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Abstract001

Rapid advancements in Large Language Mod-002
els (LLMs) have significantly improved multi-003
modal AI, highlighting the importance of ac-004
curately processing image-based text through005
Optical Character Recognition (OCR). How-006
ever, the high computational cost of powerful007
LLMs limits their commercial use, leading to008
the widespread adoption of smaller OCR mod-009
els that are more error-prone, especially with010
low-quality images. Post-correction is essen-011
tial for improving OCR outputs but is hindered012
by the lack of high-quality training data. Exist-013
ing synthetic approaches are often computation-014
ally expensive or fail to produce realistic errors.015
To address this, we propose POCO (Post-OCR016
Correction with Output distributions), a simple017
and low-cost framework that uses character-018
level probabilistic simulations to generate re-019
alistic OCR error datasets. POCO employs a020
lightweight vision model (ResNet34) to predict021
character probabilities and inject OCR-like er-022
rors into text corpora, enabling the creation of023
high-quality training data at scale. Experiments024
show that POCO significantly improves OCR025
post-correction performance, demonstrating its026
practicality and effectiveness. The code will be027
made publicly available on GitHub.028

1 Introduction029

Recent advances in Large Language Models030

(LLMs) have accelerated multimodal AI develop-031

ment, highlighting the growing importance of pro-032

cessing image-based text. The increasing preva-033

lence of scanned or photographed text documents,034

such as reports, papers, signs, and menus, has made035

Optical Character Recognition (OCR) essential.036

OCR is widely used on camera-equipped mo-037

bile devices. While powerful LLMs like Chat-038

GPT(OpenAI, 2024) show strong OCR perfor-039

mance, their high computational demands limit040

widespread commercial use. Consequently, smaller041

OCR models dominate commercial applications042

but frequently struggle with errors, especially in043

low-quality images(Kiss et al., 2019; Kashid and044

Bhattacharyya, 2024; Vitman et al., 2022).045

OCR errors negatively impact downstream AI046
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Figure 1: OCR post-correction datasets generation

applications and commercial systems, making er- 047

ror correction crucial. However, the availability 048

of high-quality training datasets for OCR post- 049

correction is limited. Existing dataset construction, 050

such as generating images from ground-truth texts 051

or experimentally extracting error distributions, of- 052

ten yield inconsistent quality and require significant 053

effort (Guan and Greene, 2024; Ignat et al., 2022). 054

To address these challenges, we propose POCO 055

(Post-OCR Correction with Output distributions), 056

an efficient OCR post-correction dataset genera- 057

tion framework using character-level probabilistic 058

simulations. Our method, illustrated in Figure 1, 059

employs a vision model trained on synthetic char- 060

acter recognition data, termed an OCR Error Sim- 061

ulator, to inject realistic OCR-like errors into text 062

corpora. Experimental results confirm that datasets 063

produced by our approach significantly improve 064

OCR post-correction performance. 065

The main contributions of this paper are: 066

• We propose POCO, a simple and cost- 067

effective framework for simulating OCR er- 068

rors at the character level. 069

• POCO improves OCR post-correction, espe- 070

cially with pretrained models like mT5. 071
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Figure 2: POCO framework pipeline for OCR post-correction dataset geneartion

