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Abstract

Graph generation models play pivotal roles in many real-world applications, from
data augmentation to privacy-preserving. Despite their deployment successes, ex-
isting approaches often exhibit fairness issues, limiting their adoption in high-risk
decision-making applications. Most existing fair graph generation works are based
on autoregressive models that suffer from ordering sensitivity, while primarily
addressing structural bias and overlooking the critical issue of feature bias. To this
end, we propose FairGEM, a novel one-shot graph generation framework designed
to mitigate both graph structural bias and node feature bias simultaneously. Fur-
thermore, our theoretical analysis establishes that FairGEM delivers substantially
stronger fairness guarantees than existing models while preserving generation qual-
ity. Extensive experiments across multiple real-world datasets demonstrate that
FairGEM achieves superior performance in both generation quality and fairness.

1 Introduction

Graph learning has become increasingly important due to the ubiquity of graph-structured data
across various domains, such as social networks [1], recommendation systems [2], and financial
markets [3]. Among the important tasks in graph learning, graph generation stands out for its ability
to create synthetic graph data that serves crucial purposes such as data augmentation [4], anomaly
detection [5], and enabling privacy-preserving data sharing [6]. Essentially, graph generation models
aim to capture the underlying data distribution and produce novel graph samples that maintain the
statistical properties of the original data [7]. For instance, banks may employ graph generation models
to construct synthetic applicant interaction networks based on historical loan approval data, allowing
them to share insights with third-party testing agencies without exposing sensitive information [8].

Despite their significant success, existing graph generation models often neglect the crucial issue of
fairness, which limits their adoption in high-risk decision-making scenarios, such as healthcare [9],
credit scoring [10], and crime prediction [11], where biased graph generation can perpetuate or
amplify social inequities. Returning to the banking example, the generated graphs may dispropor-
tionately create more connections among individuals from the same sensitive subgroup, further
segregating the representations of nodes belonging to different sensitive subgroups. This leads to
an over-association of downstream tasks with sensitive attributes, thereby reinforcing biases and
amplifying discrimination in high-risk decisions (e.g., loan decision), raising serious ethical issues.

There has thus been growing interest in exploring fairness in graph generation tasks, with preliminary
efforts primarily focused on mitigating structural bias in graphs [6, 12, 13, 14, 15]. These works
aim to address disparities in connection patterns across sensitive subgroups. However, they largely
overlook feature bias, disparities that emerge when the generated node features differ systematically
across subgroups. For example, the generated graph might show male nodes with higher incomes
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than female nodes, leading to biased downstream applications where models trained on this synthetic
data learn to expect higher incomes from male applicants. Furthermore, existing fair graph generation
models typically belong to autoregressive models that construct graphs incrementally [14]. These
autoregressive models exhibit inherent limitations, including ordering sensitivity, where the generated
graphs heavily depend on arbitrary node orderings, and difficulty capturing comprehensive global
structural patterns efficiently [16].

To address these drawbacks, this paper explores fair one-shot graph generation models that treat graph
components holistically, generating entire graphs simultaneously with inherent node permutation
invariance, enabling better representation of global graph structures [17], while tackling both structural
and feature biases. To achieve this, several challenges need to be addressed: i) Difficulty in
preserving natural attribute differences while removing unfair disparities. When generating
node features, certain attributes should naturally vary across sensitive groups, while others should
not show group-based disparities. The fundamental challenge lies in developing methods that can
reliably distinguish between these two types of features from the data. Without robust techniques for
this identification, one-shot generation models will either inappropriately flatten natural variations
or perpetuate unfair disparities, compromising either data realism or fairness. ii) Difficulty in
coordinating fairness across interconnected graph components. One-shot models generate
node features and structural patterns simultaneously, creating complex dependencies. Without
coordinated fairness mechanisms, addressing bias in one component can inadvertently exacerbate
bias in another. This interdependence can lead to models that appear fair in isolated metrics but still
produce systematically biased results when evaluated holistically. (iii) Difficulty in formulating
and proving theoretical guarantees. In one-shot graph generation, the entire structure and node
features emerge from random noise in a single pass, which requires any fairness constraint to be
incorporated from the outset and remain valid through the entire noise-to-graph transformation. As a
result, proving formal fairness bounds under such a one-shot framework requires carefully designed
regularizers and rigorous analysis that can guarantee fairness in the final generated graph.

To tackle the above challenges, this paper introduces a novel framework, Fair Graph gEnerative
Modeling (FairGEM), which achieves fair graph generation through specialized regularization of
both structural and feature components in spectral diffusion models. To the best of our knowledge,
this is the first work that theoretically grounds fair graph generation to simultaneously address both
structural and feature biases while avoiding node ordering dependencies. Specifically, we mitigate
graph structural bias by developing a fairness regularizer that quantifies and minimizes discrepancies
between intra-group and inter-group edge reconstructions, while addressing node feature bias through
a disentanglement-guided strategy and a fairness regularizer that selectively enforces fairness on
sensitive-irrelevant features. Furthermore, we establish theoretical guarantees for our framework,
providing upper bounds on bias propagation and demonstrating how our method directly improves
fairness in downstream tasks. Our main contributions can be summarized as follows:

• Theoretical analysis. We establish the first theoretical foundation for fairness-aware graph
generation that works without sequential node ordering constraints. Our analysis provides
upper bounds on both structural and feature bias propagation, demonstrating how these
biases impact downstream task disparities.

• Novel Framework. We establish a general framework for fair graph generation through
FairGEM, which introduces two specialized regularizers: one that minimizes discrepancies
between intra-group and inter-group edge reconstructions, and another that disentangles and
selectively regularizes sensitive-unrelated features.

• Extensive Experiment Evaluation. We conduct extensive experiments to evaluate by
comparing it with the state-of-the-art methods across four real-world datasets, achieving a
significant improvement in fairness metrics while maintaining generation quality.

2 Related Works

Graph Generation Models. Generating synthetic graphs has been extensively explored through deep
generative models, categorized mainly into autoregressive and one-shot methods [17]. Specifically,
autoregressive methods, including those based on recurrent neural networks [18, 19], and reinforce-
ment learning [20, 21], construct graphs incrementally by adding nodes and edges in sequence. While
these approaches can capture complex structural patterns, they suffer from inherent limitations such
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as sensitivity to node ordering and difficulty in modeling global graph properties efficiently. To
address these limitations, one-shot graph generative models construct edges simultaneously, typically
employing Variational Autoencoders [22, 23, 24], Generative Adversarial Networks [25, 26, 27],
and spectral diffusion models [28, 29], offering advantages such as node permutation invariance and
holistic representation of graph structures. Despite these advances in synthetic graph generation
quality across both paradigms, fairness concerns remain largely unexplored in the literature, which
severely limits their applicability in high-risk decision-making scenarios, thus creating an urgent need
to develop fairer graph generation methods.

