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Abstract

Rapid advancements in Large Language Mod-
els (LLMs) have significantly improved multi-
modal Al, highlighting the importance of ac-
curately processing image-based text through
Optical Character Recognition (OCR). How-
ever, the high computational cost of powerful
LLMs limits their commercial use, leading to
the widespread adoption of smaller OCR mod-
els that are more error-prone, especially with
low-quality images. Post-correction is essen-
tial for improving OCR outputs but is hindered
by the lack of high-quality training data. Exist-
ing synthetic approaches are often computation-
ally expensive or fail to produce realistic errors.
To address this, we propose POCO (Post-OCR
Correction with Output distributions), a simple
and low-cost framework that uses character-
level probabilistic simulations to generate re-
alistic OCR error datasets. POCO employs a
lightweight vision model (ResNet34) to predict
character probabilities and inject OCR-like er-
rors into text corpora, enabling the creation of
high-quality training data at scale. Experiments
show that POCO significantly improves OCR
post-correction performance, demonstrating its
practicality and effectiveness. The code will be
made publicly available on GitHub.

1 Introduction

Recent advances in Large Language Models
(LLMs) have accelerated multimodal Al develop-
ment, highlighting the growing importance of pro-
cessing image-based text. The increasing preva-
lence of scanned or photographed text documents,
such as reports, papers, signs, and menus, has made
Optical Character Recognition (OCR) essential.

OCR is widely used on camera-equipped mo-
bile devices. While powerful LLMs like Chat-
GPT(OpenAl, 2024) show strong OCR perfor-
mance, their high computational demands limit
widespread commercial use. Consequently, smaller
OCR models dominate commercial applications
but frequently struggle with errors, especially in
low-quality images(Kiss et al., 2019; Kashid and
Bhattacharyya, 2024; Vitman et al., 2022).

OCR errors negatively impact downstream Al
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Figure 1: OCR post-correction datasets generation

applications and commercial systems, making er-
ror correction crucial. However, the availability
of high-quality training datasets for OCR post-
correction is limited. Existing dataset construction,
such as generating images from ground-truth texts
or experimentally extracting error distributions, of-
ten yield inconsistent quality and require significant
effort (Guan and Greene, 2024; Ignat et al., 2022).

To address these challenges, we propose POCO
(Post-OCR Correction with Output distributions),
an efficient OCR post-correction dataset genera-
tion framework using character-level probabilistic
simulations. Our method, illustrated in Figure 1,
employs a vision model trained on synthetic char-
acter recognition data, termed an OCR Error Sim-
ulator, to inject realistic OCR-like errors into text
corpora. Experimental results confirm that datasets
produced by our approach significantly improve
OCR post-correction performance.

The main contributions of this paper are:

* We propose POCO, a simple and cost-
effective framework for simulating OCR er-
rors at the character level.

* POCO improves OCR post-correction, espe-
cially with pretrained models like mTS5.
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Figure 2: POCO framework pipeline for OCR post-correction dataset geneartion

» We validate its effectiveness in handling OCR
errors such as character confusion and spac-
ing.

2 Related Work

Several methods have been proposed for generating
datasets for OCR post-correction:

Random error injection (D’hondt et al., 2017)
randomly inserts, deletes, or substitutes characters
in clean text. It is simple and efficient but does not
accurately reflect real OCR error patterns, limiting
its generalization.

Image-generation-based approach (Boros et al.,
2022) renders text as images, adds visual noise, and
applies OCR to produce realistic errors. While suit-
able for image-based training, it depends heavily
on the OCR system used and is computationally
expensive.

Real error distribution-based method (Grund-
kiewicz et al., 2019) aligns OCR outputs with
ground truth to estimate error probabilities, then
injects errors based on these distributions. Though
realistic, it requires extensive alignment and large
corpora, making it less suitable for low-resource
languages.

Glyph similarity-based method (Guan and
Greene, 2024) simulates substitution errors based
on visual similarity between characters, using Jac-
card similarity and average distance metrics. It re-
quires no extra corpora but faces O(n?) complexity
in languages with large character sets.

3 POCO Framework

As illustrated in Figure 2, we developed a vocabu-
lary specific to each language to create character-
level image-text label datasets for training an char-
acter recognizer. Subsequently, we used the trained
recognizer to inject realistic OCR errors into a
text corpus, thus generating datasets for OCR post-
correction tasks.