• We validate its effectiveness in handling OCR072

errors such as character confusion and spac-073

ing.074

2 Related Work075

Several methods have been proposed for generating076

datasets for OCR post-correction:077

Random error injection (D’hondt et al., 2017)078

randomly inserts, deletes, or substitutes characters079

in clean text. It is simple and efficient but does not080

accurately reflect real OCR error patterns, limiting081

its generalization.082

Image-generation-based approach (Boros et al.,083

2022) renders text as images, adds visual noise, and084

applies OCR to produce realistic errors. While suit-085

able for image-based training, it depends heavily086

on the OCR system used and is computationally087

expensive.088

Real error distribution-based method (Grund-089

kiewicz et al., 2019) aligns OCR outputs with090

ground truth to estimate error probabilities, then091

injects errors based on these distributions. Though092

realistic, it requires extensive alignment and large093

corpora, making it less suitable for low-resource094

languages.095

Glyph similarity-based method (Guan and096

Greene, 2024) simulates substitution errors based097

on visual similarity between characters, using Jac-098

card similarity and average distance metrics. It re-099

quires no extra corpora but faces O(n2) complexity100

in languages with large character sets.101

3 POCO Framework102

As illustrated in Figure 2, we developed a vocabu-103

lary specific to each language to create character-104

level image-text label datasets for training an char-105

acter recognizer. Subsequently, we used the trained106

recognizer to inject realistic OCR errors into a107

text corpus, thus generating datasets for OCR post-108

correction tasks.109

3.1 Vision Model-Based Character 110

Recognizer 111

We employed a lightweight vision model (non- 112

pretrained ResNet34 (He et al., 2016)) as our char- 113

acter recognizer. The recognizer was trained to pre- 114

dict characters from images, each containing ran- 115

domly selected sequences of 1 to 8 characters gen- 116

erated via the PIL library. We developed a unified 117

recognizer capable of handling both Chinese and 118

Korean texts by randomly utilizing seven publicly 119

available fonts compatible with both languages. 120

The training data included 32,546 characters, 121

comprising numerals, common special characters 122

(50), English alphabets (52), Korean characters 123

(11,266), Japanese Hiragana and Katakana (189), 124

and CJK Unified Ideographs (20,989). 125

3.2 OCR Error Simulator 126

After training, logits were computed for each char- 127

acter in the vocabulary. For each character, the top 128

five most probable confusion characters (exclud- 129

ing itself) were selected as potential errors, limited 130

within each language or among special characters. 131

We selected the Chinese-Korean subset from 132

the AIHub multilingual humanities translation cor- 133

pus1 to create OCR error-injected datasets. Errors 134

were injected with a 10% probability per character, 135

maintaining approximately a 10% Character Er- 136

ror Rate (CER). The confusion characters were se- 137

lected based on their logits probabilities, weighted 138

as 40%, 30%, 15%, 10%, and 5%, respectively, to 139

reduce bias from extreme logit differences. Addi- 140

tionally, spacing was randomly inserted (1%) or 141

deleted (10%) in Korean texts. 142

Figure 3 compares our synthetically generated 143

errors with results from actual OCR (EasyOCR2 144

and PaddleOCR (Du et al., 2020)), confirming the 145

simulator’s effectiveness in reproducing realistic 146

OCR error patterns, including spacing variations. 147

1https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=71498
2https://github.com/JaidedAI/EasyOCR.git
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KoreanChinese

이부족연맹체국가는청나라옹정제까지이어가다 1732년에소멸되었다.柏林墙各处的检查站大门同时敞开。Label

이부족연맹체쿡가늗청나라옹정제까지이어가다 1?32년에소멸되었ㅁ.柏林衛各处的尬查站大门同时儆开。POCO

이부족연망체국가는청나라용정제까지이어가다 1732년에소별되없다.柏林墙各处的检查站大门同时敞开。EasyOCR

이부족연맹체국가는청나라옹정제까지이어가다 1732년에소멸되었다_柏林墙各处的检查站大门同时_开。PaddleOCR

Figure 3: Simulated OCR error data and actual OCR output data (‘_’ indicates a missing character)
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Figure 4: Character recognizer probability sample, Gray
cells indicate exclusion due to identity with themselves

