x_k \pmod{p} \in [p].$$

1506

1508 A learner that already knows this rule requires essentially no data, since it can compute $f(x)$ exactly
1509 from x .
15101511 We capture label symmetry by requiring that the learner be label-permutation-equivariant. For the
1512 analysis, we use the following standard symmetrization device.

1512 **Lemma F.4** (Equivariant symmetrization). Fix a (possibly randomized) label-permutation-
 1513 equivariant algorithm \mathcal{A} and a realized sample $S = \{(X_i, f(X_i))\}_{i=1}^n$. For any $\sigma \in \mathbb{S}([p])$ define
 1514 the symmetrized output

$$1515 \quad \widehat{f}_\sigma := \sigma^{-1} \circ \mathcal{A}(\{(X_i, \sigma(f(X_i)))\}_{i=1}^n).$$

1516 Then for deterministic \mathcal{A} one has $\widehat{f}_\sigma = \mathcal{A}(S)$ for every σ ; for randomized \mathcal{A} , \widehat{f}_σ has the same
 1517 distribution as $\mathcal{A}(S)$. Consequently, for any event \mathcal{E} depending on the learned function,

$$1519 \quad \mathbb{P}[\mathcal{E}(\mathcal{A}(S))] = \mathbb{P}[\mathcal{E}(\widehat{f}_\Sigma)] \quad \text{when } \Sigma \sim \text{Unif}(\mathbb{S}_p) \text{ is independent of } S.$$

1521 *Proof.* Deterministic case: by equivariance $\mathcal{A}(\sigma(S)) = \sigma \circ \mathcal{A}(S)$, hence $\sigma^{-1} \circ \mathcal{A}(\sigma(S)) = \mathcal{A}(S)$.

1523 Randomized case: for each fixed σ , label-permutation equivariance implies $\mathcal{A}(\sigma(S)) \stackrel{d}{=} \sigma \circ \mathcal{A}(S)$.
 1524 Therefore $\sigma^{-1} \circ \mathcal{A}(\sigma(S)) \stackrel{d}{=} \mathcal{A}(S)$. With Σ independent of S , \widehat{f}_Σ has the same distribution as $\mathcal{A}(S)$.
 1525

□

1528 We will therefore analyze \widehat{f}_Σ for a uniform random permutation Σ , and, by Lem. F.4, this entails no
 1529 loss of generality for the original (unsymmetrized) learner.

1530 We measure performance by the population 0–1 risk against the canonical rule f ,

$$1532 \quad L(\widehat{f}) = \mathbb{P}_X[\widehat{f}(X) \neq f(X)],$$

1534 where $X \sim \mathcal{D}_X$ is an independent test draw and \widehat{f} is random due to S , Σ , and any internal randomness of \mathcal{A} .

1536 **Lemma F.5.** If X is generated as above, then $f(X) \sim \text{Unif}([p])$. Hence $f(X_1), \dots, f(X_n)$ are
 1537 i.i.d. uniform on $[p]$.

1539 *Proof.* There exist random variables $s_1, \dots, s_m \in [p]$ such that

$$1541 \quad X_k = \sum_{i=1}^m \mathbf{1}\{s_i = k\} \quad (k = 0, \dots, p-1).$$

1543 Therefore

$$1545 \quad f(X) = \sum_{k=0}^{p-1} k X_k \equiv \sum_{i=1}^m s_i \pmod{p}.$$

1547 Notice that $s_1 \sim \text{Unif}([p])$ and $s_1 \perp (s_2, \dots, s_m)$. Let $T := \sum_{i=2}^m s_i \pmod{p}$. Then $(s_1 + T) \pmod{p}$ is uniform on $[p]$, so $f(X) \sim \text{Unif}([p])$. The i.i.d. statement follows from the i.i.d. draws
 1548 of X_i .
 1549

□

1551 **Lemma F.6.** Fix any realized training set S . Let $R \subseteq [p]$ be the set of residues that appear among
 1552 $f(X_1), \dots, f(X_n)$, and let $U = [p] \setminus R$ with $K = |U|$. Conditional on S and on the values
 1553 $\{\Sigma(u) : u \in R\}$ revealed by the permuted sample $\Sigma(S)$, the restriction $\Sigma|_U$ is a uniformly random
 1554 bijection from U to $[p] \setminus \Sigma(R)$.

1555 *Proof.* Σ is uniform over \mathbb{S}_p , independent of the data. Conditioning on $\{\Sigma(u) : u \in R\}$ leaves all
 1556 completions of Σ on U equally likely. There are $K!$ such completions.
 1557

□

1558 **Lemma F.7** (Risk lower bound via unseen residues). Let K be the number of unseen residues
 1559 determined by S . For any (possibly randomized) label-permutation-equivariant learner, over the
 1560 random draw,

$$1561 \quad \mathbb{E}_\Sigma [L(\widehat{f}_\Sigma) | S] \geq \frac{K-1}{p}.$$

1564 *Proof.* Condition on a realized S and its unseen set U (size K). By Lem. F.5, $\mathbb{P}[f(X) = u] = 1/p$
 1565 for each $u \in [p]$. For any unseen $u \in U$, Lem. F.6 implies $\Sigma(u)$ is uniform over a set of K labels,
 1566 independent of X given $f(X) = u$. Thus, for any prediction rule measurable with respect to S, Σ ,

1566 and X , the success probability at residue u is at most $1/K$, so the misclassification probability is at
 1567 least $(K-1)/K$. Summing over $u \in U$,

$$1569 \quad \mathbb{E}_{\Sigma} \left[L(\hat{f}_{\Sigma}) \mid S \right] \geq \sum_{u \in U} \mathbb{P}[f(X) = u] \cdot \frac{K-1}{K} = \frac{K}{p} \cdot \frac{K-1}{K} = \frac{K-1}{p}.$$

□

1573 **Lemma F.8.** *Let K be the number of residues in $[p]$ not hit by $f(X_1), \dots, f(X_n)$. Then*

$$1575 \quad \mathbb{E}[K] = p \left(1 - \frac{1}{p}\right)^n,$$

$$1576 \quad \text{Var}(K) \leq \mathbb{E}[K],$$

$$1578 \quad \mathbb{P}[K \leq \mathbb{E}[K] - t] \leq \exp\left(-\frac{2t^2}{n}\right) \quad \text{for all } t \geq 0.$$

1581 *Proof.* Let $I_u = \mathbf{1}\{\text{residue } u \text{ is unseen}\}$ for $u \in [p]$. By Lem. F.5, the n residues are i.i.d. uniform,
 1582 so

$$1584 \quad \mathbb{P}[I_u = 1] = \left(1 - \frac{1}{p}\right)^n =: q, \quad \mathbb{P}[I_u = I_v = 1] = \left(1 - \frac{2}{p}\right)^n =: q_2 \quad (u \neq v).$$

1586 Thus $\mathbb{E}[K] = \sum_u \mathbb{E}[I_u] = pq$ and

$$1588 \quad \text{Var}(K) = \sum_u \text{Var}(I_u) + \sum_{u \neq v} \text{Cov}(I_u, I_v) = pq(1-q) + p(p-1)(q_2 - q^2) \leq pq(1-q) \leq pq = \mathbb{E}[K],$$

1590 since $(1 - 2/p)^n \leq (1 - 1/p)^{2n}$. For concentration, expose the independent residues $Z_i = f(X_i) \in$
 1591 $[p]$. The mapping $(Z_1, \dots, Z_n) \mapsto K$ is 1-Lipschitz (changing one residue can alter the number of
 1592 unseen residues by at most 1), so McDiarmid's inequality yields the tail bound. □

1594 **Lemma F.9** (Logarithmic inequality). *For $x \in (0, 1)$, $\log(1 - x) \geq -\frac{x}{1-x}$. Hence, for integers
 1595 $p \geq 2$ and all $n \geq 0$,*

$$1596 \quad \left(1 - \frac{1}{p}\right)^n \geq \exp\left(-\frac{n}{p-1}\right).$$

1599 *Proof.* Define $h(x) = \log(1 - x) + \frac{x}{1-x}$. Then $h'(x) = \frac{x}{(1-x)^2} \geq 0$ and $h(0) = 0$, so $h(x) \geq 0$ on
 1600 $(0, 1)$. □

1602 **Lemma F.10** (Permutation exposure martingale bound). *Let $U = \{u_1, \dots, u_K\} \subseteq [p]$ and consider
 1603 a real-valued function G of the random restriction $\Sigma|_U$, where $\Sigma|_U : U \rightarrow [p] \setminus \Sigma(R)$ is a uniformly
 1604 random bijection (conditional on S). Reveal $\Sigma(u_1), \dots, \Sigma(u_K)$ sequentially and let $M_i = \mathbb{E}[G \mid
 1605 \Sigma(u_1), \dots, \Sigma(u_i)]$. If for all i one has*

$$1606 \quad |M_i - M_{i-1}| \leq c_i,$$

1608 *then for all $t \geq 0$,*

$$1609 \quad \mathbb{P}[G \leq \mathbb{E}[G] - t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^K c_i^2}\right).$$

1612 *Proof.* $(M_i)_{i \in \mathbb{N}}$ is a Doob martingale with bounded differences; apply Azuma–Hoeffding. □

1614 **Theorem F.11** (PAC lower bound for label-permutation-equivariant learner). *Fix $\varepsilon \in (0, \frac{1}{2})$ and
 1615 $\delta \in (0, \frac{1}{2})$. There exists an integer $p_0 = p_0(\varepsilon, \delta)$ such that for all $p \geq p_0$, **every label-permutation-**
 1616 **equivariant learner \mathcal{A}** that (with probability at least $1 - \delta$ over the random draw of the training
 1617 samples S and any internal randomness) achieves population risk at most ε against the canonical
 1618 rule f must use*

$$1619 \quad n \geq (p-1) \left(\log \frac{1}{\varepsilon} - 1 \right) = \Omega(p).$$

1620 Equivalently, for every $n \leq (p-1)(\log \frac{1}{\varepsilon} - 1)$ and every such learner,

$$1622 \quad \mathbb{P}[L(\hat{f}) \leq \varepsilon] \leq \exp\left(-\frac{(e-1)^2}{2 \log(1/\varepsilon)} \varepsilon^2 p\right) + \exp(-c_1 \varepsilon p) + \exp\left(-\frac{c_2 \varepsilon^2 p}{\log(1/\varepsilon)}\right), \quad (2)$$

1623 for absolute constants $c_1, c_2 > 0$. In particular, $\mathbb{P}[L(\hat{f}) \leq \varepsilon] \leq \delta$ for all sufficiently large p .

1624
1625 *Proof of Thm. F.11.* By Lem. F.4, it suffices to analyze \hat{f}_Σ with $\Sigma \sim \text{Unif}(\mathbb{S}_p)$ independent of S ,
1626 since $L(\hat{f}_\Sigma)$ has the same distribution as $L(\mathcal{A}(S))$. Fix S and let U be the unseen residue set,
1627 $|U| = K$. Consider $G(\Sigma) = L(\hat{f}_\Sigma)$ with $X \sim \mathcal{D}_X$ independent of (S, Σ) . Changing $\Sigma(u_i)$ can
1628 only swap at most two preimages, so it cannot affect the event $\hat{f}_\Sigma(X) = f(X)$ unless $f(X)$ equals
1629 one of those two preimages, which has probability at most $2/p$ by Lem. F.5. Hence in Lem. F.10 we
1630 may take $c_i = 2/p$, so for all $t \geq 0$,

$$1634 \quad \mathbb{P}_\Sigma\left[L(\hat{f}_\Sigma) \leq \mathbb{E}_\Sigma[L | S] - t \mid S\right] \leq \exp\left(-\frac{p^2 t^2}{2K}\right). \quad (3)$$

1635 Here and below, probabilities $\mathbb{P}_\Sigma[\cdot \mid S]$ are over the random restriction $\Sigma|_U$ (conditional on S), while
1636 $X \sim \mathcal{D}_X$ is independent of (S, Σ) .

1637 By Lem. F.7, $\mathbb{E}_\Sigma[L | S] \geq (K-1)/p$. Set

$$1638 \quad t = \max\left\{\frac{K-1}{p} - \varepsilon, 0\right\}.$$

1639 Plugging this into equation 3 yields the conditional bound

$$1640 \quad \mathbb{P}_\Sigma\left[L(\hat{f}_\Sigma) \leq \varepsilon \mid S\right] \leq \mathbf{1}\{K \leq \varepsilon p + 1\} + \exp\left(-\frac{(\max\{(K-1) - \varepsilon p, 0\})^2}{2K}\right). \quad (4)$$

1641 Let $\mu = \mathbb{E}[K] = p(1 - \frac{1}{p})^n$. By Lem. F.9, for $n \leq (p-1)(\log \frac{1}{\varepsilon} - 1)$,

$$1642 \quad \mu \geq p \exp\left(-\frac{n}{p-1}\right) \geq p \exp\left(-\log \frac{1}{\varepsilon} + 1\right) = e \varepsilon p.$$

1643 By Lem. F.8 (McDiarmid over the n i.i.d. residues),

$$1644 \quad \mathbb{P}(K \leq \varepsilon p + 1) \leq \exp\left(-\frac{2(\mu - \varepsilon p - 1)^2}{n}\right). \quad (5)$$

1645 Since $\mu \geq e \varepsilon p$, for all $p \geq \frac{2}{(e-1)\varepsilon}$ we have $\mu - \varepsilon p - 1 \geq \frac{e-1}{2} \varepsilon p$. Using also $n \leq p \log(1/\varepsilon)$ gives
1646 from equation 5

$$1647 \quad \mathbb{P}(K \leq \varepsilon p + 1) \leq \exp\left(-\frac{(e-1)^2}{2 \log(1/\varepsilon)} \varepsilon^2 p\right).$$

1648 Split on $\{K \geq \mu/2\}$ vs. $\{K < \mu/2\}$. By Lem. F.8 with $t = \mu/2$,

$$1649 \quad \mathbb{P}[K < \mu/2] \leq \exp\left(-\frac{\mu^2}{2n}\right) \leq \exp\left(-\frac{c_2 \varepsilon^2 p}{\log(1/\varepsilon)}\right) \quad (6)$$

1650 for a universal $c_2 > 0$, since $\mu \geq e \varepsilon p$ and $n \leq p \log(1/\varepsilon)$. On $\{K \geq \mu/2\}$ we have $K \geq \frac{e}{2} \varepsilon p$ and
1651 thus, for all sufficiently large p ,

$$1652 \quad \frac{((K-1) - \varepsilon p)^2}{2K} \geq \frac{((\frac{e}{2} - 1)\varepsilon p - 1)^2}{e \varepsilon p} \geq c_1 \varepsilon p$$

1653 for a universal $c_1 > 0$. Hence

$$1654 \quad \mathbb{E}\left[\exp\left(-\frac{(\max\{(K-1) - \varepsilon p, 0\})^2}{2K}\right)\right] \leq \exp(-c_1 \varepsilon p) + \exp\left(-\frac{c_2 \varepsilon^2 p}{\log(1/\varepsilon)}\right). \quad (7)$$

1674 Taking expectations in equation 4 and since $n \leq p \log(1/\varepsilon)$,

$$\begin{aligned} 1675 \quad \mathbb{P}[L(\hat{f}_\Sigma) \leq \varepsilon] &\leq \exp\left(-\frac{((e-1)\varepsilon p)^2}{2n}\right) + \exp(-c_1 \varepsilon p) + \exp\left(-\frac{c_2 \varepsilon^2 p}{\log(1/\varepsilon)}\right) \\ 1676 \quad &\leq \exp\left(-\frac{(e-1)^2}{2 \log(1/\varepsilon)} \varepsilon^2 p\right) + \exp(-c_1 \varepsilon p) + \exp\left(-\frac{c_2 \varepsilon^2 p}{\log(1/\varepsilon)}\right). \end{aligned}$$

1681 Finally, by Lem. F.4, $L(\hat{f}_\Sigma)$ has the same distribution as $L(\hat{f})$, yielding equation 2. In particular,
1682 for any $\delta \in (0, \frac{1}{2})$, choosing $p \geq p_0(\varepsilon, \delta)$ sufficiently large makes the right-hand side at most δ .

1683 This shows that if $\mathbb{P}[L(\hat{f}) \leq \varepsilon] \geq 1 - \delta$ then necessarily $n > (p-1)(\log(1/\varepsilon) - 1)$, proving the
1684 sample-complexity lower bound $n = \Omega(p)$. \square

1686 G PROOFS IN UNDERPARAMETERIZED DOMAIN

1687 G.1 UPPER BOUND OF NATARAJAN-DIMENSION

1690 Let \mathcal{X} be an instance space, let $p \in \mathbb{N}$ with $p \geq 2$, and let $[p] = \{1, \dots, p\}$ be the label set. Fix a
1691 domain \mathcal{U} and a function class \mathcal{F} . For a finite $T \subseteq \mathcal{U}$, write $\mathcal{F}_{|T} := \{f_{|T} : f \in \mathcal{F}\}$ for its restriction
1692 and $|\mathcal{F}_{|T}|$ for the number of distinct labelings on T realized by \mathcal{F} .

1694 **Definition G.1** (Growth function). Let $\mathcal{B} \subseteq \{-1, +1\}^{\mathcal{Z}}$ be a binary hypothesis class on a domain
1695 \mathcal{Z} . For $n \in \mathbb{N}$, the *growth function* of \mathcal{B} is

$$\Pi_{\mathcal{B}}(n) := \max\{|\mathcal{B}_{|T}| : T \subseteq \mathcal{Z}, |T| = n\}.$$

1697 **Definition G.2** (Network class and pairwise reduction). Let $\mathcal{H}_\Theta \subseteq ([p] \cup \{\perp\})^{\mathcal{X}}$ be a network class
1698 realized by score vectors $s^\theta(x) = (s_1^\theta(x), \dots, s_p^\theta(x)) \in \mathbb{R}^p$, $\theta \in \Theta$, $x \in \mathcal{X}$. The predictor is defined
1699 by strict maximization:

$$h_\theta(x) = \text{uargmax}_{\ell \in [p]} s_\ell^\theta(x) = \begin{cases} \ell, & \text{if } s_\ell^\theta(x) > s_k^\theta(x) \text{ for all } k \neq \ell, \\ \perp, & \text{otherwise,} \end{cases}$$

1703 Define the *pairwise reduction* on the domain

$$\mathcal{Z}_{\text{pair}} := \mathcal{X} \times \{(i, j) \in [p] \times [p] : i < j\}$$

1705 by the binary reduction class $\mathcal{G}_\Theta \subseteq \{-1, +1\}^{\mathcal{Z}_{\text{pair}}}$ for \mathcal{H}_Θ consisting of functions

$$g_\theta(x, i, j) = \text{sgn}(s_i^\theta(x) - s_j^\theta(x)) = \begin{cases} +1, & \text{if } s_i^\theta(x) \geq s_j^\theta(x), \\ -1, & \text{if } s_i^\theta(x) < s_j^\theta(x). \end{cases}$$

1710 **Definition G.3** (Number of realized multiclass labelings). For $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}$ and
1711 hypothesis class $\mathcal{H} \subseteq [p]^{\mathcal{X}}$, define

$$\Lambda_{\mathcal{H}}(S) := |\mathcal{H}_{|S}| = \left| \left\{ (h(x^{(1)}), \dots, h(x^{(n)})) \in [p]^n : h \in \mathcal{H} \right\} \right|.$$

1714 The lemma below connects the Natarajan-dimension to the growth function of the reduction class,
1715 which is a key tool in this section.

1716 **Lemma G.4** (Natarajan shattering and labelings). *If a finite set $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}$ is
1717 Natarajan-shattered by a hypothesis $\mathcal{H} \subset [p]^{\mathcal{X}}$, then $\Lambda_{\mathcal{H}}(S) \geq 2^n$.*

1719 *Proof of Lem. G.4.* By Def. 5.2, there exist $f_1, f_2 \in [p]^S$ with $f_1(x) \neq f_2(x)$ for all $x \in S$ such
1720 that for every selector $b : S \rightarrow \{1, 2\}$ there is $h_b \in \mathcal{H}$ with $h_b(x) = f_{b(x)}(x)$ for all $x \in S$. Define
1721 $\Phi : \{1, 2\}^S \rightarrow \mathcal{H}_{|S}$ by $\Phi(b) = h_b|_S$.

