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Abstract

End-to-end Speech Translation is hindered by
a lack of available data resources. While most
of them are based on documents, a sentence-
level version is available, which is however
single and static, potentially impeding the use-
fulness of the data. We propose a new data
augmentation strategy, SEGAUGMENT, to ad-
dress this issue by generating multiple alterna-
tive sentence-level versions of a dataset. Our
method utilizes an Audio Segmentation sys-
tem, which re-segments the speech of each doc-
ument with different length constraints, after
which we obtain the target text via alignment
methods. Experiments demonstrate consistent
gains across eight language pairs in MuST-C,
with an average increase of 2.5 BLEU points,
and up to 5 BLEU for low-resource scenarios
in mTEDx. Furthermore, when combined with
a strong system, SEGAUGMENT obtains state-
of-the-art results in MuST-C. Finally, we show
that the proposed method can also successfully
augment sentence-level datasets, and that it en-
ables Speech Translation models to close the
gap between the manual and automatic segmen-
tation at inference time.

1 Introduction

The conventional approach for Speech Translation
(ST) involves cascading two separate systems: an
Automatic Speech Recognition (ASR) model fol-
lowed by a Machine Translation (MT) model. How-
ever, recent advances in deep learning (Vaswani
et al., 2017), coupled with an increased availabil-
ity of ST corpora (Di Gangi et al., 2019a; Wang
et al., 2020a) have enabled the use of end-to-end
models (Weiss et al., 2017). Although end-to-end
models can address several shortcomings of cas-
caded models, such as slow inference times, error
propagation, and information loss, they are limited
by a data bottleneck (Sperber and Paulik, 2020).
This bottleneck arises from the inability of end-to-
end models to directly leverage data from the more

Figure 1: Data Augmentation with SEGAUGMENT.

resourceful tasks of ASR and MT, which restricts
them from consistently matching the performance
of the cascaded models (Bentivogli et al., 2021;
Anastasopoulos et al., 2022, 2021).

The majority of ST corpora are based on
document-level speech data, such as MuST-C
(Di Gangi et al., 2019a) and mTEDx (Salesky et al.,
2021), which are derived from TED talks, with du-
ration times of 10 to 20 minutes. These document-
based data are processed into shorter, sentence-
level examples through a process called manual
segmentation, which relies on grammatical features
in the text. Still, this sentence-level version is sin-
gle and static and is potentially limiting the utility
of the already scarce ST datasets.

To address this limitation, we propose SEGAUG-
MENT, a segmentation-based data augmentation
method that generates multiple alternative sentence-
level versions of document-level speech data (Fig
1). SEGAUGMENT employs SHAS (Tsiamas et al.,
2022b), an Audio Segmentation method that we
tune to yield different re-segmentations of a speech
document based on duration constraints. For each
new segmentation of a document, the correspond-
ing transcript is retrieved via CTC-based forced
alignment (Kürzinger et al., 2020), and the target
text is obtained with an MT model.



Our contributions are as follows:

• We present SEGAUGMENT, a novel data aug-
mentation method for Speech Translation.

• We demonstrate its effectiveness across eight
language pairs in MuST-C, with average gains
of 2.5 BLEU points and on three low-resource
pairs in mTEDx, with gains up to 5 BLEU.

• When utilized with a strong baseline that com-
bines WAV2VEC 2.0 (Baevski et al., 2020)
and MBART50 (Tang et al., 2020), it obtains
state-of-the-art results in MuST-C.

• We also show its applicability to data not
based on documents, providing an increase
of 1.9 BLEU in CoVoST2 (Wang et al., 2021).

• SEGAUGMENT also enables ST models to
close the gap between the manual and auto-
matic test set segmentations at inference time.

• Finally, along with our code, we open source
all the synthetic data that were created with
the proposed method1.

2 Relevant Research

SpecAugment (Park et al., 2019), which directly
modifies the speech features by wrapping or mask-
ing them, is a standard approach for data aug-
mentation in speech tasks including ST (Bahar
et al., 2019; Di Gangi et al., 2019b). WavAugment
(Kharitonov et al., 2021) is a similar technique that
modifies the speech wave by introducing effects
such as pitch, tempo and echo (Gállego et al., 2021).
Instead of altering the speech input, our proposed
method generates more synthetic data by altering
their points of segmentation, and thus is compli-
mentary to techniques such as SpecAugment.

An effective way to address data scarcity in ST is
by generating synthetic data from external sources.
This can be achieved by using an MT model to
translate the transcript of an ASR dataset or a Text-
to-Speech (TTS) model to generate speech for the
source text of an MT dataset (Jia et al., 2019; Pino
et al., 2019; McCarthy et al., 2020). In contrast,
SEGAUGMENT generates synthetic data internally,
without relying on external datasets.

Previous research has established the benefits
of generating synthetic examples by cropping or
merging the original ones, with sub-sequence sam-
pling for ASR (Nguyen et al., 2020), and concatena-
tion for MT (Nguyen et al., 2021; Wu et al., 2021;
Kondo et al., 2021), as well as for ASR and ST

1github.com/mt-upc/SegAugment

(Lam et al., 2022a). Our approach, however, seg-
ments documents at arbitrary points, thus providing
access to a greater number of synthetic examples.
An alternative approach by Lam et al. (2022b) in-
volves recombining training data in a linguistically-
motivated way, by sampling pivot tokens, retriev-
ing possible continuations from a suffix memory,
combining them to obtain new speech-transcription
pairs, and finally using an MT model to generate
the translations. Our method is similar since it also
leverages audio alignments and MT, but instead of
mixing speech, it segments at alternative points.

Context-aware ST models have been shown to
be robust towards error-prone automatic segmen-
tations of the test set at inference time (Zhang
et al., 2021a). Our method bears similarities with
Gaido et al. (2020b); Papi et al. (2021) in that it
re-segments the train set to create synthetic data.
However, unlike their approach, where they split at
random words in the transcript, we use a special-
ized Audio Segmentation method (Tsiamas et al.,
2022b) to directly split the audio into segments re-
sembling proper sentences. Furthermore, instead of
using word alignment algorithms to get the target
text (Dyer et al., 2013), we learn the alignment with
an MT model. We thus create high-quality data
that can be generally useful, and not only for error-
prone test set segmentations. Finally, recent work
has demonstrated that context-aware ST models
evaluated on fixed-length automatic segmentations
can be competitive compared to the manual seg-
mentation (Amrhein and Haddow, 2022). Here, we
find that utilizing data from SEGAUGMENT yields
high translation quality for ST models evaluated
on automatic segmentations, even surpassing the
translation quality of the manual segmentation, and
without explicitly making them context-aware.

3 Background

3.1 ST Corpora and Manual Segmentation

A document-level speech translation corpus D
(Di Gangi et al., 2019a; Salesky et al., 2021) is
comprised of n triplets that represent the speech
wave X, the transcription Z, and the translation Y
of each document.

D =
{
(Xi,Zi,Yi)

}n

i=1
(1)

In order for the data to be useful for traditional
sentence-level ST, the document-level corpus D

https://github.com/mt-upc/SegAugment


Figure 2: Manual Segmentation of an example i from
a document-level corpus D into mi examples of a
sentence-level corpus S.

is processed to a sentence-level corpus S, with
m =

∑n
i mi examples.