Fairness-aware Graph Generation. There is a growing effort in the research community to develop
fair graph learning models addressing biases in applications [30, 31, 32, 33, 34, 35, 36, 37], however,
most existing fairness-aware methods primarily focus on classification tasks, leaving the fairness chal-
lenges in graph generation largely unexplored [38]. Recently, a small number of works [12, 39, 40]
have begun to investigate fairness specifically within graph generation, primarily adopting autoregres-
sive methods for tasks such as fair link prediction and fair structural generation. Fair link prediction
methods aim at unbiased inference of edges between nodes; for instance, FAIRLP [13] adjusts the
training graph to balance intra-group and inter-group link distributions, enhancing representation
fairness. Fair graph structural generation methods, on the other hand, address fairness at the struc-
tural level by reducing distributional disparities between generated graphs and the original graph
across demographic subgroups. For instance, FairGen [40] introduces parity constraints to minimize
subgroup reconstruction differences. However, these existing approaches focus on structural fairness,
neglecting biases in node feature generation, highlighting the need for comprehensive fairness solu-
tions in synthetic graph generation tasks. In addition, these autoregressive models inherently suffer
from ordering sensitivity, meaning generated outcomes can vary significantly with different node
orderings, inadvertently causing biases.

In contrast to existing work, this paper proposes a fair one-shot graph generation model that addresses
both graph structural bias and feature bias, with its design informed by theoretical analysis. By
leveraging the holistic nature of one-shot generation, our approach can simultaneously optimize
fairness without the ordering sensitivity that plagues sequential methods. Additionally, our bias
mitigation approach is flexible, allowing it to be applied in training both link prediction models and
generative models to create fair synthetic graphs.

3 Notation

Given an attributed graph G = (V, E ,X), where V = {v1, v2, . . . , vn} represents the set of nodes
and E ⊆ {{vi, vj} | vi, vj ∈ V} denotes the set of undirected edges. The node feature information
associated with the graph is represented by a feature matrix X ∈ Rn×d, where each node vi
corresponds to a d-dimensional feature vector xi ∈ Rd. Graph connectivity is captured by the
adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1 indicates that nodes vi and vj are connected by
an edge, and Ai,j = 0 otherwise. We assume each node is associated with a binary sensitive attribute
si, represented by the vector S ∈ {0, 1}n×1, where si denotes the sensitive attribute for node vi. The
node set can thus be partitioned into two groups based on these sensitive attributes: the deprived
group Sd = {vi ∈ V | si = 0} (e.g., female), and the favored group Sf = {vi ∈ V | si = 1} (e.g.,
male). Additionally, each node vi carries a binary ground-truth label yi ∈ {0, 1} representing the
outcome of interest, such as approval (yi = 1) or rejection (yi = 0). Predicted outcomes from the
model are indicated as ŷi.

4 Methodology

This section introduces FairGEM, a novel framework designed to achieve fair graph generation by
mitigating biases that emerge during the diffusion process. Specifically, in Section 4.1, we review
the standard score-based graph diffusion model and identify two key sources of bias: structural
bias in graph structural generation and feature bias in node feature generation. Section 4.2 presents
our method for addressing graph structural bias by introducing a fair graph structure generation
regularizer. Section 4.3 describes our approach for tackling node feature bias using a disentanglement-
guided method, which separates sensitive-related from sensitive-irrelevant features, enabling targeted
fairness regularization. In addition, we provide theoretical insights and guarantees regarding the
effectiveness of our approach in mitigating bias in graph generation.
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4.1 Inspection Biases in Graph Generation Process

We begin by examining the root causes of bias in graph generation, establishing a clear foundation for
developing fair graph generative models. Understanding these causes requires a closer look at how
such models are typically constructed, most aim to learn the joint distribution of node features (X) and
graph structure (A). To effectively capture this joint distribution, recent work has increasingly adopted
score-based diffusion modeling, a powerful strategy that transforms complex data distributions into
simpler ones through the controlled addition of noise [41]. Specifically, diffusion models leverage
stochastic differential equations (SDEs) to systematically perturb the original data distribution over
continuous timesteps until it approximates a simple prior distribution, then learn to reverse this
process. Mathematically, this graph diffusion process can be expressed as:

dXt = fX(Xt, t)dt+ σX,tdB
X
t , dAt = fA(At, t)dt+ σA,tdB

A
t (1)

where the drift functions fX(·, t) and fA(·, t) control the deterministic transformations of node
features and graph structures, respectively. Xt and At denote the random states of node features
and the adjacency matrix at time t. The stochastic terms governed by σX,t and σA,t determine the
intensity of random noise introduced via Brownian motions (BX

t ) and (BA
t ).

To reverse this diffusion process and generate realistic graph samples from noisy data, score-based
models estimate the score function, which represents the gradient of the log probability density at
various noise levels. This function is approximated using a neural network trained via the denoising
score matching objective:{

LX(θ) ≜ EG∼Unif(Z)EXt|G∥zθ(Xt,Λt)−∇ log pt|0(Xt|X0)∥2
LA(ϕ) ≜ EG∼Unif(Z)EΛt|G∥zϕ(Xt,Λt)−∇ log pt|0(Λt|Λ0)∥2

(2)

where G ∼ Unif(Z) represents uniform sampling from the training set; t ∼ U(0, 1) indicates
sampling a timestep from [0, 1]; (Xt|X0) and (At|A0) denote noisy versions at time t; zθ and zϕ
are neural networks predicting conditional scores; ∇X log p(Xt|X0) and ∇A log p(At|A0) are the
true conditional scores; and || · ||F is the Frobenius norm.

However, this diffusion-based generation inherently propagates and amplifies existing biases present
in the original data distributions [42]. Specifically, in the forward SDE for At, biased patterns
such as denser connections among nodes sharing sensitive attributes (e.g., gender) remain largely
intact because the noise addition step (σX,t, σA,t) does not alter the relative densities of these
structures, which continue to dominate the evolving distribution. Similarly, in the SDE for Xt, feature
biases, manifested as distributional disparities across sensitive groups, persist through the forward
diffusion stage, since added noise minimally shifts those underlying imbalances. Subsequently,
during the reverse diffusion process, the score function ∇ log p(Xt,At) (learned via mean-squared
error minimization) directs generated samples toward regions of higher data density. Because these
regions correspond precisely to biased modes, the generative model inherently intensifies structural
and feature biases. In summary, the optimization process of the score function, typically guided by
mean-squared error loss, inherently prioritizes more frequent and dominant biased patterns in the
training data. This weighting implicitly assigns greater importance and thus greater accuracy to these
biased modes. In turn, this amplifies existing disparities, with minority groups and less frequent
patterns disproportionately neglected.

4.2 Mitigation Graph Structural Bias in Graph Generation Process

Guided by the bias analysis, two fairness regularizers are proposed to explicitly address biases in
graph structure and node features. The first, a structural fairness regularizer, is designed to mitigate
structural bias. It does so by quantifying the discrepancy between reconstruction errors on intra-group
versus inter-group edges, as formally defined in Definition 4.1.