1722 If $b \neq b'$, pick $x_0 \in S$ with $b(x_0) \neq b'(x_0)$. Then

$$\Phi(b)(x_0) = h_b(x_0) = f_{b(x_0)}(x_0) \neq f_{b'(x_0)}(x_0) = h_{b'}(x_0) = \Phi(b')(x_0),$$

1725 so $\Phi(b) \neq \Phi(b')$. Thus Φ is injective and

$$\Lambda_{\mathcal{H}}(S) = |\mathcal{H}_{|S}| \geq |\Phi(\{1, 2\}^S)| = |\{1, 2\}^S| = 2^{|S|} = 2^n.$$

\square

1728 **Lemma G.5** (Labelings and pairwise reduction). *Fix $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}$ and a hypothesis*
 1729 *class $\mathcal{H}_\Theta \subseteq [p]^{\mathcal{X}}$. Then*

$$1730 \quad 1731 \quad 1732 \quad 1733 \quad 1734 \quad 1735 \quad 1736 \quad 1737 \quad 1738 \quad 1739 \quad 1740 \quad 1741 \quad 1742 \quad 1743 \quad 1744 \quad 1745 \quad 1746 \quad 1747 \quad 1748 \quad 1749 \quad 1750 \quad 1751 \quad 1752 \quad 1753 \quad 1754 \quad 1755 \quad 1756 \quad 1757 \quad 1758 \quad 1759 \quad 1760 \quad 1761 \quad 1762 \quad 1763 \quad 1764 \quad 1765 \quad 1766 \quad 1767 \quad 1768 \quad 1769 \quad 1770 \quad 1771 \quad 1772 \quad 1773 \quad 1774 \quad 1775 \quad 1776 \quad 1777 \quad 1778 \quad 1779 \quad 1780 \quad 1781 \quad \Lambda_{\mathcal{H}_\Theta}(S) \leq \Pi_{\mathcal{G}_\Theta}(n p(p-1)/2).$$

Proof of Lem. G.5. Set

$$T := S \times \{(i, j) \in [p] \times [p] : i < j\} \subset \mathcal{Z}_{\text{pair}}.$$

For each $h \in (\mathcal{H}_\Theta)|_S$ define the fiber

$$W(h) := \{\theta \in \Theta : h_{\theta|_S} = h\}, \quad \text{and} \quad A(h) := \{g_{\theta|_T} : \theta \in W(h)\} \subseteq (\mathcal{G}_\Theta)|_T.$$

Now we will show that if $h \neq h'$, then $A(h) \cap A(h') = \emptyset$.

Pick $x \in S$ with $h(x) = i$ and $h'(x) = j \neq i$. Without loss of generality, assume $i < j$. For any $\theta \in W(h)$, the predictor yields a valid output i , which implies strict maximality: $s_i^\theta(x) > s_k^\theta(x)$ for all $k \neq i$. In particular, $s_i^\theta(x) > s_j^\theta(x)$, hence $g_\theta(x, i, j) = +1$.

Conversely, for any $\theta' \in W(h')$, the predictor yields j , which implies $s_j^{\theta'}(x) > s_i^{\theta'}(x)$. Therefore, $s_i^{\theta'}(x) < s_j^{\theta'}(x)$, hence $g_{\theta'}(x, i, j) = -1$.

Thus every element of $A(h)$ has $+1$ and every element of $A(h')$ has -1 at the coordinate $(x, i, j) \in T$, so $A(h) \cap A(h') = \emptyset$.

Since $|(\mathcal{H}_\Theta)|_S| \leq p^n < \infty$ and each $A(h) \neq \emptyset$, fix an arbitrary choice function Ψ selecting one element of $A(h)$ for each $h \in (\mathcal{H}_\Theta)|_S$. Then the map

$$\Psi : (\mathcal{H}_\Theta)|_S \longrightarrow (\mathcal{G}_\Theta)|_T, \quad h \longmapsto \Psi(h)$$

is well-defined and injective. Therefore,

$$1754 \quad 1755 \quad 1756 \quad 1757 \quad 1758 \quad 1759 \quad 1760 \quad 1761 \quad 1762 \quad 1763 \quad 1764 \quad 1765 \quad 1766 \quad 1767 \quad 1768 \quad 1769 \quad 1770 \quad 1771 \quad 1772 \quad 1773 \quad 1774 \quad 1775 \quad 1776 \quad 1777 \quad 1778 \quad 1779 \quad 1780 \quad 1781 \quad \Lambda_{\mathcal{H}_\Theta}(S) = |(\mathcal{H}_\Theta)|_S| \leq |(\mathcal{G}_\Theta)|_T| \leq \Pi_{\mathcal{G}_\Theta}(|T|) = \Pi_{\mathcal{G}_\Theta}(n \binom{p}{2}) = \Pi_{\mathcal{G}_\Theta}(n p(p-1)/2).$$

□

Together with Lems. G.4 and G.5, we have Lem. G.6:

Lemma G.6 (Natarajan shattering and the growth function). *If $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}$ is Natarajan-shattered by a p -class network class \mathcal{H}_Θ , then*

$$2^n \leq \Pi_{\mathcal{G}_\Theta}(n p(p-1)/2),$$

where \mathcal{G}_Θ is the reduction class of \mathcal{H}_Θ .

Definition G.7 (k-combination of $\text{sgn}(\mathcal{F})$). Let \mathcal{Z} be any domain and let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}^D \times \mathcal{Z}}$ be a class of real-valued functions of the form $(a, z) \mapsto f(a, z)$, with $a \in \mathbb{R}^D$ and $z \in \mathcal{Z}$. A binary class $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{Z}}$ is a *k-combination* of $\text{sgn}(\mathcal{F})$ if there exist a Boolean map $g : \{-1, +1\}^k \rightarrow \{-1, +1\}$ and functions $f_1, \dots, f_k \in \mathcal{F}$ such that for every $h \in \mathcal{H}$ there is $a \in \mathbb{R}^D$ with

$$h(z) = g(\text{sgn}(f_1(a, z)), \dots, \text{sgn}(f_k(a, z))) \quad \text{for all } z \in \mathcal{Z}.$$

We say $f \in \mathcal{F}$ is C^D in its parameters if, for every fixed z , the map $a \mapsto f(a, z)$ is C^D .

Definition G.8 (Regular zero-set intersections; Def. 7.3 (Anthony & Bartlett, 2009)). For differentiable $f_1, \dots, f_k : \mathbb{R}^D \rightarrow \mathbb{R}$, the family $\{f_1, \dots, f_k\}$ has *regular zero-set intersections* if for every nonempty $I \subseteq \{1, \dots, k\}$, the Jacobian of $(f_i)_{i \in I}$ has full row rank $|I|$ at every a with $f_i(a) = 0$ for all $i \in I$.

Definition G.9 (Solution set components bound; Def. 7.5 (Anthony & Bartlett, 2009)). Let \mathcal{G} be a set of real-valued functions on \mathbb{R}^D . We say \mathcal{G} has *solution set components bound B* if for any $1 \leq k \leq D$ and any $\{f_1, \dots, f_k\} \subseteq \mathcal{G}$ that has regular zero-set intersections,

$$1779 \quad 1780 \quad 1781 \quad \text{CC}\left(\bigcap_{i=1}^k \{a \in \mathbb{R}^D : f_i(a) = 0\}\right) \leq B,$$

where $\text{CC}(\cdot)$ is the number of connected components.

1782 **Theorem G.10** (General Growth function upper bound; Thm. 7.6 (Anthony & Bartlett, 2009)). Let
 1783 $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}^D \times \mathcal{Z}}$ be closed under addition of constants, assume every $f \in \mathcal{F}$ is C^D in a , and let
 1784

$$1785 \quad \mathcal{G} := \{a \mapsto f(a, z) : f \in \mathcal{F}, z \in \mathcal{Z}\}.$$

1786 If \mathcal{G} has a solution set components bound B and $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{Z}}$ is a k -combination of $\text{sgn}(\mathcal{F})$,
 1787 then for all $N \geq D/k$,

$$1789 \quad \Pi_{\mathcal{H}}(N) \leq B \sum_{i=0}^D \binom{Nk}{i} \leq B \left(\frac{eNk}{D} \right)^D.$$

1791 **Theorem G.11** (General Growth function upper bound; Thm. 8.3 (Anthony & Bartlett, 2009)). Let
 1792 $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}^D \times \mathcal{Z}}$ be a class of functions mapping from $\mathbb{R}^D \times \mathcal{Z}$ to \mathbb{R} such that, for all $z \in \mathcal{Z}$ and $f \in \mathcal{F}$,
 1793 the map $a \mapsto f(a, z)$ is a polynomial on \mathbb{R}^D of degree at most r . Suppose that \mathcal{H} is a k -combination
 1794 of $\text{sgn}(\mathcal{F})$. Then, if $N \geq D/k$,

$$1796 \quad \Pi_{\mathcal{H}}(N) \leq 2 \left(\frac{2eNkr}{D} \right)^D.$$

1798 **Remark G.12.** If $N < D/k$, we have a trivial bound $\Pi_{\mathcal{H}}(N) \leq 2^N < 2^{D/k} \leq 2^D$, so for all
 1799 $N \in \mathbb{N}$, $\Pi_{\mathcal{H}}(N) \leq \max \left\{ 2^D, 2 \left(\frac{2eNkr}{D} \right)^D \right\}$.

1801 **Lemma G.13** (Absorbing $\log n$; Lem. A.2 (Shalev-Shwartz & Ben-David, 2014)). Let $A \geq 1$,
 1802 $B \geq 0$, and $u > 0$. If $u < A \log u + B$, then

$$1804 \quad u < 4A \log(2A) + 2B.$$

1805 **Lemma G.14** (Trigonometric Sum Polynomialization). Let $p \geq 1$ and $m \geq 0$ be integers. For any
 1806 vector of non-negative integers $x = (x_1, \dots, x_p)$ such that $\sum_{v=1}^p x_v = m$, there exist polynomials
 1807

$$1808 \quad S_x, C_x \in \mathbb{Z}[c_1, s_1, \dots, c_p, s_p]$$

1809 of total degree at most m that satisfy

$$1811 \quad S_x(c_1, s_1, \dots, c_p, s_p) = \sin \left(\sum_{v=1}^p x_v \alpha_v \right) \quad \text{and} \quad C_x(c_1, s_1, \dots, c_p, s_p) = \cos \left(\sum_{v=1}^p x_v \alpha_v \right)$$

1814 for all real angles $\alpha_1, \dots, \alpha_p$, where $c_v := \cos(\alpha_v)$ and $s_v := \sin(\alpha_v)$.

1816 *Proof of Lem. G.14.* We prove the lemma by induction on $m = \sum_{v=1}^p x_v$. The uniqueness of the
 1817 polynomials is guaranteed by the deterministic recursive construction.

1818 **Base Case ($m = 0$):**

1819 If $m = 0$, then $x = \mathbf{0}$ is the only possible vector. The sum of angles is $\sum x_v \alpha_v = 0$. The defined
 1820 polynomials are $S_{\mathbf{0}} = 0$ and $C_{\mathbf{0}} = 1$. These are integer-coefficient polynomials of degree 0. They
 1821 correctly evaluate to $\sin(0) = 0$ and $\cos(0) = 1$.

1822 **Inductive Step:**

1823 Assume the claim holds for all vectors y with component sum $m - 1$. Let x be a vector with
 1824 component sum m . Let $u = \min\{v \mid x_v > 0\}$ and define $y = x - e_u$. The components of y sum
 1825 to $m - 1$. By the induction hypothesis, there exist polynomials S_y and C_y with integer coefficients
 1826 and degree at most $m - 1$ that represent $\sin(\sum y_v \alpha_v)$ and $\cos(\sum y_v \alpha_v)$.

1827 We define S_x and C_x as per the recursion:

$$1829 \quad S_x := s_u C_y + c_u S_y \quad C_x := c_u C_y - s_u S_y$$

1831 1. **Coefficients and Degree:** Since S_y and C_y have integer coefficients, and s_u, c_u are vari-
 1832 ables, S_x and C_x are also polynomials with integer coefficients. Their total degrees are
 1833 bounded by:

$$1834 \quad \deg(S_x) \leq 1 + \max(\deg(C_y), \deg(S_y)) \leq 1 + (m - 1) = m$$

1835 The same bound holds for $\deg(C_x)$.

1836 2. Trigonometric Identity: By the angle-addition identities and the induction hypothesis:
 1837

$$1838 \quad S_x = \sin(\alpha_u) \cos\left(\sum_{v=1}^p y_v \alpha_v\right) + \cos(\alpha_u) \sin\left(\sum_{v=1}^p y_v \alpha_v\right) \\ 1839 \\ 1840 \\ 1841 \\ 1842 \\ 1843 \quad = \sin\left(\alpha_u + \sum_{v=1}^p y_v \alpha_v\right) = \sin\left(\sum_{v=1}^p x_v \alpha_v\right)$$

1844 Similarly,

$$1845 \quad C_x = \cos(\alpha_u) \cos\left(\sum_{v=1}^p y_v \alpha_v\right) - \sin(\alpha_u) \sin\left(\sum_{v=1}^p y_v \alpha_v\right) \\ 1846 \\ 1847 \\ 1848 \\ 1849 \\ 1850 \quad = \cos\left(\alpha_u + \sum_{v=1}^p y_v \alpha_v\right) = \cos\left(\sum_{v=1}^p x_v \alpha_v\right)$$

1851 This completes the induction. \square
 1852

1853 G.1.1 PIECEWISE-POLYNOMIAL ACTIVATIONS

1854 **Theorem G.15** (Two-layer piecewise-polynomial activations). *Let σ be as in Def. 5.3. For the
 1855 two-layer MLP defined in the model setup,*

$$1856 \quad \text{Ndim}(\mathcal{H}_\Theta) \leq 2dp(6\log(6dp) + \log(2eL) + 2\log(epr)) = \tilde{\mathcal{O}}(dp)$$

1857 *Proof of Thm. G.15.* Let $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}_m$ be Natarajan-shattered. By Lem. G.6, this
 1858 implies $2^n \leq \Pi_{\mathcal{G}_\Theta}(n \binom{p}{2})$. The parameter space $W \in \mathbb{R}^{dp}$ is partitioned into regions by the zero sets
 1859 of $\{w_i x^{(j)} - b_\ell\}$ for $j \in [n], i \in [d], \ell \in [L-1]$. The number of regions, R_S , is the number of sign
 1860 patterns on a sample of size $m = nd(L-1)$ by affine functions of W .
 1861

1862 Notice that $\{w \mapsto \text{sgn}(wx - b_\ell) : w \in \mathbb{R}^{1 \times p}, x \in S, \ell \in [L-1]\} \subset \{-1, +1\}^{\mathcal{X}_m}$ is a 1-
 1863 combination of $\text{sgn}(\{w \mapsto (wx - b_\ell) : w \in \mathbb{R}^{1 \times p}, x \in S, \ell \in [L-1]\}) \subset \mathbb{R}^{\mathcal{X}_m}$.
 1864

1865 By Thm. G.11, $R_S \leq \max\left\{2^{dp}, 2\left(\frac{2e \cdot nd(L-1)}{dp}\right)^{dp}\right\}$. Within each region, $s_i^\theta(x) - s_j^\theta(x)$ is a
 1866 polynomial in $\theta \in \mathbb{R}^{2dp}$ of degree at most $r+1$. Let $N = n \binom{p}{2}$, $D = 2dp$. The growth function is
 1867 bounded by the product of the number of regions and the maximum growth function within a region.
 1868 Applying Thm. G.11 in each region:
 1869

$$1870 \quad \Pi_{\mathcal{G}_\Theta}(N) \leq R_S \cdot \max_R \Pi_R(N) \leq \max\left\{2^{dp}, 2\left(\frac{2e \cdot nd(L-1)}{dp}\right)^{dp}\right\} \max\left\{2^{2dp}, 2\left(\frac{eN(r+1)}{dp}\right)^{2dp}\right\}$$

1871 Substituting $N = \frac{np(p-1)}{2}$ into the inequality $2^n \leq \Pi_{\mathcal{G}_\Theta}(N)$ gives $2^n \leq (2enL)^{dp} (enpr)^{2dp}$.
 1872 Taking the logarithm of both sides yields
 1873

$$1874 \quad n \leq 3dp \log(n) / \log(2) + dp(\log(2eL) + 2\log(epr)) / \log(2).$$

1875 Lem. G.13 implies that
 1876

$$1877 \quad n \leq 2dp(6\log(6dp) + \log(2eL) + 2\log(epr)) / \log(2) = \tilde{\mathcal{O}}(dp).$$

1878 Take supremum over S yields the result. \square
 1879

1880 G.1.2 TRIGONOMETRIC-POLYNOMIAL ACTIVATIONS

1881 **Theorem G.16** (Two-layer trigonometric-polynomial activations). *Let σ be as in Def. 5.4. For the
 1882 two-layer MLP from the model setup,*

$$1883 \quad \text{Ndim}(\mathcal{H}_\Theta) \leq 2dp(6\log(6dp) + 2\log(ep(Km+1))) = \tilde{\mathcal{O}}(dp).$$

1890 *Proof of Thm. G.16.* Let $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}_m$ be Natarajan-shattered. By Lem. G.6, this
 1891 implies $2^n \leq \Pi_{\mathcal{G}_\Theta}(n \binom{p}{2})$.
 1892

1893 For $j \in [d], v \in [p]$ set $c_{j,v} := \cos(w_{j,v})$ and $s_{j,v} := \sin(w_{j,v})$, and regard
 1894

$$1895 \quad a := (V, (c_{j,v})_{j,v}, (s_{j,v})_{j,v}) \in \mathbb{R}^{3dp}$$

1896 as the (relaxed) parameter vector; ignoring the constraints $c_{j,v}^2 + s_{j,v}^2 = 1$ can only increase the
 1897 growth function. For any $(i, y \neq y')$,
 1898

$$1899 \quad s_y^\theta(x^{(i)}) - s_{y'}^\theta(x^{(i)}) = \sum_{j=1}^d (V_{yj} - V_{y'j}) \sigma(\langle w_j, x^{(i)} \rangle).$$

1900 Writing σ as in Def. 5.4 and applying Lem. G.14 to $kx^{(i)}$ shows that each term $\cos(k\langle w_j, x^{(i)} \rangle)$ and
 1901 $\sin(k\langle w_j, x^{(i)} \rangle)$ is a polynomial in $((c_{j,v})_v, (s_{j,v})_v)$ of degree at most $km \leq Km$. Hence every
 1902 pairwise margin is a polynomial in a of degree at most $Km + 1$.
 1903

1904 The reduction class \mathcal{G}_Θ is a 1-combination of $\text{sgn}(\mathcal{F})$ with \mathcal{F} being a family of polynomials of
 1905 degree at most $Km + 1$ in $D = 3dp$ parameters. Applying Thm. G.11 with $N = n \binom{p}{2}$, $k = 1$,
 1906 $r = Km + 1$,
 1907

$$1908 \quad \Pi_{\mathcal{G}_\Theta}(N) \leq \max\left\{2^D, 2\left(\frac{2eNr}{D}\right)^D\right\} \leq 2(pKnm)^{3dp}.$$

1909 Combine with $2^n \leq \Pi_{\mathcal{G}_\Theta}(N)$, take logs: $n \log(2) \leq \log(2) + 3dp \log(pKm) + 3dp \log(n)$. Use
 1910 Lem. G.13 to absorb the $\log n$ term, yielding
 1911

$$1912 \quad n \leq 12dp \log(6dp) / \log(2) + 2(\log(2) + 3dp \log(pKm)) / \log(2) = \tilde{\mathcal{O}}(dp)$$

1913 Taking the supremum over shattered S gives the claim. \square
 1914

1915 G.1.3 RATIONAL-EXPONENTIAL ACTIVATIONS

1916 **Theorem G.17** (Two-layer polynomial–rational–exponential activations). *Let σ be as in Def. 5.5.
 1917 For the two-layer MLP from the model setup,*

$$1918 \quad \text{Ndim}(\mathcal{H}_\Theta) \leq 2dp \left(6 \log(6dp) + 2 \log(ep(dm + r + 1)) \right) = \tilde{\mathcal{O}}(dp).$$