3.1 Vision Model-Based Character
Recognizer

We employed a lightweight vision model (non-
pretrained ResNet34 (He et al., 2016)) as our char-
acter recognizer. The recognizer was trained to pre-
dict characters from images, each containing ran-
domly selected sequences of 1 to 8 characters gen-
erated via the PIL library. We developed a unified
recognizer capable of handling both Chinese and
Korean texts by randomly utilizing seven publicly
available fonts compatible with both languages.

The training data included 32,546 characters,
comprising numerals, common special characters
(50), English alphabets (52), Korean characters
(11,266), Japanese Hiragana and Katakana (189),
and CJK Unified Ideographs (20,989).

3.2 OCR Error Simulator

After training, logits were computed for each char-
acter in the vocabulary. For each character, the top
five most probable confusion characters (exclud-
ing itself) were selected as potential errors, limited
within each language or among special characters.

We selected the Chinese-Korean subset from
the AIHub multilingual humanities translation cor-
pus! to create OCR error-injected datasets. Errors
were injected with a 10% probability per character,
maintaining approximately a 10% Character Er-
ror Rate (CER). The confusion characters were se-
lected based on their logits probabilities, weighted
as 40%, 30%, 15%, 10%, and 5%, respectively, to
reduce bias from extreme logit differences. Addi-
tionally, spacing was randomly inserted (1%) or
deleted (10%) in Korean texts.

Figure 3 compares our synthetically generated
errors with results from actual OCR (EasyOCR?
and PaddleOCR (Du et al., 2020)), confirming the
simulator’s effectiveness in reproducing realistic
OCR error patterns, including spacing variations.

'https://aihub.or kr/aihubdata/data/view.do?dataSetSn=71498
*https://github.com/Jaided AI/EasyOCR..git
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Figure 3: Simulated OCR error data and actual OCR output data (‘_’ indicates a missing character)
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Figure 4: Character recognizer probability sample, Gray
cells indicate exclusion due to identity with themselves

Figure 4 shows sample data based on the char-
acter recognizer’s probability distribution. Top-k
candidates often same the ground truth (GT), with
the highest-probability candidate frequently being
the GT itself. To focus on meaningful variations,
identical matches to the GT are excluded, and the
top 5 remaining candidates are selected.

4 Experiments

We conducted experiments to evaluate the effective-
ness of our proposed OCR post-correction dataset
generation framework. Specifically, we aimed to:
1) Train OCR correction models (XLM-RoBERTa
(Conneau et al., 2020) and T5 (Raffel et al., 2020))
on the generated datasets and assess their effective-
ness by measuring improvements in CER? on real
OCR outputs; and 2) analyze the types of errors
produced by actual OCR models compared to those
corrected by our framework.

4.1 Experimental Setup

Datasets The experiments utilized Chinese and
Korean corpora as detailed in Table 1. As the pro-
vided corpus contained only training and validation
splits, we randomly sampled 10,000 examples from
the training set for testing purposes. We injected er-
rors into the train and validation datasets using the
OCR Error Simulator, achieving approximately a
10% CER. The test datasets incorporated real OCR
errors obtained using PaddleOCR and EasyOCR.

3https://github.com/jitsi/jiwer

Korean Chinese
Train | 231,069 57,217
Val 30,652 13,674
Test 10,000 10,000

Table 1: Dataset split statistics

OCR Error Simulator We utilized non-
pretrained ResNet34 as backbones. The model
predicted sequences of 1 to 8 characters, padded
appropriately. The model were trained for 500
epochs with a batch size of 256 and a learning rate
of 5e~*. The analysis of other models is provided
in Appendix A.

OCR Post-Correction Models We trained both
non-pretrained and pretrained OCR correction mod-
els using publicly available models from Hug-
gingFace: FacebookAl/xIm-roberta-base (Conneau
et al., 2020) and google/mt5-base (Xue et al., 2021).
The batch size was set to 128, employing gradient
accumulation. Models were trained with a learning
rate of 5¢~° and early stopping based on validation
CER with a patience of 10 epochs.