S =
{
(xi, zi, yi)

}n

i=1

=
{{

(xi,j , zi,j ,yi,j)
}mi

j=1

}n

i=1

(2)

Where xi = (xi,1, ...,xi,mi) are the sentence-
level speech waves for the i-th document, zi =
(zi,1, ...,zi,mi) are the sentence-level transcrip-
tions, and yi = (yi,1, ...,yi,mi) are the sentence-
level translations. Usually, S is obtained by a
process of manual segmentation (Fig. 2), where
the document-level transcription and translation
are split on strong punctuation, and then aligned
with cross-lingual sentence alignment (Braune and
Fraser, 2010). Finally, the corresponding sentence-
level speech waves are obtain by audio-text align-
ment (McAuliffe et al., 2017). Since speech is
continuous, instead of defining the sentence-level
speech wave xi,j , it is common to define the start
and end points si,j , ei,j ∈ R that correspond to the
document speech Xi. Thus, S can be re-defined as:

S =
{(

Xi,
{
(bi,j , zi,j ,yi,j)

}mi

j=1

)}n

i=1
(3)

Where bi = (bi,1, ..., bi,mi) is the segmentation
for the i-th speech wave, and bi,j = (si,j , ei,j) is
a tuple of the segment boundaries for the j-th seg-
ment, for which xi,j = Xi

si,j :ei,j . Note that often-
times there is a gap between consecutive segments
(ei,j , si,j+1) due to silent periods.

3.2 Audio Segmentation and SHAS
In end-to-end ST, Audio Segmentation methods
aim to find a segmentation b′ for a speech docu-
ment X′, without making use of its transcription.
They are crucial in real world scenarios, when a

test set segmentation is not available, and an au-
tomatic one has to be inferred, as simulated by
recent IWSLT evaluations (Anastasopoulos et al.,
2021, 2022). They usually rely on acoustic fea-
tures (pause-based), length criteria (length-based),
or a combination of both (hybrid). One such hy-
brid approach is SHAS (Tsiamas et al., 2022b,a),
which uses a supervised classification model C and
a hybrid segmentation algorithm A. The classi-
fier C is a Transformer encoder (Vaswani et al.,
2017) with a frozen WAV2VEC 2.0 (Baevski et al.,
2020; Babu et al., 2021) as a backbone. It is
trained on the speech documents and segment
boundaries of a manually-segmented speech cor-
pus, SSGM = {(Xi,bi)}ni=1, by predicting whether
an audio frame belongs to any of the manually-
segmented examples. At inference time, a sequence
of binary probabilities p′ is obtained by applying
the classifier C on X′ (eq. 4). Following, parameter-
ized with thr to control the classification threshold,
and ℓ = (min,max) to control the length of the
resulting segments, A produces the automatic seg-
mentation b′ according to p′ (eq. 5). There are two
possible choices for A. The Divide-and-Conquer
(PDAC) approach progressively splits the audio
at the point κ of lowest probability p′κ > thr,
until all resulting segments are within ℓ (Tsia-
mas et al., 2022b; Potapczyk and Przybysz, 2020).
Alternatively, the Streaming (PSTRM) approach
takes streams of length max and splits them at
the point κ with p′κ > thr between ℓ or uses the
whole stream if no such point exists (Tsiamas et al.,
2022b; Gaido et al., 2021).

p′ = C(X′) (4)

b′ = A(p′; min,max, thr) (5)

4 Proposed Methodology

The proposed data augmentation method SEGAUG-
MENT (Fig. 3) aims to increase the utility of the
training data S, by generating synthetic sentence-
level corpora Ŝℓ, which are based on alternative
segmentations of the speech documents in D (eq.
1). Whereas the manual segmentation (Fig. 2)
relies on grammatical features in the text, here
we propose to split on acoustic features present
in the audio, by utilizing SHAS (§3.2). For the
i-th speech document Xi, SEGAUGMENT creates
alternative segmentation boundaries b̂i with SHAS
(§4.1), obtains the corresponding transcriptions ẑi

via CTC-based forced alignment (§4.2), and finally,



Figure 3: The SEGAUGMENT methodology. Given the i-
th document-level example of D, with mi sentence-level
examples (S), it creates ki synthetic sentence-level ex-
amples by alternative segmentations with SHAS. Chang-
ing the segmentation parameters ℓ results in several dif-
ferent synthetic corpora Ŝℓ.

generates the translations ŷi with an MT model
(§4.3). By repeating this process with different pa-
rameterizations ℓ of the segmentation algorithm A,
multiple synthetic sentence-level speech corpora
can be generated (§4.4). A synthetic speech corpus
Ŝℓ with k =

∑n
i ki examples can be defined as:

Ŝℓ =
{(

Xi, b̂i, ẑi, ŷi
)}n

i=1

=
{(

Xi,
{
(b̂i,j , ẑi,j , ŷi,j)

}ki
j=1

)}n

i=1

(6)

Where Xi is the original speech for the i-th doc-
ument (eq. 1), b̂i=(b̂i,1, ..., b̂i,ki) are its alternative
segmentations, ẑi=(ẑi,1, ..., ẑi,ki) are its sentence-
level transcriptions, and ŷi=(ŷi,1, ..., ŷi,ki) are its
synthetic sentence-level translations.

In total, three different models are utilized for
creating a synthetic corpus, a classifier C (§3.2)
for segmentation, a CTC encoder E (Graves et al.,
2006) for forced alignment, and an MT model M
for text alignment. We can use pre-trained models,
or optionally learn them from the manually seg-
mented examples of S (Fig. 4). The classifier C
can be learned from SSGM ={(Xi,bi)}ni=1, the en-
coder E from SASR ={(xi, zi)}ni=1, and the model
M from SMT={(zi, yi)}ni=1.

Next, we describe in detail the proposed method.

Figure 4: Optional Model Training

4.1 Segmentation

We follow the process described for SHAS (§3.2)
and obtain the alternative segmentations b̂i for each
Xi in the training corpus, by doing inference with
C and applying the segmentation algorithm A. In
contrast to its original use, we use arbitrary val-
ues for min to have more control over the length
ranges of the segments and prioritize the classifica-
tion threshold requirements thr over the segment
length requirements ℓ in the constraint optimization
procedure of A, to ensure good data quality.

4.2 Audio Alignment

To create the transcriptions ẑi of the i-th document
for the segments b̂i (§4.1), we are using CTC-based
forced alignment (Kürzinger et al., 2020). We
first do inference on the sentence-level speech of
the manual segmentation xi=(xi,1, ...,xi,ni) with
a CTC encoder E , thus obtaining character-level
probabilities ui for the whole audio. We apply a
text cleaning process on the transcriptions zi, which
includes spelling-out numbers, removing unvoiced
text such as events and speaker names, removing
all remaining characters that are not included in
vocabulary, and finally upper casing. The forced
alignment algorithm uses the probabilities ui and
the cleaned text zi to find the character segmenta-
tion along with the starting and ending timestamps
of each entry. Following, we merge characters to
words using the special token for the word bound-
aries, and reverse the cleaning step2 to recover the
original text that corresponds to each segment. For
each example j, we obtain the source text ẑi,j by
joining the corresponding words that are within the
segment boundary b̂i,j , and apply a post-editing
step to fix the casing and punctuation (Alg. 1).

2We re-introduce any potential noise, e.g. "(Laughter)".



4.3 Text Alignment

Unlike the case of manual segmentation (Fig.
2), cross-lingual sentence alignment (Braune and
Fraser, 2010) is not applicable, and additionally,
word alignment tools (Dyer et al., 2013) yielded
sub-optimal results. Thus, we learn the align-
ment with an MT model M, which is trained
on the manually segmented sentence-level data
SMT = {(zi, yi)}ni=1. The training data is modi-
fied by concatenating examples to reflect the length
of the examples that will be translated, thus learn-
ing model Mℓ from SMT

ℓ , where ℓ are the length
parameters used in SHAS. To accurately learn the
training set alignment, we use very little regular-
ization, practically overfitting the training data SMT

ℓ

(§A.7). Since there are no sentence-level refer-
ences available for the synthetic data, we monitor
the document-level BLEU (Papineni et al., 2002)
in a small number of training documents, and only
end the training when it stops increasing. Finally,
we obtain the synthetic sentence-level translations
ŷi with the trained Mℓ.