1919 *Proof of Thm. G.17.* Let $S = \{x^{(1)}, \dots, x^{(n)}\} \subset \mathcal{X}_m$ be Natarajan-shattered and set $N := n \binom{p}{2}$.
 1920 For each example i and hidden unit j , put $z_{j,i} := e^{k\langle w_j, x^{(i)} \rangle} > 0$. Since $c \geq 0$ and $\tau > 0$, the
 1921 product

$$1922 \quad D_i(W) := \prod_{j=1}^d (cz_{j,i} + \tau) > 0.$$

1923 Multiplying any pairwise margin $G_{i,y,y'} := s_y^\theta(x^{(i)}) - s_{y'}^\theta(x^{(i)})$ by $D_i(W)$ preserves its sign and
 1924 yields
 1925

$$1926 \quad \widehat{G}_{i,y,y'}(W, V) = D_i(W) G_{i,y,y'}(W, V) = \sum_{j=1}^d (V_{yj} - V_{y'j}) P(\langle w_j, x^{(i)} \rangle) (az_{j,i} + b) \prod_{\ell \neq j} (cz_{\ell,i} + \tau).$$

1927 Introduce relaxed variables $u_{j,v} := e^{kw_{j,v}} \in (0, \infty)$. Then
 1928

$$1929 \quad z_{j,i} = e^{k\langle w_j, x^{(i)} \rangle} = \prod_{v=1}^p u_{j,v}^{x_v^{(i)}},$$

1930 a monomial of total degree m in $U_j := (u_{j,1}, \dots, u_{j,p})$. Consequently, each summand in $\widehat{G}_{i,y,y'}$ is
 1931 a product of: (i) a linear term in V ; (ii) the degree- r polynomial $P(\langle w_j, x^{(i)} \rangle)$ in W_j ; (iii) a factor
 1932 $(az_{j,i} + b) \prod_{\ell \neq j} (cz_{\ell,i} + \tau)$ of total degree dm in the U -variables. Thus every $\widehat{G}_{i,y,y'}$ is a polynomial
 1933 in
 1934

$$1935 \quad a := (V, (u_{j,v})_{j,v}, (w_{j,v})_{j,v}) \in \mathbb{R}^{3dp}$$

1944 of degree at most $\rho := dm + r + 1$. Treating a as the parameter vector, the reduction class \mathcal{G}_Θ is
 1945 a 1-combination of $\text{sgn}(\mathcal{F})$ with \mathcal{F} being a family of polynomials of degree at most ρ in $D = 3dp$
 1946 parameters. Applying Thm. G.11 with $k = 1$, $D = 3dp$, $N = n\binom{p}{2}$,
 1947

$$1948 \quad \Pi_{\mathcal{G}_\Theta}(N) \leq \max \left\{ 2^D, 2 \left(\frac{2eN\rho}{D} \right)^D \right\} \leq (np(dm + r + 1))^{3dp}.$$

1950 Combine with Lem. G.6 and absorb the $\log n$ term via Lem. G.13 to obtain

$$1951 \quad n \leq 12dp \log(6dp/\log(2))/\log(2) + 6dp \log(p(dm + r + 1))/\log(2) = \tilde{\mathcal{O}}(dp)$$

1953 Taking the supremum over shattered S gives the claim. \square

1954 G.1.4 UNIFORM CONVERGENCE GUARANTEES

1956 Let $\mathcal{H}_\sigma \subseteq [p]^{\mathcal{X}}$ be a multiclass hypothesis class with Natarajan-dimension $\text{Ndim}(\mathcal{H}_\sigma) < \infty$. Let
 1957 $h \in \mathcal{H}$, denote by $\mathbb{P}_{(x,y) \in \mathcal{D}}[h(x) \neq y]$ the population 0–1 risk and by $\mathbb{P}_{(x,y) \in \mathcal{D}_{\text{train}}}[h(x) \neq y]$ the
 1958 empirical 0–1 risk computed from an i.i.d. sample of size n .

1959 **Theorem G.18** (The Multiclass Fundamental Theorem, Thm. 29.3 of (Shalev-Shwartz & Ben-
 1960 David, 2014), Uniform convergence). *There exists a universal constant $C > 0$ such that, for every*
 1961 $\delta \in (0, 1)$, *with probability at least $1 - \delta$,*

$$1963 \quad \sup_{h \in \mathcal{H}_\sigma} \left| \mathbb{P}_{(x,y) \in \mathcal{D}}[h(x) \neq y] - \mathbb{P}_{(x,y) \in \mathcal{D}_{\text{train}}}[h(x) \neq y] \right| \leq C \sqrt{\frac{\text{Ndim}(\mathcal{H}_\sigma) \log p + \log(1/\delta)}{n}}.$$

1966 *Proof of Thm. 5.6.* By Thm. G.15, G.16, G.17, $\text{Ndim}(\mathcal{H}_\sigma) = \tilde{\mathcal{O}}(dp)$. Substituting this into the
 1967 multiclass uniform convergence bound (Thm. G.18) yields

$$1969 \quad \sup_{h \in \mathcal{H}_\sigma} \left| \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] - \mathbb{P}_{(x,y) \sim \mathcal{D}_{\text{train}}}[h(x) \neq y] \right| \leq C \sqrt{\frac{\text{Ndim}(\mathcal{H}_\sigma) \log p + \log(1/\delta)}{n}} = \tilde{\mathcal{O}}\left(\sqrt{\frac{dp + \log(1/\delta)}{n}}\right),$$

1972 where the $\log p$ factor is absorbed into $\tilde{\mathcal{O}}(\cdot)$. \square

1973 G.2 LOWER BOUND OF NATARAJAN-DIMENSION

1975 Let Θ denote the backbone parameter space determined by the architecture. The multiclass hypothesis class is

$$1978 \quad \mathcal{H} = \{h_{\theta,V} : \theta \in \Theta, V \in \mathbb{R}^{p \times d}\}.$$

1979 **Definition G.19** (Associated binary class). We consider the binary (realizable) subclass of half-spaces in the representation:

$$1981 \quad \mathcal{M} = \left\{ x \mapsto \mathbf{1}\{\langle v, f_\theta(x) \rangle \geq 0\} : (\theta, v) \in \Theta \times \mathbb{R}^d \right\} \subseteq \{0, 1\}^{\mathcal{X}}.$$

1983 **Lemma G.20** (VC-dimension is bounded by the Natarajan-dimension). *For the multiclass hypothesis class \mathcal{H} with $p \geq 2$,*

$$1985 \quad \text{VCdim}(\mathcal{M}) \leq \text{Ndim}(\mathcal{H}).$$

1987 *Proof.* Let $S \subseteq \mathcal{X}$ be a finite set that is VC-shattered by \mathcal{M} .

1988 Fix $f_1, f_2 \in [p]^S$ by $f_1(x) \equiv 1$ and $f_2(x) \equiv 2$ for all $x \in S$ (possible since $p \geq 2$). Let $b : S \rightarrow$
 1989 $\{1, 2\}$ be an arbitrary selector. Define the induced binary labeling

$$1990 \quad y_b(x) = \mathbf{1}\{b(x) = 1\} \in \{0, 1\} \quad (x \in S).$$

1992 Since S is VC-shattered by \mathcal{M} , there exist $\theta_b \in \Theta$ and $v_b \in \mathbb{R}^d$ such that

$$1993 \quad y_b(x) = \mathbf{1}\{\langle v_b, f_{\theta_b}(x) \rangle \geq 0\} \quad \text{for all } x \in S.$$

1995 Construct $V_b \in \mathbb{R}^{p \times d}$ such that the first row is v_b , and all remaining rows are 0. Then, for each
 1996 $x \in S$,

$$1997 \quad h_{\theta_b, V_b}(x) = \begin{cases} 1, & \text{if } y_b(x) = 1 (b(x) = 1), \\ 2, & \text{if } y_b(x) = 0 (b(x) = 2), \end{cases}$$

1998 i.e., $h_{\theta_b, V_b}(x) = f_{b(x)}(x)$ for all $x \in S$. Since b was arbitrary, S is Natarajan-shattered by \mathcal{H}
 1999 with witnesses (f_1, f_2) . Therefore $|S| \leq \text{Ndim}(\mathcal{H})$. Taking the supremum over all such S gives
 2000 $\text{VCdim}(\mathcal{M}) \leq \text{Ndim}(\mathcal{H})$.
 2001 \square

H CAPACITY BOUNDS IN TAB. 1

2006 **Notation and scope.** All entries are for two-layer MLPs (one hidden layer) with W trainable
 2007 parameters and width d . Throughout, $\tilde{\Theta}(\cdot)$ hides polylogarithmic factors in W, d , and the bound M
 2008 on the input.
 2009

H.1 TWO-LAYER MLP SETUP IN TAB. 1

2012 **Model.** For width d , input dimension n , output dimension $K \geq 1$, and elementwise activation σ .
 2013 The score map is

$$s_{\theta}(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K, \quad V_1 \in \mathbb{R}^{d \times n}, V_2 \in \mathbb{R}^{K \times d}$$

2016 Total parameters

$$W = Kd + dn$$

2018 and the table reports bounds as functions of W .
 2019

2020 **Input regimes.** All constraints apply to the vector *entering the first linear layer*.
 2021

- 2022 1. Real-valued: $\mathcal{X} = \mathbb{R}^n$.
- 2023 2. Integer-valued, bounded by M : $\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_{\infty} \leq M\}$.
- 2024 3. Integer-valued, unbounded: $\mathcal{X} = \mathbb{Z}^n$.

2026 **Representation, scores, and hypothesis classes.** Let $\Theta = \{(V_1, V_2) : V_1 \in \mathbb{R}^{d \times n}, V_2 \in \mathbb{R}^{K \times d}\}$.
 2027 We write the learned representation and scores as
 2028

$$f_{\theta}(x) = \sigma(V_1 x) \in \mathbb{R}^d, \quad s_{\theta}(x) = V_2 f_{\theta}(x) \in \mathbb{R}^K.$$

2029 For $K \geq 2$ (multiclass), the hypothesis class is
 2030

$$\mathcal{H} = \left\{ h_{\theta} : \mathcal{X} \rightarrow [K] \cup \{\perp\}, \quad h_{\theta}(x) = \psi_{\text{uargmax}}(s_{\theta}(x)) \mid \theta \in \Theta \right\},$$

2034 where $\psi_{\text{uargmax}}(u)$ returns the index of the unique maximum of the vector u , or \perp (invalid) if the
 2035 maximum is not unique.
 2036

2037 **Definition H.1** (Associated binary class restated; Def. G.19). We consider the binary (realizable)
 2038 subclass of halfspaces in the representation:
 2039

$$\mathcal{M} = \left\{ x \mapsto \mathbf{1}\{\langle v, f_{\theta}(x) \rangle \geq 0\} : (\theta, v) \in \Theta \times \mathbb{R}^d \right\} \subseteq \{0, 1\}^{\mathcal{X}}.$$

2041 **Bound on integer inputs.** In the bounded–integer regime we fix $M \in \mathbb{N}$ and take
 2042

$$\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_{\infty} \leq M\}.$$

2044 Throughout, $\tilde{\Theta}(\cdot)$ and $\tilde{\mathcal{O}}(\cdot)$ hide polylogarithmic factors in W, d , and (when applicable) M .
 2045

2046 **Output Type and Complexity Measure.** Predictions are obtained from scores via a fixed decoder:
 2047

- 2048 1. **VC-dimension (binary subclass):** take $K = 1$ and $\psi_{\text{sign}}(z) = \text{sgn}(z)$ (assigning
 2049 $\text{sgn}(0) = 1$); VCdim is measured on $\{\psi_{\text{sign}} \circ s_{\theta}\}$.
- 2050 2. **Natarajan dimension (multiclass):** take any $K \geq 2$ and ψ_{uargmax} (strict uniqueness) as
 2051 defined above; Ndim is measured on $\{\psi_{\text{uargmax}} \circ s_{\theta}\}$.

2052 **Scope of the table.** Tab. 1 concerns the general class above, only the total parameter count W and
 2053 the width d matter for the rates.
 2054

2055 **H.2 SOURCES FOR THE VC-DIMENSION BOUNDS**
 2056

2057 **Piecewise linear, real-valued** ($\text{VCdim} = \Theta(W \log W)$). The nearly-tight bounds for piecewise-
 2058 linear networks are summarized by (Bartlett et al., 2017b, Eq. (2)); for fixed depth $L = 2$ this
 2059 specializes to $\Theta(W \log W)$.
 2060

2061 **Piecewise-polynomial, real-valued** ($\text{VCdim} = \Theta(W \log W)$). (Anthony & Bartlett, 2009,
 2062 Thm. 8.8) prove an upper bound of $\mathcal{O}(WL \log W + WL^2)$ for networks with piecewise-polynomial
 2063 activations of bounded degree and a bounded number of pieces; in the depth-2 case this simplifies
 2064 to $\mathcal{O}(W \log W)$. A matching lower bound of $\Omega(W \log W)$ for two-layer linear-threshold networks
 2065 (a special case with degree 0) appears in (Anthony & Bartlett, 2009, Thm. 6.4). Using a refined bit-
 2066 extraction technique, (Bartlett et al., 2017b, Thm. 3) further gives an explicit construction achieving
 2067 $\Omega(WL \log(W/L))$ for ReLU networks, which in particular gives $\Omega(W \log W)$ for depth-2 net-
 2068 works.
 2069

2070 **Pfaffian activations (incl. standard sigmoid), real-valued** ($\text{VCdim} = \mathcal{O}(d^2 W^2)$). A general
 2071 upper bound $\mathcal{O}(W^2 k^2)$ for standard sigmoid networks is given in (Anthony & Bartlett, 2009,
 2072 Thm. 8.13), where k is the number of computation units; in a two-layer networks, $k = d$. The
 2073 Pfaffian extension follows from Khovanskii's *Fewnomials*: the theorem underlying Lemma 8.15
 2074 (see also (Anthony & Bartlett, 2009, §8.6)) bounds the number of connected components (Betti
 2075 numbers) of semi-Pfaffian sets defined by functions from a fixed Pfaffian chain. Plugging this com-
 2076 ponent bound into the standard growth function argument used for the exponential case yields the
 2077 same $\mathcal{O}(d^2 W^2)$ VC-dimension bound for networks whose activations lie in a fixed Pfaffian chain
 2078 (with order/degree independent of the data).
 2079

2080 **Standard sigmoid, real-valued** ($\text{VCdim} = \Omega(W \log W)$). The reduction from linear-threshold
 2081 to smooth sigmoids (Anthony & Bartlett, 2009, Thm. 6.5) implies that the two-layer linear-threshold
 2082 lower bound (Anthony & Bartlett, 2009, Thm. 6.4) carries over to standard sigmoid networks on the
 2083 same finite set of inputs. This yields $\Omega(W)$ lower bound, and $\Omega(W \log W)$ under the construction
 2084 of "bit extraction" (Bartlett et al., 2017b, Rmk. 4).
 2085

2086 **Standard sigmoid, integer-valued bounded inputs** ($\text{VCdim} = \tilde{\Theta}(W)$). For two-layer standard
 2087 sigmoid networks with integer-valued inputs and first-layer fan-in $\leq N$, (Anthony & Bartlett, 2009,
 2088 Thm. 8.11) gives $\text{VCdim} \leq 2W \log_2(60ND) = \tilde{\mathcal{O}}(W)$. The paragraph following the theorem
 2089 constructs a two-layer linear-threshold network with $\text{VCdim} = \Omega(W)$; (Anthony & Bartlett, 2009,
 2090 Thm. 6.5) transfers this lower bound to sigmoids. Hence the bound is $\tilde{\Theta}(W)$.
 2091

2092 **Sine, integer-valued unbounded inputs** ($\text{VCdim} = \infty$). (Anthony & Bartlett, 2009, Lemma 7.2)
 2093 shows that $\{x \mapsto \text{sgn}(\sin(ax))\}$ has infinite VC-dimension. Thus, restricting to two labels, the
 2094 corresponding multiclass Natarajan-dimension is also infinite.
 2095

2096 **H.3 NATARAJAN-DIMENSION LOWER BOUNDS**
 2097

2098 We now transfer known VC-dimension lower bounds for the binary subclass to the multiclass setting
 2099 via Lem. G.20.

2100 **Theorem H.2** (Natarajan-dimension lower bounds for two-layer MLPs). *Consider the two-layer
 2101 MLP family in App. H.1, with width d , total parameter count $W = Kd + dn$, and $K \geq 2$ classes
 2102 decoded by ψ_{argmax} . Let \mathcal{H} denote the resulting multiclass hypothesis class and let \mathcal{M} be the
 2103 associated binary subclass of halfspaces in the learned representation (Def. G.19). Then*

$$2104 \text{Ndim}(\mathcal{H}) \geq \text{VCdim}(\mathcal{M}),$$

2105 and, in particular, for the activation/input regimes appearing in Tab. 1 for which VC-dimension
 2106 lower bounds are known, the following existential lower bounds hold:

2106 1. *Piecewise linear, real-valued inputs:* $\text{Ndim}(\mathcal{H}) \geq \Omega(W \log W)$.
 2107
 2108 2. *Piecewise polynomial, real-valued inputs:* $\text{Ndim}(\mathcal{H}) \geq \Omega(W \log W)$.
 2109
 2110 3. *Standard sigmoid, real-valued inputs:* $\text{Ndim}(\mathcal{H}) \geq \Omega(W \log W)$.
 2111
 2112 4. *Standard sigmoid, integer-valued bounded inputs:* $\text{Ndim}(\mathcal{H}) \geq \Omega(W)$.
 2113
 2114 5. *Sine, integer-valued unbounded inputs:* $\text{Ndim}(\mathcal{H}) = \infty$.

2115 *All bounds are stated for the two-layer architecture in App. H.1.*

2116 *Proof.* By Lem. G.20, $\text{VCdim}(\mathcal{M}) \leq \text{Ndim}(\mathcal{H})$, where \mathcal{M} is the binary subclass.

2118 It remains to instantiate $\text{VCdim}(\mathcal{M})$ in each regime. By construction (Def. G.20 and App. H.1), \mathcal{M}
 2119 is exactly the binary two-layer network class used in the VC-dimension entries of Tab. 1. Therefore,
 2120 from Sec. H.2:

2122 1. For piecewise-linear and piecewise-polynomial activations with real-valued inputs,
 2123 $\text{VCdim}(\mathcal{M}) \geq \Omega(W \log W)$, yielding the first two claims.
 2124
 2125 2. For standard sigmoids with real-valued inputs, $\text{VCdim}(\mathcal{M}) \geq \Omega(W \log W)$, yielding the
 2126 third claim.
 2127
 2128 3. For standard sigmoids with bounded integer inputs, $\text{VCdim}(\mathcal{M}) \geq \Omega(W)$, yielding the
 2129 fourth claim.
 2130
 2131 4. For sine activations with unbounded integer inputs, the binary subclass has infinite VC-
 2132 dimension, hence $\text{Ndim}(\mathcal{H}) = \infty$.

2132 These bounds are existential: for each (W, d) there exist network parameters achieving the stated
 2133 shattering. \square

2135 H.4 NATARAJAN-DIMENSION UPPER BOUNDS

2137 We restate the Natarajan-dimension upper bounds for the two-layer MLP in App. H.1. Throughout,
 2138 the score map is $s_\theta(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K$ with width d , output size $K \geq 2$. The proofs are
 2139 essentially the same as in Thms. G.15, G.17, and G.16, with only the notational substitution of the
 2140 updated score map and parameter count.