Definition 4.1 (Graph Structure Information Generation Bias) Given G with A and S, the bias
in graph structure information generation is defined by the disparity in how a generative model
reconstructs connections between nodes from the same subgroup defined by sensitive attribute versus
connections between nodes from different subgroups. Specific to spectral diffusion framework, where
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a fixed initial eigenvector matrix U0 guides the evolution of the adjacency matrix as At = U0ΛtU
⊤
0

through a Gaussian process, this bias at diffusion time t can be formally quantified as:

Φstruct(Λt) = (Eintra(Λt)− Einter(Λt))
2 (3)

where Eintra(Λt) and Einter(Λt) represent the reconstruction errors for intra-group and inter-group
edges, respectively:

Eintra(Λt) = |Pintra ⊙ (Ât −A)|2F , Einter(Λt) = |Pinter ⊙ (Ât −A)|2F (4)

where Ât represents the reconstructed adjacency matrix at time t, ⊙ denotes the Hadamard (element-
wise) product, and Pintra and Pinter are binary masks identifying edges between nodes with the same
and different sensitive attributes.

Building on Definition 4.1, FairGEM proceeds in three steps. First, the emergence of disparities
in graph structural information during generation is analyzed, and an upper bound is established
to understand their propagation. Second, it is proven that these structural differences inherently
introduce bias into downstream tasks, demonstrating that reducing disparities in structural information
within generated graphs improves fairness outcomes. Finally, guided by these theoretical insights, a
fairness regularizer is proposed to mitigate differences between intra-group and inter-group edges,
effectively addressing graph structural bias.

We begin with the first step of analyzing how graph structural information bias manifests and
propagates during the generation process. Theorem 4.2 establishes an upper bound on the graph
structural bias that emerges in graph generation (proof in Appendix A).

Theorem 4.2 The expected graph structural bias that emerges during the graph generation process,
measured by the disparity in adjacency patterns, can be upper bounded by:

E∥Êdis
0 ∥2F ≤ (M2∥σ·∥4∞ ·K)E(ϕ)

(
1 + nK

∫ 1

0
Σ2

t exp
[
nK

∫ 1

t
Σ2

zdz
]
dt
)

(5)

where M is a constant determined by various factors (e.g., noise schedule, model architecture, and
gradient bounds). Meanwhile, Σ2

t serves as a time-accumulated noise or variance factor, capturing
how stochastic perturbations build up over the diffusion process.

Building on Theorem 4.2, we next analyze how graph structural bias influences the downstream task.
Theorem 4.3 demonstrates that by minimizing graph structural bias, we can effectively reduce group
disparity in the downstream task (e.g., node classification), with a detailed proof in Appendix B.

Theorem 4.3 The structural bias introduced during the graph generation process propagates to
downstream tasks, and can be upper bounded by:

h
(l)
D ≤ LM(l−1)

[∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥
2

+ C

(
1

N2
d

∑
p,q∈Sd

k(h(l−1)
p ,h(l−1)

q ) +
1

N2
f

∑
r,s∈Sf

k(h(l−1)
r ,h(l−1)

s )

− 2

NdNf

∑
p∈Sd

∑
r∈Sf

k(h(l−1)
p ,h(l−1)

r )

)]
+
∥∥µ(d) − µ(f)

∥∥
2
+ L∥∆(l−1)∥+ C ∥∆q∥+ L

√
Bspec(n)

(6)

where L is the Lipschitz constant of the activation function, and C is a constant. In addition, µ
denotes the mean representation of a subgroup of nodes.

Based on Theorem 4.3, we impose an explicit fairness regularizer on the spectral diffusion process to
reduce structural bias. Specifically, we combine Φstruct with the standard score-matching objective to
obtain the fair graph structural generation loss:

Lstr = Lscore + Et

[
Φstruct(Λt)

]
(7)

During reverse-time sampling, we modify the drift term of the SDE by adding ∇Λ Φstruct(Λ̄t):

5



dΛ̄t =
(
− 1

2σ
2
t Λ̄t − σ2

t zϕ(Λ̄t, t) + σ2
t∇Λ Φstruct

(
Λ̄t

))
dt̄ + σt dW̄t (8)

By doing so, each reverse-time step not only follows the learned score to move toward high-density
regions but also corrects for structural bias by minimizing the discrepancy between intra-group and
inter-group edges.

4.3 Mitigation Feature Bias in Graph Generation Process

FairGEM now proceeds to address feature bias, an important yet largely overlooked aspect in
existing fair generative models. Unlike structural bias, however, feature bias demands more nuanced
measurement. Specifically, existing methods typically directly measure the differences between all
generated node features in deprived and favored groups [43]. While this approach captures the overall
differences between subgroups, it ignores the inherent differences of sensitive attributes, leading to a
downgrade in generation quality. In other words, fair node feature generation should not erase the
inherent differences of sensitive attributes, such as the physiological differences between males and
females. To this end, we aim to disentangle node features into sensitive-related features XS and
sensitive-irrelevant features XS . This separation enables a more nuanced approach: minimizing the
disparities in the sensitive-irrelevant features (XS), while maintaining appropriate differences in the
sensitive-related features (XS), thereby reducing bias while preserving essential group characteristics.
We formalize this concept in Definition 4.4.

Definition 4.4 (Node Feature Generation Bias) Given G with X and S, we define the node feature
generation bias as the distributional discrepancy between subgroups over the sensitive-irrelevant
features dimensions. Mathematically, the discrepancy between XSi

of node vi during the generative
process is measured using Maximum Mean Discrepancy (MMD) [44] as follows:

XS,D = 1
|VSd

|2
∑

vi,vj∈VSd
k
(
XS,i, XS,j

)
+ 1

|VSf
|2
∑

vi,vj∈VSf
k
(
XS,i, XS,j

)
− 2

|VSd
|·|VSf

|
∑

vi∈VSd
vj∈VSf

k
(
XS,i, XS,j

)
(9)

where k(·, ·) is a positive-definite kernel (e.g., RBF). A larger MMD value indicates that the generated
distributions of unrelated features differ more between subgroups, implying a higher level of node
feature generation bias.

Building upon this foundation, we introduce a disentanglement-guided diffusion strategy to effec-
tively address biases in node feature generation. Our proposed method employs a generator-refiner
framework wherein we initially leverage a Variational Autoencoder (VAE) to separate node features
into two distinct components: sensitive-related (XS) and sensitive-irrelevant (XS) attributes. This
separation stage helps identify the feature dimensions that should remain unaffected by sensitive
information, establishing the groundwork for fair node feature generation. To operationalize this,
we introduce two latent variables, US and US , representing sensitive-related and sensitive-irrelevant
information, respectively. Mathematically, we express this probabilistic framework as follows:

P (S,A,XS , XS , Y ) =P (US)P (US)P (S | US)P (XS | A,S, US)

P (A | S,US , US)P (XS | A,US)P (Y | A,US , US)
(10)

where P (US) and P (US) denote prior distributions typically modeled as standard normal distribu-
tions. The terms P (XS | A,S, US) and P (XS | A,US) are responsible for accurately reconstructing
sensitive-related and sensitive-irrelated node features, respectively.