4.4 Multiple Sentence-level Versions

The parameters ℓ = (min,max) of the segmen-
tation algorithm A allow us to have fine-grained
control over the length of the produced segments.
Different, non-overlapping tuples of ℓ result in dif-
ferent segmentations, providing access to multiple
synthetic sentence-level versions of each document.
Moreover, the additional cost of creating more than
one synthetic corpus is relatively low, as the results
of the classification with C and the forced align-
ment can be cached and reused (Fig. 3).

5 Experimental Setup

For our experiments we use data from three ST
datasets, MuST-C (Di Gangi et al., 2019a), mTEDx
(Salesky et al., 2021) and CoVoST2 (Wang et al.,
2021) (Table 1). MuST-C and mTEDx are based
on TED talks, and have sentence-level examples,
which are derived from document-level ones, via
manual segmentation (Fig. 2). CoVoST2 is based
on the Common Voice (Ardila et al., 2020) corpus
and is inherently a sentence-level corpus. For our
main experiments we use eight language pairs from
MuST-C v1.0, which are English (En) to German
(De), Spanish (Es), French (Fr), Italian (It), Dutch
(Nl), Portuguese (Pt), Romanian (Ro), and Russian
(Ru). We are also using En-De from v2.0 for cer-
tain ablation studies (§A.5, A.6, A.7) and analysis

Dataset v Lang. Pair # Docs # Sents # Hours

MuST-C
1.0

En-De 2,093 234K 408
En-Es 2,514 266K 496
En-Fr 2,460 275K 485
En-It 2,324 254K 457
En-Nl 2,219 248K 434
En-Pt 2,001 206K 377
En-Ro 2,166 236K 424
En-Ru 2,448 265K 482

2.0 En-De 2,537 251K 450

mTEDx

Es-Es 988 102K 178
Pt-Pt 812 90K 153
Es-En 378 36K 64
Pt-En 279 31K 53
Es-Fr 43 4K 6

CoVoST2 En-De — 231K 362

Table 1: Training Data Statistics

(§6.8). From mTEDx we use the Es-En, Pt-En, and
Es-Fr ST data, as well as the Es-Es, and Pt-Pt for
the ASR pre-training, and finally the En-De data
from CoVoST2 (Wang et al., 2021).

For segmentation (§4.1) we are using the open-
sourced pre-trained English and multilingual SHAS
classifiers3. For the SHAS algorithm we set the
classification threshold thr = 0.5 and for length
constraints ℓ = (min,max), we use four differ-
ent, non-overlapping tuples of (0.4, 3), (3, 10), (10,
20) and (20, 30) seconds, resulting in short (s),
medium (m), long (l), and extra-long (xl) segmenta-
tions. We use PDAC and only apply PSTRM for
xl, since we observed that PDAC was not able to
satisfy the length conditions. For the CTC encoder
used in audio alignment (§4.2), we use pre-trained
WAV2VEC 2.0 (Baevski et al., 2020) models4 avail-
able on HuggingFace (Wolf et al., 2020). For the
MT models used in text alignment (§4.3) we trained
medium-sized Transformers (Vaswani et al., 2017;
Ott et al., 2019) with 6 layers (§A.1.3). When train-
ing with SEGAUGMENT, we simply concatenate
the four synthetic datasets Ŝs, Ŝm, Ŝl, Ŝxl to the
original one (S), and remove any duplicates.

For Speech Translation we train Speech-to-Text
Transformer baselines (Wang et al., 2020b). Un-
less stated otherwise, we use the small architecture
(s2t_transformer_s) with 12 encoder layers and 6
decoder layers, and dimensionality of 256, with
ASR pre-training using only the original data. The
full details of the models and the training proce-

3github.com/mt-upc/SHAS
4wav2vec2-large-960h-lv60-self, wav2vec2-large-xlsr-53-

spanish, wav2vec2-large-xlsr-53-portuguese

https://github.com/mt-upc/SHAS
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese


Model En-De En-Es En-Fr En-It En-Nl En-Pt En-Ro En-Ru Average

Fairseq ST 22.7 / — 27.2 / — 32.9 / — 22.7 / — 27.3 / — 28.1 / — 21.9 / — 15.3 / — 24.8 / —

Baseline 23.2 / 50.5 27.5 / 55.0 33.1 / 58.3 22.9 / 50.4 27.3 / 53.9 28.7 / 54.9 22.2 / 49.0 15.3 / 40.4 25.0 / 51.6
+ SEGAUGMENT 25.0 / 52.6 29.3 / 56.8 35.7 / 60.7 25.6 / 52.9 30.3 / 57.0 31.8 / 57.8 25.0 / 51.8 16.8 / 42.5 27.4 / 54.0
+ ASR SEGAUGMENT 25.5 / 52.8 29.5 / 56.9 35.8 / 60.7 25.7 / 52.9 30.0 / 56.8 31.6 / 57.6 25.0 / 52.0 16.7 / 42.4 27.5 / 54.0

Table 2: BLEU(↑) / chrF2(↑) scores on MuST-C v1.0 tst-COMMON. In bold is the best score. All results with
SEGAUGMENT and ASR SEGAUGMENT are statistically different from the Baseline with p<0.001. All models
use the same architecture and results of Fairseq ST are from Wang et al. (2020b).

dures are available in §A.1.1. For inference, we
average the 10 best checkpoints on the validation
set and generate with a beam of 5. We evaluate with
BLEU5 (Papineni et al., 2002) and chrF26 (Popović,
2017) using SACREBLEU (Post, 2018), and per-
form statistical significance testing using paired
bootstrap resampling (Koehn, 2004) to ensure valid
comparisons. To evaluate on an automatic seg-
mentation (§6.5), the hypotheses are aligned to the
references of the manual segmentation with MW-
ERSEGMENTER (Matusov et al., 2005).

6 Results

6.1 Main Results in MuST-C

We compare ST models trained with and with-
out SEGAUGMENT on the eight language pairs
of MuST-C v1.0, and include results from Wang
et al. (2020b), which use the same model architec-
ture. In Table 2, we observe that models leveraging
SEGAUGMENT achieve significant and consistent
improvements in all language pairs, thus confirm-
ing that the proposed method allows us to better
utilize the available ST data. More specifically, the
improvements range from 1.5 to 3.1 BLEU, with
an average gain of 2.4 points. We also investigate
the application of SEGAUGMENT during the ASR
pre-training, which brings further gains in four lan-
guage pairs, but the average improvement is only
marginal over just using the original ASR data.

