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Abstract

Large Language Models (LLMs) have demonstrated the ability to perform semantic1

reasoning, planning and code writing for robotics tasks. However, most methods2

rely on pre-existing primitives (i.e. pick, open drawer), which heavily limits their3

scalability to new scenarios. Additionally, existing approaches like Code as Policies4

(CaP) rely on examples of robot code in the prompt to write code for new tasks,5

and assume that LLMs can infer task information, constraints, and API usage from6

examples alone. But examples can be costly, and too few or too many can bias7

the LLM in the wrong direction. Recent research has demonstrated prompting8

LLMs with APIs and documentation enables code writing for successful zero-9

shot tool use. However, documenting robotics tasks and naively providing full10

robot APIs presents a challenge to context-length limits in LLMs. In this work,11

we introduce PromptBook, a recipe that combines LLM prompting paradigms -12

examples, APIs, documentation and chain of thought, to generate code for planning13

a sorting task with higher success rate than previous works. We further demonstrate14

PromptBook enables LLMs to write code for new low-level manipulation primitives15

in a zero-shot manner: from picking diverse objects, opening/closing drawers, to16

whisking, and waving hello. We evaluate the new skills on a mobile manipulator17

with 83% success rate at picking, 50-71% at opening drawers and 100% at closing18

them. Notably, the LLM is able to infer gripper orientation for grasping a drawer19

handle (z-axis aligned) vs. a top-down grasp (x-axis aligned). Finally, we provide20

guidelines to leverage human feedback and LLMs to write PromptBook prompts.21

Instructions explicitly 
define APIs and constraints

Chain-of-Thought in 
comments enable 
multi-step reasoning

Predict states during code 
generation improves policy 
feasibility

# Instruction: Move all soft objects to 
the right bin.
objects_in_bins = {
  'left': ['plushie', 'glove'], 
  'right': []
}
robot.pick('left', 'plushie')
robot.handover('left', 'right')
robot.place('right', 'right')
robot.pick('left', 'glove')
robot.handover('left', 'right')
robot.place('right, 'right')
#  Instruction: Empty left bin
 …

# You are a robot with a left and right arm.
# Constraints: 1) The arms can’t cross each 
# other. 2) Each arm can only pick one object 
# at a time. 3) Reachable bins by arm: …

Class RobotAPI:
  def pick(self, arm, name):
    """arm: str, arm name "left or "right"
       name: str, object name to be picked
    """
    pass
  …

# robot.held_objs = {"left":[],"right":[]}
robot.pick("left", "cup")
# robot.held_objs = {"left":["cup"],"right":[]}

“Revise the above prompt so the robot can better follow 
reachability constraints.”
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# Instruction: Move fruits to right bin.
objects = {'left_bin': ['banana'],
           'table': ['coke can'],
           'right_bin': []}
robot.pick(‘left_arm’,'banana')
robot.handover(‘left_arm’, 'right_arm')
robot.place(‘right_arm’, 'right_bin')
# Instruction: Clear the right bin.
objects = { ... }
robot.pick(‘right_arm’, 'green block')
robot.handover(‘right_arm’, 'left_arm')
...

Prior Works: Example-based Prompts PromptBook: Combine Examples, Instructions,  
Chain of Thought reasoning, and State Predictions

Few-shot examples leverage LLMs’ 
in-context learning, but they implicitly 
show APIs, task info, and robot constraints

Constraints are explicit in language

Revise the prompt to better follow constraints

# Reward function code (set targets).
import numpy as np
set_torso(0.65, np.deg2rad(90), ...
set_feet_pos('front_left', 0.65, ...
set_feet_pos('front_right', 0.65, ...

# Instruction: Open the top drawer.
objects = robot.detect_objects(['drawer knob’, 'cabinet'])
…

# There are three knobs,... so the first knob is the top-most.
# Grasp selection: front grasp …
# Compute grasp pose …
# Compute pregrasp pose …
robot.gripper_open((top_knob_size[1] + 0.03)/0.1) robot.follow_arm_trajectory([pregrasp_pose, 
grasp_pose], allow_base_moves=True) 
robot.gripper_close()
current_arm_pose = robot.get_arm_pose()
pull_arm_pose = {
  'position': current_arm_pose['position'] + \
    [0.25, 0, 0],   
  'orientation': current_arm_pose['orientation']}
robot.follow_arm_trajectory([pull_arm_pose], 
  allow_base_moves=True)

VLM 
(PaLI)

{'drawer knob': [{‘position’: [ ], 
‘orientation’: [ ], ‘size’: [ ]},{},{}], 
'cabinet': [...]}

Evaluated across many Robot Domains and LLMs 
From high-level plans to low-level skills

1

2

3

4

Explicit robot constraints

# You are a stationary robot with two arms.
# Constraints:
#  1. Each arm can only pick one object at a time.
#  2. Each arm can only pick objects that are closeby.
Class Robot:
  def detect_objects(self, obj_names):
  def handover(self, source_arm_name, target_arm_name):
  def pick(self, arm_name, obj_name):
  ...
# Instruction: Open the top drawer.
# First, I’ll detect the position of the handle.
objects = robot.detect_objects('handle')
# objects = {'handle': [{'pos': [0.46, ... }
...
robot.grasp((top_knob_size[1] + 0.03) / 0.1)
# Now I’ll move 25 cm away from cabinet along x-axis.
curr_pose = robot.get_arm_pose()
pull_pose = {'pos': curr_pose['pos'] + ...}
robot.move_to(pull_pose, base=True) 
...