4.2 Experimental Results

4.2.1 Effectiveness of OCR Post-Correction
Framework

As shown in Table 2, our method generally re-
sulted in better CER compared to the random
corruption baseline. The encoder-only pretrained
model, XLM-RoBERTa, showed improvements in
several cases, particularly when combined with the
encoder-decoder model mT5. In the EasyOCR set-
ting, our method consistently outperformed the ran-
dom baseline, achieving up to 15% and 8% im-
provement over the original outputs in Korean and
Chinese, respectively.

The Chinese PaddleOCR showed minimal base-
line errors, leaving little room for improvement.
In contrast, the Korean PaddleOCR achieved large
performance gains. As shown in Appendix B, this
is due to a high number of deletion errors, par-
ticularly involving spaces, commas, and periods.



XLM-RoBERTa mT5
Language OCR Model Original Non-Pretrained Pretrained Non-Pretrained Pretrained GPT-40
Random Ours Random Ours Random Ours Random Ours
Korean EasyOCR 0.074 0.131  0.122 0.3 0.111 0.088 0.077 0.069 0.063(+15%)  0.223
Chinese R4 0.062 0.084  0.092 0.069  0.059(+5%) 0.095 0.095 0.072 0.057(+8%)  0.139
Korean o 0oocr 004 0.038 0043 0316 0.031(+23%) 0.018(+55%) 0.021(+48%) 0.018(+55%) 0.023(+43%)  0.220
Chinese 0.012 0.037  0.034 0.014 0.013 0.026 0.025 0.011(+8 %) 0.012 0.134
Table 2: CER Performance of OCR Post-Correction
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Figure 5: Length distribution of EasyOCR Chinese re-
sults based on the presence of whitespace

These characters are common in Korean writing
and are often misrecognized by PaddleOCR, mak-
ing post-correction especially effective. Although
the random strategy occasionally outperformed our
method in the low-error PaddleOCR setting, our
approach still delivered competitive results, demon-
strating robustness across varying OCR qualities.

When GPT-40 was used for correction, the CER
increased, likely due to its decoder-only archi-
tecture, which preserves meaning but alters sen-
tence structure. Since OCR correction requires pre-
cise character restoration, this highlights the need
for careful prompting and possible fine-tuning, as
shown in Appendix C.

These results validate the effectiveness of POCO
and confirm the suitability of encoder-decoder ar-
chitectures for OCR correction tasks. Encoder-only
models exhibited limited correction capabilities,
while decoder-only models often failed to train
adequately. Across all settings, pretrained models
consistently achieved superior performance.

4.2.2 Error Analysis of OCR and
Post-Correction Models

We analyzed the lengths of original and OCR sen-
tences to categorize errors. Positive differences in-
dicated character omissions by models, whereas
negative differences suggested unnecessary inser-
tions. Equal lengths indicated balanced insertion-
omission errors or misrecognized characters.

5 4 -3 2 -1 0 1 2 3 4 5
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Figure 6: Length distribution of mT5 Chinese post-
correction results based on the presence of whitespace

Figure 5 illustrates that Chinese EasyOCR re-
sults contained significant space insertion errors,
as evidenced by length discrepancies that were
substantially reduced upon removing spaces. Con-
versely, the mT5 correction results (Figure 6)
demonstrated significantly improved consistency,
indicating effective correction of spacing errors by
our framework.

5 Conclusion

In this paper, we introduced POCO, a cost-efficient
OCR post-correction dataset construction frame-
work utilizing character-level probabilistic simula-
tion. Unlike existing methods, our approach effec-
tively generates realistic OCR errors without requir-
ing intensive computational resources or extensive
manual intervention. Through comprehensive ex-
periments, we demonstrated the efficacy of datasets
generated by POCO, significantly improving OCR
post-correction performance, particularly with pre-
trained encoder-decoder architectures such as mTS.
Our analyses confirmed that POCO effectively ad-
dresses typical OCR issues, including erroneous
space insertions and character misrecognitions, en-
hancing overall OCR reliability.

Future research directions include further refin-
ing the error-injection model for increased adapt-
ability across various languages and OCR systems,
ultimately contributing towards robust multimodal
text processing in practical applications.