To ensure effective disentanglement, we need to enforce independence between the latent variables
US and US . For this purpose, we adopt the Hirschfeld-Gebelein-Rényi (HGR) maximal correla-
tion [45], which generalizes Pearson correlation to capture any non-linear relationship between
random variables. Our optimization approach employs an adversarial training mechanism, illustrated
in Figure 1. During training, the encoder-decoder parameters are iteratively updated via gradient
descent to minimize both the reconstruction loss and the latent dependence, while adversarial net-
works parameterized by ωf1 and ωf2 work in opposition through gradient ascent to detect and amplify
remaining latent dependencies. This dynamic interplay of minimization and maximization ensures a
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Figure 1: The overview of FairGEM.

thorough and effective disentanglement of sensitive and insensitive feature representations. Finally,
we optimize the VAE parameters by maximizing the evidence lower bound (ELBO), formulated as:

logP (S,A,XS , XS , Y ) ≥ E qϕ(US ,US |S,A,XS ,XS ,Y )

[
logP

(
S | US

)
+ logP

(
A | US , US , S

)
+ logP

(
XS | US , A, S

)
+ logP

(
XS | US , A

)
+ logP

(
Y | US , US , A

)
− Q

(
US | S,A,XS

)
− Q

(
US | S,A,XS

)
+ logP

(
US

)
+ logP

(
US

)]
+ λLD

(11)

where the HGR-based penalization term (LD) is formally defined as: LD =

supf1,f2
E(f1(US)f2(US))√

E(f12(US))E(f22(US))
, where f1 and f2 are measurable functions with positive and

finite variance and sup(·) denotes supremum.

Armed with disentangled XS and XS , we apply a two-stage generator-refiner approach to ensure
fairness in node features generation. The VAE’s outputs (

(
X̂

(0)
S , X̂

(0)

S

)
) serve as the initial signals for

a diffusion process that further refines these features. We then enforce the proposed fair node feature
generation regularizer to minimize distributional discrepancies between sensitive subgroups in the
sensitive-irrelevant features.

As we introduced in Definition 4.4, we formalize our fair node feature generation regularizer as:

Φfeat,ns

(
XS,t

)
≡ XS,D = 1

|VS0
|2

∑
vi,vj∈VS0

k
(
XS,i,t,XS,j,t

)
+ 1

|VS1
|2

∑
vi,vj∈VS1

k
(
XS,i,t,XS,j,t

)
− 2

|VS0
||VS1

|

∑
vi∈VS0
vj∈VS1

k
(
XS,i,t,XS,j,t

) (12)

where XS,i,t denotes the sensitive-irrelevant features for node vi at time t.

We integrate this fairness regularizer into a diffusion refiner that evolves the features from time t
down to 0. Let (Xt) represent the set of node feature vectors under noise. The modified reverse-time
SDE that incorporates our fairness constraint can be written as:

dX̄t =
(
fX
(
X̄t, t

)
− σ2

X,t zθ
(
X̄t, Āt

)
+ σ2

X,t ∇XΦfeat,ns

(
X̄t,S

))
dt̄ + σX,t dB̄

X
t (13)

where zθ(·) approximates ∇X log p(Xt | X̂
(0)
S , X̂

(0)

S
), and the gradient term ∇XΦfeat,ns(X̄t,S)

actively pushes the sensitive-irrelevant features toward smaller cross-group discrepancies.
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To learn zθ and consistently enforce fairness on XS , we augment the standard score-matching
objective:

Lnode(θ) = Et

[∥∥zθ(Xt,At) − ∇ log pt|0(Xt | X0)
∥∥2] + ξ Et

[
Φfeat,ns(XS,t)

]
(14)

where ξ is a hyperparameter that balances the contribution of the fairness constraint. During reverse
diffusion, each step updates node features with both the learned score and the fairness gradient,
gradually correcting the unrelated dimensions toward unbiased distributions across subgroups.

In summary, our approach to fair node feature generation proceeds through two complementary
stages. First, in the Generator Stage, the VAE disentangles features by sampling latent codes to
reconstruct an initial partition

(
X

(0)
S ,X

(0)

S

)
, ensuring legitimate group-specific variation in XS with

minimal entanglement in XS . Next, during the Refiner Stage, our diffusion model corrupts X(0) with
noise and learns to reverse this process while imposing the MMD-based fairness penalty on XS,t.
This designed process yields a final denoised X(0) that maintains meaningful differences in sensitive
features yet achieves unbiased distributions in unrelated features. By leveraging disentangled VAE
representations to preserve necessary group distinctions while using a fairness-aware diffusion refiner
to align unrelated node features across subgroups, our approach enables achieving fair node feature
generation while maintaining better generation quality.

5 Experiments

5.1 Experiment Setting

Datasets. We conduct our experiments using four real-world datasets: Cora and Citeseer [46]: These
widely-used citation network datasets comprise academic papers represented as nodes. Edges indicate
citation relationships between papers. Each node’s feature vector is generated using a bag-of-words
model applied to paper keywords, and the labels denote distinct research areas (topics). Photo [47]:
This dataset is a subset derived from the Amazon co-purchase network, where nodes represent
products and edges represent frequent co-purchasing relationships. Node features consist of bag-
of-words vectors extracted from user-generated product reviews. The labels correspond to specific
product categories such as cameras, accessories, and lenses. Pokec-z [48]: This dataset originates
from Pokec, a prominent social networking platform in Slovakia. Nodes represent individual users
characterized by detailed attributes including gender, age, geographical location, and personal
interests. Edges represent friendship relations among users. The dataset is widely utilized for
studying social network dynamics, including community detection and user classification tasks. We
use 80% of the graphs in each dataset for training and 20% for testing. Detailed statistical summaries
of these datasets are available in Table 1.

Table 1: Summary of the datasets used in the experiments.
Dataset # Nodes # Edges # Features Avgrage Degree Sensitive Attribute

Cora 2,708 10,556 1,433 3.89 Topic
Citeseer 3,327 9,228 3,703 2.77 Topic
Photo 7,650 238,163 745 31.13 Product Categories
pokec-z 67,797 882,765 59 10 Region

Baselines. We compare FairGEM with several state-of-the-art baseline methods across multiple
categories: GRAPHARM [49]: An autoregressive diffusion-based model that sequentially masks
nodes and edges, employing a learned node-ordering strategy for efficient and accurate discrete
graph generation. GSDM [29]: A framework for graph generation based on spectral diffusion.
Using low-rank stochastic differential equations (SDEs) restricted to the space of eigenvalues of
the adjacency matrix, the quality of graph topology generation is improved while reducing the
computational effort. FairAdj [50]: Adjusts the adjacency matrix to achieve dyadic fairness by
reducing dependency between link predictions and node sensitive attributes, balancing fairness with
predictive accuracy. FG2AN [39]: Utilizes adversarial training to jointly optimize node-level and
structural fairness, incorporating tailored metrics and strategies to efficiently handle multiple biases
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during graph generation. FairGen [40]: A deep generative framework that combines label-driven
guidance with fairness constraints, leveraging self-paced learning to effectively model protected and
unprotected groups from limited labeled data. FairWire [6]: Employs diffusion-based techniques
with a novel fairness regularizer to mitigate structural bias, effectively preserving fairness in synthetic
graph creation without compromising sensitive data. For a fair and consistent comparison, we
adapt each baseline method using the original implementations provided by their respective authors.
Hyperparameters for these baselines are set according to recommendations from their original papers.