Figure 4 shows sample data based on the char-148

acter recognizer’s probability distribution. Top-k149

candidates often same the ground truth (GT), with150

the highest-probability candidate frequently being151

the GT itself. To focus on meaningful variations,152

identical matches to the GT are excluded, and the153

top 5 remaining candidates are selected.154

4 Experiments155

We conducted experiments to evaluate the effective-156

ness of our proposed OCR post-correction dataset157

generation framework. Specifically, we aimed to:158

1) Train OCR correction models (XLM-RoBERTa159

(Conneau et al., 2020) and T5 (Raffel et al., 2020))160

on the generated datasets and assess their effective-161

ness by measuring improvements in CER3 on real162

OCR outputs; and 2) analyze the types of errors163

produced by actual OCR models compared to those164

corrected by our framework.165

4.1 Experimental Setup166

Datasets The experiments utilized Chinese and167

Korean corpora as detailed in Table 1. As the pro-168

vided corpus contained only training and validation169

splits, we randomly sampled 10,000 examples from170

the training set for testing purposes. We injected er-171

rors into the train and validation datasets using the172

OCR Error Simulator, achieving approximately a173

10% CER. The test datasets incorporated real OCR174

errors obtained using PaddleOCR and EasyOCR.175

3https://github.com/jitsi/jiwer

Korean Chinese
Train 231,069 57,217
Val 30,652 13,674
Test 10,000 10,000

Table 1: Dataset split statistics

OCR Error Simulator We utilized non- 176

pretrained ResNet34 as backbones. The model 177

predicted sequences of 1 to 8 characters, padded 178

appropriately. The model were trained for 500 179

epochs with a batch size of 256 and a learning rate 180

of 5e−4. The analysis of other models is provided 181

in Appendix A. 182

OCR Post-Correction Models We trained both 183

non-pretrained and pretrained OCR correction mod- 184

els using publicly available models from Hug- 185

gingFace: FacebookAI/xlm-roberta-base (Conneau 186

et al., 2020) and google/mt5-base (Xue et al., 2021). 187

The batch size was set to 128, employing gradient 188

accumulation. Models were trained with a learning 189

rate of 5e−5 and early stopping based on validation 190

CER with a patience of 10 epochs. 191

4.2 Experimental Results 192

4.2.1 Effectiveness of OCR Post-Correction 193

Framework 194

As shown in Table 2, our method generally re- 195

sulted in better CER compared to the random 196

corruption baseline. The encoder-only pretrained 197

model, XLM-RoBERTa, showed improvements in 198

several cases, particularly when combined with the 199

encoder-decoder model mT5. In the EasyOCR set- 200

ting, our method consistently outperformed the ran- 201

dom baseline, achieving up to 15% and 8% im- 202

provement over the original outputs in Korean and 203

Chinese, respectively. 204

The Chinese PaddleOCR showed minimal base- 205

line errors, leaving little room for improvement. 206

In contrast, the Korean PaddleOCR achieved large 207

performance gains. As shown in Appendix B, this 208

is due to a high number of deletion errors, par- 209

ticularly involving spaces, commas, and periods. 210
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Language OCR Model Original
XLM-RoBERTa mT5

GPT-4oNon-Pretrained Pretrained Non-Pretrained Pretrained

Random Ours Random Ours Random Ours Random Ours

Korean
EasyOCR

0.074 0.131 0.122 0.13 0.111 0.088 0.077 0.069 0.063(+15%) 0.223
Chinese 0.062 0.084 0.092 0.069 0.059(+5%) 0.095 0.095 0.072 0.057(+8%) 0.139

Korean
PaddleOCR

0.04 0.038 0.043 0.316 0.031(+23%) 0.018(+55%) 0.021(+48%) 0.018(+55%) 0.023(+43%) 0.220
Chinese 0.012 0.037 0.034 0.014 0.013 0.026 0.025 0.011(+8%) 0.012 0.134

Table 2: CER Performance of OCR Post-Correction
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Figure 5: Length distribution of EasyOCR Chinese re-
sults based on the presence of whitespace

These characters are common in Korean writing211

and are often misrecognized by PaddleOCR, mak-212

ing post-correction especially effective. Although213

the random strategy occasionally outperformed our214

method in the low-error PaddleOCR setting, our215

approach still delivered competitive results, demon-216

strating robustness across varying OCR qualities.217

When GPT-4o was used for correction, the CER218

increased, likely due to its decoder-only archi-219

tecture, which preserves meaning but alters sen-220

tence structure. Since OCR correction requires pre-221

cise character restoration, this highlights the need222

for careful prompting and possible fine-tuning, as223

shown in Appendix C.224

These results validate the effectiveness of POCO225

and confirm the suitability of encoder-decoder ar-226

chitectures for OCR correction tasks. Encoder-only227

models exhibited limited correction capabilities,228

while decoder-only models often failed to train229

adequately. Across all settings, pretrained models230

consistently achieved superior performance.231

4.2.2 Error Analysis of OCR and232

Post-Correction Models233

We analyzed the lengths of original and OCR sen-234

tences to categorize errors. Positive differences in-235

dicated character omissions by models, whereas236

negative differences suggested unnecessary inser-237

tions. Equal lengths indicated balanced insertion-238

omission errors or misrecognized characters.239
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Figure 6: Length distribution of mT5 Chinese post-
correction results based on the presence of whitespace

Figure 5 illustrates that Chinese EasyOCR re- 240

sults contained significant space insertion errors, 241

as evidenced by length discrepancies that were 242

substantially reduced upon removing spaces. Con- 243

versely, the mT5 correction results (Figure 6) 244

demonstrated significantly improved consistency, 245

indicating effective correction of spacing errors by 246

our framework. 247

5 Conclusion 248

In this paper, we introduced POCO, a cost-efficient 249

OCR post-correction dataset construction frame- 250

work utilizing character-level probabilistic simula- 251

tion. Unlike existing methods, our approach effec- 252

tively generates realistic OCR errors without requir- 253

ing intensive computational resources or extensive 254

manual intervention. Through comprehensive ex- 255

periments, we demonstrated the efficacy of datasets 256

generated by POCO, significantly improving OCR 257

post-correction performance, particularly with pre- 258

trained encoder-decoder architectures such as mT5. 259

Our analyses confirmed that POCO effectively ad- 260

dresses typical OCR issues, including erroneous 261

space insertions and character misrecognitions, en- 262

hancing overall OCR reliability. 263

Future research directions include further refin- 264

ing the error-injection model for increased adapt- 265

ability across various languages and OCR systems, 266

ultimately contributing towards robust multimodal 267

text processing in practical applications. 268
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Limitations269