2141 **Theorem H.3** (Piecewise-polynomial activations, real-valued inputs). *Assume the model of*
 2142 *App. H.1 with scores $s_\theta(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K$, prediction by ψ_{uargmax} , and total parameters*
 2143 *$W = dn + Kd$. Let σ be piecewise-polynomial on \mathbb{R} with at most L pieces and maximal piece*
 2144 *degree r , where L, r are absolute constants (do not grow with n, d, K). For the input domain $\mathcal{X} = \mathbb{R}^n$,*
 2145 *the multiclass hypothesis class $\mathcal{H} = \{\psi_{\text{uargmax}} \circ s_\theta\}$ satisfies*

$$2146 \text{Ndim}(\mathcal{H}) \leq \tilde{\mathcal{O}}(W),$$

2148 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in W, d (and in the structural constants L, r).

2149 **Theorem H.4** (Polynomial–rational–exponential activations (incl. logistic sigmoid), bounded integer-valued inputs). *Assume the model of App. H.1 with scores $s_\theta(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K$, prediction by ψ_{uargmax} , and total parameters $W = dn + Kd$. Let σ be of the form in Def. 5.5, i.e.,*

$$2152 \sigma(t) = P(t) \frac{ae^{kt} + b}{ce^{kt} + \tau},$$

2155 with fixed scalars $k \in \mathbb{R} \setminus \{0\}$, $c \geq 0$, $\tau > 0$, $a, b \in \mathbb{R}$, and $\deg P \leq r$, where r is an absolute
 2156 constant (do not grow with n, d, K, M). For the input domain $\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_\infty \leq M\}$ with
 2157 $M \in \mathbb{N}$, the multiclass hypothesis class $\mathcal{H} = \{\psi_{\text{uargmax}} \circ s_\theta\}$ satisfies

$$2158 \text{Ndim}(\mathcal{H}) \leq \tilde{\mathcal{O}}(W),$$

2159 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in W, d, M (and in the structural constant r).

2160
 2161 **Theorem H.5** (Trigonometric-polynomial activations, bounded integer-valued inputs). *Assume the*
 2162 *model of App. H.1 with scores $s_\theta(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K$, prediction by ψ_{uargmax} , and total*
 2163 *parameters $W = dn + Kd$. Let σ be a trigonometric polynomial of degree at most T , where T is an*
 2164 *absolute constant. For the input domain $\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_\infty \leq M\}$ with $M \in \mathbb{N}$, the multiclass*
 2165 *hypothesis class $\mathcal{H} = \{\psi_{\text{uargmax}} \circ s_\theta\}$ satisfies*

$$\text{Ndim}(\mathcal{H}) \leq \tilde{\mathcal{O}}(W),$$

2166 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in W, d, M (and in the structural constant T).

2167 Immediate by combining Thms. H.3, H.4, and H.5, we have

2168 **Theorem H.6** ($\tilde{\mathcal{O}}(W)$ Natarajan dimension upper bound for two-layer MLPs). *Consider the model*
 2169 *of App. H.1 with scores $s_\theta(x) = V_2 \sigma(V_1 x) \in \mathbb{R}^K$, where $V_1 \in \mathbb{R}^{d \times n}$, $V_2 \in \mathbb{R}^{K \times d}$, and total*
 2170 *parameters $W = dn + Kd$. Prediction is by ψ_{uargmax} . Assume throughout that all structural*
 2171 *constants below are absolute (do not grow with n, d, K, M):*

- 2172 1. σ is piecewise-polynomial with at most L pieces and maximal piece degree r on \mathbb{R} , and
 2173 $\mathcal{X} = \mathbb{R}^n$;
- 2174 2. σ is polynomial–rational–exponential whose polynomial factor $P(t)$ has degree at most s ,
 2175 and $\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_\infty \leq M\}$;
- 2176 3. σ is a trigonometric-polynomial of degree at most T , and $\mathcal{X} = \{x \in \mathbb{Z}^n : \|x\|_\infty \leq M\}$.

2177 Then the multiclass hypothesis class $\mathcal{H} = \{\psi_{\text{uargmax}} \circ s_\theta\}$ satisfies

$$\text{Ndim}(\mathcal{H}) \leq \tilde{\mathcal{O}}(W),$$

2178 where $\tilde{\mathcal{O}}(\cdot)$ hides polylogarithmic factors in W, d , and, when applicable, M (as well as in the
 2179 structural constants L, r, T, s).

I HIGH-MARGIN INTERPOLATING SOLUTIONS

2180 In this section, we present high-margin interpolating solutions for two-layer MLPs with sine and
 2181 ReLU activations for a fixed length.

I.1 SINE ACTIVATION $\sigma(z) = \sin z$

2182 **Theorem I.1** (High margin, $d = 2p$). *There exists a construction with hidden dimension $d = 2p$*
 2183 *and sine activation computes $\sum_{i=1}^m s_i \bmod p$ for all $x = (s_1, \dots, s_m) \in \mathcal{X}_m$, achieving margin*
 2184 *$\gamma = p$ and $\|V\|_2 = \sqrt{p}$, $\|W\|_F \leq \pi\sqrt{2}p$.*

2185 *Proof.* Index hidden units by $h \in \{1, \dots, 2p\}$ and group them as $(2k-1, 2k)$ for frequencies
 2186 $k \in \{1, \dots, p\}$. Let $\phi_k = \frac{2\pi k}{p}$.

2187 **First-Layer Weights** $W \in \mathbb{R}^{2p \times p}$. For each $k \in \{1, \dots, p\}$ and $r \in [p]$,

$$W_{2k-1, r} = (\phi_k r) \bmod 2\pi \in [-\pi, \pi), \quad W_{2k, r} = (\phi_k r + \frac{\pi}{2}) \bmod 2\pi \in [-\pi, \pi).$$

2188 Then

$$(Wx)_{2k-1} = \phi_k S, \quad (Wx)_{2k} = \phi_k S + \frac{\pi}{2},$$

2189 and

$$\sigma((Wx)_{2k-1}) = \sin(\phi_k S), \quad \sigma((Wx)_{2k}) = \cos(\phi_k S).$$

2190 The first layer satisfies $\|W\|_\infty \leq \pi$, hence $\|W\|_F \leq \pi\sqrt{(2p)p} = \pi\sqrt{2}p$.

2191 **Second-Layer Weights** $V \in \mathbb{R}^{p \times 2p}$. For each $q \in [p]$ and $k \in \{1, \dots, p\}$,

$$V_{q, 2k-1} = \sin(\phi_k q), \quad V_{q, 2k} = \cos(\phi_k q).$$

2214 **Verification** For the q -th output,
 2215

$$\begin{aligned}
 2216 \quad s_q^\theta(x) &= \sum_{k=1}^p \left[\sin(\phi_k q) \sin(\phi_k S) + \cos(\phi_k q) \cos(\phi_k S) \right] \\
 2217 \\
 2218 \quad &= \sum_{k=1}^p \cos(\phi_k(S - q)) = \Re \left(\sum_{k=1}^p e^{i \frac{2\pi k}{p} (S - q)} \right) \\
 2219 \\
 2220 \quad &= \begin{cases} p, & S \equiv q \pmod{p}, \\ 0, & \text{otherwise.} \end{cases} \\
 2221 \\
 2222 \\
 2223
 \end{aligned}$$

2224 Hence $h_\theta(x) = S \bmod p$ with margin $\gamma = p$. The construction achieves 100% accuracy with width
 2225 $d = 2p$ and satisfies $\|W\|_\infty \leq \pi$, $\|V\|_\infty \leq 1$. \square
 2226

2227 **Lemma I.2** (Singular values of V). *In the high-margin construction, all singular values of V are
 2228 exactly \sqrt{p} , so $\|V\|_2 = \sqrt{p}$.*
 2229

2230 *Proof.* Compute VV^\top entrywise. For $q, r \in [p]$,
 2231

$$\begin{aligned}
 2232 \quad (VV^\top)_{qr} &= \sum_{k=1}^p \left(\sin(\phi_k q) \sin(\phi_k r) + \cos(\phi_k q) \cos(\phi_k r) \right) \\
 2233 \\
 2234 \quad &= \sum_{k=1}^p \cos(\phi_k(q - r)) \quad (\text{using } \cos(a - b) = \cos a \cos b + \sin a \sin b) \\
 2235 \\
 2236 \quad &= \Re \left(\sum_{k=1}^p e^{i \frac{2\pi k}{p} (q - r)} \right) \\
 2237 \\
 2238 \quad &= \begin{cases} 0, & \text{if } q - r \not\equiv 0 \pmod{p} \\ p, & \text{if } q - r \equiv 0 \pmod{p} \end{cases} \\
 2239 \\
 2240 \\
 2241
 \end{aligned}$$

2243 Therefore all eigenvalues of VV^\top are exactly p , so all singular values of V are exactly \sqrt{p} . In
 2244 particular, the spectral norm is $\|V\|_2 = \sqrt{p}$. \square
 2245

2246 I.2 RELU ACTIVATION $\sigma(z) = \text{ReLU}(z)$

2248 For a multi-index $a = (a_1, \dots, a_s) \in \mathbb{Z}_{\geq 0}^s$, denote $|a| := \sum_{i=1}^s a_i$.
 2249

2250 **Lemma I.3** (Polynomial sign polarization). *For $s \geq 1$,*

$$2251 \quad x_1 x_2 \cdots x_s = \frac{1}{s! 2^s} \sum_{\varepsilon \in \{\pm 1\}^s} \left(\prod_{i=1}^s \varepsilon_i \right) \left(\sum_{i=1}^s \varepsilon_i x_i \right)^s.$$

2254 *Proof.* Multinomial expansion gives
 2255

$$2256 \quad \left(\sum_{i=1}^s \varepsilon_i x_i \right)^s = \sum_{|k|=s} \frac{s!}{k_1! \cdots k_s!} \prod_{i=1}^s (\varepsilon_i x_i)^{k_i}.$$

2259 Multiplying by $\prod_{j=1}^s \varepsilon_j$ and summing over ε gives
 2260

$$2261 \quad \sum_{\varepsilon \in \{\pm 1\}^s} \left(\prod_{j=1}^s \varepsilon_j \right) \left(\sum_{i=1}^s \varepsilon_i x_i \right)^s = \sum_{|k|=s} \frac{s!}{k_1! \cdots k_s!} x_1^{k_1} \cdots x_s^{k_s} \sum_{\varepsilon \in \{\pm 1\}^s} \prod_{i=1}^s \varepsilon_i^{k_i+1}.$$

2264 Observe that
 2265

$$2266 \quad \sum_{\varepsilon \in \{\pm 1\}^s} \prod_{i=1}^s \varepsilon_i^{k_i+1} = \prod_{i=1}^s ((+1)^{k_i+1} + (-1)^{k_i+1}) = \begin{cases} 2^s, & \text{if each } k_i + 1 \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Because $|k| = s$ and each $k_i \geq 1$ must be odd so that $\sum_{\varepsilon \in \{\pm 1\}^s} \prod_{i=1}^s \varepsilon_i^{k_i+1} \neq 0$, the only possibility is $k = (1, \dots, 1)$.

Therefore,

$$\sum_{\varepsilon \in \{\pm 1\}^s} \left(\prod_{i=1}^s \varepsilon_i \right) \left(\sum_{i=1}^s \varepsilon_i x_i \right)^s = s! 2^s x_1 x_2 \cdots x_s.$$

Dividing by $s! 2^s$ yields the stated identity. \square

Lemma I.4 (Uniform ReLU-spline approximation of power functions). *Let $s \geq 1$, and $\varepsilon > 0$. Partition $[-1, 1]$ uniformly with knots $z_k = -1 + \frac{2k}{N}$, $k = 0, 1, \dots, N$. Let g be the linear spline that interpolates $f_s(z) = z^s$ at these knots. Then*

$$\|f_s - g\|_{L_\infty([-1, 1])} \leq \frac{s(s-1)}{2N^2}.$$

Moreover, g admits an exact one-hidden-layer ReLU representation on $[-1, 1]$ of the form

$$\Phi_s(z) = \sum_{i=1}^M c_i \text{ReLU}(a_i z - b_i),$$

with at most $M \leq N + 1$ units and

$$|a_i| \leq 1, \quad |b_i| \leq 1, \quad |c_i| \leq \max \left\{ s + \frac{1}{2}, \frac{2s(s-1)}{N} \right\}.$$

Choosing

$$N \geq \max \left\{ 1, \left\lceil \sqrt{\frac{s(s-1)}{2\varepsilon}} \right\rceil \right\}$$

ensures $\|f_s - g\|_{L_\infty([-1, 1])} \leq \varepsilon$. Thus, the number of required ReLU units to achieve accuracy ε is $M = O\left(\frac{s}{\sqrt{\varepsilon}}\right)$.

Proof. The case $s = 1$ is trivial since $f_1(z) = z$ is linear and equals its linear spline interpolant.

For $s \geq 2$, $f_s \in C^2([-1, 1])$ with $f_s''(z) = s(s-1)z^{s-2}$ and $\|f_s''\|_{L_\infty([-1, 1])} = s(s-1)$. Fix $z \in [z_k, z_{k+1}]$ and define

$$\varphi(t) = f_s(t) - g(t) - \frac{f_s(z) - g(z)}{(z - z_k)(z - z_{k+1})}(t - z_k)(t - z_{k+1}).$$

Then $\varphi(z_k) = \varphi(z_{k+1}) = \varphi(z) = 0$ and, by Rolle's theorem, there exists $\xi_z \in (z_k, z_{k+1})$ such that

$$|f_s(z) - g(z)| = \left| \frac{f_s''(\xi_z)}{2} (z - z_k)(z_{k+1} - z) \right|.$$

Hence, with $h = \frac{2}{N}$,

$$\max_{z \in [z_k, z_{k+1}]} |f_s(z) - g(z)| \leq \frac{1}{2} \|f_s''\|_{L_\infty} \frac{h^2}{4} = \frac{s(s-1)}{2N^2}.$$

Taking the maximum over k yields the stated uniform bound.

For the ReLU representation, write $h = \frac{2}{N}$ and set the interval slopes

$$m_k = \frac{z_{k+1}^s - z_k^s}{h}, \quad k = 0, \dots, N-1, \quad \gamma_j = m_j - m_{j-1} = \frac{z_{j+1}^s - 2z_j^s + z_{j-1}^s}{h}, \quad j = 1, \dots, N-1.$$

Then g admits the exact expansion on $[-1, 1]$:

$$g(z) = c_1 \text{ReLU}(z+1) + c_2 \text{ReLU}(1-z) + \sum_{j=1}^{N-1} \gamma_j \text{ReLU}(z - z_j),$$

2322 with

2323
$$c_2 = \frac{f_s(-1)}{2} = \frac{(-1)^s}{2}, \quad c_1 = m_0 + \frac{(-1)^s}{2},$$
 2324

2325 and $(a_1, b_1) = (1, -1), (a_2, b_2) = (-1, -1), (a_{j+2}, b_{j+2}) = (1, z_j)$ for $j = 1, \dots, N - 1$. 23262327 Since $|z_j| \leq 1$, we have $|a_i| \leq 1$ and $|b_i| \leq 1$. By the mean value theorem, $|m_0| \leq \|f'_s\|_{L_\infty} = s$, 2328 hence $|c_1| \leq s + \frac{1}{2}$ and $|c_2| \leq \frac{1}{2} \leq s + \frac{1}{2}$.2329 Moreover, define $\Psi \in C^2[z_j - h, z_j + h]$ where

2330
$$\Psi(t) = f_s(t) - \left(f_s(z_j) + \frac{f_s(z_j + h) - f_s(z_j - h)}{2h} (t - z_j) + \frac{f_s(z_j + h) - 2f_s(z_j) + f_s(z_j - h)}{2h^2} (t - z_j)^2 \right).$$
 2331

2332 By Rolle's theorem,

2333
$$\gamma_j = \frac{f_s(z_j + h) - 2f_s(z_j) + f_s(z_j - h)}{h} = h f''_s(\xi_j) \quad \text{for some } \xi_j \in (z_j - h, z_j + h),$$
 2334

2335 so $|\gamma_j| \leq h \|f''_s\|_{L_\infty} = \frac{2}{N} s(s-1)$. Counting two boundary hinges and $N-1$ interior hinges gives 2336 $M \leq N+1$ units. 2337

□

2338 **Lemma I.5** (Polarized Newton expansion for f_{\cos} and f_{\sin}). *Let $m \geq 1$. For angles $(\theta_1, \dots, \theta_m)$, 2339 define*

2340
$$C_k = \sum_{i=1}^m \cos(k\theta_i), \quad S_k = \sum_{i=1}^m \sin(k\theta_i).$$
 2341

2342 *Let*

2343
$$\mathcal{K}_m := \left\{ k = (k_1, \dots, k_m) \in \mathbb{Z}_{\geq 0}^m : \sum_{j=1}^m j k_j = m \right\}.$$
 2344

2345 *We index*

2346
$$\varepsilon = (\varepsilon_{1,1}, \dots, \varepsilon_{1,k_1}, \varepsilon_{2,1}, \dots, \varepsilon_{m,k_m}) \in \{\pm 1\}^{|k|}.$$
 2347

2348 For $p = (p_1, \dots, p_m)$ we denote $p \leq k$ if $0 \leq p_j \leq k_j$. Then 2349

2350
$$f_{\cos} = \cos\left(\sum_{i=1}^m \theta_i\right) = \sum_{k \in \mathcal{K}_m} \sum_{\substack{p \leq k \\ |p| = |k| \text{ even}}} \sum_{\varepsilon \in \{\pm 1\}^{|k|}} \alpha_{k,p,\varepsilon} G_{k,p,\varepsilon}^{|k|}$$
 2351

2352
$$f_{\sin} = \sin\left(\sum_{i=1}^m \theta_i\right) = \sum_{k \in \mathcal{K}_m} \sum_{\substack{p \leq k \\ |p| = |k| \text{ odd}}} \sum_{\varepsilon \in \{\pm 1\}^{|k|}} \beta_{k,p,\varepsilon} G_{k,p,\varepsilon}^{|k|}$$
 2353

2354 *Where*

2355
$$G_{k,p,\varepsilon} = \sum_{j=1}^m \left(\sum_{\ell=1}^{p_j} \varepsilon_{j,\ell} \right) C_j + \sum_{j=1}^m \left(\sum_{\ell=p_j+1}^{k_j} \varepsilon_{j,\ell} \right) S_j$$
 2356

2357
$$\alpha_{k,p,\varepsilon} = \frac{(-1)^{m-\sum k_j}}{\prod_{j=1}^m k_j! j^{k_j}} (-1)^{\frac{|k|-|p|}{2}} \left(\prod_{j=1}^m \binom{k_j}{p_j} \right) \frac{1}{|k|! 2^{|k|}} \left(\prod_{j=1}^m \prod_{\ell=1}^{k_j} \varepsilon_{j,\ell} \right)$$
 2358

2359
$$\beta_{k,p,\varepsilon} = \frac{(-1)^{m-\sum k_j}}{\prod_{j=1}^m k_j! j^{k_j}} (-1)^{\frac{|k|-|p|-1}{2}} \left(\prod_{j=1}^m \binom{k_j}{p_j} \right) \frac{1}{|k|! 2^{|k|}} \left(\prod_{j=1}^m \prod_{\ell=1}^{k_j} \varepsilon_{j,\ell} \right)$$
 2360

2361 *and thus*

2362
$$|\alpha_{k,p,\varepsilon}| = |\beta_{k,p,\varepsilon}| = \frac{1}{\left(\prod_{j=1}^m j^{k_j} \right) \left(\prod_{j=1}^m p_j! (k_j - p_j)! \right) |k|! 2^{|k|}} \leq \frac{1}{2}$$
 2363

Furthermore, for $N_{\text{tot}}(m)$, the total amount of triples (k, p, ε) (with $k \in \mathcal{K}_m$, $p \leq k$, $\varepsilon \in \{\pm 1\}^{|k|}$),

$$N_{\text{tot}}(m) = \sum_{k \in \mathcal{K}_m} 2^{|k|} \prod_{j=1}^m (k_j + 1) \in [m2^m, 13m2^m].$$

Proof. Let $z_j = e^{i\theta_j}$ for $j = 1, \dots, m$. The k -th power sum is $Z_k = \sum_{j=1}^m z_j^k = C_k + iS_k$. Let $e_m = \prod_{j=1}^m z_j = e^{i\sum_{j=1}^m \theta_j}$ be the m -th elementary symmetric polynomial in z_1, \dots, z_m . The target functions are $f_{\text{cos}} = \Re(e_m)$ and $f_{\text{sin}} = \Im(e_m)$.

