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ABSTRACT

Molecular dynamics (MD) simulations are crucial for understanding and predicting
the behavior of molecular systems in biology and chemistry. However, their wide
adoption is hindered by two main challenges: (1) computational cost, because fine-
grained simulations often require millions of small timesteps, and (2) lack of flexibil-
ity, as existing machine-learning-based surrogates typically operate at either a single
small or single large timestep. These approaches either accumulate significant roll-
out errors or lose the ability to produce fine-grained results if the timestep is large.
To address these issues, we propose DoMiNO: Down-scaling Molecular Dynamics
with Neural Graph Ordinary Differential Equations, a hierarchical framework that
models multi-scale dynamics. Specifically, DoMiNO performs down-scaling by
progressively up-sampling 1 the trajectory across multiple temporal resolutions,
equipping each level with a Neural Graph ODE to capture that scale’s dominant be-
havior. At inference, DoMiNO flexibly combines different timestep sizes to predict
both short- and long-range dynamics with high fidelity. Empirical results on chal-
lenging MD benchmarks—ranging from small molecules to proteins—demonstrate
the method’s long-term stability, flexibility, and accuracy. Our implementation is
available at https://github.com/FrancoTSolis/domino-code.

1 INTRODUCTION

Molecular dynamics (MD) simulations (Dror et al., 2012; Hollingsworth & Dror, 2018) serve as a
critical tool in computational chemistry (Car & Parrinello, 1985; Marx & Hutter, 2009) and biol-
ogy (Shaw et al., 2010; Lindorff-Larsen et al., 2011), enabling insights into atomic-scale interactions
over time. Yet, modeling these interactions for extended timescales is extremely computationally
intensive. A typical timestep in MD might be on the order of a femtosecond (10−15 s) (Hollingsworth
& Dror, 2018), while biologically relevant phenomenasuch as protein conformational changes can
unfold on the nanosecond (10−9 s) to microsecond (10−6 s) range (McGeagh et al., 2011). Conse-
quently, a full-scale MD simulation needs to traverse millions of steps, which can be prohibitively
expensive.

Compounding this challenge is the multi-scale nature of molecular trajectories. To illustrate, imagine
an molecular system 2 with fast motions (atoms vibrating around their equilibrium positions) occur on
very short timescales, while slow, more structured motions (e.g., a protein’s domain rearrangement)
transpire less frequently but drive large-scale conformational changes. For computational efficiency,
one might opt for larger time increments, but that risks oversmoothing the fine, fast dynamics.
Conversely, smaller increments yield fine-grained resolution but at a significant computational cost.

Several machine-learning surrogates have been proposed to alleviate the computational burden in MD
simulations. Neural ODE-based models (Chen et al., 2018; Huang et al., 2020), for example, offer a
continuous formulation that avoids the pitfalls of autoregressive rollouts, while wavelet-based (Conejo
et al., 2005) techniques decompose time series into multiple frequency components, and generative
MD (Schreiner et al., 2023) approaches enable efficient long-range sampling. However, neural

1Down-scaling refers to changing a larger, global timescale to a smaller, more local time scale. Meanwhile,
up-sampling refers to progressively rebuilding finer details to reconstruct the high-resolution trajectory.

2See the animation at https://catenane.net/media/ChemMotorAnimHQ.mp4 (Li et al., 2024)
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ODEs typically lack explicit mechanisms for capturing the inherent fast and slow dynamics of
molecular systems, wavelet methods rely on fixed frequency decompositions that may miss complex
nonlinearities, and generative models can suffer from long-term instability. Consequently, no existing
method simultaneously delivers high-resolution predictions on demand and robust continuous-time
modeling.
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Figure 1: Hierarchical reconstruction of molecular dy-
namics trajectories using DoMiNO. The model progres-
sively refines the trajectory through a multi-scale Neural
Graph ODE framework. Level 0 captures slow, large-
scale motions, while finer levels (Level 1, Level 2) in-
troduce high-frequency details. This process can be seen
as up-sampling, where fine-grained atomic dynamics are
reconstructed from coarse representations. By selectively
sampling a limited number of points at each level, the
model significantly improves computational efficiency
while maintaining accuracy.