Revise the above prompt to fix the error …

Implicit robot constraints Predicted state info as 
comments

Chain-of-Thought as 
comments

Iterative LLM prompting 

Iterate & ask LLM to improve its own prompt
How to write prompts? 

Figure 1: PromptBook, a recipe to combine CaP example-based prompts with documentation of
APIs and constraints, Chain-of-Thought reasoning, and world state information. Experiments show
that PromptBook has higher planning success rates across multiple robots, and interestingly give rise
to new manipulation skills on-the-fly with LLMs zero-shot (e.g., picking, drawer opening, whisking).



1 Introduction and Related Work22

Large language models (LLMs), through prompting and in-context-learning, exhibit a wide range of23

capabilities that are relevant to robotics tasks – from high-level planning [1,6,7,23], logical reasoning24

[3, 8, 15, 20], to writing robot code [10, 14] and designing reward functions [5, 9, 22].25

Example-based prompting is a promising paradigm for general in-context learning [2, 19], and has26

been effective in writing code for robotics applications [10]. [12] uses examples based prompting for27

the high-level task planning, followed by learned low-level policies. In contrast, our work presents28

code examples for both task and motion planning. Code as Policies (CaP) and other works [10, 14]29

use examples of language commands followed by corresponding policy code to prompt LLMs and30

write code for new tabletop tasks commands to autonomously generate code. However, this paradigm31

can be limiting as examples can be costly and some concepts are difficult to teach to LLMs through32

examples alone, such as robot constraints. Suppose there is a constraint that robot speed must not33

exceed 1 m/s. Multiple examples of calling robot.set_velocity must be shown to implicitly infer34

that total speed, that is, L2 norm of velocity, does not exceed 1. Instead of steering LLM behavior35

through implicit examples, we may prompt LLMs to follow explicit natural language instructions,36

that describe the objectives, constraints, and other information relevant for solving the task.37

Instruction-based prompting has been explored in a number of prior work [13, 17, 18, 21, 22].38

where the model is provided with a brief language description of the robot, its constraints, and39

accessible APIs, then expected to directly complete new robot code given a new task (often zero-shot).40

While these techniques provide powerful approaches for instruction-based prompting, they have not41

considered generating code to be executed directly on real robot settings.42

In our work, we investigate different LLM prompting approaches across 3 robot platforms. We find43

that: (i) combining both instruction-based and example-based prompting yields the best of both44

worlds – performance improvements are observed across all language models and tasks, (ii) robot45

constraints are best explicitly specified via instruction-based prompting and perform better with46

instruction-tuned models, (iii) providing linguistic descriptions of environment states between lines47

of code in the prompt allows the LLM to write code considering the specific scene and keep track48

of internal variables, (iv) instruction-based prompting benefits from human feedback corrections, to49

which the LLM can be instructed to improve its own prompt.50

We propose PromptBook (Figure 1), an LLM prompting recipe for improving LLMs’ ability to51

convert natural language instructions to robot code that combines: instruction-based and example-52

based prompting, chain-of-thought, interleaved states and human feedback. PromptBook, leads to53

more robust planning performance as well as improved reasoning on geometric and embodiment54

constraints which gives rise to building new motion primitives – providing LLMs the capacity55

to generate high-level 3D trajectories for skills such as “open/close the drawer” or “stir the pot”56

which can be executed on-robot with an off-the-shelf IK-planner without any additional human57

intervention, data collection, or model training. These capabilities are not sufficient to replace58

specialized algorithms, but nevertheless offer a glimpse of the capacity of LLMs to compose motion59

primitives for low-level skills. While we provide results on few examples, our approach is extendable60

to other tasks without fine-tuning. We provide comprehensive details on the setup, results and analysis61

in the following sections.62

2 The PromptBook Recipe63

In this section, we will describe the 7 elements of the PromptBook recipe where the first one belongs64

to Example-Based Prompting and elements 2 through 5 are Instruction-based Prompting. Please65

see prompt examples and guidelines on how to apply PromptBook for specific robot task domains in66

the Appendix.67

2.1 Prompt Elements68

1) Examples. We can teach the LLM how to write robot code via packing a list of examples in69

prompt [10], where each example is a command-response pair. Examples implicitly show the LLM70

two types of information: how to ground robot commands (e.g., how to map spatial descriptions like71
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“backwards” to code) and how to use first-party APIs (e.g., custom robot action functions not seen in72

the LLM’s training set, such as robot.set_velocity).73

2) High-Level Robot and Task Description. Directly specifying high-level robot embodiments and74

task information can give the LLM useful context when performing task planning. For example,75

e.g., we can specify that the robot is a bimanual stationary robot, with descriptions of important76

environment features and task information.77

3) Robot API Documentation. Beyond high-level robot and task descriptions, Instruction-Based78