Newton's sum identities provide a formula expressing e_m as a polynomial in the power sums Z_1, \dots, Z_m :

$$e_m = P(Z_1, \dots, Z_m) = \sum_{k \in \mathcal{K}_m} c_k \prod_{j=1}^m Z_j^{k_j}$$

where the coefficients c_k are given by $c_k = \frac{(-1)^{m-|\sum k_j}}{\prod_{j=1}^m k_j! j^{k_j}}$.

Binomial expansion yields

$$\prod_{j=1}^m Z_j^{k_j} = \prod_{j=1}^m (C_j + iS_j)^{k_j} = \sum_{p \leq k} \prod_{j=1}^m \left(\binom{k_j}{p_j} C_j^{p_j} (iS_j)^{k_j - p_j} \right) = \sum_{p \leq k} i^{|k| - |p|} \left(\prod_{j=1}^m \binom{k_j}{p_j} \right) \left(\prod_{j=1}^m C_j^{p_j} S_j^{k_j - p_j} \right)$$

For each pair of (p, k) , where $p \leq k$ and $k \in \mathcal{K}_m$, let

$$s := \sum_{j=1}^m k_j = |k|, \quad x_{j,\ell} := \begin{cases} C_j, & 1 \leq \ell \leq p_j, \\ S_j, & p_j < \ell \leq k_j. \end{cases}$$

List the s variables as $(x_{1,1}, \dots, x_{1,k_1}, x_{2,1}, \dots, x_{m,k_m})$. Applying Lem. I.3 to $x_1 \cdots x_s = \prod_{j=1}^m C_j^{p_j} S_j^{k_j - p_j}$ gives

$$\prod_{j=1}^m C_j^{p_j} S_j^{k_j - p_j} = \frac{1}{|k|! 2^{|k|}} \sum_{(\varepsilon_{j,\ell}) \in \{\pm 1\}^{|k|}} \left(\prod_{j=1}^m \prod_{\ell=1}^{k_j} \varepsilon_{j,\ell} \right) \left(\sum_{j=1}^m \left(\sum_{\ell=1}^{p_j} \varepsilon_{j,\ell} \right) C_j + \sum_{j=1}^m \left(\sum_{\ell=p_j+1}^{k_j} \varepsilon_{j,\ell} \right) S_j \right)^{|k|}$$

Therefore,

$$\begin{aligned} e_m &= \sum_{k \in \mathcal{K}_m} c_k \prod_{j=1}^m Z_j^{k_j} \\ &= \sum_{k \in \mathcal{K}_m} c_k \sum_{p \leq k} i^{|k| - |p|} \left(\prod_{j=1}^m \binom{k_j}{p_j} \right) \left(\prod_{j=1}^m C_j^{p_j} S_j^{k_j - p_j} \right) \\ &= \sum_{k \in \mathcal{K}_m} c_k \sum_{p \leq k} i^{|k| - |p|} \left(\prod_{j=1}^m \binom{k_j}{p_j} \right) \frac{1}{|k|! 2^{|k|}} \sum_{(\varepsilon_{j,\ell}) \in \{\pm 1\}^{|k|}} \left(\prod_{j=1}^m \prod_{\ell=1}^{k_j} \varepsilon_{j,\ell} \right) \left(\sum_{j=1}^m \left(\sum_{\ell=1}^{p_j} \varepsilon_{j,\ell} \right) C_j + \sum_{j=1}^m \left(\sum_{\ell=p_j+1}^{k_j} \varepsilon_{j,\ell} \right) S_j \right)^{|k|} \end{aligned}$$

Separate Real and Imaginary part yields the polarized Newton expansion for f_{cos} and f_{sin} .

For $j \geq 1$,

$$\sum_{k_j \geq 0} (k_j + 1) 2^{k_j} t^{jk_j} = \sum_{r \geq 0} (r + 1) (2t^j)^r = \frac{1}{(1 - 2t^j)^2}.$$

Multiplying over j gives the ordinary generating function

$$F(t) := \sum_{m \geq 0} N_{\text{tot}}(m) t^m = \prod_{j \geq 1} \frac{1}{(1 - 2t^j)^2} = \frac{1}{(1 - 2t)^2} \cdot H(t),$$

2430 where

2431

$$2432 H(t) := \prod_{j \geq 2} (1 - 2t^j)^{-2} = \sum_{r \geq 0} h_r t^r, \quad h_r \geq 0.$$

2433

2434

2435 Since $(1 - 2t)^{-2} = \sum_{n \geq 0} (n+1)2^n t^n$, the Cauchy product gives

2436

2437

$$2438 N_{\text{tot}}(m) = \sum_{r=0}^m h_r (m-r+1) 2^{m-r} \leq (m+1)2^m \sum_{r=0}^{\infty} h_r 2^{-r} = (m+1)2^m H\left(\frac{1}{2}\right).$$

2439

2440 Here $H\left(\frac{1}{2}\right) = \prod_{j \geq 2} (1 - 2^{1-j})^{-2} = \prod_{r \geq 1} (1 - 2^{-r})^{-2} < \infty$ is a finite absolute constant.

2441

2442 By Bernoulli's inequality, for all $x_i \in [0, 1]$,

2443

2444

$$(1 - x_1)(1 - x_2) \cdots (1 - x_s) \geq 1 - (x_1 + x_2 + \cdots + x_s).$$

2445 Now observe that $\prod_{r \geq 1} (1 - 2^{-r}) = \frac{3}{8} \prod_{r \geq 3} (1 - 2^{-r})$, we have

2446

2447

$$\prod_{r \geq 1} (1 - 2^{-r}) = \frac{3}{8} \prod_{r \geq 3} (1 - 2^{-r}) \geq \frac{3}{8} \left(1 - \sum_{r=3}^{\infty} 2^{-r}\right) = \frac{9}{32}$$

2448

2449 Therefore,

2450

$$H\left(\frac{1}{2}\right) \leq \frac{1}{(9/32)^2} = \frac{1024}{81} \leq 13$$

2451

2452 Thus

2453

$$N_{\text{tot}}(m) \leq H\left(\frac{1}{2}\right) (m+1) 2^m \leq 13m2^m.$$

2454

2455 On the other hand, taking just the term $k = (m, 0, 0, \dots) \in \mathcal{K}_m$ yields

2456

2457

$$N_{\text{tot}}(m) \geq 2^{|k|} \prod_j (k_j + 1) = 2^m (m+1) \geq m2^m,$$

2458

2459 so $m2^m \leq N_{\text{tot}}(m) \leq 13m2^m$.

2460

2461 \square

2462 We are finally able to provide interpolations for ReLU networks, whose embedding weights echoes
2463 with “Pizza” algorithm in (Zhong et al., 2023).

2464

2465 **Theorem I.6** (ReLU construction). *Fix integers $m \geq 1$ and $p \geq 2$. On*

2466

$$\mathcal{X}_m = \{x \in \{0, 1, \dots, m\}^p : \|x\|_1 = m\},$$

2467

2468 let the target be $y(x) \equiv (\sum_{i=1}^m s_i) \bmod p$ for $x = \sum_{i=1}^m e_{s_i}$. For any $\tau \in (0, \frac{1}{4}]$, there exists a
2469 two-layer ReLU network $s^\theta(x) = V \sigma(Wx) \in \mathbb{R}^p$ such that, for all $x \in \mathcal{X}_m$,

2470

$$h_\theta(x) = \text{uargmax}_{q \in [p]} s_q^\theta(x) = y(x), \quad s_{y(x)}^\theta(x) - \max_{q \neq y(x)} s_q^\theta(x) \geq (1 - 4\tau)p.$$

2471

2472 Moreover, the width d is bounded by

2473

2474

$$d \leq 13pm2^m \left(m \sqrt{\frac{em}{\tau}} (1 + 2em)^{\frac{m-1}{2}} + 2 \right), \quad (8)$$

2475

2476 and the weights satisfy the bounds

2477

2478

$$\|W\|_\infty \leq \frac{2}{m}, \quad \|W\|_F \leq \frac{2}{m} p \sqrt{13m2^m \left(m \sqrt{\frac{em}{\tau}} (1 + 2em)^{\frac{m-1}{2}} + 2 \right)}, \quad \|V\|_\infty \leq \frac{(m + \frac{1}{2})m^{2m}}{m! 2^m}. \quad (9)$$

2479

2480 In addition, the second layer enjoys the spectral-norm bound

2481

2482

$$\|V\|_2 \leq \sqrt{p} \sqrt{13m2^m \left(m \sqrt{\frac{em}{\tau}} (1 + 2em)^{\frac{m-1}{2}} + 2 \right)} \cdot \frac{\sqrt{2}(m + \frac{1}{2})m^{2m}}{m! 2^m}. \quad (10)$$

2483

2484 *Proof.* For $t \in \mathbb{Z}$, define $c^{\langle t \rangle}, s^{\langle t \rangle} \in \mathbb{R}^p$ by $c_r^{\langle t \rangle} = \cos(2\pi tr/p)$ and $s_r^{\langle t \rangle} = \sin(2\pi tr/p)$ for $r = 0, \dots, p-1$. For $x = \sum_{i=1}^m e_{s_i}$ and any $j \geq 1$,

$$\sum_{i=1}^m \cos(j \frac{2\pi\nu}{p} s_i) = \langle c^{\langle \nu j \rangle}, x \rangle, \quad \sum_{i=1}^m \sin(j \frac{2\pi\nu}{p} s_i) = \langle s^{\langle \nu j \rangle}, x \rangle, \quad \nu \in [p].$$

2490 Fix $\nu \in [p]$ and apply Lem. I.5 to $\theta_i^{(\nu)} = 2\pi\nu s_i/p$. The multi-indices are $\kappa = (\kappa_1, \dots, \kappa_m) \in \mathcal{K}_m$
2491 and $\pi = (\pi_1, \dots, \pi_m) \leq \kappa$, and write $r := |\kappa| = \sum_j \kappa_j$. Define

$$u_{\kappa, \pi, \varepsilon}^{(\nu)} = \sum_{j=1}^m \left(\sum_{\ell=1}^{\pi_j} \varepsilon_{j, \ell} \right) c^{\langle \nu j \rangle} + \sum_{j=1}^m \left(\sum_{\ell=\pi_j+1}^{\kappa_j} \varepsilon_{j, \ell} \right) s^{\langle \nu j \rangle}.$$

2496 Then

$$C_\nu(x) = \sum_{\substack{\kappa, \pi, \varepsilon \\ |\pi| = |\kappa| \text{ even}}} \alpha_{\kappa, \pi, \varepsilon} \langle u_{\kappa, \pi, \varepsilon}^{(\nu)}, x \rangle^r, \quad S_\nu(x) = \sum_{\substack{\kappa, \pi, \varepsilon \\ |\pi| = |\kappa| \text{ odd}}} \beta_{\kappa, \pi, \varepsilon} \langle u_{\kappa, \pi, \varepsilon}^{(\nu)}, x \rangle^r,$$

2499 with

$$|\alpha_{\kappa, \pi, \varepsilon}| = |\beta_{\kappa, \pi, \varepsilon}| = \frac{1}{\left(\prod_{j=1}^m j^{\kappa_j} \right) \left(\prod_{j=1}^m \pi_j! (\kappa_j - \pi_j)! \right) r! 2^r} \leq \frac{1}{r! 2^r}.$$

2503 As $|\langle c^{\langle \nu j \rangle}, x \rangle|, |\langle s^{\langle \nu j \rangle}, x \rangle| \leq m$, we have $|\langle u_{\kappa, \pi, \varepsilon}^{(\nu)}, x \rangle| \leq mr$ and thus $z_{\kappa, \pi, \varepsilon}^{(\nu)}(x) :=$
2504 $\langle u_{\kappa, \pi, \varepsilon}^{(\nu)}, x \rangle / (mr) \in [-1, 1]$.

2506 By Lem. I.4, for each $r \in \{1, \dots, m\}$ and $\delta > 0$ there exists

$$\Phi_r(z) = \sum_{i=1}^{M_r} c_{r,i} \text{ReLU}(a_{r,i} z - b_{r,i}), \quad |a_{r,i}|, |b_{r,i}| \leq 1,$$

2510 such that $\sup_{|z| \leq 1} |z^r - \Phi_r(z)| \leq \delta$ and

$$M_r \leq \frac{m}{\sqrt{2\delta}} + 2, \quad |c_{r,i}| \leq r + \frac{1}{2}. \quad (11)$$

2515 In Equation 11, summing $|\alpha|$ (or $|\beta|$) over $\varepsilon \in \{\pm 1\}^r$ and summing over $\pi \leq \kappa$ factorizes:

$$\sum_{\substack{\pi \leq \kappa \\ \varepsilon \in \{\pm 1\}^r}} |\alpha_{\kappa, \pi, \varepsilon}| = \frac{1}{r!} \cdot \frac{2^r}{\prod_{j=1}^m j^{\kappa_j} \kappa_j!}.$$

2520 Summing over $\kappa \in \mathcal{K}_m$ with $|\kappa| = r$ and using the classical cycle-index identity

$$\sum_{\substack{\kappa \in \mathcal{K}_m \\ |\kappa|=r}} \frac{1}{\prod_{j=1}^m j^{\kappa_j} \kappa_j!} = \frac{1}{m!} \begin{bmatrix} m \\ r \end{bmatrix},$$

2525 where $\begin{bmatrix} m \\ r \end{bmatrix}$ are the unsigned Stirling numbers of the first kind.

2526 Now we have

$$\sum_{\substack{\kappa, \varepsilon \\ \pi \leq \kappa}} |\alpha_{\kappa, \pi, \varepsilon}| = \sum_{r=1}^m \frac{2^r}{r! m!} \begin{bmatrix} m \\ r \end{bmatrix}, \quad \sum_{\substack{\kappa, \varepsilon \\ \pi \leq \kappa}} |\beta_{\kappa, \pi, \varepsilon}| = \sum_{r=1}^m \frac{2^r}{r! m!} \begin{bmatrix} m \\ r \end{bmatrix}.$$

2531 As each power is approximated within δ and $|\langle u, x \rangle| \leq mr$, the uniform error is bounded by

$$\sum_{r=1}^m \frac{2^r (mr)^r}{r! m!} \begin{bmatrix} m \\ r \end{bmatrix} \cdot \delta.$$

2535 We choose

$$\delta := \frac{\tau}{\Lambda_m}, \quad \Lambda_m := \sum_{r=1}^m \frac{2^r (mr)^r}{r! m!} \begin{bmatrix} m \\ r \end{bmatrix},$$

2538 which ensures $\max\{|C_\nu - \hat{C}_\nu|, |S_\nu - \hat{S}_\nu|\} \leq \tau$ uniformly on \mathcal{X} for all ν .
 2539

2540 We now prove by induction on m that

2541
$$\left[\begin{matrix} m \\ r \end{matrix} \right] \leq \binom{m-1}{r-1} m!, \quad 1 \leq r \leq m. \quad (12)$$

 2542

2543 For $m = 1$, both sides equal 1. Assume equation 12 holds for $m - 1$. Using the recurrence
 2544
$$\left[\begin{matrix} m \\ r \end{matrix} \right] = \left[\begin{matrix} m-1 \\ r-1 \end{matrix} \right] + (m-1) \left[\begin{matrix} m-1 \\ r \end{matrix} \right],$$

 2545

2546
$$\begin{aligned} \left[\begin{matrix} m \\ r \end{matrix} \right] &\leq \binom{m-2}{r-2} (m-1)! + (m-1) \binom{m-2}{r-1} (m-1)! \\ 2547 &= (m-1)! \left[\binom{m-2}{r-2} + (m-1) \binom{m-2}{r-1} \right] \\ 2548 &\leq m (m-1)! \binom{m-1}{r-1} = \binom{m-1}{r-1} m!, \end{aligned}$$

 2551

2553 since $\binom{m-1}{r-1} = \binom{m-2}{r-2} + \binom{m-2}{r-1}$. This proves equation 12.
 2554

2555 Using equation 12 and Stirling's lower bound $r! \geq (r/e)^r$, we have

2556
$$\Lambda_m \leq \sum_{r=1}^m \frac{2^r (mr)^r}{r!} \binom{m-1}{r-1} \leq \sum_{r=1}^m (2em)^r \binom{m-1}{r-1} = (2em) \sum_{t=0}^{m-1} \binom{m-1}{t} (2em)^t = (2em) (1+2em)^{m-1}.$$

 2557

2559 Hence

2560
$$\frac{1}{\sqrt{2\delta}} = \sqrt{\frac{\Lambda_m}{2\tau}} \leq \sqrt{\frac{em}{\tau}} (1+2em)^{\frac{m-1}{2}}. \quad (13)$$

 2561

2562 For $x \in \mathcal{X}$, $\langle \mathbf{1}, x \rangle = m$. So

2563
$$\text{ReLU}\left(a_{r,i} z_{\kappa,\pi,\varepsilon}^{(\nu)}(x) - b_{r,i}\right) = \sigma\left(\left\langle \frac{a_{r,i}}{mr} u_{\kappa,\pi,\varepsilon}^{(\nu)} - \frac{b_{r,i}}{m} \mathbf{1}, x \right\rangle\right),$$

 2564

2565 Each spline unit is a single ReLU of a linear form. Explicitly, $W \in \mathbb{R}^{d \times p}$ has rows $W_{j,:} = \frac{a_{r,i}}{mr} u_{\kappa,\pi,\varepsilon}^{(\nu)} - \frac{b_{r,i}}{m} \mathbf{1}$ for $j = (\nu, \kappa, \pi, \varepsilon, i)$ with $r = |\kappa|$ and $u_{\kappa,\pi,\varepsilon}^{(\nu)} = \sum_{t=1}^m (\sum_{\ell=1}^{\pi_t} \varepsilon_{t,\ell}) c^{(\nu t)} + \sum_{t=1}^m (\sum_{\ell=\pi_t+1}^{\kappa_t} \varepsilon_{t,\ell}) s^{(\nu t)}$. Since $\|u_{\kappa,\pi,\varepsilon}^{(\nu)}\|_\infty \leq r$ and $|a_{r,i}|, |b_{r,i}| \leq 1$, each coordinate obeys
 2566
$$|W_{j,t}| \leq \frac{|a_{r,i}|}{mr} r + \frac{|b_{r,i}|}{m} \leq \frac{1}{m} + \frac{1}{m} = \frac{2}{m}$$
, hence $\|W\|_\infty \leq \frac{2}{m}$.
 2567

2568 For class $q \in [p]$ and hidden index $(\nu, \kappa, \pi, \varepsilon, i)$ set

2569
$$V_{q,(\nu,\kappa,\pi,\varepsilon,i)} = \left[\cos\left(\frac{2\pi\nu}{p}q\right) \alpha_{\kappa,\pi,\varepsilon} + \sin\left(\frac{2\pi\nu}{p}q\right) \beta_{\kappa,\pi,\varepsilon} \right] (mr)^r c_{r,i},$$

 2570

2571 so that $s_q^\theta(x) = \sum_{\nu=0}^{p-1} [\cos\left(\frac{2\pi\nu}{p}q\right) \hat{C}_\nu(x) + \sin\left(\frac{2\pi\nu}{p}q\right) \hat{S}_\nu(x)]$. Let $q^* \equiv (\sum_i s_i) \bmod p$. Discrete
 2572 Fourier orthogonality gives $s_q^*(x) = \sum_{\nu=0}^{p-1} \cos\left(\frac{2\pi\nu}{p}(\sum_i s_i - q)\right) = \mathbf{1}\{q = q^*\}p$. Since each mode
 2573 is within τ , we have $\max_q |s_q^\theta(x) - s_q^*(x)| \leq 2p\tau$ and thus the claimed margin $(1 - 4\tau)p$.
 2574

2575 For each fixed $\nu \in [p]$, by Lem. I.5, there are $N_{\text{tot}}(m)$ triples $(\kappa, \pi, \varepsilon)$, each contributes at most M_r
 2576 units, with M_r bounded in equation 11. Hence for each ν , the width is at most $N_{\text{tot}}(m) (\frac{m}{\sqrt{2\delta}} + 2)$.
 2577

2578 Summing over $\nu = 0, 1, \dots, p-1$ and using equation 13,

2579
$$d \leq p N_{\text{tot}}(m) \left(\frac{m}{\sqrt{2\delta}} + 2 \right) \leq p N_{\text{tot}}(m) \left(m \sqrt{\frac{em}{\tau}} (1+2em)^{\frac{m-1}{2}} + 2 \right),$$

 2580

2581 and the bound $N_{\text{tot}}(m) \leq 13m2^m$ gives equation 8.
 2582

2583 Thus, $\|W\|_F \leq \|W\|_\infty \sqrt{dp} \leq \frac{2}{m} p \sqrt{13m2^m \left(m \sqrt{\frac{em}{\tau}} (1+2em)^{\frac{m-1}{2}} + 2 \right)}.$
 2584

2585 Finally, using $|\alpha|, |\beta| \leq 1/(r! 2^r)$ and equation 11,
 2586

2587
$$|V_{q,(\nu,\kappa,\pi,\varepsilon,i)}| \leq |c_{r,i}| (mr)^r \cdot \frac{1}{r! 2^r} \leq \frac{(r + \frac{1}{2})(mr)^r}{r! 2^r},$$

 2588

so taking the maximum over all hidden indices yields equation 9.
 For the spectral norm, denote the matrix

$$T = (c^{(0)} \quad c^{(1)} \quad s^{(1)} \quad \dots \quad c^{(p-1)} \quad s^{(p-1)})$$

So

$$TT^\top = c^{(0)}c^{(0)\top} + \sum_{\nu=1}^{p-1} \left(c^{(\nu)}c^{(\nu)\top} + s^{(\nu)}s^{(\nu)\top} \right) = pI_p, \text{ and thus } \|T\|_2 = \sqrt{p}.$$

Index the hidden units by $j = (\nu, \kappa, \pi, \varepsilon, i)$, with $r = |\kappa|$. For that unit, the corresponding column of V was

$$V_{:,j} = [\alpha_{\kappa, \pi, \varepsilon}(mr)^r c_{r,i}] c^{(\nu)} + [\beta_{\kappa, \pi, \varepsilon}(mr)^r c_{r,i}] s^{(\nu)}.$$

Hence $V_{:,j}$ is a linear combination of the two columns of S_ν .