Evaluation Metrics. We evaluated FairGEM in two perspectives: i) Quality of Generated Graphs:
Building on [49], we employ Maximum Mean Discrepancy (MMD) to compare generated and
original graphs in terms of degree distributions (DD), clustering coefficients (Clus), and node features
(NFea), with smaller MMD signifying closer fidelity. To further evaluate structural fairness, we
introduce three metrics: Fair Degree Distribution (Fair-DD), Fair Clustering Coefficient (Fair-Clus),
and Fair Node Feature (Fair-NFea), each capturing cross-subgroup disparities. These metrics take
the form f(GS0

, G̃S0
)− f(GS1

, G̃S1
), where GSi

and G̃Si
refer to the induced subgraphs of the real

and generated data on subgroup Si, and f(·) denotes the MMD calculated function, with small value
reflecting a fairer outcomes. ii) Node Classification Performance: We measure the utility in node
classification tasks using Accuracy and F1 scores, while quantifying the fairness of these results with
∆DP [51] and ∆EO [52], where smaller values indicate fairer outcomes.

5.2 Experiment Results

Quality of generated graphs. Table 2 summarizes the generation performance of all methods across
each dataset, evaluating models in terms of both quality and fairness, with additional results included
in Appendix C.2. As the results indicate, FairGEM demonstrates competitive or superior generation
quality compared to the baseline approaches, consistently showing smaller discrepancies in key graph
statistics such as degree distributions and clustering coefficients. At the same time, it substantially
improves fairness metrics, suggesting that its generated node features and structural patterns do
not disproportionately favor any subgroup. The strong performance can be attributed to two key
factors. i) By disentangling node features into sensitive-related and sensitive-unrelated components,
FairGEM preserves meaningful group-specific differences without introducing unintended biases.
ii) FairGEM incorporates an explicit fairness regularizer within the generative diffusion process,
actively penalizing biases in sensitive subpopulations. Hence, FairGEM not only produces realistic
and coherent graph samples but also ensures equitable treatment of different groups.

Table 2: Graph generation results on Cora and Pokec-z datasets.
Cora Pokec-z

Method
DD Clus NFea Fair-DD Fair-Clus Fair-NFea DD Clus NFea Fair-DD Fair-Clus Fair-NFea

GRAPHARM 0.238 0.135 0.312 0.077 0.083 0.049 0.348 0.150 0.253 0.078 0.067 0.038

GSDM 0.241 0.128 0.289 0.064 0.069 0.051 0.331 0.142 0.231 0.073 0.060 0.031

FairAdj 0.258 0.157 0.321 0.035 0.043 0.032 0.358 0.168 0.281 0.055 0.039 0.023

FG2AN 0.263 0.169 0.335 0.038 0.047 0.036 0.374 0.178 0.295 0.059 0.046 0.028

FairGen 0.275 0.173 0.348 0.027 0.045 0.031 0.383 0.185 0.311 0.053 0.038 0.037

FairWire 0.259 0.161 0.332 0.031 0.043 0.038 0.370 0.170 0.281 0.045 0.032 0.034

FairGEM 0.233 0.142 0.307 0.020 0.035 0.019 0.357 0.161 0.250 0.040 0.023 0.017

Downstream task performance evaluation. To evaluate the impact of our graph generative model on
downstream tasks, we evaluated its performance and fairness on node classification using generated
graphs. We conducted experiments on four datasets, with detailed results for Cora and Citeseer
presented in Table 3 and the remaining results included in the Appendix C.2 due to space constraints.
For each dataset, we trained a standard GCN model [53] on graphs generated by different methods
and assessed both accuracy and fairness metrics. All experiments were repeated five times with the
average results reported. The results demonstrate that graphs generated by FairGEM consistently
enhance both the accuracy and fairness of node classification outcomes compared to other graph
generation model baselines. For instance, on the Cora dataset, FairGEM generated graphs achieved a
21.2% improvement in ∆DP , while maintaining comparable accuracy to the original graph. This
improvement can be attributed to FairGEM’s comprehensive approach in mitigating both graph
structural and feature biases during the graph generation process, effectively limiting the propagation
of these biases into downstream tasks.
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Table 3: Node classification results on Cora and Pokec-z datasets.
Cora Pokec-z

Method
Acc (%) F1-score (%) ∆DP (%) ∆EO (%) Acc (%) F1-score (%) ∆DP (%) ∆EO (%)

Original-GCN 82.43 ± 0.34 84.40 ± 3.60 27.01± 1.38 25.21± 1.13 76.31± 1.34 68.47 ± 1.28 20.11± 1.67 22.31± 0.98

GRAPHARM-GCN 81.03± 0.23 82.70± 2.31 25.21± 1.38 21.31± 1.43 73.25± 2.01 65.21± 1.61 16.98± 1.21 18.64± 1.38

GSDM-GCN 81.51± 1.23 83.91± 0.95 25.47± 1.24 23.78± 0.77 76.88 ± 0.79 67.71± 1.59 19.58± 2.16 20.31± 1.15

FairAdj-GCN 77.77± 1.64 78.32± 1.88 17.13± 6.36 13.96± 2.24 70.93± 1.59 60.32± 1.23 14.25± 1.51 15.48± 1.09

FG2AN-GCN 78.10± 0.81 78.88± 1.72 18.66± 4.30 14.05± 0.32 71.82± 1.79 59.48± 0.98 15.16± 1.27 16.35± 1.90

FairGen-GCN 79.54± 1.56 80.54± 2.16 14.16± 0.89 13.35± 1.24 73.43± 1.77 63.71± 1.87 12.11± 1.19 12.81± 1.54

FairWire-GCN 78.21± 1.03 79.67± 1.55 14.76± 0.24 13.65± 0.51 74.98± 1.01 61.11± 1.09 12.98± 1.36 14.01± 2.10

FairGEM-GCN 79.75± 0.98 80.36± 1.16 11.71 ± 1.24 10.15 ± 1.07 75.25± 1.81 65.39± 1.03 9.23 ± 0.59 11.46 ± 1.12

Ablation study. We conduct ablation studies to gain insights into the effect of each fairness regularizer
in FairGEM on improving fairness and graph generation quality. Specifically, we create three ablated
versions: 1) FairGEM-WS removes the fair graph structure regularizer, 2) FairGEM-WF removes
the fair node feature regularizer, and 3) FairGEM-WD removes the disentanglement component and
directly applies fairness constraints to all node features indiscriminately. Figure 3 presents ablation
results across the Cora and Pokec-z datasets, with additional results included in Appendix C.2,
revealing several key findings. First, compared to FairGEM and FairGEM-WS, FairGEM-WD shows
decreased generation quality because applying fairness constraints to all node features leads to
unrealistic consistency, thereby reducing generation quality. Second, FairGEM-WS exhibits stronger
intra-group connectivity compared to other models, highlighting the critical role of our fair graph
structure regularizer in reducing graph structural bias. Third, FairGEM-WD shows only slightly
improved node feature fairness compared to FairGEM-WF, indicating that forcing consistency across
all features may introduce additional bias that counteracts fairness improvements. Finally, the full
FairGEM model consistently outperforms all ablated versions in terms of fairness metrics, validating
the necessity and complementarity of each component in our design.