To bridge this gap, we need to frame
molecular dynamics as involving co-
existing fast and slow modes that ne-
cessitate different temporal resolutions.
Following this multi-scale perspective,
we propose DoMiNO, a down-scaling
pipeline with Neural Graph ODEs. This
framework hierarchically decomposes
the trajectory according to different
timestep sizes and models each scale
with a dedicated Neural ODE module.
By combining neural models across
multiple levels, our method achieves
both rapid large-scale rollouts and the
flexibility to “zoom in” and predict fine-
grained atomic dynamics with high fi-
delity. As illustrated in Figure 1, the
model reconstructs molecular trajecto-
ries through an up-sampling process,
progressively adding fine-scale details
to the coarse dynamics captured at lower
levels. Only a limited number of points
need to be sampled per bracket, signif-
icantly reducing the computational cost
while maintaining accuracy. Our contri-
butions can be summarized as follows:

• New perspective. We articulate the fast-slow dichotomy in MD simulations and develop a hierarchi-
cal down-scaling view to accommodate both modes.

• Novel architecture. We propose Neural Graph ODE modules operating at each level of detail, tied
together by learned transitions that allow flexible timing predictions.

• Good performance. We validate DoMiNO on a broad range of molecular systems-small molecules
to proteins-and demonstrate significant gains in long-term stability and accuracy compared to
state-of-the-art baselines.

2 RELATED WORK

Our approach builds upon a rich set of techniques for modeling dynamic systems and leverages
insights from diverse computational frameworks.

2.1 NEURAL ODE-BASED MODELS

Neural ODE-based models have advanced continuous-time dynamic modeling by learning latent
representations that evolve via differential equations. For example, LG-ODE (Huang et al., 2020)
employs a latent ODE framework with graph neural networks to learn from irregularly sampled
data Huang et al. (2020), while CG-ODE (Huang et al., 2021), HOPE (Luo et al., 2023b), and
PG-ODE (Luo et al., 2023a) extend these ideas to capture multi-agent interactions and higher-order
dynamics. Despite their promise, these models often struggle with long-term dependencies and incur
high computational costs.

2.2 WAVELET-BASED MODELS

Wavelet transform (Zhang & Zhang, 2019) decomposes time series into multiple frequency compo-
nents, enabling robust handling of non-stationary dynamics. Methods such as W-Transformer (Sasal
et al., 2022) and Wavelet-ARIMA (Kriechbaumer et al., 2014) use these decompositions to enhance
long-range dependency capture and reduce noise. However, the fixed frequency decomposition of
wavelets can limit flexibility when modeling complex nonlinear dynamics.
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2.3 GENERATIVE MD APPROACHES

Generative approaches in molecular dynamics, including normalizing flow and diffusion-based
models, have been developed to enable large temporal leaps in simulations. Methods like Timewarp
(Klein et al., 2024) and ITO (Schreiner et al., 2023) demonstrate significant speed-ups and improved
sampling. Yet, these approaches can suffer from reduced interpretability and long-term stability,
challenges our hierarchical, continuous-time framework seeks to overcome.

3 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formalize the MD prediction task and introduce the continuous-time framework
that underlies our approach.

3.1 MOLECULAR DYNAMICS AS A GRAPH PROBLEM

Let a molecular system be represented by a graph G = (V, E), where each vertex vi ∈ V corresponds
to an atom and edges ⟨i, j⟩ ∈ E capture atomic interactions (e.g., bonds, long-range interactions).
Each atom vi has feature xt

i (e.g., velocity, charge) and a 3D position ri(t). The MD prediction task
is to learn a function

f :
(
X0,G, T

)
7→ R̂, (1)

which generates the trajectory R̂ = {r̂i(t)}Ni=1 over time horizon T .

3.2 GRAPH NEURAL ODES

To continuously model atomic dynamics, we utilize Neural ODEs (Chen et al., 2018) in a graph-aware
manner. Formally, let zi(t) be a latent representation for atom i. We define:

dzi
dt

= fθ

(
zi(t), {zj(t)}j∈N (i)

)
, (2)

where N (i) denotes neighbors of i. By integrating from t0 to t :

zi(t) = zi (t0) +

∫ t

t0

fθ (zi(τ)) dτ, (3)

we can flexibly query any time t without discrete autoregressive rollouts at every step.

4 METHOD

We propose a hierarchical model for molecular dynamics prediction that jointly learns continuous
latent dynamics at multiple temporal scales. The model consists of three components: a PaiNN-based
encoder that extracts initial latent states from observed trajectories; a hierarchical set of Neural Graph
ODEs that progressively refine these latent representations through temporal down-scaling; and a
decoder that fuses multi-level latent features to reconstruct atom trajectories.