6.2 Results with SOTA methods

Here we study the impact of the proposed method,
when combined with a strong ST model. We use
a model with 24 encoder layers, 12 decoder lay-
ers, and dimensionality of 1024, where its encoder
is initialized from WAV2VEC 2.0 (Baevski et al.,
2020) and its decoder from MBART50 (Tang et al.,
2020) (§A.1.2). We fine-tune this model end-to-end

5nrefs:1 | bs:1000 | seed:12345 | case:mixed | eff:no |
tok:13a | smooth:exp | version:2.3.0

6nrefs:1 | bs:1000 | seed:12345 | case:mixed | eff:yes | nc:6
| nw:0 | space:no | version:2.3.0

Model En-Es En-Fr

Chimera (Han et al., 2021) 30.6 / — 35.6 / —
STEMM (Fang et al., 2022) 31.0 / — 37.4 / —
ConST (Ye et al., 2022) 32.0 / — 38.3 / —
STPT (Tang et al., 2022) 33.1 / — 39.7 / —
SpeechUT (Zhang et al., 2022b) 33.6 / — 41.4 / —

w2v-mBART 33.3 / 60.2 40.8 / 64.5
+ SEGAUGMENT 33.7 / 60.7 41.5 / 65.1

Table 3: BLEU(↑) / chrF2(↑) scores on MuST-C v1.0
tst-COMMON. In bold is the best score. Results with
SEGAUGMENT are statistically different from the w2v-
mBART baseline model with p<0.001, apart from the
BLEU score for En-Es (33.7) which is with p<0.005.

on ST using MuST-C v1.0, with and without the
synthetic data of SEGAUGMENT, and also provide
results from other state-of-the-art (SOTA) meth-
ods, such as Chimera (Han et al., 2021), STEMM
(Fang et al., 2022), ConST (Ye et al., 2022), STPT
(Tang et al., 2022), and SpeechUT (Zhang et al.,
2022b). As shown in Table 3, despite already hav-
ing a competitive baseline (w2v-mBART), utiliz-
ing SEGAUGMENT achieves further significant im-
provements7, reaching SOTA performance in En-
Es and En-Fr.

6.3 Low-Resource Scenarios

We explore the application of SEGAUGMENT in
low-resource and non-English speech settings of
mTEDx. In Table 4, we present results of the base-
line with and without SEGAUGMENT for Es-En, Pt-
En and the extremely low-resource pair of Es-Fr (6
hours). We furthermore provide the BLEU scores
from Salesky et al. (2021), which use the extra-
small model configuration (10M parameters). We
use the extra-small configuration for Es-Fr, while
the others use the small one (31M parameters).
SEGAUGMENT provides significant improvements
in all pairs, with even larger ones when it is also

7Compared with §6.1, smaller gains are expected since the
effect of data augmentation diminishes with increased data
availability, facilitated here by the large pre-trained models.



Model Es-En Pt-En Es-Fr

Bilingual E2E-ST 7.0 / — 8.1 / — 1.7 / —

Baseline 15.6 / 40.5 15.3 / 38.6 2.7 / 23.4
+ SEGAUGMENT 18.5 / 43.5 17.8 / 41.1 3.8 / 23.9
+ ASR SEGAUGMENT 19.1 / 43.9 20.3 / 43.7 5.3 / 27.2

Table 4: BLEU(↑) / chrF2(↑) scores on mTEDx test set.
In bold is the best score. All results with SEGAUGMENT
and ASR SEGAUGMENT are statistically different from
the Baseline with p<0.001, with the exception of chrF2
in Es-Fr (23.9) which is with p < 0.005. Results of
Bilingual E2E-ST are from Salesky et al. (2021).

Model En-De

Bi-AST (Wang et al., 2021) 16.3 / —
STR (Lam et al., 2022b) 18.8 / —

Baseline 17.4 / 43.2
+ SEGAUGMENT 19.0 / 44.9
+ ASR SEGAUGMENT 19.3 / 45.4

Table 5: BLEU(↑) / chrF2(↑) scores on CoVoST2 test set.
In bold is the best score. All results with SEGAUGMENT
and ASR SEGAUGMENT are statistically different from
the Baseline with p<0.001.

utilized during the ASR pre-training, improving
the BLEU scores by 2.6-5. Our results here con-
cerning ASR pre-training are more conclusive than
in MuST-C (§6.1), possibly due to the better ASR
models obtained with SEGAUGMENT (§A.3).

6.4 Application on Sentence-level Data

We consider the application of the method to CoV-
oST, of which the data do not originate from docu-
ments. We treat the sentence-level data as "docu-
ments" and apply SEGAUGMENT as before. Due
to the relatively short duration of the examples, we
only apply SEGAUGMENT with short and medium
configurations. In Table 5 we provide our results
for En-De, with and without SEGAUGMENT, a
bilingual baseline from Wang et al. (2020a), and the
recently proposed Sample-Translate-Recombine
(STR) augmentation method (Lam et al., 2022b),
which uses the same model architecture as our ex-
periments. Although designed for document-level
data, SEGAUGMENT brings significant improve-
ments to the baseline8, even outperforming the STR
augmentation method by 0.5 BLEU points.

8There is a potential denoising effect, since CoVoST clips
include unvoiced audio either at the start or the end, which our
method inherently excludes from the synthetic data.

6.5 Automatic Segmentations of the test set

Unlike most research settings, in real-world sce-
narios, the manual segmentation is not typically
available, and ST models must rely on automatic
segmentation methods. However, evaluating on
automatic segmentation is considered sub-optimal,
decreasing BLEU scores by 5-10% (Tsiamas et al.,
2022b; Gaido et al., 2021) as compared to evaluat-
ing on the manual (gold) segmentation.

Since the synthetic data of SEGAUGMENT orig-
inate from an automatic segmentation, we expect
they would be useful in bridging the training-
inference segmentation mismatch (Papi et al.,
2021). We evaluate our baselines with and with-
out SEGAUGMENT on MuST-C tst-COMMON, on
both the manual segmentation provided with the
dataset, and an automatic one which is obtained by
SHAS. In Table 6 we present results with SHAS-
long, which we found to be the best. Extended
results can be found in §A.4. For the purpose of
this experiment, we also train another ST model
with SEGAUGMENT, where we prepend a special
token in each translation, indicating the dataset ori-
gin of the example9. When generating with such
a model, we prompt it with the special token that
corresponds to the segmentation of the test set. The
results of Table 6 show that the baseline experi-
ences a drop of 1.6 BLEU points (or 6%) on av-
erage, when evaluated on the automatic segmenta-
tion, confirming previous research (Tsiamas et al.,
2022b). Applying SEGAUGMENT, validates our
hypothesis, since the average increase of 3.5 BLEU
(23.4 → 26.9) observed in the automatic segmen-
tation is larger than the increase of 2.4 BLEU in
the manual one (25.0 → 27.4). Finally, using
SEGAUGMENT with special tokens, enables ST
models to reach an average score of 27.3 BLEU
points, closing the gap with the manual segmenta-
tion (27.4), while being better10 in three language
pairs. To the best of our knowledge, this is the first
time11 that ST models can match (or surpass) the
performance of the manual segmentation, demon-
strating the usefulness of the proposed method in
real-world scenarios. Our results also raise an in-
teresting question, on whether we should continue
to consider the manual segmentation as an upper
bound of performance for our ST models.

9i.e. <original>, <s>, <m>, <l>, or <xl>
10Significance not possible due to different segmentation.
11Without context-aware ST (Amrhein and Haddow, 2022).



Lang.
Pair Model test set Segmentation

Manual SHAS-long

En-De
Baseline 23.2

25.1
21.2

25.2+ SEGAUGMENT 25.0 24.5
↪→ special tok. 25.1 25.2

En-Es
Baseline 27.5

29.3
26.1

29.4+ SEGAUGMENT 29.3 29.0
↪→ special tok. 29.2 29.4

En-Fr
Baseline 33.1

35.7
30.6

35.3+ SEGAUGMENT 35.7 34.9
↪→ special tok. 35.6 35.3

En-It
Baseline 22.9

25.6
21.5

25.1+ SEGAUGMENT 25.6 24.4
↪→ special tok. 25.0 25.1

En-Nl
Baseline 27.3

30.3
25.7

29.8+ SEGAUGMENT 30.3 29.7
↪→ special tok. 29.4 29.8

En-Pt
Baseline 28.7

31.8
26.9

31.8+ SEGAUGMENT 31.8 31.4
↪→ special tok. 31.5 31.8

En-Ro
Baseline 22.2

25.0
20.5

24.6+ SEGAUGMENT 25.0 24.1
↪→ special tok. 24.8 24.6

En-Ru
Baseline 15.3

16.8
14.6

17.0+ SEGAUGMENT 16.8 16.8
↪→ special tok. 16.4 17.0

Average
Baseline 25.0

27.4
23.4

27.3+ SEGAUGMENT 27.4 26.9
↪→ special tok. 27.1 27.3

Table 6: BLEU(↑) scores on MuST-C v1.0 tst-
COMMON with manual and SHAS-long segmentation.
The second column in Manual and SHAS-long is the
best score among the three models, and with bold is the
best score overall for each language pair.