Define $B \in \mathbb{R}^{(2p-1) \times d}$, for each column $j = (\nu, \kappa, \pi, \varepsilon, i)$,

$$B_{k,j} = \begin{cases} \alpha_{\kappa, \pi, \varepsilon}(mr)^r c_{r,i}, & k = 0 \text{ and } \nu = 0, \\ \alpha_{\kappa, \pi, \varepsilon}(mr)^r c_{r,i}, & k = 2\nu \text{ with } \nu \in \{1, \dots, p-1\}, \\ \beta_{\kappa, \pi, \varepsilon}(mr)^r c_{r,i}, & k = 2\nu - 1 \text{ with } \nu \in \{1, \dots, p-1\}, \\ 0, & \text{otherwise.} \end{cases}$$

One has $V = TB$, and each column b_j of B has support in at most two rows (one when $\nu = 0$). Thus,

$$\|b_j\|_2 = \sqrt{\alpha_{\kappa, \pi, \varepsilon}^2 + \beta_{\kappa, \pi, \varepsilon}^2} \cdot |c_{r,i}| (mr)^r \leq \frac{\sqrt{2}(r + \frac{1}{2})(mr)^r}{r! 2^r} \leq \frac{\sqrt{2}(m + \frac{1}{2})m^{2m}}{m! 2^m}.$$

Let n_ν be the number of hidden units at frequency ν . From the construction,

$$n_\nu \leq N_{\text{tot}}(m) \left(\frac{m}{\sqrt{2\delta}} + 2 \right) \leq 13m2^m \left(m\sqrt{\frac{em}{\tau}} (1 + 2em)^{\frac{m-1}{2}} + 2 \right).$$

Since BB^\top is block diagonal across frequencies, $\|B\|_2 = \max_\nu \|B_\nu\|_2 \leq \max_\nu \sqrt{n_\nu} \cdot \frac{\sqrt{2}(m + \frac{1}{2})m^{2m}}{m! 2^m}$. Therefore

$$\|V\|_2 \leq \|T\|_2 \|B\|_2 \leq \sqrt{p} \sqrt{\max_\nu n_\nu} \cdot \frac{\sqrt{2}(m + \frac{1}{2})m^{2m}}{m! 2^m},$$

which gives equation 10. □

Corollary I.7 (Explicit two-layer ReLU construction for $m = 2$). *Fix $p \geq 2$. Define the input set*

$$\mathcal{X}_2 = \{x \in \{0, 1, 2\}^p : \|x\|_1 = 2\}.$$

There exists a two-layer ReLU network $s^\theta(x) = V\sigma(Wx) \in \mathbb{R}^p$ of width $d = 36p$ such that, for all $x \in \mathcal{X}_2$,

$$h_\theta(x) = \text{uargmax}_{q \in [p]} s_q^\theta(x) = \left(\sum_{i=1}^2 s_i \right) \bmod p, \quad s_{y(x)}^\theta(x) - \max_{q \neq y(x)} s_q^\theta(x) \geq \frac{25}{49}p + \frac{20}{49}.$$

Moreover, the weights satisfy

$$\|W\|_\infty \leq 1, \quad \|V\|_\infty \leq \frac{34}{7}, \quad \|V\|_2 \leq 11\sqrt{p}.$$

2646 *Proof.* For $\nu \in [p]$ let $c^{(\nu)}, s^{(\nu)} \in \mathbb{R}^p$ be defined by $c_r^{(\nu)} = \cos(2\pi\nu r/p)$ and $s_r^{(\nu)} = \sin(2\pi\nu r/p)$.
 2647 For inputs $x \in \mathcal{X}$, write
 2648

$$2649 \quad C_k = \langle c^{(k\nu)}, x \rangle, \quad S_k = \langle s^{(k\nu)}, x \rangle \quad (k = 1, 2).$$

2650 From Lem. I.5, for any $\theta_1, \theta_2 \in \mathbb{R}$,
 2651

$$2652 \quad \cos(\theta_1 + \theta_2) = \frac{1}{2}(C_1^2 - S_1^2 - C_2) = 2\left(\frac{1}{2}C_1\right)^2 - 2\left(\frac{1}{2}S_1\right)^2 - \frac{1}{2}C_2$$

$$2654 \quad \sin(\theta_1 + \theta_2) = C_1S_1 - \frac{1}{2}S_2 = 4\left(\left(\frac{C_1 + S_1}{4}\right)^2 - \left(\frac{C_1 - S_1}{4}\right)^2\right) - \frac{1}{2}S_2$$

2657 For $\|x\|_1 = 2$, we have $\frac{C_1}{2}, \frac{S_1}{2}, \frac{C_1 \pm S_1}{4} \in [-1, 1]$.
 2658

2659 Let Φ_2 be the piecewise-linear interpolant of z^2 on the uniform grid $z_k = -1 + \frac{2k}{7}$, $k = 0, \dots, 7$.
 2660

2661 Using Lem. I.4 with $s = 2$, $N = 7$, $\|\Phi_2 - z^2\|_{L_\infty([-1, 1])} \leq 1/49$, and $\Phi_2(z) = \sum_{i=1}^8 c_i \text{ReLU}(a_i z - b_i)$, where
 2663

i	1	2	3	4	5	6	7	8
(a_i, b_i)	$(1, -1)$	$(-1, -1)$	$(1, -\frac{5}{7})$	$(1, -\frac{3}{7})$	$(1, -\frac{1}{7})$	$(1, \frac{1}{7})$	$(1, \frac{3}{7})$	$(1, \frac{5}{7})$
c_i	$-\frac{17}{14}$	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{4}{7}$	$\frac{4}{7}$	$\frac{4}{7}$	$\frac{4}{7}$	$\frac{4}{7}$

2664 We now construct a two-layer ReLU MLP with total width $d = 36p$.
 2665

2666 First layer. For $r \in [p]$ and $i = 1, \dots, 8$ define
 2667

$$2670 \quad w_r^{(\nu, 1, i)} = \frac{a_i}{2} c_r^{(\nu)} - \frac{b_i}{2}, \quad w_r^{(\nu, 2, i)} = \frac{a_i}{2} s_r^{(\nu)} - \frac{b_i}{2},$$

$$2672 \quad w_r^{(\nu, 3, i)} = \frac{a_i}{4} (c_r^{(\nu)} + s_r^{(\nu)}) - \frac{b_i}{2}, \quad w_r^{(\nu, 4, i)} = \frac{a_i}{4} (c_r^{(\nu)} - s_r^{(\nu)}) - \frac{b_i}{2},$$

$$2674 \quad w_r^{(\nu, C_2^\pm)} = \pm \frac{1}{2} c_r^{(2\nu)}, \quad w_r^{(\nu, S_2^\pm)} = \pm \frac{1}{2} s_r^{(2\nu)}.$$

2675 Then $\sigma(\langle w^{(\nu, 1, i)}, x \rangle) = \text{ReLU}(a_i C_1/2 - b_i)$, etc. Since $|a_i| \leq 1$, $|b_i| \leq 1$, and $|c_r^{(\nu)}|, |s_r^{(\nu)}| \leq 1$,
 2676 we have $\|W\|_\infty \leq 1$.
 2677

2678 Second layer. For $q \in [p], \nu \in [p]$ set
 2679

$$2680 \quad V_{q, (\nu, 1, i)} = +2c_i \cos(2\pi\nu q/p), \quad V_{q, (\nu, 2, i)} = -2c_i \cos(2\pi\nu q/p), \quad i = 1, \dots, 8,$$

$$2681 \quad V_{q, (\nu, 3, i)} = +4c_i \sin(2\pi\nu q/p), \quad V_{q, (\nu, 4, i)} = -4c_i \sin(2\pi\nu q/p),$$

2682 and

$$2683 \quad V_{q, (\nu, C_2^\pm)} = \mp \cos(2\pi\nu q/p), \quad V_{q, (\nu, S_2^\pm)} = \mp \sin(2\pi\nu q/p).$$

2684 We have $\|V\|_\infty \leq \max\{|4c_i|, 1\} = \frac{34}{7}$.
 2685

2686 Let $T = [c^{(0)} \ c^{(1)} \ s^{(1)} \ \dots \ c^{(p-1)} \ s^{(p-1)}]$ and write $V = TB$. Then
 2687

$$2688 \quad TT^\top = c^{(0)} c^{(0)\top} + \sum_{\nu=1}^{p-1} (c^{(\nu)} c^{(\nu)\top} + s^{(\nu)} s^{(\nu)\top}) = p I_p,$$

2689 so $\|T\|_2 = \sqrt{p}$.
 2690

2691 Each hidden unit loads a single row in B , hence BB^\top is diagonal. The largest row norm equals
 2692 $\sqrt{2 \sum_{i=1}^8 (4c_i)^2 + 2} = \frac{\sqrt{5874}}{7}$, so
 2693

$$2694 \quad \|V\|_2 \leq \|T\|_2 \|B\|_2 \leq 11\sqrt{p}.$$

2695 Finally, define
 2696

$$2697 \quad \widehat{C}_\nu(x) = 2\Phi_2\left(\frac{C_1}{2}\right) - 2\Phi_2\left(\frac{S_1}{2}\right) - \frac{1}{2}C_2, \quad \widehat{S}_\nu(x) = 4\Phi_2\left(\frac{C_1 + S_1}{4}\right) - 4\Phi_2\left(\frac{C_1 - S_1}{4}\right) - \frac{1}{2}S_2,$$

2700 and logits $s_q^\theta(x) = \sum_{\nu=0}^{p-1} [\cos(2\pi\nu q/p) \hat{C}_\nu(x) + \sin(2\pi\nu q/p) \hat{S}_\nu(x)]$. Since $\|\Phi_2 - z^2\|_\infty \leq 1/49$
 2701 and $\nu = 0$ contributes a class-independent offset, for $\nu \geq 1$,
 2702

$$|\hat{C}_\nu - C_\nu| \leq 4/49 \quad \text{and} \quad |\hat{S}_\nu - S_\nu| \leq 8/49.$$

2704 Therefore,

$$\max_q |s_q^\theta(x) - s_q^*(x)| \leq \frac{12}{49}(p-1) + \frac{2}{49},$$

2707 where $s_q^*(x) = \sum_{\nu=0}^{p-1} \cos(2\pi\nu(\sum_i s_i - q)/p)$ satisfies $s_{y(x)}^*(x) = p$ and $s_q^*(x) = 0$ if $q \neq y(x)$.
 2708 The margin follows:

$$s_{y(x)}^\theta(x) - \max_{q \neq y(x)} s_q^\theta(x) \geq p - 2 \left(\frac{12}{49}(p-1) + \frac{2}{49} \right) = \frac{25}{49}p + \frac{20}{49}.$$

2713 \square

2715 J MARGIN BOUNDS VIA ℓ_∞ VECTOR CONTRACTION

2717 J.1 MARGIN SURROGATES AND EMPIRICAL γ -MARGIN ERROR

2719 Given scores $s \in \mathbb{R}^p$ for an example with label $y \in [p]$, the *sample margin error*

$$\phi_y(s) = \max_{k \neq y} (s_k - s_y)$$

2722 The γ -ramp loss

$$\psi_\gamma(u) = \min\{1, \max\{0, 1 + u/\gamma\}\} \in [0, 1].$$

2725 The map $u \mapsto \psi_\gamma(u)$ is $1/\gamma$ -Lipschitz on \mathbb{R} , and ϕ_y is 2-Lipschitz w.r.t. $\|\cdot\|_\infty$ (changing any
 2726 coordinate of s by at most ε changes ϕ_y by at most 2ε), hence

$$g_y := \psi_\gamma \circ \phi_y \quad \text{is} \quad \frac{2}{\gamma}\text{-Lipschitz w.r.t.} \|\cdot\|_\infty, \quad g_y \in [0, 1].$$

2729 **Definition J.1** (Empirical Margin Error). For a score function s^θ and sample $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$,
 2730 the empirical γ -margin error is

$$\widehat{\mathcal{R}}_\gamma(s^\theta; S) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \left\{ s^\theta(x^{(i)})_{y^{(i)}} \leq \gamma + \max_{j \neq y^{(i)}} s^\theta(x^{(i)})_j \right\}.$$

2735 For an interpolating solution, it suffices to take $\gamma = \gamma_\theta(S)$, the minimum sample margin, in which
 2736 case $\widehat{\mathcal{R}}_\gamma(s^\theta; S) = 0$.

2738 **Definition J.2** (Empirical Rademacher complexity). Let $S = \{z_i = (x^{(i)}, y^{(i)})\}_{i=1}^n$ be fixed, and
 2739 let $\mathcal{G} \subset [0, 1]^\mathcal{Z}$. Let $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ be i.i.d. Rademacher variables ($\mathbb{P}[\epsilon_i = 1] = \mathbb{P}[\epsilon_i = -1] =$
 2740 $1/2$). The empirical Rademacher complexity of \mathcal{G} on S is

$$\mathfrak{R}_S(\mathcal{G}) = \frac{1}{n} \mathbb{E}_\epsilon \left[\sup_{g \in \mathcal{G}} \sum_{i=1}^n \epsilon_i g(z_i) \right].$$

2744 **Theorem J.3** (Rademacher Generalization Bounds, Thm. 3.3 of (Mohri et al., 2018)). Let \mathcal{D} be the
 2745 true distribution, $\mathcal{G} \subset [0, 1]^\mathcal{Z}$ and let $S = (z_1, \dots, z_n) \sim \mathcal{D}^n$. With probability at least $1 - \delta$ over
 2746 S , the following holds simultaneously for all $g \in \mathcal{G}$:

$$\mathbb{E}_{z \sim \mathcal{D}}[g(z)] \leq \frac{1}{n} \sum_{i=1}^n g(z_i) + 2 \mathfrak{R}_S(\mathcal{G}) + 3 \sqrt{\frac{\ln(2/\delta)}{2n}},$$

2751 where $\mathfrak{R}_S(\mathcal{G})$ is the empirical Rademacher complexity of \mathcal{G} on S .

2752 Apply Thm. J.3 with $\mathcal{G} = \mathcal{F}_\gamma := \{(x, y) \mapsto \psi_\gamma \circ \phi_y(f(x)) : f \in \mathcal{F}\}$, and note $\mathbf{1}\{\text{uargmax}_i f_i(x) \neq$
 2753 $y\} \leq \psi_\gamma \circ \phi_y(f(x))$. That yields the following corollary:

2754 **Corollary J.4** (Rademacher complexity and Multiclassification).
 2755

$$2756 \quad \mathbb{P}_{(x,y) \in \mathcal{D}} [f(x) \neq y] \leq \widehat{\mathcal{R}}_\gamma(f) + 2 \mathfrak{R}_S(\mathcal{F}_\gamma) + 3 \sqrt{\frac{\ln(2/\delta)}{2n}}. \quad (14)$$

2759 Let $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ be the training sample generated from the true distribution and write
 2760

$$2761 \quad Q_2(S) = \left(\frac{1}{n} \sum_{i=1}^n \|x^{(i)}\|_2^2 \right)^{1/2}.$$

2764 J.2 MARGIN BOUNDS FOR SINE MLP

2766 **Definition J.5** (Covering Number for sets). Let (X, d) be a metric space, $F \subseteq X$ a non-empty
 2767 subset, and $r > 0$. The covering number of F , denoted $\mathcal{N}(F, d, r)$, is
 2768

$$2769 \quad \mathcal{N}(F, d, r) = \min \left\{ k \in \mathbb{N} \mid \exists \{x_1, \dots, x_k\} \subseteq X \text{ such that } F \subseteq \bigcup_{i=1}^k B_d(x_i, r) \right\},$$

2772 where $B_d(x, r) = \{y \in X \mid d(x, y) \leq r\}$ is the closed ball of radius r centered at x .
 2773

2774 **Definition J.6** (Empirical L_2 covering number of a function class). Let $\mathcal{F} \subseteq \{f : \mathcal{X} \rightarrow \mathbb{R}\}$ be a
 2775 class of real-valued functions and let $x_{1:n} = (x_1, \dots, x_n) \in \mathcal{X}^n$. Define the empirical L_2 metric
 2776

$$2776 \quad d_{2,x_{1:n}}(f, g) := \left(\frac{1}{n} \sum_{i=1}^n (f(x_i) - g(x_i))^2 \right)^{1/2}.$$

2778 For $\varepsilon > 0$, the empirical L_2 covering number of \mathcal{F} at scale ε with respect to the sample $x_{1:n}$ is
 2779

$$2780 \quad \mathcal{N}_2(\varepsilon, \mathcal{F}, x_{1:n}) := \min \left\{ k \in \mathbb{N} : \exists f_1, \dots, f_k \text{ such that } \mathcal{F} \subseteq \bigcup_{j=1}^k B_{d_{2,x_{1:n}}}(f_j, \varepsilon) \right\},$$

2783 where $B_{d_{2,x_{1:n}}}(f, \varepsilon) = \{g : d_{2,x_{1:n}}(f, g) \leq \varepsilon\}$.
 2784

2785 **Lemma J.7** (Covering the box $[-\pi, \pi]^p$ by Euclidean balls). Fix $p \in \mathbb{N}$ and $r > 0$. Then
 2786

$$2787 \quad \mathcal{N}([-\pi, \pi]^p, \|\cdot\|_2, r) \leq \left\lceil \frac{\pi \sqrt{p}}{r} \right\rceil^p.$$

2789 *Proof.* Covering numbers are translation invariant: for any $a \in \mathbb{R}^p$, $\mathcal{N}(F, \|\cdot\|_2, r) = \mathcal{N}(F + a, \|\cdot\|_2, r)$. Hence it suffices to cover $[0, 2\pi]^p$.
 2790