4.1 ARCHITECTURE OVERVIEW

At the coarsest level (Level 0), the encoder σ(0)
enc processes the observed trajectory O and produces an

initial latent state z
(0)
0 . This state is evolved using a Neural ODE module f

(0)
θ via:

z
(0)
t = ODESolve

(
z
(0)
0 , f

(0)
θ , t

)
. (4)

For higher levels (i > 0), a projector σ(i)
proj initializes the latent state z(i)0 by refining the corresponding

state z
(i−1)
tj from the previous level:

z
(i)
0 = σ

(i)
proj

(
z
(i−1)
tj

)
, (5)

3



Published as a workshop paper at ICLR 2025 MLMP

𝑓&'( 𝜎234
(6)

Observed trajectory 𝑂

Encoder L0

Projector L1

Projector L2

Initial State
𝑧6
(6)

ODE solve

𝑧8
6 , 𝑡 ∈ whole time scope 𝑇(6)

Decoder L0

Predicted trajectory 𝑋

𝜎234
(9)

𝜎234
(:)

𝜎";#<
(9)

𝜎";#<
(:)

Decoder L1

Decoder L2

Initial State
𝑧8#
(9)

𝑍())

𝑍+
(,)

𝑍+,.
(/)

𝑧8
9 , 𝑡 ∈ segment 𝑗 := [𝑡< , 𝑡< + 𝑇 9 )

𝑧8
: , 𝑡 ∈ segment (𝑗, 𝑘) := [𝑡<,> , 𝑡<,> + 𝑇 : )

Initial State
𝑧8#,%
(:)

L0: whole scope

L1: segment 𝑗

L2: segment (𝑗, 𝑘)

Figure 2: Hierarchical architecture of DoMiNO. The model decomposes molecular dynamics
trajectories into multiple temporal scales using a sequence of Neural Graph ODEs. The lower levels
(coarse resolution) capture large-scale, slow dynamics, while higher levels (fine resolution) refine
these representations by incorporating high-frequency details. The final prediction is obtained by
concatenating latent representations from all levels, ensuring both computational efficiency and
accuracy in multi-scale trajectory reconstruction.

which is then evolved by f
(i)
θ to obtain z

(i)
t . Finally, the decoder σdec concatenates latent states across

levels and reconstructs the predicted trajectory:

X̂ = σdec

(
concat

(
z
(0)
t , z

(1)
t , . . . , z

(N)
t

))
. (6)

This hierarchical structure enables efficient down-scaling and accurate multi-scale modeling. Figure 2
illustrates this architecture, where lower-level ODEs initialize and guide the evolution of higher-level
ODEs, refining the prediction by incorporating progressively finer details.

4.2 ENCODER: PAINN EQUIVARIANT GNN

We use a PaiNN-based encoder to convert the observed trajectory into initial latent representations
that capture both the geometric structure and temporal dynamics of the molecular system. For each
atom i with 3D coordinates Ri and feature vector xi, we first compute relative distances for message
passing:

dij = Rj −Ri. (7)
Then, at each GNN layer l, the node representation is updated via:

h
(l+1)
i = h

(l)
i +

∑
j∈N (i)

ϕm

(
h
(l)
i ,h

(l)
j ,dij

)
, (8)

where ϕm is a learnable message function. This message passing ensures equivariance to rotations
and translations. In parallel, a temporal self-attention mechanism aggregates the sequence of node
embeddings for each atom. Specifically, for atom i we define a global sequence vector:

ai = tanh
(( 1

N

∑
t

ĥt
i

)
Wa

)
, (9)

and obtain the fixed-dimensional representation:

ui =
1

N

∑
t

σ
(
aT
i ĥ

t
i

)
ĥt
i, (10)

where ĥt
i = σ

(
Wt[h

t
i ∥∆t]

)
+TE(∆t) and ∆t = t− tstart. The final encoder outputs a factorized

posterior over initial latent states:

qϕ
(
Z0|o1, o2, . . . , oN

)
=

N∏
i=1

qϕ
(
z0
i |o1, o2, . . . , oN

)
. (11)
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4.3 HIERARCHICAL DOWN-SCALING ODES

Our model incorporates multiple levels of Neural ODEs to refine the latent dynamics. At Level 0, the
latent state z

(0)
0 is evolved over time using:

z
(0)
t = ODESolve

(
z
(0)
0 , f

(0)
θ , t

)
. (12)