6.6 ST without ASR pre-training

Following, we investigate the importance of the
ASR pre-training phase, a standard practice (Wang
et al., 2020b), which usually is also costly. In
Table 7 we present the results of ST models on
MuST-C En-Es and En-Fr trained with and with-
out SEGAUGMENT, when skipping the ASR pre-
training. We also include the results of the Revisit-
ST system proposed by Zhang et al. (2022a). We
find that models with SEGAUGMENT are compet-
itive even without ASR pre-training, surpassing
both the baseline with pre-training and the Revisit-
ST system. In general, ASR pre-training could
be skipped in favor of using SEGAUGMENT, but
including both is the best choice.

Model #p ASR En-Es En-Fr

Baseline 31M ✓ 27.5 / 55.0 33.1 / 58.3
+ SEGAUGMENT 31M ✓ 29.3 / 56.8 35.7 / 60.7

Revisit-ST 48M ✗ 28.1 / — 33.4 / —

Baseline 31M ✗ 25.3 / 52.3 30.1 / 55.4
+ SEGAUGMENT 31M ✗ 28.5 / 55.7 34.6 / 59.6

Table 7: BLEU(↑) / chrF2(↑) scores on MuST-C tst-
COMMON. In bold is the best score among the models
without ASR pre-training (✗). Results of Revisit-ST are
from Zhang et al. (2022a). #p stands for number of
parameters.

Figure 5: BLEU(↑) scores on MuST-C En-De dev dur-
ing training.

6.7 Training Costs

In this section we discuss the computational costs
involved with SEGAUGMENT during ST model
training. We analyze the performance of models
with and without SEGAUGMENT from Table 2, at
different training steps in MuST-C En-De dev. In
Figure 5, we observe that models with our proposed
method, not only converge to a better BLEU score,
but also consistently surpass the baseline during
training. Thus, although utilizing the synthetic
data from SEGAUGMENT would naturally result in
longer training times, it is still better even when we
constraint the available resources.

6.8 Analysis

Here we discuss four potential reasons behind the
effectiveness of SEGAUGMENT.
Contextual diversity. The synthetic examples are
based on alternative segmentations and are thus
presented within different contextual windows, as
compared to the original ones (§A.8). We spec-
ulate that this aids the model to generalize more,
since phrases and sub-words are seen with less or
more context, that might or not be essential for



their translation. Adding additional context that is
irrelevant was previously found to be beneficial in
low-resource MT, by providing negative context to
the attention layers (Nguyen et al., 2021).
Positional diversity. With SEGAUGMENT, speech
and text units are presented at many more differ-
ent absolute positions in the speech or target text
sequences (§A.11). This is important due to the
absolute positional embeddings in the Transformer,
which are prone to overfitting (Sinha et al., 2022).
We hypothesize that the synthetic data create a di-
versification effect on the position of each unit,
which can be seen as a form of regularization, es-
pecially relevant for rare units. This is also sup-
ported for the simpler case of example concatena-
tion (Nguyen et al., 2021), while in our case the
diversification effect is richer due to the arbitrary
document segmentation.
Length Specialization. Synthetic datasets created
by SEGAUGMENT supply an abundance of exam-
ples of extremely long and short lengths, which
are relatively infrequent in the original data. This
creates a specialization effect enabling ST mod-
els trained on the synthetic data to better translate
sequences of extreme lengths in the test set (§A.9).
Knowledge Distillation. As translations of the
synthetic data are generated by MT models, there
is an effect similar to that of Knowledge Distilla-
tion (KD) (Liu et al., 2019; Gaido et al., 2020a).
To quantify this effect, we re-translate the train
set of MuST-C En-De four times, with the same
MT models employed in SEGAUGMENT. Subse-
quently, an ST model is trained with the original
and re-translated data, referred to as in-data-KD,
as the MT models did not leverage any external
knowledge. In Table 8 we compare in-data-KD
with SEGAUGMENT, and find that although in-
data-KD provides an increase over the baseline,
it exhibits a significant difference of 1 BLEU point
with SEGAUGMENT. Our findings confirm the ex-
istence of the KD effect, but suggest that SEGAUG-
MENT is more general as it not only formulates
different targets, but also diverse inputs (through
re-segmentation), thereby amplifying the positive
effects of the source-side contextual and positional
diversity. In contrast, KD only provides diversity
on the target-side.

7 Conclusions

We introduced SEGAUGMENT, a novel data aug-
mentation method that generates synthetic data

Model En-De

Baseline 24.3 / 51.9

Baseline + in-data-KD 25.2 / 52.7

Baseline + SEGAUGMENT 26.2 / 53.7

Table 8: BLEU(↑) / chrF2(↑) scores on MuST-C v2.0
En-De tst-COMMON. In bold is the best score. Results
of Baseline + SEGAUGMENT are statistically different
from Baseline + in-data-KD with p<0.001.

based on alternative audio segmentations. Through
extensive experimentation across multiple datasets,
language pairs, and data conditions, we demon-
strated the effectiveness of our method, in con-
sistently improving translation quality by 1.5 to
5 BLEU points, and reaching state-of-the-art re-
sults when utilized by a strong ST model. Our
method was also able to completely close the gap
between the automatic and manual segmentations
of the test set. Finally, we analyzed the reasons
that contribute to our method’s improved perfor-
mance. Future work will investigate the extension
of our method to ST for spoken-only languages
and Speech-to-Speech translation, by passing the
transcription stage.

Limitations

General Applicability. The proposed method
requires three steps: Audio Segmentation, CTC-
based forced-alignment, and Machine Translation.
For Audio Segmentation we used SHAS (Tsiamas
et al., 2022b), which requires a classifier that is
trained on manually segmented data. Although we
demonstrated the method’s applicability in CoV-
oST En-De, which does include a manual segmen-
tation, we used a English classifier that was trained
on MuST-C En-De. Therefore, we cannot be cer-
tain of the method’s effectiveness without manu-
ally segmented data for the source language. A
possible alternative would be to use a classifier
trained on a different source language, since Tsia-
mas et al. (2022b) showed that SHAS has very
high zero-shot capabilities, provided the zero-shot
language was also included in the pre-training set
of XLS-R (Babu et al., 2021), which serves as a
backbone to the classifier. Additionally, we tested
our method on several languages pairs, and also on
an extremely low-resource one, such as Spanish-
French (Es-Fr) in mTEDx, with only 4,000 training
examples. Although we showed improvement of



50% in that particular language pair, the two lan-
guages involved, Spanish and French, are not by
any means considered low-resource. Thus, we can-
not be sure about the applicability of the method
in truly extremely low-resource languages, such as
many African and Native American languages. Fur-
thermore, the current version of the method would
not support non-written languages, since the tar-
get text is obtained by training a MT model which
translated the transcription of each audio segment.

Biases. The synthetic data is heavily based on
the original data, which may result in inheriting
any biases present in the original data. We did not
observe any signs of this effect during our research,
but we did not conduct a proper investigation to
assess the degree at which the synthetic data are
biased in any way.