2792 Set the grid step $h := 2r/\sqrt{p}$ and the number of points per dimension $m := \lceil 2\pi/h \rceil = \lceil \pi\sqrt{p}/r \rceil$.
 2793 Along each coordinate, place grid points with a half-step offset from the origin:
 2794

$$G_1 := \{(j + \frac{1}{2})h : j = 0, 1, \dots, m-1\},$$

2796 so $|G_1| = m$. Let the full grid be the Cartesian product $G := G_1^p$; then $|G| = m^p$.
 2797

2798 Given any point $x \in [0, 2\pi]^p$, choose $g \in G$ by rounding each coordinate of x to the nearest
 2799 point in G_1 (breaking ties arbitrarily). By construction, the distance from any coordinate x_i to its
 2800 corresponding grid point g_i is at most half the grid step, so $\|x - g\|_\infty \leq h/2 = r/\sqrt{p}$. We have
 2801

$$2801 \quad \|x - g\|_2 \leq \sqrt{p} \|x - g\|_\infty \leq \sqrt{p} \cdot \frac{r}{\sqrt{p}} = r.$$

2803 Therefore, the set of closed ℓ_2 -balls $\{B_2(g, r) : g \in G\}$ covers the box $[0, 2\pi]^p$, and
 2804

$$2805 \quad \mathcal{N}([0, 2\pi]^p, \|\cdot\|_2, r) \leq |G| = m^p = \left(\left\lceil \frac{\pi \sqrt{p}}{r} \right\rceil \right)^p.$$

2806 \square
 2807

2808
 2809 **Lemma J.8** (Standard Dudley entropy integral). *Assume that all $\mathcal{F}_{x_{1:n}} \subset \mathbb{R}^n$. Let $\mathfrak{R}_n(\mathcal{F})$ be the
 2810 empirical Rademacher number of \mathcal{F} on $x_{1:n}$. We have:*

$$2811 \quad \mathfrak{R}_n(\mathcal{F}) \leq \inf_{\alpha \geq 0} \left(4\alpha + 12 \int_{\alpha}^{\infty} \sqrt{\frac{\log N_2(\epsilon, \mathcal{F}, x_{1:n})}{n}} d\epsilon \right)$$

2813 **Theorem J.9** (Width-independent multiclass margin bound for the sine MLP). *Consider the two-
 2814 layer sine network with parameters $\theta = (W, V) \in \mathbb{R}^{d \times p} \times \mathbb{R}^{p \times d}$, where the output matrix satisfies
 2815 $\|V\|_{\infty} \leq S_1$. Then for any $\gamma > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random
 2816 draw of the training samples S , the following holds simultaneously for all such θ :*

$$2818 \quad \mathbb{P}_{(X,Y) \sim \mathcal{D}}[h_{\theta}(X) \neq Y] \leq \widehat{\mathcal{R}}_{\gamma}(s^{\theta}) + \tilde{\mathcal{O}}\left(\frac{S_1}{\gamma} \cdot \frac{p}{\sqrt{n}}\right) + \tilde{\mathcal{O}}\left(\frac{1}{\sqrt{n}}\right).$$

2820 *Proof.* Because inputs are bag of words ($x \in \{0, 1, \dots, m\}^p$ with $\|x\|_1 = m$), shifting any element
 2821 of W by $2\pi k$ ($k \in \mathbb{Z}$) does not change $s^{\theta}(x) = V \sin(Wx)$. Hence without loss of generality, each
 2822 element of W may be reduced to modulo 2π to $[-\pi, \pi)$ with no effect on the model output. This
 2823 periodic reduction is the core argument in the sine analysis.

2824 Notice that $g_y := \psi_{\gamma} \circ \phi_y$ is $\frac{2}{\gamma}$ -Lipschitz w.r.t. $\|\cdot\|_{\infty}$ and $g_y \in [0, 1]$. Applying Thm. J.3 with
 2825 $\mathcal{G} = \mathcal{F}_{\gamma} := (x, y) \mapsto g_y(s^{\theta}(x)) : \theta$ and recalling $\mathbf{1}\{\text{uargmax} f \neq y\} \leq g_y$, we obtain

$$2828 \quad \mathbb{P}[h_{\theta}(X) \neq Y] \leq \widehat{\mathcal{R}}_{\gamma}(s^{\theta}) + 2\mathfrak{R}_S(\mathcal{F}_{\gamma}) + 3\sqrt{\frac{\ln(2/\delta)}{2n}}. \quad (15)$$

2830 **ℓ_{∞} vector contraction.** Let $\mathcal{S} := \{s^{\theta} : \theta = (W, V), \|V\|_{\infty} \leq S_1, W \in [-\pi, \pi)^{d \times p}\}$ and denote
 2831 the coordinate classes

$$2832 \quad \mathcal{S}|_j := \{x \mapsto v_j^{\top} \sin(Wx) : \|v_j\|_1 \leq S_1, W \in [-\pi, \pi)^{d \times p}\}.$$

2834 For fixed $S = (x^{(1)}, \dots, x^{(n)})$ and the Lipschitz maps $\varphi_i \equiv g_{y^{(i)}}$ (each $\frac{2}{\gamma}$ -Lipschitz w.r.t. $\|\cdot\|_{\infty}$),
 2835 the ℓ_{∞} vector contraction inequality (Thm. 1 of (Foster & Rakhlin, 2019)) gives

$$2837 \quad \mathfrak{R}_S(\mathcal{F}_{\gamma}) \leq C \frac{2}{\gamma} \sqrt{p} \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \log^{\frac{3}{2} + \delta_0} \left(\frac{\beta}{\max_j \mathfrak{R}_S(\mathcal{S}|_j)} \right), \quad (16)$$

2839 for any fixed $\delta_0 > 0$ and some $C = C(\delta_0)$. Since $\sin(Wx) \in [-1, 1]^d$ and $\|v_j\|_1 \leq S_1$, we have

$$2840 \quad \|s^{\theta}(x)\|_{\infty} \leq S_1, \text{ and thus } \beta \leq 1 + S_1. \quad (17)$$

2842 **Coordinate reduction via ℓ_1 - ℓ_{∞} duality.** For any fixed $S = (x^{(1)}, \dots, x^{(n)})$ and $j \in [p]$,

$$\begin{aligned} 2844 \quad n\mathfrak{R}_S(\mathcal{S}|_j) &= \mathbb{E}_{\epsilon} \sup_{\substack{\|v_j\|_1 \leq S_1 \\ W \in \mathbb{R}^{d \times p}}} \sum_{i=1}^n \epsilon_i v_j^{\top} \sin(Wx^{(i)}) \\ 2845 \\ 2846 \\ 2847 \\ 2848 \\ 2849 \\ 2850 \\ 2851 \\ 2852 \\ 2853 \\ 2854 \\ 2855 \\ 2856 \\ 2857 \\ 2858 \\ 2859 \\ 2860 \\ 2861 \quad &= \mathbb{E}_{\epsilon} \sup_{\substack{\|v_j\|_1 \leq S_1 \\ W \in \mathbb{R}^{d \times p}}} v_j^{\top} \left(\sum_{i=1}^n \epsilon_i \sin(Wx^{(i)}) \right) \\ &\leq S_1 \mathbb{E}_{\epsilon} \sup_{W \in \mathbb{R}^{d \times p}} \left\| \sum_{i=1}^n \epsilon_i \sin(Wx^{(i)}) \right\|_{\infty} \\ &= S_1 \mathbb{E}_{\epsilon} \sup_{w \in \mathbb{R}^p} \left| \sum_{i=1}^n \epsilon_i \sin(w^{\top} x^{(i)}) \right| \\ &= S_1 \mathbb{E}_{\epsilon} \sup_{w \in \mathbb{R}^p} \sum_{i=1}^n \epsilon_i \sin(w^{\top} x^{(i)}) \\ &= S_1 \mathbb{E}_{\epsilon} \sup_{w \in [-\pi, \pi)^p} \sum_{i=1}^n \epsilon_i \sin(w^{\top} x^{(i)}) \\ &= S_1 n \mathfrak{R}_S(\mathcal{F}_{\sin}). \end{aligned} \quad (18)$$

2862 Here we used $\sup_{\|a\|_1 \leq S_1} \langle a, b \rangle = S_1 \|b\|_\infty$, and denoted the single-sine family
 2863

$$2864 \mathcal{F}_{\sin} := \{x \mapsto \sin(w^\top x) : w \in [-\pi, \pi]^p\}.$$

2865 **Rademacher complexity of the single-sine family.**

2866 Endow \mathcal{F}_{\sin} with the empirical L_2 metric
 2867

$$2869 d(w, w')^2 := \frac{1}{n} \sum_{i=1}^n (\sin(w^\top x^{(i)}) - \sin(w'^\top x^{(i)}))^2.$$

2871 Notice that $d(w, w') \leq 2$ for all w, w' , so for any $\varepsilon \in (2, \infty)$, $\mathcal{N}_2(\varepsilon, \mathcal{F}_{\sin}, x_{1:n}) = 1$.
 2872

2873 For any i ,

$$2874 |\sin(w^\top x^{(i)}) - \sin(w'^\top x^{(i)})| \leq |(w - w')^\top x^{(i)}| \leq \|w - w'\|_2 \|x^{(i)}\|_2 \leq m \|w - w'\|_2$$

2875 so if $\|w - w'\|_2 \leq \varepsilon/m$ then $d(w, w') \leq \varepsilon$. Consequently, for any $\varepsilon \in (0, 2]$,

$$2877 \mathcal{N}_2(\varepsilon, \mathcal{F}_{\sin}, x_{1:n}) \leq \mathcal{N}([-\pi, \pi]^p, \|\cdot\|_2, \varepsilon/m) \leq \left\lceil \frac{\pi m \sqrt{p}}{\varepsilon} \right\rceil^p, \quad (19)$$

2879 where we used Lem. J.7.

2880 Applying the standard Dudley entropy integral with any $\alpha \in (0, 1]$ yields
 2881

$$2882 \mathfrak{R}_S(\mathcal{F}_{\sin}) \leq 4\alpha + 12 \int_{\alpha}^2 \sqrt{\frac{\log \mathcal{N}_2(\varepsilon, \mathcal{F}_{\sin}, x_{1:n})}{n}} d\varepsilon \quad (20)$$

2885 Let $C := \pi m \sqrt{p} > 2$. Then $\left\lceil \frac{\pi m \sqrt{p}}{\varepsilon} \right\rceil \leq \frac{\pi m \sqrt{p}}{\varepsilon} + 1 \leq \frac{2\pi m \sqrt{p}}{\varepsilon}$, for all $\varepsilon \in (0, 2]$. Thus
 2886

$$2887 \log \mathcal{N}_2(\varepsilon, \mathcal{F}_{\sin}, x_{1:n}) \leq \log \left(\left\lceil \frac{\pi m \sqrt{p}}{\varepsilon} \right\rceil^p \right) \leq p \log \left(\frac{2\pi m \sqrt{p}}{\varepsilon} \right)$$

2890 Hence for any $\alpha \in (0, 1]$,

$$2892 \int_{\alpha}^2 \sqrt{\frac{\log \mathcal{N}_2(\varepsilon, \mathcal{F}_{\sin}, x_{1:n})}{n}} d\varepsilon \leq \int_{\alpha}^2 \sqrt{\frac{p}{n} \log \left(\frac{2\pi m \sqrt{p}}{\varepsilon} \right)} d\varepsilon \leq (2 - \alpha) \sqrt{\frac{p}{n} \log \left(\frac{2\pi m \sqrt{p}}{\alpha} \right)}$$

2894 Plugging this into equation 20 gives
 2895

$$2897 \mathfrak{R}_S(\mathcal{F}_{\sin}) \leq 4\alpha + 12(2 - \alpha) \sqrt{\frac{p}{n} \log \left(\frac{2\pi m \sqrt{p}}{\alpha} \right)}$$

2900 Choosing $\alpha = \frac{1}{\pi m n \sqrt{p}} \in (0, 1]$. Then
 2901

$$2902 \log \left(\frac{2\pi m \sqrt{p}}{\alpha} \right) = \log(2\pi m \sqrt{p} \cdot \pi m n \sqrt{p}) = \log(2\pi^2 m^2 p n),$$

2904 So

$$2905 \mathfrak{R}_S(\mathcal{F}_{\sin}) \leq \frac{4}{\pi m n \sqrt{p}} + 24 \sqrt{\frac{p}{n} \log(2\pi^2 m^2 p n)} = \tilde{\mathcal{O}}\left(\sqrt{\frac{p}{n}}\right). \quad (21)$$

2907 Combining equation 18 and equation 21 we obtain, for every S ,
 2908

$$2909 \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \leq S_1 \mathfrak{R}_S(\mathcal{F}_{\sin}) = \tilde{\mathcal{O}}\left(S_1 \sqrt{\frac{p}{n}}\right). \quad (22)$$

2912 Fix $\delta_0 = \frac{1}{2}$, substituting equation 22 into equation 15 yields
 2913

$$2914 \mathbb{P}[h_\theta(X) \neq Y] \leq \widehat{\mathcal{R}}_\gamma(s^\theta) + \tilde{\mathcal{O}}\left(\frac{S_1}{\gamma} \cdot \frac{p}{\sqrt{n}}\right) + \tilde{\mathcal{O}}\left(\frac{1}{\sqrt{n}}\right).$$

2915 \square

2916 J.3 MARGIN BOUNDS FOR RELU MLP
29172918 **Lemma J.10.** Let $Z \in \mathbb{R}^{p \times n}$ be the data matrix whose i -th column is $z_i = \sum_{k=1}^m e_{s_{i,k}} \in$
2919 $\{0, 1, \dots, m\}^p$. Let $N_{j\ell} = \sum_{i=1}^n \mathbf{1}\{s_{i,j} = s_{i,\ell}\}$. Then $\|Z\|_F^2 = \sum_{j=1}^m \sum_{\ell=1}^m N_{j\ell}$.
29202921 *Proof.* Write $Z = \sum_{j=1}^m Z_j$ where $Z_j := (e_{s_{1,j}}, \dots, e_{s_{n,j}}) \in \mathbb{R}^{p \times n}$. Then
2922

2923
$$\|Z\|_F^2 = \left\langle \sum_{j=1}^m Z_j, \sum_{\ell=1}^m Z_{\ell} \right\rangle_F = \sum_{j=1}^m \sum_{\ell=1}^m \text{tr}(Z_j^T Z_{\ell}).$$

2924

2925 For r, c ,

2926
$$(Z_j^T Z_{\ell})_{rc} = \sum_{s=1}^p (Z_j)_{sr} (Z_{\ell})_{sc} = (e_{s_{r,j}})^T e_{s_{c,\ell}},$$

2927

2928 so $(Z_j^T Z_{\ell})_{ii} = (e_{s_{i,j}})^T e_{s_{i,\ell}} = \mathbf{1}\{s_{i,j} = s_{i,\ell}\}$. Hence
2929

2930
$$\text{tr}(Z_j^T Z_{\ell}) = \sum_{i=1}^n \mathbf{1}\{s_{i,j} = s_{i,\ell}\} = N_{j\ell},$$

2931

2932 and substituting yields $\|Z\|_F^2 = \sum_{j=1}^m \sum_{\ell=1}^m N_{j\ell}$. \square
29332934 **Lemma J.11** (Hoeffding bound). Assume that for each $i \in [n]$, the symbols $(s_{i,1}, \dots, s_{i,m})$ are i.i.d.
2935 uniform on $[p] := \{1, \dots, p\}$, and that they are independent across i . Let $z_i = \sum_{k=1}^m e_{s_{i,k}} \in \mathbb{R}^p$,
2936 $Z = (z_1, \dots, z_n) \in \mathbb{R}^{p \times n}$, and $x^{(i)} := z_i$. Then for any $\delta' \in (0, 1)$, with probability at least $1 - \delta'$,
2937

2938
$$\sum_{i=1}^n \|x^{(i)}\|_2^2 \leq nm \left(1 + \frac{m-1}{p}\right) + m(m-1) \sqrt{\frac{n \log(1/\delta')}{2}},$$

2939

2940 and therefore
2941

2942
$$Q_2(S) := \left(\frac{1}{n} \sum_{i=1}^n \|x^{(i)}\|_2^2\right)^{1/2} \leq \overline{Q}_2(m, p, n, \delta') := \left[m \left(1 + \frac{m-1}{p}\right) + m(m-1) \sqrt{\frac{\log(1/\delta')}{2n}}\right]^{1/2}.$$

2943

2944 *Proof.* For a fixed i , define
2945

2946
$$Y_i := \sum_{j,\ell=1}^m \mathbf{1}\{s_{i,j} = s_{i,\ell}\}.$$

2947 Note that $z_i = \sum_{k=1}^m e_{s_{i,k}}$ has coordinates $z_i(c) = \sum_{k=1}^m \mathbf{1}\{s_{i,k} = c\}$, hence
2948

2949
$$\|z_i\|_2^2 = \sum_{c=1}^p z_i(c)^2 = \sum_{c=1}^p \left(\sum_{j=1}^m \mathbf{1}\{s_{i,j} = c\} \right) \left(\sum_{\ell=1}^m \mathbf{1}\{s_{i,\ell} = c\} \right) = \sum_{j,\ell=1}^m \mathbf{1}\{s_{i,j} = s_{i,\ell}\} = Y_i.$$

2950

2951 Therefore $\sum_{i=1}^n \|x^{(i)}\|_2^2 = \sum_{i=1}^n \|z_i\|_2^2 = \sum_{i=1}^n Y_i$. Observe that
2952

2953
$$\mathbb{E}[Y_i] = \sum_{j=1}^m \mathbb{E} \mathbf{1}\{s_{i,j} = s_{i,j}\} + \sum_{\substack{j,\ell=1 \\ j \neq \ell}}^m \mathbb{E} \mathbf{1}\{s_{i,j} = s_{i,\ell}\} = m + m(m-1) \cdot \mathbb{P}[s_{i,1} = s_{i,2}].$$

2954

2955 Since $s_{i,1}, s_{i,2}$ are independent uniform on $[p]$, $\mathbb{P}[s_{i,1} = s_{i,2}] = 1/p$, hence
2956

2957
$$\mathbb{E}[Y_i] = m \left(1 + \frac{m-1}{p}\right), \quad \mathbb{E}\left[\sum_{i=1}^n Y_i\right] = n m \left(1 + \frac{m-1}{p}\right).$$

2958

2959 Also notice that $m \leq Y_i \leq m^2$ and $(Y_i)_{i=1}^n$ are independent, let $S_n := \sum_{i=1}^n Y_i$. Hoeffding's
2960 inequality for independent $Y_i \in [a_i, b_i]$ gives
2961

2962
$$\mathbb{P}[S_n - \mathbb{E}S_n \geq t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right) = \exp\left(-\frac{2t^2}{n(m^2 - m)^2}\right).$$

2963

2970 Set the right-hand side to δ' and solve for t to get
 2971

$$2972 \quad t = (m^2 - m) \sqrt{\frac{n \log(1/\delta')}{2}} = m(m-1) \sqrt{\frac{n \log(1/\delta')}{2}}. \\ 2973$$

2975 Therefore, with probability at least $1 - \delta'$,
 2976

$$2977 \quad \sum_{i=1}^n \|x^{(i)}\|_2^2 = \sum_{i=1}^n Y_i \leq n m \left(1 + \frac{m-1}{p}\right) + m(m-1) \sqrt{\frac{n \log(1/\delta')}{2}}. \\ 2978 \\ 2979$$

2980 Dividing by n and taking square roots yields the stated bound on $Q_2(S)$. \square
 2981

2984 We now state and prove the width-independent multiclass margin bound for homogeneous activation.
 2985 The main idea is to use ℓ_∞ contraction to reduce the problem to the real output, and then utilize
 2986 a technical lemma from (Golowich et al., 2017). The core part of the proof is almost identical, and
 2987 is included only for completeness.