For each higher level i > 0, we initialize the state by projecting the corresponding latent state from
the previous level:

z
(i)
0 = σ

(i)
proj

(
z
(i−1)
tj

)
, (13)

and then evolve it via:
z
(i)
t = ODESolve

(
z
(i)
0 , f

(i)
θ , t

)
. (14)

Additionally, for each level i we refine the representation within each segment by applying:

z
(i)
ti,Ti

= σ
(i−1)
proj

(
z
(i−1)
ti−1,j

)
(15)

and integrating:

z
(i)
0 = z

(i)
0 +

∫ ti,Ti

t=ti−1,j

g
(i)
i

(
z
(i)
1 , z

(i)
2 , . . . , z

(i)
N

)
dt. (16)

This nested interval formulation enables efficient down-scaling without traversing all fine-grained
time points.

4.4 DECODER: MULTI-LEVEL LATENT REPRESENTATION CONCATENATION

To recover the predicted trajectory at a desired time t, we concatenate latent representations from all
levels:

zt
concat =

[
z
(0)
t , z

(1)
t , . . . , z

(N)
t

]
. (17)

The decoder σdec then maps this fused representation back to 3D coordinates:

xt
i = σdec

(
zt

concat

)
. (18)

This multi-level concatenation enriches the information available for accurate reconstruction of
molecular trajectories.

5 EXPERIMENTS

In this section, we evaluate our model’s performance on various datasets and compare it with
representative baselines from different categories. We also conduct an ablation study to investigate
the impact of the number of latent encoding levels on our model’s performance.

5.1 DATASETS

We evaluate our model using two types of datasets: small molecules and proteins. The small molecules
dataset includes the Lennard-Jones (LJ) system, TIP3P water, and TIP4P water. The protein dataset
consists of alanine dipeptide (ALA2) (Schreiner et al., 2023). Appendix A provides more details as
to the configuration and generation of the datasets. Given an observed sequence of 2000 time steps,
the task is to extrapolate the trajectory for arbitrarily sampled points within the subsequent 8000 time
steps.

5.2 BASELINES

• Wavelet ARIMA (Kriechbaumer et al., 2014): A multiscale statistical model that leverages wavelet
decomposition to capture dynamics across different frequency components.

• DESCINet (Silva et al., 2023): A state-of-the-art hierarchical deep convolutional neural network
designed for long time series forecasting.

• ITO (Schreiner et al., 2023): A generative model for molecular dynamics that employs denoising
diffusion probabilistic models with SE(3) equivariant architectures.

• LG-ODE (Huang et al., 2020): A neural-ODE based framework for learning continuous multi-agent
system dynamics from irregularly-sampled partial observations, incorporating graph structure.

5
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5.3 EVALUATION

We evaluate our model’s performance using two strategies: full domain evaluation and selected time
domain evaluation. These strategies assess our model’s ability to predict accurately and robustly on
long-sequence molecular dynamics data.

Table 1: Mean Squared Error (MSE) on the four datasets. Best results are marked in bold.

Model LJ TIP3P TIP4P ALA2

Wavelet ARIMA 0.1965 0.1551 0.1556 0.0323
DESCINet 0.2099±0.0000 0.2034±0.0000 0.2085±0.0000 0.0344±0.0000
ITO 1-step 0.2813±0.0000 0.1838±0.0000 0.1832±0.0000 0.1756±0.0001
ITO rollout 0.5422±0.0002 0.4920±0.0008 0.5177±0.0014 0.7506±0.0029
LG-ODE 0.1859±0.0012 0.1520±0.0001 0.1511±0.0001 0.0447±0.0009

Ours 0.1786±0.0012 0.1513±0.0001 0.1503±0.0001 0.0225±0.0034

5.3.1 FULL DOMAIN EVALUATION

We evaluate the extrapolation performance of our model across the entire time domain by sampling
multiple time points. Notably, Wavelet ARIMA is a deterministic, multiscale statistical model that
produces results without error bars, while the other methods exhibit variance across different runs.
Table 1 presents the Mean Squared Error (MSE) on the four datasets, clearly demonstrating that our
model consistently outperforms the baselines in general molecular dynamics trajectory prediction.

5.3.2 SELECTED TIME DOMAIN EVALUATION

To confirm that our model’s superior performance persists on longer sequences, we evaluate the
models on selected time domains. As shown in Tables 3–5 in Appendix B, our model maintains
consistently lower MSE at extended time horizons, demonstrating its robustness in handling long-
sequence data. This underscores DoMiNO’s ability to capture both short- and long-range molecular
dynamics more effectively than the baselines.