Prompts should also include low-level details about how to write domain-specific robot code. See79

Figure 1 for a simplified example for a single-arm robot with a mobile base.80

4) Robot Policy Constraints. In addition to API documentation, we can also detail robot policy81

constraints that are not immediately obvious from the API themselves. See Figure 1 for a simplified82

example of such constraints in the prompt.83

5) Code Guidelines. Finally, we can directly specify the desired policy code properties without84

relying on showing many implicit examples. Consider the requirement that the code written should85

strictly call the provided robot API and avoid API functions that do not exist.86

6) Chain of Thought Policy Reasoning. Beyond adding instructions to the prompt, PromptBook87

makes two changes to the given examples to improve LLM planning performance. The first is Chain88

of Thought [20] (CoT), a popular prompting method that writes the step-by-step reasoning process of89

solving a task in the prompt. We can naturally incorporate CoT in code generation by formatting90

each thought step as a comment in the code. See a simplified example in Figure 1.91

7) Interleaved State Predictions and Observations. Inspired by and analogous to CoT, we also92

include, in each example code output, explicit environment state predictions formatted as comments93

after each robot action. We can steer LLMs to predict and record current states explicitly, interleaved94

with the robot policy code, in its outputs. See Figure 1 for a simple example. At run time, we provide95

a new instruction and the initial state information, and the LLM will autoregressively generate the96

remaining sequence. Explicit state predictions encourage the LLM to utilize a simple transition model97

for more precise planning and to better obey the given constraints.98

2.2 How to Build PromptBook Prompts99

The final PromptBook prompt is assembled by combining the 8 prompt elements above. In this100

section, we provide a procedure that constructs and improve theses prompts, with the aid of LLMs.101

Specifically, we develop a method that can leverage LLM’s retrospection capabilities that leverage102

language feedback to improve both its immediate outputs as well as the initial prompt. We provide103

our 3 step process as follows:104

Step 1: Initial Prompt Draft. Given a new robot task domain, a robot engineer first drafts an initial105

prompt following the PromptBook recipe. This initial prompt may be suboptimal, either due to106

insufficient domain information, or style and presentation that is difficult for the LLM to understand.107

Step 2: Human-in-the-Loop Code Improvement. With the initial prompt draft ready, the robot108

engineer then uses the prompted LLM to perform a series of validation tasks. In this stage, the robot109

engineer first gives the LLM the task command, the LLM then writes the policy code, then, if the110

policy fails, the human engineer provides error feedback to the LLM. After receiving the feedback,111

the LLM writes improved policy code, and this process is repeated until the task is solved. At the end112

of each trial, we obtain a sequence of (task, code, feedback) tuples.113

Step 3: LLM-aided Prompt Improvement. While human-in-the-loop feedback can reduce errors114

for a specific task, it is desirable to modify the prompt so these errors are not repeated in the future.115

We do this by giving the LLM the original prompt and the history of (task, code, feedback) tuples,116

then asking the LLM “How would you modify the initial prompt to avoid making this mistake in the117

future while keeping existing constraints?" and “How would you add a general constraint to avoid118

making this mistake in the future?" These modifications are then incorporated in the initial prompt to119

improve performance on similar tasks.120
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3 Experiments121

Example vs. Instruction Prompting across LLMs for Sorting Task Planning. We evaluate122

planning success rates accross various language models using (i) example-based prompting, (ii)123

instruction-based prompting, and (iii) a combination of both. The tasks area collection of pick124

and place sorting tasks across 2 platforms: single arm (UR5) and bi-arm Kukas (Kuka2x). These125

are simple tasks, but they are sufficient to raise key challenges behind LLM-based planning. The126

distinction between a single arm and bi-arm setup makes allows measuring LLM’s capacity to reason127

over reachability constraints – not only does the LLM need to reason that each arm can only reach128

the table or the bin nearest to it, but that moving objects from one bin to another requires taking an129

additional action in between (i.e., handover) (details in Appendix). See results in Table 1.130

Table 1: Prompting with both instructions and examples (instr. + ex.) yields stronger success rates (%) across
robot settings and language models. See failure mode analysis in Appendix.

Single Arm UR5 Bi-Arm Kuka2x

Model instr. ex. instr. + ex. instr. ex. instr. + ex.

PaLM 2-L 42 83 89 71 72 93
Instruct-PaLM 2-L 72 82 80 66 82 94
PaLM 2-S* (Code) 47 78 82 5 50 64

Interleaving State Predictions with Policy Code. We test two LLMs in a mobile robot trash sorting131

domain (similar to [4]). Here, the robot can move among three different trash bins (landfill, recycle,132

and compost), and it needs to sort the trash already placed in these bins to their correct bins (e.g.,133

plastic bottles should go in recycle). However, the robot needs to be in front of the corresponding bin134

before placing to avoid reachability errors. See Table 2 for results. We show that without interleaved135

state predictions, LLMs struggle with reasoning about the bin location of the robot (state) which136

results in low success rate due to reachability errors.137

Table 2: Prompting with interleaved robot state information improves task success rate (%) for the trash sorting
task across two LLMs. Improvements are most substantial when prompting with instructions and examples.