Computational and Memory costs. The syn-
thetic data have to be created offline, with a pipeline
that involves three different models, resulting in
increased computational costs. To reduce these
costs, we used pre-trained models for the Audio
Segmentation and the CTC encoders, and cached
the inference results to be re-used. Thus, the com-
putational cost of creating the synthetic datasets
for a given a language pair involves a single infer-
ence with the classifier and the CTC encoder, and
multiple training/inference phases with MT models.
This process can take around 24-36 hours to create
four new synthetic datasets for pair in MuST-C,
using a single GPU. We acknowledge the computa-
tional costs but believe the results justify them. The
process could be made much lighter by using non-
parametric algorithms in the three steps instead of
supervised models, which can be investigated in fu-
ture work. Finally, despite the computational costs,
there is a very small memory cost involved since
each synthetic dataset is basically a txt file contain-
ing the new target text and a yaml file containing
the new segmentation, only requiring 100-200MB
of storage.
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Vĕra Kloudová, Surafel Lakew, Xutai Ma, Prashant
Mathur, Paul McNamee, Kenton Murray, Maria
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A Appendix

A.1 Hyperparameters and Training details
A.1.1 Speech-to-Text Transformer models
For all experiments, apart from §6.2 and from those
in mTEDx Es-Fr, we use s2t_transformer_s models
implemented in FAIRSEQ (Ott et al., 2019; Wang
et al., 2020b). They have 12 encoder layers, 6
decoder layers, a dimensionality of 256, a feed-
forward dimension of 2048, and 4 heads in the
multi-head attention, with 31M parameters in total.
We use GELU activations (Hendrycks and Gim-
pel, 2016) and pre-layernorm (Xiong et al., 2020a).
The input is 80-dimensional log-Mel spectrograms,
which are processed by a 2-layer convolutional net-
work with 1024 inner channels, output dimension
of 256, stride of 2, kernel size of 5, and GLU ac-
tivations (Dauphin et al., 2017). We do not scale
up the output of the convolutional network. The
target vocabularies are learned with SentencePiece
(Kudo and Richardson, 2018) and have a size of
8,000. We train with AdamW (Loshchilov and Hut-
ter, 2019) with a learning rate of 0.002, a warm-up
of 5,000 steps, and an inverse square root scheduler.
We use a gradient accumulation of 6, making the
effective batch size equal to 320 thousand tokens,
apply SpecAugment (Park et al., 2019), and set
the dropout to 0.1, applied to attention, activation,
and output. The loss function is a standard cross
entropy with label smoothing of 0.1. We stop the
training when the validation loss does not decrease
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for 10 epochs, and average the 10 best checkpoints
according to validation BLEU.

The encoders of the ST models are pre-trained
on the task of ASR using the same architecture.
The only difference is the vocabulary size which is
5,000 and the learning rate which is 0.001. For the
models trained without ASR pre-training (§7) we
also used a learning rate of 0.001. For MuST-C, we
pre-train using the ASR data of En-De, for mTEDx
we use the Es-Es and Pt-Pt accordingly, and finally
for CoVoST the ASR data of En-De.

For mTEDx Es-Fr we use an extra-small ar-
chitecture (s2t_transformer_xs). It has 6 encoder
layers and 3 decoder layers, a dimensionality of
256, a feed-forward dimension of 1024, 4 heads in
the multi-head attention, and a vocabulary size of
3,000, having a total of 10M parameters. The learn-
ing rate is set to 0.001 (warm-up of 500), the batch
size to 180 thousand tokens, and use a dropout
of 0.2. We also share the weights of the embed-
ding layer and output projection in the decoder.
The same model is pre-trained on ASR, but with a
dropout of 0.1. All other hyperparameters are the
same as for the small models described before.

All our experiments were run on a cluster with
8 NVIDIA GeForce rtx 2080 ti. The running times
of each experiment on a single GPU ranged from
12 to 36 hours.

A.1.2 w2v-mBART models
For the experiments of §6.2, we use a strong base-
line utilizing pre-trained models and a length adap-
tor (Tsiamas et al., 2022a). The encoder is com-
posed of a 7-layer convolutional feature extrac-
tor and 24-layer Transformer encoder, while the
decoder has 12 layers, and a vocabulary of size
250k, with 770M parameters in total. All the layers
have an embedding dimensionality of 1024, a feed-
forward dimensionality of 4098, GELU activations
(Hendrycks and Gimpel, 2016), 16 attention heads,
and pre-layer normalization configuration (Xiong
et al., 2020b). A strided 1d convolutional layer
sub-samples the output of the encoder by 2 times.
The encoder is initialized from WAV2VEC 2.012

(Baevski et al., 2020), which is pretrained with
60k hours of non-transcribed speech from Libri-
Light (Kahn et al., 2020), and fine-tuned for ASR
with 960 hours of labeled data from Librispeech
(Panayotov et al., 2015). The decoder is initial-
ized from MBART5013 (Tang et al., 2020), which

12fairseq/wav2vec/wav2vec2_vox_960h_new.pt
13fairseq/models/mbart50/mbart50.ft.1n.tar.gz

is fine-tuned En-Xx multilingual machine transla-
tion. We fine-tune all the parameters of the model,
apart from the feature extractor of the encoder and
the embedding layer in the decoder. The inputs to
the model are raw waveforms sampled at 16kHz,
which are normalized to zero mean and unit vari-
ance. We train with AdamW using a base learning
rate of 0.0005, with a warm-up for 2,000 steps and
an inverse square root scheduler. In the encoder we
use 0.1 activation dropout, time masking with prob-
ability of 0.2 and channel masking with probability
of 0.1 (Baevski et al., 2020). In the decoder we use
a dropout of 0.3, and attention dropout of 0.1 (Tang
et al., 2020). All other dropouts are not active. The
loss function is a standard cross entropy with label
smoothing of 0.2. We use gradient accumulation
to have an effective batch size of 32M tokens, eval-
uate every 250 steps, and stop the training when
the performance on the validation set does not im-
prove for 20 evaluations. We average the 10 best
checkpoints according to the validation BLEU, and
generate with a beam search of 5.

A.1.3 Machine Translation models

For the MT models used for text alignment in
SEGAUGMENT (§4.3), we used medium-sized
Transformers, with 6 encoder and decoder layers,
dimensionality of 512, feed-forward dimension of
2048, and 8 heads in the multi-head attention. We
train with AdamW using a learning rate of 0.002,
with a warm-up for the first 2,500 updates, and the
batch size is set to 14 thousand tokens. The vocab-
ulary size is 8,000, and for regularization, we use
a small dropout of 0.1 only at the outputs of each
layer and label smoothing of 0.1. We stop training
when the document-level BLEU does not increase
for 20 epochs, average the 10 best checkpoints ac-
cording to the same metric, and then generate with
a beam of size 8.

For the MT models used in the experiments of
§A.6, we use a small architecture with 6 encoder
and decoder layers, with dimensionality of 256,
feed-forward dimension of 1024, and 4 heads. We
share the weights of the embedding and output pro-
jection in the decoder and use a dropout of 0.1 (ap-
plied to attention, activation, and output). We stop
training when the validation loss does not decrease
for 10 epochs, average the 10 best checkpoints ac-
cording to validation BLEU, and generate with a
beam of size 5.

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec2_vox_960h_new.pt
https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz


A.2 CTC-based Forced Alignment Algorithm

Here we provide the algorithm used for audio-text
alignment with SEGAUGMENT (§4.2). The com-
plete process for the i-th document is summarized
in Algorithm 1, where we omit the i index for ease
of representation.