Limitations

Although the proposed POCO framework demon-
strates effectiveness in generating realistic OCR er-
ror datasets efficiently, several limitations remain:

Character-Level Error Injection Simplification
POCO’s simulation of OCR errors relies solely
on character-level probabilistic modeling, poten-
tially overlooking more complex, contextual OCR
errors that frequently occur in real-world OCR pro-
cesses. Future studies should explore integrating
word-level or sentence-level contextual error mod-
eling.

Fixed Error Rate for Dataset Generation The
current study primarily uses a fixed error injection
rate (10%) across experiments. Real OCR systems
often exhibit varying error rates depending on text
quality, fonts, and noise conditions. Evaluating dif-
ferent error injection rates would strengthen the
generalizability and robustness of the proposed ap-
proach.

Limited Evaluation Metrics The evaluation pre-
sented in the paper exclusively focuses on Charac-
ter Error Rate (CER). However, OCR errors signif-
icantly impact downstream NLP tasks such as Ma-
chine Translation (MT), Named Entity Recognition
(NER), and Information Extraction (IE). Additional
evaluations using task-specific metrics would pro-
vide a clearer picture of POCO’s practical impact.

Dataset and Language Generalization Al-
though the framework theoretically supports mul-
tilingual capabilities, experiments and evaluations
are primarily conducted on Korean and Chinese
datasets. While promising for these languages, fur-
ther validation is required to confirm the frame-
work’s effectiveness and generalizability to other
languages and scripts, particularly low-resource
and morphologically rich languages.

Insufficient Model Variability Analysis The
character recognition model utilized (ResNet34)
is chosen primarily for its computational efficiency,
but deeper insights into how different model ar-
chitectures or training regimens might influence
error realism or dataset quality are not explored.
Future work should investigate a broader range of
models, potentially including vision transformers
or deeper CNN variants, to comprehensively assess
performance trade-offs.
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A OCR Error Simulator Models Analysis
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Figure 7: 500 epochs train loss of each simulators.

MobileNet EfficientNet
25s 49s 73s

ViT ResNet34
146s

Table 3: Average epoch time for each simulator model.

While ResNet34 was used as the simulator in
our main experiments, we also trained EfficientNet,
ViT, and MobileNet to explore alternative architec-
tures. As shown in Figure 7, ViT and MobileNet
showed higher training loss compared to ResNet34.
Table 3 summarizes the training speed, with Mo-
bileNet being the fastest, followed by EfficientNet,
ViT, and ResNet34. These results suggest that Ef-
ficientNet is a alternative to ResNet34, offering a
good balance between accuracy and efficiency.

Lang-OCR Replace Deletion Insertion Complex

ko-easy 29,923 2,431 1,752 2,428
ko-paddle 882 17,597 1,660 1,714
ch-easy 10,043 1,223 1,880 3,159
ch-paddle 1,755 701 1,176 447

Table 4: Error type statistics for Korean and Chinese
OCR outputs.

B Error Type Statistics

Table 4 presents the distribution of OCR error
types by language and model. The Korean Pad-
dleOCR output shows an unusually high number
of deletions, mainly caused by missing spaces,
commas, and periods commonly found in formal
Korean writing. This explains the significant post-
correction gains in this setting, as restoring these
characters effectively lowers the error rate.

C Prompts

Figures 8 illustrate prompt for OCR Post-
Correction.

Prompt for OCR Post-Correction

System:

You are an expert in correcting grammar errors in texts
extracted via Optical Charecter Recognition(OCR).

Your job is to correct each sentence into fluent and natural
Chinese without changing the original meaning.

Return only the corrected texts in the same order.

Do not explain anything

User:
{Sentence 1}

{Sentence N}

Return a list of the same length with each sentence cleaned.
. J

Figure 8: Prompt for OCR Post-Correction.

D Length Distribution Visualization

Figures 9 and 10 show sentence length distributions
before and after OCR, with and without spaces,
compared to the original.

Figures 11 and 12 show sentence length distri-
butions before and after processing with XLM-
RoBERTa, compared to the original. To assess the
effect of whitespace, we provide versions with and
without spaces.

Figures 13 and 14 show sentence length distribu-
tions before and after processing with mT5, com-
pared to the original. To assess the effect of whites-
pace, we provide versions with and without spaces.
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Figure 12: Length distribution of XLLM Roberta model results without whitespace.
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Figure 14: Length distribution of mT5 model results without whitespace.
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