Model ex. only instr. + ex.

GPT-4 w/o State 8 30
GPT-4 w/ State 17 74

Improving Instruction-Based Prompts with Human Feedback and LLM-aid. To evaluate the138

impact of iterative code improvement by human feedback, we evaluated two LLMs on the Bi-arm139

Kuka2x platform sorting task. Results in Table 3 show higher success rate with only 2-3 rounds of140

feedback and prompt iteration as described in 2.141

Table 3: Instruction-based prompting benefits from iterative prompt improvement with higher success rates on
the Bi-arm Kuka2x planning task. can substantially improve planning success.

Model instr. only instr. + feedback instr. + ex. + feedback

Instruct-PaLM 2-L 66 80 93
GPT-4 10 99 99
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Table 4: Real robot execution success rate of LLM-generated motion primitives zero-shot for a mobile
manipulator, evaluated across 50 trials.

Top Drawer with Handle Middle Drawer with Knob

Model Pick Open Close Open Close

GPT-4 83 71 100 50 100

(c)(a) (b)

(d) (e)

stir the pot close the middle 
knob drawer

open the top
handle drawer

close the top
file cabinet

<Meta Preamble 
goes here>

wave your hand

(a) Wave your hand (b) Stir the pot

(d) Close mid knob 
drawer

(c) Open top handle 
drawer

Figure 2: Examples of diverse motions generated with PromptBook. Notably, the same instruction-based prompt
is re-used with only the specific low-level task instruction being swapped out for (a) waving, (b) stirring, (c)
opening the top drawer by the handle, and (d) closing the middle drawer with a knob.

Building Low Level Motion Primitives On-The-Fly. Bringing our findings from previous sections142

to a practical real world low level robot control setting, we evaluate whether a single expressive143

PromptBook can generate novel motion primitives on the fly just by changing the input task instruction.144

On a mobile manipulator, we build a PromptBook with a description of the robot, its constraints,145

robot APIs including follow_arm_path(), detect_object(), and gripper() functions, as well146

as an example of robot code for grasping an object on a countertop. This prompt can be queried to147

generate new motion primitives (code in Appendix) for multiple tasks, some of which are shown in148

Figure 2 in Appendix. The generated code exhibits “motion commonsense” knowledge from the149

LLM which are required to solve these low-level control tasks, including understanding of how a150

gripper should be oriented with respect to objects (e.g., vertically for a drawer handle, or horizontally151

for a knob). In quantitative evaluations of motion primitives generated by PromptBook on the fly, we152

find that policies can achieve reasonable success rates as detailed in Table 4.153

4 Discussions and Future Work154

Our work proposes PromptBook, a guide for creating and improving prompts for new robot task155

domains through human and LLM feedback. We demonstrate PromptBook across three robot domains:156

UR5, Bimanual arms, and mobile manipulator, improving LLM robot task planning performance and157

synthesizing novel motion primitives. While our work investigates the trade-offs between prompting158

methods, the space of LLM prompting strategies and models is vast. For more complicated tasks159

and systems, teaching complex concepts through examples can dominate the input context to the160

LLM, and so does providing large APIs and instructions. We can enhance PromptBook by leveraging161

LLMs with longer context lengths, or efficiently selecting prompt tokens.162

Our strategy to synthesize novel motions rely on robot motion primitives and objection poses163

information obtained from vision models. Errors in pose estimations or in the motion primitives164

affect the success rates of the novel motions when executed on real robots. This limitation is not165

specific to our method; that is, any method that relies on object pose estimation will face similar166

challenges. In the future, it would be interesting to consider how LLM re-planning can autonomously167

compensate for failures of upstream models to improve success rate.168
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Appendices242

5 Examples of Promptbook Elements243

Examples.244

For code-writing examples, we can format each command as a comment, and each response as the245

code block that immediately follows:246

# if you see an orange, move backwards.
if detect_object("orange"):

robot.set_velocity(x=-0.1, y=0, z=0)
247

248

High-level Robot and Task Description.249

In the above below, we also tell the LLM that it is acceptable to make certain kinds of assumptions;250

eliciting this behavior is much more challenging with Example-Based Prompts.251

# You are a stationary robot with a left arm and right arm placed on a table with a bin to the right and another
bin to the left. # Your task is to write code that will sort objects into the correct bins as defined from given
instructions. # Use your best world knowledge and make any necessary assumptions when selecting objects to sort.