Figure 2: Ablation study results for FairGEM, FairGEM-WS, FairGEM-WD and FairGEM-WF in
Cora and Pokec-z datasets.

6 Conclusion

Generating synthetic graphs that reflect real-world structural properties has emerged as a promising
solution for scalability and privacy needs in real-world networks. However, fairness remains largely
unexplored in graph generation models. To bridge this gap, this paper proposes FairGEM, a one-shot
generative framework designed to mitigate both structural and feature-level biases. By departing
from the autoregressive model that suffers from ordering sensitivities, FairGEM transforms random
noise directly into a final, bias-corrected graph, avoiding the pitfalls of node or edge ordering
dependencies. FairGEM incorporates a theoretically grounded fairness regularizer into the diffusion
process, effectively identifying and reducing real bias factors. Comprehensive experiments on
real datasets confirm that FairGEM outperforms state-of-the-art baselines, offering superior bias
mitigation without compromising generative quality. These results establish a solid foundation for
future work on one-shot fair graph generation.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [TODO]
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the experiments?
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• The answer NA means that the paper does not include experiments.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]
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• If the authors answer No, they should explain the special circumstances that require a
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Answer: [Yes]
Justification: [TODO]
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• The answer NA means that there is no societal impact of the work performed.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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not require this, but we encourage authors to take this into account and make a best
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asset is used.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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A Proof of Theorem 4.2

Without loss of generality, we will focus on providing the reconstruction disparity bounds for
adjacency matrix generation. Consider a fairness-aware spectral diffusion model reconstructing an
adjacency matrix Â from the original graph G with adjacency matrix A. Let Pintra and Pinter denote
binary masks for intra-group and inter-group edges respectively. We define the disparity between
intra- and inter-group as follows:

Edis
t ≜ Einter

t −Eintra
t (15)

where Et ≜ Ât −A denotes the reconstruction error. In addition, the term Einter
t ≜ Pinter ⊙Et and

Eintra
t ≜ Pintra ⊙Et.

Building on this, we can defined the disparity between intra- and inter-group at time t as follows:

dEdis
t = (Pinter −Pintra)⊙ dÂt = dÂinter

t − dÂintra
t (16)

Hence, we have:

dΛ̄t =

(
−1

2
σ2
t Λ̄t − σ2

t zϕ(Λ̄t, t) + σ2
t∇ΛΦstruct(Λ̄t)

)
dt̄+ σtdW̄t. (17)

Given the spectral decomposition A = UΛU⊤, the reverse-time spectral diffusion SDE for Ât with
fairness regularization Φstruct(Λ) is:

dÂt =

(
−1

2
σ2
t Ât − σ2

t zϕ(Ât, t) + σ2
tU∇ΛΦstruct(Λt)U

⊤
)
dt̄+ σtdM̄t. (18)

Therefore, the dÂinter
t and dÂintra

t are:

 dÂinter
t =

(
− 1

2σ
2
t Â

inter
t − σ2

tPinter ⊙ zϕ(Ât, t) + σ2
tPinter ⊙

[
U∇ΛΦstructU

⊤]) dt̄+ σtPinter ⊙ dM̄t

dÂintra
t =

(
− 1

2σ
2
t Â

intra
t − σ2

tPintra ⊙ zϕ(Ât, t) + σ2
tPintra ⊙

[
U∇ΛΦstructU

⊤]) dt̄+ σtPintra ⊙ dM̄t

(19)

To bound disparity, observe that the supports of Pinter and Pintra are disjoint, hence:

∥Edis
t ∥2F = ∥Einter

t −Eintra
t ∥2F ≤ ∥Einter

t ∥2F + ∥Eintra
t ∥2F = ∥(Pinter +Pintra)⊙Et∥2F ≤ ∥Et∥2F (20)

Taking expectation at t = 0 and applying the spectral-noise variant gives. Hence, the disparity
between the two subgroups satisfies:

E∥Edis
0 ∥2F ≤ E∥E0∥2F ≤ Bspec(n) (21)

Building on this, the final disparity between the inter- and intra- edges is:

E∥Edis
0 ∥2F ≤ Bspec(n) =

(
M2∥σ·∥4∞ ·K

)
E(ϕ)

(
1 + nK

∫ 1

0

Σ−2
t exp

[
nK

∫ 1

t

Σ−2
z dz

]
dt

)
.

(22)

where K ≜ 2ML/E∥A∥2,2, M,L are absolute constants, Σ2
t ≜ 1− exp

(
−
∫ t

0
σ2
z dz

)
, and E(·) is

the expected score and defined as:

E(·) ≜ Ez∼DEzt|z∥zθ(zt)−∇ log pt(zt)∥2 (23)
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This result demonstrates that the fairness-aware spectral diffusion model effectively controls recon-
struction disparity between intra- and inter-group connections. The disparity measure is guaranteed
to be bounded in terms of the spectral reconstruction bound Bspec(n), indicating controlled fairness in
graph structure generation.

This completes the proof.

B Proof of Theorem 4.3

For binary node classification, the group disparity such as statistical group parity is defined as:
∆SP = |P (ŷ = 1|s = d) − P (ŷ = 1|s = f)|. To analyze how structural bias propagates to this
fairness metric, we examine the properties of the Softmax function, which generates the prediction
probabilities P1 and P2 for classes c1 and c2, respectively. A key analytical property of Softmax is
its Lipschitz continuity with constant L, which guarantees that differences in output probabilities are
bounded proportionally to differences in input vectors.

∥f(zi)− f(zj)∥1 ≤ L ∥zi − zj∥2 ≤ L ∥W l∥ ∥hl
i − hl

j∥2 (24)

where zi = W lhl
i, and zj = W lhl

j . In this formulation, hl
i represents the node embedding for

some vi ∈ Sd and hl
j represents the node embedding for some vj ∈ Sf , where Sd and Sf are the

two sensitive groups. Without loss of generality, we focus on the lth GNN layer to illustrate this
propagation mechanism, where the input representations are denoted by hl and the corresponding
output representations are denoted by hl+1.