Although the proposed POCO framework demon-270

strates effectiveness in generating realistic OCR er-271

ror datasets efficiently, several limitations remain:272

Character-Level Error Injection Simplification273

POCO’s simulation of OCR errors relies solely274

on character-level probabilistic modeling, poten-275

tially overlooking more complex, contextual OCR276

errors that frequently occur in real-world OCR pro-277

cesses. Future studies should explore integrating278

word-level or sentence-level contextual error mod-279

eling.280

Fixed Error Rate for Dataset Generation The281

current study primarily uses a fixed error injection282

rate (10%) across experiments. Real OCR systems283

often exhibit varying error rates depending on text284

quality, fonts, and noise conditions. Evaluating dif-285

ferent error injection rates would strengthen the286

generalizability and robustness of the proposed ap-287

proach.288

Limited Evaluation Metrics The evaluation pre-289

sented in the paper exclusively focuses on Charac-290

ter Error Rate (CER). However, OCR errors signif-291

icantly impact downstream NLP tasks such as Ma-292

chine Translation (MT), Named Entity Recognition293

(NER), and Information Extraction (IE). Additional294

evaluations using task-specific metrics would pro-295

vide a clearer picture of POCO’s practical impact.296

Dataset and Language Generalization Al-297

though the framework theoretically supports mul-298

tilingual capabilities, experiments and evaluations299

are primarily conducted on Korean and Chinese300

datasets. While promising for these languages, fur-301

ther validation is required to confirm the frame-302

work’s effectiveness and generalizability to other303

languages and scripts, particularly low-resource304

and morphologically rich languages.305

Insufficient Model Variability Analysis The306

character recognition model utilized (ResNet34)307

is chosen primarily for its computational efficiency,308

but deeper insights into how different model ar-309

chitectures or training regimens might influence310

error realism or dataset quality are not explored.311

Future work should investigate a broader range of312

models, potentially including vision transformers313

or deeper CNN variants, to comprehensively assess314

performance trade-offs.315
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A OCR Error Simulator Models Analysis392

Figure 7: 500 epochs train loss of each simulators.

MobileNet EfficientNet ViT ResNet34

25s 49s 73s 146s

Table 3: Average epoch time for each simulator model.

While ResNet34 was used as the simulator in393

our main experiments, we also trained EfficientNet,394

ViT, and MobileNet to explore alternative architec-395

tures. As shown in Figure 7, ViT and MobileNet396

showed higher training loss compared to ResNet34.397

Table 3 summarizes the training speed, with Mo-398

bileNet being the fastest, followed by EfficientNet,399

ViT, and ResNet34. These results suggest that Ef-400

ficientNet is a alternative to ResNet34, offering a401

good balance between accuracy and efficiency.402

Lang-OCR Replace Deletion Insertion Complex

ko-easy 29,923 2,431 1,752 2,428
ko-paddle 882 17,597 1,660 1,714
ch-easy 10,043 1,223 1,880 3,159
ch-paddle 1,755 701 1,176 447

Table 4: Error type statistics for Korean and Chinese
OCR outputs.

B Error Type Statistics 403

Table 4 presents the distribution of OCR error 404

types by language and model. The Korean Pad- 405

dleOCR output shows an unusually high number 406

of deletions, mainly caused by missing spaces, 407

commas, and periods commonly found in formal 408

Korean writing. This explains the significant post- 409

correction gains in this setting, as restoring these 410

characters effectively lowers the error rate. 411

C Prompts 412

Figures 8 illustrate prompt for OCR Post- 413

Correction. 414

Prompt for OCR Post-Correction

System: 
You are an expert in correcting grammar errors in texts
extracted via Optical Charecter Recognition(OCR).

Your job is to correct each sentence into fluent and natural
Chinese without changing the original meaning.

Return only the corrected texts in the same order.
Do not explain anything

User: 
{Sentence 1} 
…
{Sentence N}
—
Return a list of the same length with each sentence cleaned. 

Figure 8: Prompt for OCR Post-Correction.

D Length Distribution Visualization 415

Figures 9 and 10 show sentence length distributions 416

before and after OCR, with and without spaces, 417

compared to the original. 418

Figures 11 and 12 show sentence length distri- 419

butions before and after processing with XLM- 420

RoBERTa, compared to the original. To assess the 421

effect of whitespace, we provide versions with and 422

without spaces. 423

Figures 13 and 14 show sentence length distribu- 424

tions before and after processing with mT5, com- 425

pared to the original. To assess the effect of whites- 426

pace, we provide versions with and without spaces. 427
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Figure 9: Length distribution of OCR results.
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Figure 10: Length distribution of OCR results without whitespace.
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Figure 11: Length distribution of XLM Roberta model results.
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Figure 12: Length distribution of XLM Roberta model results without whitespace.
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Figure 13: Length distribution of mT5 model results.
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Figure 14: Length distribution of mT5 model results without whitespace.
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