252

253

Robot API Documentation254

We first provide the robot perception and action APIs, written in the style of skeleton Python code.255

Then, we provide additional details on the given robot APIs by directly specifying them in language,256

which is possible because Instruction-Based Prompts are not limited to conveying information through257

examples. For instance, for a robot API that uses 6D poses, we can specify the pose formats and258

canonical directions as follows:259

# Pose is a dict with ’position’ and ’orientation’ keys in robot frame.
# The ’position’ value is a 3D array of [x, y, z] coordinates in meters.
# The ’orientation’ value is a 4D array quaternion in [w, x, y, z].
# In the robot frame, directions are defined as follows:
# Positive x / Negative x: Front and Back
# Positive y / Negative y: Left / Right
# Positive z / Negative z: Upward / Downward

260

261

Robot Policy Constraints262

Below is a policy constraint prompt example for a bimanual robot setup, we may wish to inform the263

LLM on the different reachability constraints of workspace objects given the two arms, as well as264

additional preconditions of executing low-level pick place actions.265

# Constraints:
# 1. The right arm can pick and place objects on the right bin and the table only. It cannot reach the left bin
to pick or place objects.
# 2. The left arm can place objects on the left bin and the table. It cannot reach the right bin to pick or
place objects.
# 3. You can handover objects from one arm to the other. You cannot do a handover if you don’t have an object
in the passing arm or the receiving arm is not empty.
# 4. You can only pick one object at a time per arm.

266

267

Code Guidelines268

We can communicate code guidelines as part of the instructions:269

# Your response should be exclusively in the form of Python code and Python-formatted comments. Do not use
additional if statements or loops. Only write code that calls the provided robot API.270

271

6 Example vs. Instruction Prompting Evaluation Protocol272

6.1 Robot Platforms273

• Single arm (UR5): consists of a UR5 equipped with a suction gripper overlooking a tabletop surface274

with objects that span kitchenware and plastic food items. A RealSense d435 camera is mounted275

on the wrist that captures an overhead view of the tabletop scene.276
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Table 5: Failure modes (% error, categorized by type, sum of columns per language model is total % error)
across prompting methods and robot settings.

Single Arm UR5 Bi-Arm Kuka2x

Model Categories instr. ex. instr. + ex. instr. ex. instr. + ex.

PaLM 2-L Feasibility 1 4 0 9 16 4
Semantic 57 13 11 20 12 3
Syntax 0 0 0 0 0 0

Instruct-PaLM Feasibility 0 0 0 12 6 0
2-L Semantic 28 18 20 21 12 6

Syntax 0 0 0 1 0 0

PaLM 2-S* Feasibility 6 1 0 16 28 13
(Code) Semantic 47 21 18 79 22 23

Syntax 0 0 0 0 0 0

• Bi-arm Kukas (Kuka2x): a more challenging setting that consists of two Kuka IIWA 7 arms277

equipped with two-finger grippers overlooking a large surface area with a bin next to each arm278

(reachable only by that arm), as well as a shared tabletop zone that is reachable by both arms.279

Objects in this setting include plastic food items, wooden blocks, plush toys, and soda cans. A280

RealSense d435 is mounted above the shoulders of the bi-arm setup to capture an overhead view of281

the scene.282

6.2 Task Domains.283

Both robots are tasked with 100 natural language instructions to sort multiple objects (randomly284

chosen and positioned) in the scene by their varying properties e.g., “Put the vegetables on the green285

plate.” or “Move the soft objects to the right bin.”. Given the language instructions and a description286

of the scene (dictionary of objects and poses) as input, the language model outputs code to call motion287

primitive APIs that sequence pick, place, or handover actions (bi-arm only) conditioned on a target288

location (or object name), and arm to use (bi-arm only). Both models use open-vocabulary object289

detectors (e.g., OWL-ViT [11]) to locate objects in the scene.290

6.3 Evaluated LLMs.291

We evaluate the different prompting methods across three LLMs: (i) in-context pre-trained vanilla292

PaLM 2-L (340B), (ii) instruction-tuned PaLM (Instruct-PaLM 2-L), and (iii) and a smaller code-293

writing language model PaLM 2-S* (24B) specifically fine-tuned on code-related tokens. We chose to294

use PaLM-2 for a side-by-side comparison of pre-trained LLMs with and without instruction-tuning,295

as well as a smaller pre-trained code-writing model (trained with the same infrastructure), which296

we expect should provide systems-level advantages including faster inference speeds (i.e., lower297

planning latency) at the cost of reduced performance.298

6.4 Error Categorization299

To better characterize failure modes, we additionally categorized LLM planning errors into 1 of 3300

types:301

• Feasibility: generated code does not respect robot constraints and either: (i) attempts to move a302

robot other than itself, (ii) pick up an object not there, (iii) pick up multiple object simultaneously303

when the gripper can only hold one, or (iv) does not respect reachability constraints (bi-arm only)304

in that each arm can only reach objects in its nearest bin.305

• Syntax: code does not execute due to a syntax error.306

• Semantic: code executes, but the task failed (i.e., objects not sorted correctly accordingly to given307

instructions).308

Tab. 5 shows the ratio of planning errors categorized by types. Most errors are task planning errors309