5.4 ABLATION STUDY

We examine the effect of incorporating multiple latent encoding levels on our model’s performance.
Specifically, we compare three configurations: (1) using only the level 0 (L0) encoding, (2) using
a concatenation of level 0 and level 1 (L0 + L1) encodings, and (3) the full model utilizing all
hierarchical levels (L0 + L1 + L2). As illustrated in Figure 3, the full model consistently achieves
the lowest Mean Squared Error (MSE) across all datasets, demonstrating the effectiveness of our
hierarchical down-scaling framework in capturing multi-scale molecular dynamics.

L0 L0 + L1 Full0.14

0.16

0.18

M
SE

LJ

L0 L0 + L1 Full0.14

0.15

TIP3P

L0 L0 + L1 Full0.14

0.15

TIP4P

L0 L0 + L1 Full0.02

0.04

ALA2

Figure 3: Ablation study on hierarchical latent encoding. The results show that incorporating
multiple encoding levels leads to a consistent reduction in error, with the full hierarchical model (L0
+ L1 + L2) achieving the best performance.

6 CONCLUSION

We introduced DoMiNO, a novel hierarchical framework that models molecular dynamics at multiple
temporal scales using Neural Graph Ordinary Differential Equations. By progressively up-sampling
input sequences and employing scale-specific ODE modules, DoMiNO effectively captures both fast
and slow dynamics. Extensive experiments demonstrate its enhanced long-term prediction accuracy
and computational efficiency, offering a promising direction for robust MD simulations.
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A DATA AND TRAINING CONFIGURATIONS

A.1 DATA GENERATION

Classical molecular dynamics simulations for Lennard-Jones (LJ), TIP3P, and TIP4P-Ew systems
were conducted using OpenMM (Eastman et al., 2017). These simulations included either uniform
single-atom arrangements for the LJ system or isolated single-molecule setups for TIP3P and TIP4P-
Ew, placed within simulation boxes of different dimensions. The boxes employed fully periodic
boundary conditions, with interatomic interactions managed via a 10 Å cutoff radius.

Initially, each simulation assigned random positions and velocities to particles, which then transitioned
from a static state to equilibrium at constant volume and temperature (NVT), thus forming a canonical
ensemble. The integration of particle motion utilized a velocity Verlet method (Paterlini & Ferguson,
1998) with a 2.0 fs timestep, while temperature was regulated by a Nosé–Hoover thermostat (Evans &
Holian, 1985) using a collision frequency set to 1.0 per picosecond and a thermostat chain of length
10.

Each configuration underwent 500,000 simulation steps, recording the system’s status every 50 steps,
resulting in sequences of 10,000 snapshots with an effective interval of 100 fs between recorded
states.

The simulations for the ALA2 dataset had distinct parameters. These were carried out with ACEMD
software (Harvey et al., 2009) employing the AMBER ff-99SB-ILDN forcefield and a Langevin
integrator. The simulations lasted 250 ns with a 2 fs integration timestep, and frames were recorded
every 1 ps, yielding an effective timestep of 1000 fs. Conditions were maintained at 300 K within a
periodic cubic box ( 2.3222 nm)3, solvated by 651 TIP3P water molecules. Electrostatic interactions
employed the Particle Mesh Ewald (PME) approach (Darden et al., 1993) with a real-space cutoff
distance of 0.9 nm, grid spacing of 0.1 nm, and PME updates every two steps. Constraints were
applied to all bonds involving hydrogen and heavier atoms.

Table 2: Dataset Statistics

Dataset Number of Atoms Sequence Length Step Size (fs)

LJ 258 10000 100
TIP3P 774 10000 100
TIP4P 753 10000 100
ALA2 22 10000 1000

A.2 TRAINING OBJECTIVE FUNCTION

We train the encoder, hierarchical ODEs, and decoder jointly by maximizing the evidence lower
bound (ELBO):

ELBO(θ, ϕ) = E
Z0∼qϕ

(
Z0|o1,...,oN

)[log pθ(o1, . . . , oN )
]
−KL

[
qϕ
(
Z0|o1, . . . , oN

)
∥ p

(
Z0

)]
,

(19)
where qϕ denotes the approximate posterior and pθ is the generative model defined by our ODEs.
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B MORE EXPERIMENT RESULTS

Table 3: Mean Squared Error (MSE) on the LJ dataset for different terminate timesteps. Best results
are marked in bold.