Hence, we can rewrite the statistical parity as follows:

∆DP =

∣∣∣∣ 1

N0

∑
i∈S0

f
(
zi
)
1
− 1

N1

∑
j∈S1

f
(
zj
)
1

∣∣∣∣ (25)

Building on this, we can conclude that disparities in node classification outcomes directly stem from
discrepancies in node representations. To quantify node representation discrepancies (hl

S,D
) on the

lth GNN layer, we adopt Maximum Mean Discrepancy (MMD) [44] as our measurement framework.
MMD offers superior transfer learning capabilities compared to alternative metrics [54, 55, 56],
making it particularly well-suited for addressing fairness challenges in graph learning contexts.
Hence, the node representation discrepancies are defined as:

hl
S,D

= MMD
(
{hl

S,i | vi ∈ VSd
}, {hl

S,i | vi ∈ VSf
}
)

=
1

|VSd
|2

∑
vi,vj∈VSd

k
(
hl
S,i

, hl
S,j

)
+

1

|VSf
|2

∑
vi,vj∈VSf

k
(
hl
S,i

, hl
S,j

)
− 2

|VSd
| · |VSf

|
∑

vi∈VSd
vj∈VSf

k
(
hl
S,i

, hl
S,j

)
(26)

where k(x, y) = exp
(
−γ∥x− y∥2

)
is RBF kernel function.

Building on this, and given that Graph Attention Networks [57] (GAT) adopt the message passing by
assigning different weights to neighbor nodes as:

h
(l)
i =

∑
vj∈N (i)

a
(l−1)
ij h

(l−1)
j with a

(l−1)
ij =

exp
(
e
(l−1)
ij

)
∑

vj∈N (i) exp
(
e
(l−1)
ij

) , (27)

Here, we further distinguish between neighbor information from the inter-group and neighbor
information from the intra-group, as detailed as follows:
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h
(l)
i =

∑
vj∈Nintra(i)

α
(l−1)
ij,intra h

(l−1)
j +

∑
vj∈Ninter(i)

α
(l−1)
ij,inter h

(l−1)
j . (28)

where α
(l−1)
ij,intra and α

(l−1)
ij,inter are defined as:

α
(l−1)
ij,intra =

exp
(
e
(l−1)
ij,intra

)
∑

vk∈Nintra(i)

exp
(
e
(l−1)
ik,intra

) , α
(l−1)
ij,inter =

exp
(
e
(l−1)
ij,inter

)
∑

vk∈Ninter(i)

exp
(
e
(l−1)
ik,inter

) . (29)

Hence, we can rewrite the node representation as follows:

h
(l)
i = h

(l−1)
i +

∑
j∈N (i)

a
(l−1)
ij h

(l−1)
j −∆

(l−1)
bias

= h
(l−1)
i + w

(l−1)
i,intra

∑
j∈Nintra(i)

a
(l−1)
ij,intrah

(l−1)
j

+ w
(l−1)
i,inter

∑
j∈Ninter(i)

a
(l−1)
ij,interh

(l−1)
j − LC

[
1

N2
d

∑
u∈Sd

k(h
(l−1)
i ,h(l−1)

u )(h
(l−1)
i − h(l−1)

u )

− 1

NdNf

∑
v∈Sf

k(h
(l−1)
i ,h(l−1)

v )(h
(l−1)
i − h(l−1)

v )

 (30)

where h
(l−1)
u =

(
α
(l−1)
iu,intrah

(l−1)
u,intra + α

(l−1)
iu,interh

(l−1)
u,inter

)
and similarly for others.

For nodes belonging to the sensitive group Sd, the representation h
(l)
u at layer l is constrained

within a hypercube centered at the group mean µ
(d)
l with boundaries defined by deviation vector ∆l,

expressed as µ(d)
l −∆l ⪯ h

(l)
u ⪯ µ

(d)
l +∆l [58]. This constraint implies that each dimension m of

the representation vector exists within a specific interval [µ(d)
l,m −∆l

m, µ
(d)
l,m + ∆l

m]. Analogously,

representations of nodes from group Sf are bounded within their own characteristic region [µ
(f)
l ±∆l].

h
(l)
i ∈

[
µ
(d)
l−1 + w

(l−1)
i,intra

∑
u∈Nintra(i)

a
(l−1)
iu,intrah

(l−1)
u + w

(l−1)
i,inter

∑
u∈Ninter(i)

a
(l−1)
iu,interh

(l−1)
u (31)

− LC

(
1

N2
d

∑
u∈Sd

k
(
h
(l−1)
i ,h(l−1)

u

)(
h
(l−1)
i − h(l−1)

u

)
−

1

NdNf

∑
v∈Sf

k
(
h
(l−1)
i ,h(l−1)

v

)(
h
(l−1)
i − h(l−1)

v

))
(32)

±
[
L∆(l−1) + 2

√
N ∆q

]]

Therefore, the node representation discrepancy is:
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∥∥∥∥∥∥ 1

Nd

∑
i∈Sd

h
(l)
i − 1

Nf

∑
j∈Sf

h
(l)
j

∥∥∥∥∥∥
2

≤

(
1− 1

Nd

∑
i∈Sd

β
(l−1)
i − 1

Nf

∑
j∈Sf

β
(l−1)
j

)∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥
2

+ C
(

1
NdN2

f
+ 1

N2
dNf

)[ 1

N2
d

∑
p,q∈Sd

k
(
h(l−1)
p ,h(l−1)

q

)
+

1

N2
f

∑
r,s∈Sf

k
(
h(l−1)
r ,h(l−1)

s

)
− 2

NdNf

∑
p∈Sd

∑
r∈Sf

k
(
h(l−1)
p ,h(l−1)

r

)]
+ L

∥∥∆(l−1)
∥∥ + 2

√
N ∆q

(33)

Building on this, we define the upper bound of the consequent node representation discrepancy on
node representation between two sensitive subgroups as follows:

h
(l)
D =

∥∥∥∥∥∥ 1

Nd

∑
i∈Sd

h
(l)
i − 1

Nf

∑
j∈Sf

h
(l)
j

∥∥∥∥∥∥
2

≤

(
1− 1

Nd

∑
i∈Sd

β
(l−1)
i − 1

Nf

∑
j∈Sf

β
(l−1)
j

)∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥
2

+ C
(

1
NdN2

f
+ 1

N2
dNf

)[ 1

N2
d

∑
p,q∈Sd

k
(
h(l−1)
p ,h(l−1)

q

)
+

1

N2
f

∑
r,s∈Sf

k
(
h(l−1)
r ,h(l−1)

s

)
− 2

NdNf

∑
p∈Sd

∑
r∈Sf

k
(
h(l−1)
p ,h(l−1)

r

)]
+ ∥µ(d) − µ(f)∥2 + L ∥∆(l−1)∥+ C ∥∆q∥

(34)

Building on this theoretical foundation, we analyze how graph generation models introduce disparity
between node representations, i.e., graph structure information generation bias. Mathematically, this
bias can be represented as:

∆(l)
gen =

∥∥µ(d)
l,gen − µ

(f)
l,gen

∥∥ −
∥∥µ(d)

l − µ
(f)
l

∥∥ (35)

Based on the GNN layer’s aggregation and activation functions having bounded Lipschitz constants
with respect to the inputs, then any changes in the adjacency matrix propagate through the network
in a controlled way, i.e., the discrepancy in final-layer node representations is also bounded by a
proportional factor [58].