(semantic) e.g., objects sorted incorrectly, or the task was incomplete. The next largest source of310

errors is reasoning over action feasibility. In particular, example-based prompting tends to struggle on311
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reasoning over reachability constraints, but improves when the LLM is instruction-tuned. By contrast,312

instruction-based prompting performs similarly across models. There is a clear improvement when313

both instructions and examples are provided in the prompt, in which case both instruction-tuned314

and non-instruction-tuned models perform comparably – with non-instruction-tuned models still315

struggling more in reasoning on reachability.316

6.5 Real robot execution.317

We also directly run the robot policy code generated by the best performing LLMs and prompting318

methods on both platforms for all tasks. Instr. + ex. with PaLM 2-L on the single arm UR5 yields319

an average execution success rate of 83%, while instr. + ex. with Instruct-PaLM 2-L on the more320

challenging Bi-arm Kuka2x setup yields a success rate of 59%. Common execution failure modes on321

the UR5 setup include handling objects dynamics e.g., (i) slipping from gripper during picking (22%322

of errors), rolling away on contact (67% of errors), or colliding with another object during placing323

(11% of errors). On the other hand, for the Bi-arm Kuka2x setup, common failure modes include: (i)324

perception detection failures (47% of errors), (ii) objects dropping during handover (41% of errors),325

(iii) grasp failures (6% of errors), (iv) or other systems errors (6% of errors). See Varley et al. [16]326

for a more detailed analysis of the Bi-arm Kuka2x setup.327

7 Final GPT-4 PromptBook Prompts328

7.1 Interleaved State Prediction for Mobile Sorting Task329

330
1 # You are a helpful robot with one arm and a mobile base. Your task is to sort objects into331

recycle , compost , and landfill bins according to their trash classification using a robot332
API.333

2 # Given a list of object descriptions and their current bin placements , determine their334
correct trash classification (recycle , compost , or landfill).335

3 # If the objects are not currently in their corresponding bin , move them to the right bin. Use336
your best judgement to decide the right trash classification for each object.337

4 # Trash classification guidelines:338
5339
6 # Compost:340
7 # Items primarily made of paper , cardboard or organic material. Products labeled as "341

compostable" belong exclusively to this category.342
8 # Landfill:343
9 # Items typically made of plastic or mixed materials , which are deformable or crumpled , i.e344

wrappers and bags , and might have contained snacks or dry food items.345
10 # Recycle:346
11 # Items primarily made of rigid plastic , aluminum , or glass. Most items in this category are347

bottles and cans.348
12349
13 # Constraints:350
14351
15 # 1. Your base starts in front of the compost bin.352
16 # 2. Your cannot pick or place from a given bin if your are not currently in front of that bin353

.354
17 # 3. Always track the robot’s position in relation to the bins after each api call to ensure355

no unnecessary movements are made. Avoid commanding the robot to move to a bin it’s356
already in front of, as this will result in an error.357

18 # 4. Objects that are already in their respective correct bins should not be moved. Ensure358
that the robot does not pick up and replace items already in the appropriate bin.359

19 # 5. You can only pick one object at a time.360
20 # 6. Your response should be exclusively in the form of Python code and Python -formatted361

comments. Only output calls to the robot API provided. Do not use additional if362
statements or loops.363

21364
22 # Only python code below.365
23366
24 class Robot:367
25 def __init__(self):368
26 self.picked_object = None369
27 sel.current_bin_position = ’compost ’370
28371
29 def pick_object_from_bin(self , object_name , bin_name):372
30 ’’’373
31 :param object_name (string): Name of the object to be picked.374
32 :param bin_name: One of [" compost", "recycle", "landfill "].375
33 ’’’376
34 pass377
35378
36 def place(self , bin_name):379
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37 ’’’380
38 :param bin_name (string): One of [" compost", "recycle", "landfill "].381
39 ’’’382
40 pass383
41384
42 def move_base_to_bin(self , bin_name):385
43 ’’’386
44 :param bin_name (string): One of [" compost", "recycle", "landfill "].387
45 ’’’388
46 pass389
47390
48 robot = Robot()391
49392
50 # Instruction: Sort the objects into the right bin according to their trash classification.393
51 # objects = {’compost ’: [’noosa yogurt plastic container ’], ’landfill ’: [], ’recycle ’: [’taali394

water lily pops deformable plastic bag ’]}395
52 # robot.current_bin_position = ’compost ’396
53 # robot.picked_object = None397
54 robot.pick_object_from_bin(’noosa␣yogurt␣plastic␣container ’, ’compost ’)398
55 # objects = {’compost ’: [], ’landfill ’: [], ’recycle ’: [’taali water lily pops deformable399

plastic bag ’]}400
56 # robot.current_bin_position = ’compost ’401
57 # robot.picked_object = ’noosa yogurt plastic container ’402
58 robot.move_base_to_bin(’recycle ’)403
59 # objects = {’compost ’: [], ’landfill ’: [], ’recycle ’: [’taali water lily pops deformable404

plastic bag ’]}405
60 # robot.current_bin_position = ’recycle ’406
61 # robot.picked_object = ’noosa yogurt plastic container ’407
62 robot.place(’recycle ’)408
63 # objects = {’compost ’: [], ’landfill ’: [’hint cherry bottle ’], ’recycle ’: [’taali water lily409