Terminate timestep 80-100 180-200 980-1000 1980-2000 2980-3000 4980-5000 7980-8000

Wavelet ARIMA 0.1881 0.2032 0.1900 0.1956 0.2087 0.1928 0.1969
DESCINet 0.2204±0.0000 0.2197±0.0000 0.2015±0.0000 0.2054±0.0000 0.2252±0.0000 0.2092±0.0000 0.2139±0.0000
ITO 1 step 0.2806±0.0002 0.2807±0.0002 0.2810±0.0001 0.2801±0.0002 0.2813±0.0001 0.2812±0.0002 0.2843±0.0001
ITO rollout 0.5133±0.0007 0.5314±0.0004 0.5012±0.0003 0.5255±0.0007 0.5178±0.0002 0.5032±0.0002 0.5437±0.0002
LG-ODE 0.1989±0.0003 0.1927±0.0003 0.1750±0.0002 0.1817±0.0002 0.1974±0.0002 0.1840±0.0008 0.1916±0.0024

Ours 0.1982±0.0001 0.1923±0.0000 0.1745±0.0001 0.1808±0.0002 0.1954±0.0001 0.1799±0.0001 0.1840±0.0002

Table 4: Mean Squared Error (MSE) on the TIP3P dataset for different terminate timesteps. Best
results are marked in bold.

Terminate timestep 80-100 180-200 980-1000 1980-2000 2980-3000 4980-5000 7980-8000

Wavelet ARIMA 0.1554 0.1575 0.1538 0.1547 0.1546 0.1560 0.1560
DESCINet 0.2027±0.0001 0.2029±0.0000 0.2025±0.0001 0.2014±0.0001 0.2096±0.0001 0.2013±0.0000 0.2040±0.0000
ITO 1 step 0.1840±0.0001 0.1841±0.0001 0.1837±0.0001 0.1840±0.0001 0.1836±0.0001 0.1838±0.0001 0.1837±0.0001
ITO rollout 0.4778±0.0021 0.4846±0.0013 0.4924±0.0038 0.4924±0.0020 0.4897±0.0015 0.5031±0.0028 0.5025±0.0021
LG-ODE 0.1523±0.0001 0.1519±0.0001 0.1518±0.0003 0.1530±0.0004 0.1525±0.0002 0.1528±0.0003 0.1536±0.0004

Ours 0.1516±0.0000 0.1515±0.0000 0.1512±0.0000 0.1520±0.0000 0.1519±0.0000 0.1517±0.0000 0.1520±0.0001

Table 5: Mean Squared Error (MSE) on the TIP4P dataset for different terminate timesteps. Best
results are marked in bold.

Terminate timestep 80-100 180-200 980-1000 1980-2000 2980-3000 4980-5000 7980-8000

Wavelet ARIMA 0.1520 0.1599 0.1579 0.1557 0.1548 0.1555 0.1557
DESCINet 0.2058±0.0003 0.2086±0.0001 0.2106±0.0001 0.2109±0.0001 0.2070±0.0000 0.2025±0.0000 0.2066±0.0001
ITO 1 step 0.1833±0.0000 0.1830±0.0000 0.1832±0.0000 0.1831±0.0000 0.1833±0.0000 0.1832±0.0000 0.1833±0.0000
ITO rollout 0.4929±0.0075 0.5123±0.0057 0.5012±0.0067 0.5256±0.0063 0.5178±0.0065 0.5032±0.0063 0.5437±0.0069
LG-ODE 0.1521±0.0000 0.1507±0.0000 0.1512±0.0001 0.1510±0.0002 0.1508±0.0001 0.1515±0.0003 0.1530±0.0005

Ours 0.1502±0.0000 0.1506±0.0000 0.1513±0.0000 0.1501±0.0000 0.1500±0.0000 0.1503±0.0000 0.1511±0.0000

10


	Introduction
	Related Work
	Neural ODE-based Models
	Wavelet-based Models
	Generative MD Approaches

	Problem Formulation and Preliminaries
	Molecular Dynamics as a Graph Problem
	Graph Neural ODEs

	Method
	Architecture Overview
	Encoder: PaiNN Equivariant GNN
	Hierarchical Down-Scaling ODEs
	Decoder: Multi-Level Latent Representation Concatenation

	Experiments
	Datasets
	Baselines
	Evaluation
	Full Domain Evaluation
	Selected Time Domain Evaluation

	Ablation Study

	Conclusion
	Acknowledgments
	Data and Training Configurations
	Data Generation
	Training Objective Function

	More Experiment Results