Algorithm 1: CTC-based Forced Alignment

input :x % List[1d Tensor]
input :z % List[String]
input :b̂ % List[Tuple[Float, Float]]
output : ẑ % List[String]

1 u ← E(x)
2 z ← CLEAN(z)
3 chars← FORCED_ALIGNMENT(z, u)
4 words← JOIN_CHARS(chars)
5 words← REVERSE_CLEAN(words)

6 for j ← 1 to len(b̂) do
7 ẑj ← JOIN_WORDS(b̂j , words)

8 ẑj ← POST_EDIT(ẑj)

9 return ẑ

A.3 Results of ASR pre-training

In Table 9 we present the results of the ASR pre-
training, where we observe that by including data
from SEGAUGMENT, all ASR models perform bet-
ter in terms of WER. This indicates that the pro-
posed methods is also useful for ASR augmenta-
tions, probably due to the source-side contextual
and positional diversity (§6.8).

Model MuST-C mTEDx CoVoST

En-De Es-Es (xs) Pt-Pt En-De

Baseline 11.1 18 (19.7) 28.3 26.6
+ SEGAUGMENT 10.4 16.6 (18.1) 23.8 23.8

Table 9: WER(↓) scores for ASR models. xs indicates
the extra-small models pre-trained for mTEDx Es-Fr.

A.4 Extended Results on Automatic
Segmentation of MuST-C

In Table 10 we provide an extended version of Ta-
ble 6, where we evaluate the models on all four
SHAS segmentations of the test set. Regarding the
choice of automatic segmentation, we find that the
long segmentation is the best when using SEGAUG-
MENT with special tokens (27.3 BLEU), long and
extra-long are equally good without special tokens
(26.9 BLEU) and the medium segmentation is best
without SEGAUGMENT (23.7 BLEU). Using the
special tokens reduces the performance on the man-
ual segmentation by 0.3 BLEU (27.4 → 27.1) but

Lang.
Pair Model

test set Segmentation

Manual SHAS

— Best s m l xl Best

En-De
Baseline 23.2

25.1
20.6 21.7 21.2 20.2

25.2+ SEGAUGMENT 25.0 23.1 24.3 24.5 24.7
↪→ special tok. 25.1 23.1 24.5 25.2 25.1

En-Es
Baseline 27.5

29.3
25.0 26.4 26.1 24.8

29.4+ SEGAUGMENT 29.3 27.3 28.7 29.0 28.9
↪→ special tok. 29.2 26.6 28.6 29.4 29.1

En-Fr
Baseline 33.1

35.7
30.0 31.0 30.6 29.0

35.3+ SEGAUGMENT 35.7 32.3 34.1 34.9 34.8
↪→ special tok. 35.6 31.4 33.8 35.3 35.1

En-It
Baseline 22.9

25.6
20.0 21.6 21.5 20.3

25.1+ SEGAUGMENT 25.6 22.7 24.2 24.4 24.8
↪→ special tok. 25.0 22.3 24.3 25.1 24.5

En-Nl
Baseline 27.3

30.3
24.9 26.5 25.7 24.3

29.8+ SEGAUGMENT 30.3 27.5 29.2 29.7 29.7
↪→ special tok. 29.4 26.9 26.9 29.8 29.3

En-Pt
Baseline 28.7

31.8
25.8 27.1 26.9 25.4

31.8+ SEGAUGMENT 31.8 29.2 30.7 31.4 31.1
↪→ special tok. 31.5 28.8 30.8 31.8 31.3

En-Ro
Baseline 22.2

25.0
19.9 20.8 20.5 18.7

24.6+ SEGAUGMENT 25.0 22.5 23.4 24.1 24.3
↪→ special tok. 24.8 22.6 24.1 24.6 24.0

En-Ru
Baseline 15.3

16.8
13.4 14.7 14.6 13.8

17.0+ SEGAUGMENT 16.8 15.0 16.4 16.8 16.7
↪→ special tok. 16.4 14.9 16.4 17.0 16.8

Avg
Baseline 25.0

27.4
22.4 23.7 23.4 22.1

27.3+ SEGAUGMENT 27.4 24.9 26.4 26.9 26.9
↪→ special tok. 27.1 24.6 26.2 27.3 26.9

Table 10: BLEU(↑) scores on manual- and SHAS-
segmented MuST-C v1.0 tst-COMMON.

increases it in the SHAS-long segmentation by 0.4
BLEU (26.9 → 27.3), thus bridging the gap with
the manual segmentation.

A.5 Results with different SEGAUGMENT
combinations

We perform ablations by training ST models on
different combinations of the original and the syn-
thetic data of SEGAUGMENT, using MuST-C v2.0
En-De. In Table 11, row 1 is essentially the base-
line and row 17 is the baseline + SEGAUGMENT.
Firstly, we notice that although training single syn-
thetic datasets, but without the original one (rows
2-5) is inferior, the drop is relatively small, con-
sidering the absence of the original data. When
training with all of them (row 6) actually surpasses
the baseline by 1.1 BLEU, without even using the
original data. This showcases that SEGAUGMENT

is generating high quality data, and even by them-
selves can produce very good ST models. Secondly,
the results show that the more synthetic datasets
we use, the better the performance, and that no
combination is better than simply using all of them
(row 17). We also find that when using 1 or 2 syn-
thetic datasets, the combinations involving longer
segmentations (rows 8, 9, 10 and 13, 14) tend to
perform better than those involving shorter segmen-



Original
Data

SEGAUGMENT BLEUs m l xl

(1) ✓ 24.3

(2) ✓ 22.6
(3) ✓ 23.4
(4) ✓ 22.4
(5) ✓ 22.7
(6) ✓ ✓ ✓ ✓ 25.4

(7) ✓ ✓ 24.8
(8) ✓ ✓ 25.1
(9) ✓ ✓ 25.1
(10) ✓ ✓ 25.1

(11) ✓ ✓ ✓ 25.6
(12) ✓ ✓ ✓ 25.6
(13) ✓ ✓ ✓ 25.8
(14) ✓ ✓ ✓ 25.8

(15) ✓ ✓ ✓ ✓ 26.0
(16) ✓ ✓ ✓ ✓ 26.0

(17) ✓ ✓ ✓ ✓ ✓ 26.2

Table 11: BLEU(↑) scores on tst-COMMON MuST-C
v2.0 En-De for models trained with different combina-
tions of the original and the synthetic data.

tations (rows 7 and 11, 12), while for combinations
of 3 synthetic (rows 15, 16), we do not observe any
differences.

A.6 Results on ASR and MT

We investigate the impact of the synthetic data
when training ASR and MT models. For this ex-
periments we are using the ASR data and bitext
from MuST-C v2.0 En-De. The results of Table 12
show that the synthetic data are in general useful,
with a 0.7 reduction in WER and a 1.1 increase in
BLEU (row 6). This indicates that the improve-
ments in ST are stemming from both the source
side (speech, ASR) and the target side (text, MT).
We furthermore notice that longer synthetic exam-
ples are better for MT, similar to ST in Table 2,
while shorter ones are better for ASR. We hypothe-
size that this is a consequence of the significance
of long context for each task; ASR models tend to
use local context (Zhang et al., 2021b), while MT
models oftentimes have to use long context, as in
pronoun resolution (Voita et al., 2018).

Original
Data

SEGAUGMENT WER(↓) BLEU(↑)s m l xl

(1) ✓ 11.1 31.0

(2) ✓ ✓ 10.2 31.3
(3) ✓ ✓ 10.3 31.6
(4) ✓ ✓ 11.0 31.7
(5) ✓ ✓ 10.9 31.7

(6) ✓ ✓ ✓ ✓ ✓ 10.4 32.1

Table 12: WER scores for ASR models and BLEU
scores for MT models in MuST-C v2.0 En-De tst-
COMMON.