pops deformable plastic bag ’, ’noosa yogurt plastic container ’]}410
64 # robot.current_bin_position = ’recycle ’411
65 # robot.picked_object = None412
66 robot.pick_object_from_bin(’taali␣water␣lily␣pops␣deformable␣bag’, ’recycle ’)413
67 # objects = {’compost ’: [], ’landfill ’: [], ’recycle ’: [’noosa yogurt plastic container ’]}414
68 # robot.current_bin_position = ’recycle ’415
69 # robot.picked_object = ’taali water lily pops deformable plastic bag’416
70 robot.move_base_to_bin(’landfill ’)417
71 # objects = {’compost ’: [], ’landfill ’: [], ’recycle ’: [’noosa yogurt plastic container ’]}418
72 # robot.current_bin_position = ’landfill ’419
73 # robot.picked_object = ’taali water lily pops deformable plastic bag’420
74 robot.place(’landfill ’)421
75 # objects = {’compost ’: [], ’landfill ’: [’taali water lily pops deformable plastic bag ’], ’422

recycle ’: [’noosa yogurt plastic container ’]}423
76 # robot.current_bin_position = ’landfill ’424
77 # robot.picked_object = None425
78 # Done.426
79427
80 # Instruction: Sort the objects into the right bin according to their trash classification.428
81 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [’la croix lime can empty ’], ’429

recycle ’: [’deep river chips deformable foiled plastic bag ’, ’hint cherry bottle ’]}430
82 # robot.current_bin_position = ’compost ’431
83 # robot.picked_object = None432
84 robot.move_base_to_bin(’landfill ’)433
85 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [’la croix lime can empty ’], ’434

recycle ’: [’deep river chips deformable foiled plastic bag ’, ’hint cherry bottle ’]}435
86 # robot.current_bin_position = ’landfill ’436
87 # robot.picked_object = None437
88 robot.pick_object_from_bin(’la␣croix␣lime␣can␣empty’, ’landfill ’)438
89 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [], ’recycle ’: [’deep river chips439

deformable foiled plastic bag ’, ’hint cherry bottle ’]}440
90 # robot.current_bin_position = ’landfill ’441
91 # robot.picked_object = ’la croix lime can empty’442
92 robot.move_base_to_bin(’recycle ’)443
93 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [], ’recycle ’: [’deep river chips444

deformable foiled plastic bag ’, ’hint cherry bottle ’]}445
94 # robot.current_bin_position = ’recycle ’446
95 # robot.picked_object = ’la croix lime can empty’447
96 robot.place(’recycle ’)448
97 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [], ’recycle ’: [’deep river chips449

deformable foiled plastic bag ’, ’hint cherry bottle ’, ’la croix lime can empty ’]}450
98 # robot.current_bin_position = ’recycle ’451
99 # robot.picked_object = None452

100 robot.pick_object_from_bin(’deep␣river␣chips␣deformable␣foiled␣plastic␣bag’, ’recycle ’)453
101 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [], ’recycle ’: [’hint cherry bottle454

’, ’la croix lime can empty ’]}455
102 # robot.current_bin_position = ’recycle ’456
103 # robot.picked_object = ’deep river chips deformable foiled plastic bag’457
104 robot.move_base_to_bin(’landfill ’)458
105 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [], ’recycle ’: [’hint cherry bottle459

’, ’la croix lime can empty ’]}460
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106 # robot.current_bin_position = ’landfill ’461
107 # robot.picked_object = ’deep river chips deformable foiled plastic bag’462
108 robot.place(’landfill ’)463
109 # objects = {’compost ’: [’paper coffee cup ’], ’landfill ’: [’deep river chips deformable foiled464

plastic bag ’], ’recycle ’: [’hint cherry bottle ’, ’la croix lime can empty ’]}465
110 # robot.current_bin_position = ’landfill ’466
111 # robot.picked_object = None467
112 # Done.468469

7.2 Human Feedback and LLM-aid for Kuka2x Sorting Task470

471
1 # You are a robot with a left arm and right arm placed on a table with a bin to the right and472

another bin to the left.473
2 # Your task is to write code sort objects into the right bin , left bin or table according to a474

given instruction , robot API and a dictionary specifying the objects available and their475
location.476

3 # Use your best world knowledge and make any necessary assumptions to select the objects to477
sort. Consider typical color associations with popular brands.478

4 # Constraints:479
5 # 1. The right arm can pick and place objects on the right bin and the table only. It cannot480

reach the left bin to pick or place objects.481
6 # 2. The left arm can place objects on the left bin and the table. It cannot reach the right482

bin to pick or place objects.483
7 # 3. You can handover objects from one arm to the other. You cannot do a handover if you don’t484

have an object in the passing arm or the receiving arm is not empty.485
8 # 4. You can only pick one object at a time per arm.486
9 # 5. Your response should exclusively be in the form of Python code and Python -formatted487

comments. Only output calls to the robot API provided. Do not use additional if488
statements or loops.489