∆(l)
gen ≤ L

√
E∥E0∥2F ≤ L

√
Bspec(n) (36)

Given that the graph structure information generation bias between the inter- and intra- edges in
Equation 22. Therefore, the final result for node representation discrepancy can be bounded by:
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2
+ L∥∆(l−1)∥+ C ∥∆q∥+ L

√
Bspec(n)

(37)

which concludes the proof.

C Experiments

C.1 Implementation Details

Models are trained for {500, 500, 500, 200} epochs on Cora, Citeseer, Photo, and Pokec, respectively,
using the Adam optimizer with betas = (0.9, 0.999), learning rate = 1 × 10−3, and weight decay
= 1 × 10−5. For node features X, adjacency matrix A, and latent codes u, we adopt identical
variance-preserving stochastic differential equations with βmin = 0.1, βmax = 1.0, and 1000 discrete
time steps. During inference, we start from standard Gaussian noise, run the predictor–corrector
chain for all 1000 steps, include a final deterministic noise-removal step, and stop at ε = 1× 10−4.
We use mini-batches of size 32, early stopping with a patience of 30 epochs, and retain weights from
the best epoch. Our VAE architecture consists of GCN layers with ReLU activation for encoding
and decoding, and the discriminator employs fully connected layers with LeakyReLU activation. For
the downstream GCN task, we use a 1-layer GCN with 16 hidden units and a linear classifier. All
experiments are implemented in PyTorch.

C.2 Additional Experimental Results

Additional results for quality of generated graphs. Table 4 presents additional results on the Photo
and Citeseer datasets. The results demonstrating that FairGEM consistently achieves competitive or
superior generation quality compared to baseline methods. Specifically, FairGEM maintains smaller
discrepancies in important graph statistics, such as degree distributions and clustering coefficients,
across both datasets. Furthermore, it continues to exhibit significant improvements in fairness metrics,
indicating that the generated node features and structural patterns effectively avoid disproportionate
favoring of any subgroup. This consistently strong performance further supports the effectiveness of
FairGEM’s approach, emphasizing its ability to generate realistic, and unbiased synthetic graph.

Table 4: Graph generation results on Photo and Citeseer datasets.

Photo Citeseer
Method

DD Clus NFea Fair-DD Fair-Clus Fair-NFea DD Clus NFea Fair-DD Fair-Clus Fair-NFea

GRAPHARM 0.317 0.235 0.327 0.063 0.084 0.068 0.265 0.193 0.163 0.098 0.054 0.058

GSDM 0.293 0.229 0.314 0.055 0.079 0.063 0.271 0.187 0.152 0.084 0.047 0.042

FairAdj 0.301 0.231 0.320 0.036 0.055 0.051 0.337 0.204 0.158 0.067 0.026 0.035

FG2AN 0.357 0.253 0.345 0.042 0.060 0.050 0.358 0.221 0.167 0.071 0.035 0.051

FairGen 0.378 0.294 0.368 0.038 0.058 0.041 0.377 0.237 0.181 0.068 0.025 0.036

FairWire 0.347 0.287 0.354 0.029 0.048 0.049 0.349 0.218 0.173 0.062 0.023 0.039

FairGEM 0.318 0.245 0.331 0.018 0.033 0.037 0.311 0.187 0.160 0.051 0.013 0.028

26



Additional results for downstream task performance evaluation. Table 5 presents these sup-
plementary results. Specifically, across these datasets, synthetic graphs generated by FairGEM
consistently led to improved fairness in node classification tasks when compared to baseline genera-
tion methods. These consistent improvements underline FairGEM’s effectiveness in limiting bias
propagation from generated graphs into downstream applications, thereby enhancing fairness in node
classification task.

Table 5: Node classification results on Photo and Citeseer datasets.

Photo Citeseer
Method

Acc (%) F1-score (%) ∆DP (%) ∆EO (%) Acc (%) F1-score (%) ∆DP (%) ∆EO (%)

Original-GCN 74.83 ± 2.18 82.36 ± 1.84 13.21± 0.82 14.54± 1.56 76.31± 1.34 68.47 ± 1.28 20.11± 1.67 22.31± 0.98

GRAPHARM-GCN 70.58± 1.59 82.71± 2.04 12.25± 1.26 12.53± 1.01 73.25± 2.01 65.21± 1.61 16.98± 1.21 18.64± 1.38

GSDM-GCN 72.21± 1.03 80.91± 0.97 11.23± 1.11 11.78± 0.77 76.88 ± 0.79 67.71± 1.59 19.58± 2.16 20.31± 1.15

FairAdj-GCN 66.23± 1.12 75.67± 1.54 9.87± 0.56 10.21± 1.81 70.93± 1.59 60.32± 1.23 14.25± 1.51 15.48± 1.09

FG2AN-GCN 67.23± 1.47 74.98± 1.32 10.84± 0.83 11.75± 1.39 71.82± 1.79 59.48± 0.98 15.16± 1.27 16.35± 1.90

FairGen-GCN 69.32± 1.87 77.31± 2.11 8.23± 1.83 9.36± 1.52 73.43± 1.77 63.71± 1.87 12.11± 1.19 12.81± 1.54

FairWire-GCN 70.81± 1.73 75.36± 1.47 9.71± 0.88 10.33± 1.65 74.98± 1.01 61.11± 1.09 12.98± 1.36 14.01± 2.10

GSDM-GCN 71.21± 0.98 75.67± 1.08 10.02± 1.11 11.87± 1.21 74.98± 1.01 61.11± 1.09 12.98± 1.36 14.01± 2.10

FairGEM-GCN 72.25± 1.33 78.41± 1.46 7.38 ± 1.04 8.61 ± 1.28 75.25± 1.81 65.39± 1.03 9.23 ± 0.59 11.46 ± 1.12

Additional results for ablation study. Figure 3 presents supplementary ablation study results on
additional datasets. These results consistently show that each component of FairGEM plays a crucial
role in achieving both high generation quality and fairness. Specifically, removing either the fair
graph structure regularizer, the fair node feature regularizer, or the disentanglement component
leads to noticeable degradation in performance and fairness. These findings confirm the necessity
and complementarity of each component within FairGEM for effectively generating high-quality,
unbiased synthetic graph.

Figure 3: Ablation study results for FairGEM, FairGEM-WS, FairGEM-WD and FairGEM-WF in
Photo and citeseer datasets.

27


	Introduction
	Related Works
	Notation
	Methodology
	Inspection Biases in Graph Generation Process
	Mitigation Graph Structural Bias in Graph Generation Process
	Mitigation Feature Bias in Graph Generation Process

	Experiments
	Experiment Setting
	Experiment Results

	Conclusion
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Experiments
	Implementation Details
	Additional Experimental Results