A.7 Results of MT models used in
SEGAUGMENT

In table 13 we present results for the MT models
trained to generate the new translation for the al-
ternative data of SEGAUGMENT for MuST-C v2.0
En-De. For each parameterization ℓ=(min,max)
of the segmentation algorithm A, we train special-
ized model Mℓ, as described in §4.3. We evaluate
on the original training and development sets from
S, as well as on the synthetic training set (Ŝℓ),
which basically indicates the quality of the target
text in the synthetic data. We present both sentence-
and document-level BLEU scores for the original
data, and only document-level scores for the syn-
thetic ones (since no sentence-level references are
available). We notice that MT models obtain very
high scores in the original train set, as compared
to the development set, indicating that the model
has indeed overfitted. In any other case that would
be very bad news, but here we willingly overfit the
model as our goal is to learn the training set text
alignment, and not having a good and generaliz-
able MT model. By looking at the document-level
BLEU on the synthetic training set, we can con-
firm that the MT models have indeed accurately
learned the alignments and thus have generated
high-quality translation, that can be utilized during
ST training.

A.8 Contextual Windows of SEGAUGMENT
Data

We can categorize the new context of the syn-
thetic data of SEGAUGMENT in four types, de-
pending on the type of overlap between the seg-
mentation boundaries b̂ for each document: (1)
isolated, when being a subset of an original one,
(2) expanded, when being a superset of an original
one, (3): mixed, when overlapping with an original
one, (4): equal, when being in exactly the same



MT model
Mℓ

Original train Original development Synthetic train (Ŝℓ)

BLEU doc-BLEU BLEU doc-BLEU BLEU doc-BLEU

s 95.1 79.2 24.5 26.2 - 68.3
m 90.0 74.4 26.0 27.5 - 70.4
l 72.9 61.3 25.5 27.0 - 64.6

xl 59.6 51.8 25.9 27.4 - 56.8

Table 13: MT models trained for generating the target text of SEGAUGMENT data. BLEU scores for MuST-C v2.0
En-De training and development set, and synthetic training set. BLEU scores are calculated both at sentence- and
document-level.

context as an original one. In Table 14 we apply
this categorization for MuST-C v2.0 En-De, and
observe that indeed most of the alternative exam-
ples form SEGAUGMENT are presented in a new
context, with only a small percentage being equal,
which we discard when concatenating the datasets
for training.

SEGAUGMENT Expanded Isolated Mixed Equal

s 12.3% 56.9% 22.3% 8.5%
m 31.1% 33.3% 24.3% 11.3%
l 63.2% 7.9% 24.6% 4.2%
xl 55.7% 1.2% 43.0% 0.1%

28.3% 38.7% 25.0% 8.0%

Table 14: Percentage of examples (rows) for each
type of contextual overlap (columns) in the alternative
datasets Ŝℓ compared to the manual one S for MuST-C
v2.0 En-De.

A.9 Results on duration buckets

In Figure 6 we present evidence for the length spe-
cialization effect (§6.8). We construct two extreme-
length buckets in MuST-C tst-COMMON; the first
bucket contains all the examples with duration less
than 1 second and the second one all those with
duration larger than 20 seconds. Then we mea-
sure the performance of 5 different types of ST
model in the two buckets, which are using the data
configurations of rows 1-5 of Table 11. Perfor-
mance is measured by average BLEU across all
eight language pairs of MuST-C. We notice that
indeed, models trained with shorter synthetic data
(Ŝs, Ŝm) are better at translating the test set bucket
with the very short examples, while those trained
with longer synthetic data (Ŝl, Ŝxl) are better at
translating the bucket with the very long ones.

Figure 6: BLEU in two duration buckets of MuST-C
tst-COMMON of models trained with the four different
synthetic datasets and with only the original data. The
legend indicates on which data each models is trained on.
The left bucket contains all the examples with duration
less than 1 second, and the right contains all those with
duration longer than 20 seconds. BLEU is the average
of all eight language pairs in MuST-C.

A.10 SEGAUGMENT Data Statistics

In Table 15 we present the number of examples
created with SEGAUGMENT for all the language
pairs used in this research. We only consider ex-
amples longer than 0.4 seconds and shorter than
30 seconds. Differences across the MuST-C v1.0
datasets created with the short condition are due to
empty segments which were removed. Following,
in Table 16 we are presenting the average duration
of each example in each created dataset. The av-
erage is around 3.8 seconds for short-segmented
datasets, and around 24 seconds for the exta-long
ones. In both tables, differences in CoVoST are
due to the fact that we prioritize more the length
conditions ℓ = (min,max) in the segmentation
algorithm A (§4.1), while the other datasets are pri-
oritizing the classification condition thr. We did
this change in order to make sure that the CoVoST
data are segmented in a different way, than in the



Dataset v Lang. Pair
Sentence-level version

Original
SEGAUGMENT

s m l xl Concat

MuST-C v1.0

En-De 225K 433K 253K 120K 76K 882K
En-Es 260K 430K 253K 120K 76K 879K
En-Fr 269K 421K 253K 120K 76K 871K
En-It 248K 399K 253K 120K 76K 848K
En-Nl 244K 433K 253K 120K 76K 882K
En-Pt 201K 433K 253K 120K 76K 882K
En-Ro 231K 433K 253K 120K 76K 882K
En-Ru 260K 419K 253K 120K 76K 868K

v2.0 En-De 249K 401K 231K 109K 70K 812K

mTEDx

Es-Es 101k 150K 88K 43K 27K 308K
Pt-Pt 90K 136K 78K 37K 24K 274K
Es-En 36K 53K 32K 15K 10K 110K
Pt-En 30K 47K 27K 13K 8K 94K
Es-Fr 3.5K 5.5K 3K 1.5K 1K 11K

CoVoST2 En-De 231K 504K 255K 0 0 759K

Table 15: Number of examples in Sentence-level versions for the manual and SEGAUGMENT processes.

manual segmentation. Due to this they might not
always resemble proper sentences, but at least they
are diverse enough to be useful during training.

Dataset v Lang. Pair
Sentence-level version

Original
SEGAUGMENT

s m l xl

MuST-C v1.0

En-De 6.27 3.83 6.87 15.21 23.96
En-Es 6.63 3.84 6.87 15.21 23.96
En-Fr 6.28 3.84 6.87 15.21 23.96
En-It 6.41 3.83 6.87 15.21 23.96
En-Nl 6.23 3.84 6.87 15.21 23.96
En-Pt 6.50 3.84 6.87 15.21 23.96
En-Ro 6.37 3.84 6.87 15.21 23.96
En-Ru 6.47 3.83 6.87 15.21 23.96

v2.0 En-De 6.27 3.75 6.83 15.16 23.94

mTEDx

Es-Es 5.90 3.79 6.91 15.24 23.86
Pt-Pt 5.81 3.71 6.86 15.17 24.03
Es-En 6.06 3.87 6.91 15.27 23.78
Pt-En 5.86 3.68 6.83 15.16 24.02
Es-Fr 6.08 3.80 6.89 15.10 23.84

CoVoST2 En-De 5.61 1.82 3.68 — —

Table 16: Average duration (in seconds) of examples in
Sentence-level versions for the manual and SEGAUG-
MENT processes.

A.11 Sub-word Positional Frequency
In Figure 7 we present examples of semi-rare sub-
words in the target languages in MuST-C v2.0 En-
De training set. We are counting their frequency in
terms of absolute position in the examples they ap-
pear in. We can observe that when using SEGAUG-
MENT, the positional frequency of this sub-words
is much more diverse, covering more space in the
possible positions in the target sequence. We hy-

pothesize that this effect could be regularizing the
model, aiding in each generalization of this sub-
words in different positions (§6.8).



Figure 7: Positional frequency of semi-rare sub-words in the original data with and without SEGAUGMENT in
MuST-C v2.0 En-De training set.