2988 **Lemma J.12** (Lem. 1 of (Golowich et al., 2017)). *Let σ be a 1-Lipschitz, positive-homogeneous
 2989 activation function which is applied element-wise (such as the ReLU). Then for any class of vector-
 2990 valued functions \mathcal{F} , and any convex and monotonically increasing function $g : \mathbb{R} \rightarrow [0, \infty)$,*
 2991

$$2992 \quad \mathbb{E}_\epsilon \sup_{f \in \mathcal{F}, W: \|W\|_F \leq R} g \left(\left\| \sum_{i=1}^m \epsilon_i \sigma(Wf(x_i)) \right\|_2 \right) \leq 2 \cdot \mathbb{E}_\epsilon \sup_{f \in \mathcal{F}} g \left(R \cdot \left\| \sum_{i=1}^m \epsilon_i f(x_i) \right\|_2 \right). \\ 2993 \\ 2994$$

2995 **Theorem J.13** (Width-independent multiclass margin bound for homogeneous activation). *Assume
 2996 $p > m$ and $n > m^2$, $n \geq 17$, and σ is a 1-Lipschitz, positive-homogeneous activation function.
 2997 For any $\gamma > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training
 2998 samples S , the following holds simultaneously for all $\theta = (W, V)$ with $\|V\|_2 \leq S_2$ and $\|W\|_F \leq B$,*
 2999

$$3000 \quad \mathbb{P}_{(X, Y) \in \mathcal{D}} [h_\theta(X) \neq Y] \leq \widehat{\mathcal{R}}_\gamma(s^\theta) + \tilde{\mathcal{O}} \left(\frac{S_2 B}{\gamma} \sqrt{\frac{p m}{n}} \right) + \tilde{\mathcal{O}} \left(\frac{1}{\sqrt{n}} \right). \\ 3001 \\ 3002$$

3003 Here $\tilde{\mathcal{O}}(\cdot)$ hides factors polylogarithmic in n and δ^{-1} .
 3004

3006 *Proof of Thm. J.13.* The multiclass margin satisfies $|\phi_y(s) - \phi_y(s')| \leq 2\|s - s'\|_\infty$ for all s, s' ,
 3007 hence $g_y := \psi_\gamma \circ \phi_y$ is $\frac{2}{\gamma}$ -Lipschitz w.r.t. $\|\cdot\|_\infty$ and $|g_y| \leq 1$.
 3008

3009 **ℓ_∞ -vector contraction.** For a vector class $\mathcal{S} \subset \{x \mapsto s(x) \in \mathbb{R}^p\}$ and L -Lipschitz maps $\{\varphi_i\}_{i=1}^n$
 3010 w.r.t. $\|\cdot\|_\infty$, a standard ℓ_∞ vector contraction inequality (see, e.g., Thm. 1 in (Foster & Rakhlin,
 3011 2019)) implies that for the fixed sample $S = (x^{(1)}, \dots, x^{(n)})$,
 3012

$$3013 \quad \mathfrak{R}_S(\varphi \circ \mathcal{S}) := \frac{1}{n} \mathbb{E}_\epsilon \left[\sup_{s \in \mathcal{S}} \sum_{i=1}^n \epsilon_i \varphi_i(s(x^{(i)})) \right] \leq C L \sqrt{p} \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \log^{\frac{3}{2} + \delta_0} \left(\frac{\beta}{\max_j \mathfrak{R}_S(\mathcal{S}|_j)} \right), \\ 3014 \\ 3015 \\ 3016 \quad (23)$$

3017 for any fixed $\delta_0 > 0$, with $C = C_{\delta_0} < \infty$. Here

$$3018 \quad \mathfrak{R}_S(\mathcal{S}|_j) := \frac{1}{n} \mathbb{E}_\epsilon \left[\sup_{s \in \mathcal{S}} \sum_{i=1}^n \epsilon_i s_j(x^{(i)}) \right], \quad \beta \geq \sup_{\theta} \max_i \{|\varphi_i(s^\theta(x^{(i)}))|, \|s^\theta(x^{(i)})\|_\infty\}. \\ 3019 \\ 3020$$

3022 Let $\mathcal{S} = \{s^\theta : \|V\|_2 \leq S_2, \|W\|_F \leq B\}$ and $\mathcal{S}|_j = \{x \mapsto v_j^\top \sigma(Wx) : \|V\|_2 \leq S_2, \|W\|_F \leq B\}$, where $v_j \in \mathbb{R}^d$ is the j -th row of V . Fix $\lambda > 0$, to be chosen later. For any fixed $x_{1:n}$, the
 3023

3024 Rademacher complexity can be upper bounded as
 3025

$$\begin{aligned}
 3026 \quad n \mathfrak{R}_S(\mathcal{S}|_j) &= \mathbb{E}_\epsilon \sup_{\substack{\|V\|_2 \leq S_2 \\ \|W\|_F \leq B}} \sum_{i=1}^n \epsilon_i v_j^\top \sigma(W x^{(i)}) \\
 3027 \\
 3028 \quad &\leq \mathbb{E}_\epsilon \sup_{\substack{\|v_j\|_2 \leq S_2 \\ \|W\|_F \leq B}} \sum_{i=1}^n \epsilon_i v_j^\top \sigma(W x^{(i)}) \quad (\text{Cauchy-Schwarz}) \\
 3029 \\
 3030 \quad &\leq \frac{1}{\lambda} \log \mathbb{E}_\epsilon \sup_{\substack{\|v_j\|_2 \leq S_2 \\ \|W\|_F \leq B}} \exp \left(\lambda \sum_{i=1}^n \epsilon_i v_j^\top \sigma(W x^{(i)}) \right) \\
 3031 \\
 3032 \quad &\leq \frac{1}{\lambda} \log \mathbb{E}_\epsilon \sup_{\substack{\|v_j\|_2 \leq S_2 \\ \|W\|_F \leq B}} \exp \left(\|v_j\|_2 \cdot \lambda \left\| \sum_{i=1}^n \epsilon_i \sigma(W x^{(i)}) \right\|_2 \right) \\
 3033 \\
 3034 \quad &\leq \frac{1}{\lambda} \log \mathbb{E}_\epsilon \sup_{\|W\|_F \leq B} \exp \left(S_2 \cdot \lambda \left\| \sum_{i=1}^n \epsilon_i \sigma(W x^{(i)}) \right\|_2 \right).
 \end{aligned}$$

3035 Applying Lem. J.12 with the given 1-Lipschitz, positive-homogeneous σ , $\mathcal{F} = \{f : f(x) = x\}$
 3036 (identity class), and $g(t) = \exp(S_2 \lambda t)$, we obtain
 3037

$$\frac{1}{\lambda} \log \mathbb{E}_\epsilon \sup_{\|W\|_F \leq B} \exp \left(S_2 \cdot \lambda \left\| \sum_{i=1}^n \epsilon_i \sigma(W x^{(i)}) \right\|_2 \right) \leq \frac{1}{\lambda} \log \left(2 \mathbb{E}_\epsilon \exp \left(S_2 \cdot \lambda B \left\| \sum_{i=1}^n \epsilon_i x^{(i)} \right\|_2 \right) \right).$$

3038 Denote $M = S_2 B$, and define the random variable (as a function of $\epsilon = (\epsilon_1, \dots, \epsilon_n)$):
 3039

$$3040 \quad Z = M \cdot \left\| \sum_{i=1}^n \epsilon_i x^{(i)} \right\|_2.$$

3041 Then

$$3042 \quad \frac{1}{\lambda} \log (2 \mathbb{E}_\epsilon \exp(\lambda Z)) = \frac{\log 2}{\lambda} + \frac{1}{\lambda} \log (\mathbb{E}_\epsilon \exp(\lambda(Z - \mathbb{E}Z))) + \mathbb{E}Z.$$

3043 By Jensen's inequality,

$$3044 \quad \mathbb{E}Z \leq M \sqrt{\mathbb{E}_\epsilon \left[\left\| \sum_{i=1}^n \epsilon_i x^{(i)} \right\|_2^2 \right]} = M \sqrt{\mathbb{E}_\epsilon \left[\sum_{i,i'=1}^m \epsilon_i \epsilon_{i'} x_i^\top x_{i'} \right]} = M \sqrt{\sum_{i=1}^n \|x^{(i)}\|_2^2}.$$

3045 Moreover, Z satisfies a bounded-difference condition
 3046

$$3047 \quad Z(\epsilon_1, \dots, \epsilon_i, \dots, \epsilon_n) - Z(\epsilon_1, \dots, -\epsilon_i, \dots, \epsilon_n) \leq 2M \|x^{(i)}\|_2,$$

3048 and hence is sub-Gaussian with variance factor $v = M^2 \sum_{i=1}^n \|x^{(i)}\|_2^2$, yielding
 3049

$$3050 \quad \frac{1}{\lambda} \log (\mathbb{E}_\epsilon \exp \lambda(Z - \mathbb{E}Z)) \leq \frac{\lambda M^2}{2} \sum_{i=1}^n \|x^{(i)}\|_2^2.$$

3051 Choosing $\lambda = \frac{\sqrt{2 \log 2}}{M \sqrt{\sum_{i=1}^n \|x^{(i)}\|_2^2}}$ gives
 3052

$$3053 \quad \frac{1}{\lambda} \log (2 \cdot \mathbb{E}_\epsilon \exp(\lambda Z)) \leq M \left(\sqrt{2 \log 2} + 1 \right) \sqrt{\sum_{i=1}^n \|x^{(i)}\|_2^2}.$$

3054 Therefore,

$$3055 \quad \mathfrak{R}_S(\mathcal{S}|_j) \leq S_2 B \left(\sqrt{2 \log 2} + 1 \right) \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^n \|x^{(i)}\|_2^2}. \quad (24)$$

3078 **Controlling $\max_j \mathfrak{R}_S(\mathcal{S}|_j)$ and the log term.** Define the “good” subset
 3079

$$3080 \quad 3081 \quad 3082 \quad \mathcal{X}_{\text{good}}^n(\delta') := \left\{ x_{1:n} \in \mathcal{X}^n : \frac{1}{n} \sum_{i=1}^n \|x^{(i)}\|_2^2 \leq \bar{Q}_2(m, p, n, \delta')^2 \right\}.$$

3083 By Lem. J.11, with probability $\geq 1 - \delta'$ the realized sample satisfies $x_{1:n} \in \mathcal{X}_{\text{good}}^n(\delta')$. On this
 3084 event, equation 24 yields

$$3085 \quad 3086 \quad 3087 \quad 0 \leq \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \leq S_2 B \left(\sqrt{2 \log 2} + 1 \right) \frac{1}{\sqrt{n}} \bar{Q}_2(m, p, n, \delta'). \quad (25)$$

3088 Furthermore, for any θ and x , $\|s^\theta(x)\|_\infty \leq \|V\|_2 \|\sigma(Wx)\|_2 \leq S_2 B \|x\|_2$, and since here $x \in$
 3089 $\{0, 1, \dots, m\}^p$ with $\|x\|_1 = m$, we have $\|x\|_2 \leq m$. Thus we may take the simple, deterministic
 3090 bound

$$3091 \quad \beta \leq 1 + S_2 B m.$$

3092 To upper bound the logarithm in equation 23 more conveniently, also define

$$3093 \quad 3094 \quad 3095 \quad b := 1 + S_2 B \sqrt{n} \bar{Q}_2(m, p, n, \delta'),$$

3096 so that $\beta \leq b$ and hence $\log(\beta/t) \leq \log(b/t)$ for all $t > 0$.

3097 Applying equation 23 with $L = 2/\gamma$ and using equation 25, we obtain on the event of Lem. J.11

$$3098 \quad 3099 \quad 3100 \quad 3101 \quad 3102 \quad \mathfrak{R}_S(\mathcal{F}_\gamma) \leq C \frac{2}{\gamma} \sqrt{p} \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \log^{\frac{3}{2} + \delta_0} \left(\frac{\beta}{\max_j \mathfrak{R}_S(\mathcal{S}|_j)} \right) \\ \leq C \frac{2}{\gamma} \sqrt{p} \max_{j \in [p]} \mathfrak{R}_S(\mathcal{S}|_j) \log^{\frac{3}{2} + \delta_0} \left(\frac{b}{\max_j \mathfrak{R}_S(\mathcal{S}|_j)} \right).$$

3103 Let

$$3104 \quad 3105 \quad h(t) = t \log^a \left(\frac{b}{t} \right), \quad a := \frac{3}{2} + \delta_0 > \frac{3}{2}.$$

3106 Substituting $\delta_0 = 0.5$ gives $a = 2$. From equation 25, with $t := \max_j \mathfrak{R}_S(\mathcal{S}|_j)$ we have

$$3107 \quad 3108 \quad 3109 \quad t \leq \frac{\sqrt{2 \log 2} + 1}{\sqrt{n}} S_2 B \bar{Q}_2(m, p, n, \delta') = \frac{\sqrt{2 \log 2} + 1}{n} (b - 1) \leq \frac{\sqrt{2 \log 2} + 1}{n} b.$$

3110 Since $n \geq 17 \geq e^2(\sqrt{2 \log 2} + 1)$, we have $t \leq b e^{-2}$; on $[0, b e^{-2}]$ the function h is increasing,
 3111 hence

$$3112 \quad 3113 \quad 3114 \quad h(t) \leq h \left(\frac{\sqrt{2 \log 2} + 1}{n} b \right) = \frac{\sqrt{2 \log 2} + 1}{n} b \log^2 \left(\frac{b}{b(\sqrt{2 \log 2} + 1)/n} \right) = \frac{\sqrt{2 \log 2} + 1}{n} b \log^2 \left(\frac{n}{\sqrt{2 \log 2} + 1} \right).$$

3115 Therefore, for some absolute $C' > 0$,

$$3116 \quad 3117 \quad 3118 \quad \mathfrak{R}_S(\mathcal{F}_\gamma) \leq C' \frac{1}{\gamma} \sqrt{\frac{p}{n}} S_2 B \bar{Q}_2(m, p, n, \delta') \log^2 \left(\frac{n}{\sqrt{2 \log 2} + 1} \right). \quad (26)$$

3119 **Final bound.** By Lem. J.11, with probability at least $1 - \delta'$,

$$3120 \quad 3121 \quad 3122 \quad 3123 \quad \bar{Q}_2(m, p, n, \delta')^2 = m \left(1 + \frac{m-1}{p} \right) + m(m-1) \sqrt{\frac{\log(1/\delta')}{2n}} \leq 2m + m\sqrt{\log(1/\delta')},$$

3124 where we used $p > m$ and $n > m^2$. Hence $\bar{Q}_2(m, p, n, \delta') = \tilde{\mathcal{O}}(\sqrt{m})$. Since
 3125 $\frac{1}{n} \sum_{i=1}^n \psi_\gamma(\phi_{y^{(i)}}(s^\theta(x^{(i)}))) \leq \hat{\mathcal{R}}_\gamma(s^\theta)$, combining equation 14 and equation 26, and taking a union
 3126 bound with the choice $\delta' = \delta/2$ while applying Cor. J.4 with confidence parameter $\delta/2$, yields the
 3127 stated result with overall probability at least $1 - \delta$. \square
 3128

3129 **Remark J.14 (Data-dependent specialization).** The bound is width-independent and depends on the
 3130 sample only through $\bar{Q}_2(S)$. In our setup, $x \in \{0, 1, \dots, m\}^p$ with $\|x\|_1 = m$; thus $\|x\|_2 \leq m$, so
 3131 $\beta \leq 1 + S_2 B m$ deterministically. We further used distributional assumptions on $s_{1:m}$ (e.g., i.i.d.
 3132 uniform over $[p]$) only to obtain sharper high-probability bounds on $\bar{Q}_2(S)$.

3132 We are now able to prove theorems in Sec. 6:

3134 *Proof of Thm. 6.2.* The proof consists of showing all networks with small training error and small
 3135 normalized margin generalize, and at least one such network exist.

3136 In Thm. J.9, set $\gamma = \gamma_\theta(\mathcal{D}_{\text{train}})$, then the empirical γ -margin error is
 3137

$$3138 \hat{\mathcal{R}}_\gamma(s^\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \left\{ f(x_i)_{y_i} \leq \gamma + \max_{j \neq y_i} f(x_i)_j \right\} = 0.$$

3141 Notice that $\bar{\gamma}_\theta = \frac{\gamma_\theta(\mathcal{D}_{\text{train}})}{\|V\|_{1,\infty}}$, by Thm. J.9,
 3142

$$3143 \mathbb{P}_{(X,Y) \in \mathcal{D}} [h_\theta(X) \neq Y] \leq \tilde{\mathcal{O}} \left(\frac{1}{\bar{\gamma}_\theta} p \sqrt{\frac{1}{n}} \right) + \tilde{\mathcal{O}} \left(\frac{1}{\sqrt{n}} \right) \leq \tilde{\mathcal{O}} \left(p \sqrt{\frac{1}{n}} \right) + \tilde{\mathcal{O}} \left(\frac{1}{\sqrt{n}} \right) = \tilde{\mathcal{O}} \left(p \sqrt{\frac{1}{n}} \right).$$

3146 When $2p \leq d$, Sec. I.1 gives a network whose normalized margin is
 3147

$$3148 \bar{\gamma}_\theta = \frac{\gamma_\theta(\mathcal{D}_{\text{train}})}{\|V\|_{1,\infty}} \geq \frac{p}{2p} = \frac{1}{2} = \Omega(1).$$

3150 \square
 3151

3152 *Proof of Thm. 6.3.* In Thm. J.13, set $\gamma = \gamma_\theta(\mathcal{D}_{\text{train}})$. Then the empirical γ -margin error is zero,
 3153

$$3154 \hat{\mathcal{R}}_\gamma(s^\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \left\{ f(x_i)_{y_i} \leq \gamma + \max_{j \neq y_i} f(x_i)_j \right\} = 0,$$

3156 and Thm. J.13 gives
 3157

$$3158 \mathbb{P}_{(X,Y) \in \mathcal{D}} [h_\theta(X) \neq Y] \leq \tilde{\mathcal{O}} \left(\frac{1}{\bar{\gamma}_\theta} \sqrt{\frac{pm}{n}} \right) + \tilde{\mathcal{O}} \left(\frac{1}{\sqrt{n}} \right).$$

3160 Apply Thm. I.6 with $\tau = 0.1$, which yields a margin $\gamma(x) \geq 0.6p$ on \mathcal{X}_m and width $d \leq pC_m$,
 3161 where

$$3162 C_m = 13m2^m \left(m\sqrt{10em} (1+2em)^{\frac{m-1}{2}} + 2 \right).$$

3164 Using $(1+2em)^{(m-1)/2} \leq (2em)^{(m-1)/2} e^{1/(4e)}$, we obtain

$$3165 C_m \leq 26\sqrt{5}e^{\frac{1}{4e}} m^{\frac{m}{2}+2} (\sqrt{8e})^m \leq 64m^{\frac{m}{2}+2} (4.67)^m.$$

3167 Thus the width condition in the statement $d \geq 64pm^{\frac{m}{2}+2}(4.67)^m$ is sufficient for $d \geq pC_m$.

3168 From equation 9–equation 10 in Thm. I.6,

$$3169 \|W\|_F \leq \frac{2}{m} p \sqrt{C_m}, \quad \|V\|_2 \leq \sqrt{2p} \sqrt{C_m} \frac{(m + \frac{1}{2})m^{2m}}{m! 2^m}.$$

3172 Write

$$3173 K_m := C_m \frac{(m + \frac{1}{2})m^{2m}}{m! 2^m}.$$

3175 Using Stirling’s lower bound $m! \geq \sqrt{2\pi m} (m/e)^m$ and the same $(1+2em)$ bound as above gives
 3176 the clean upper bound

$$3177 K_m \leq \frac{39\sqrt{5}e^{1/(4e)}}{\sqrt{4\pi e}} m^{1.5m+2.5} (\sqrt{2}e^{3/2})^m \leq 17m^{1.5m+2.5} (6.34)^m.$$

3179 Consequently,

$$3180 \|V\|_2 \|W\|_F \leq 2\sqrt{2}p\sqrt{p}K_m,$$

3182 and

$$3183 \bar{\gamma}_\theta = \frac{\gamma_\theta(\mathcal{D}_{\text{train}})}{\|V\|_2 \|W\|_F} \geq \frac{0.6p}{2\sqrt{2}p\sqrt{p}K_m} = \frac{0.3}{\sqrt{2}} \cdot \frac{1}{K_m\sqrt{p}} = \Omega \left(\frac{1}{\sqrt{p}} \cdot \frac{1}{m^{1.5m+2.5} (6.34)^m} \right).$$

3185 \square