10490
11 class Robot:491
12492
13 def pick(self , arm_name , object_name):493
14 ’’’494
15 :param arm_name: One of ["left arm", "right arm"].495
16 :type arm_name: string.496
17 :param object_name: Name of the object to be picked.497
18 :type object_name: string.498
19 ’’’499
20 pass500
21501
22 def place(self , arm_name , place_location):502
23 ’’’503
24 :param arm_name: One of ["left arm", "right arm"].504
25 :type arm_name: string.505
26 :parm place_location: One of ["right bin", "left bin", "table "].506
27 :type place_location: string.507
28 ’’’508
29 pass509
30510
31 def handover(self , from_arm_name , to_arm_name):511
32 ’’’512
33 :param from_arm_name: Arm giving the object. One of ["left arm", "right arm"].513
34 :type from_arm_name: string.514
35 ::param to_arm_name: Arm receiving the object. One of ["left arm", "right arm"].515
36 :type to_arm_name: string.516
37 ’’’517
38 pass518
39519
40 robot = Robot()520
41521
42 # Instruction: Move the red objects to the table.522
43 objects = {’left␣bin’: [’pink␣plushie ’], ’table’: [], ’right␣bin’: [’red␣mango’, ’coke␣can’]}523
44 robot.pick(’right␣arm’, ’red␣mango’)524
45 robot.place(’right␣arm’, ’table’)525
46 robot.pick(’right␣arm’, ’coke␣can’)526
47 robot.place(’right␣arm’, ’table’)527
48528
49 # Instruction: Pick up the soft objects and place them on the right bin.529
50 objects = {’left␣bin’: [’purple␣plushie ’, ’yellow␣plushie ’], ’table’: [’blue␣block’], ’right␣530

bin’: []}531
51 robot.pick(’left␣arm’, ’purple␣plushie ’)532
52 robot.handover(’left␣arm’, ’right␣arm’)533
53 robot.place(’right␣arm’, ’right␣bin’)534
54 robot.pick(’left␣arm’, ’yellow␣plushie ’)535
55 robot.handover(’left␣arm’, ’right␣arm’)536
56 robot.place(’right␣arm’, ’right␣bin’)537538
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7.3 Low-Level Manipulation Skills Generation539

540
1 # You are a helpful robot with one arm and a mobile base.541
2 # The gripper fingers are 10 cm long and the span between them when open is 15 cm.542
3 # You are standing in front of a workspace where you will be given task instructions to543

perform writing python code using the robot api below.544
4545
5 # Poses are a dictionary with ’position ’ and ’orientation ’ keys in robot frame.546
6 # The ’position ’ value is a 3D array indicating the [x, y, z] coordinates in meters.547
7 # The ’orientation ’ value is a 4D array indicating the [w, x, y, z] quaternion.548
8 # Bounding boxes are a dictionary comprised by the ’centroid_pose ’- which is a pose dictionary549

,550
9 # as well as ’size’ representing the size of the [x, y, z] box edges in meters.551

10 # Note: All poses and bounding boxes are in robot frame. This means they are relative to the552
current base position which is base_pose = {’position ’:[0,0,0], ’orientation ’:553
[1,0,0,0]}.554

11 # If the base moves , all previous object poses are no longer valid; except the arm pose555
because it is attached to the base and it moves along with it. The arm pose will only556
change when the arm moves.557

12 # All bouding boxes are z-aligned with no rotation.558
13559
14 # !!!!!!!!! IMPORTANT DIRECTIONAL INFORMATION !!!!!!!!!560
15 # In the robot frame , front/back is along the x axis , left/right is along the y axis and up/561

down is along the z axis with following directions:562
16 # Positive x: Forward/Front (away from the robot)563
17 # Negative x: Backward/Back (towards the robot)564
18 # Positive y: To the left of the robot.565
19 # Negative y: To the right of the robot.566
20 # Positive z: Up.567
21 # Negative z: Down.568
22 # Note: When comparing two coordinates , if one is greater than the other and you can only move569

the smaller one , then to increase the distance between the two you need to make the570
smaller one smaller by subtracting a delta.571

23 # Conversely , to decrease the distance , you would add a delta to the smaller coordinate. On572
the other hand , if you can only move the larger one then adding a delta would increase573
the distance between the two and subtracting a delta would decrease it.574

24575
25 # The following Euler degree angles (roll , pitch , yaw) apply to the gripper orientations in576

robot frame:577
26 # Pointing towards positive z (approaching from bottom):578
27 # [0, 0, 0] # fingers aligned with y axis.579
28 # [0, 0, -90] # fingers aligned with x axis.580
29 # Pointing towards negative z (approaching from the top):581
30 # [180, 0, 0] # fingers aligned with y axis.582
31 # [180, 0, -90] # fingers aligned with x axis.583
32 # Pointing towards positive x (approaching from front , away from the robot):584
33 # [0, 90, 0] # fingers aligned with y axis.585
34 # [-90, 0, -90] # fingers aligned with z axis.586
35 # Pointing towards negative x (approaching from back side , towards the robot):587
36 # [0, 0, 180] # fingers aligned with y axis.588
37 # [0, -90, -90] # fingers aligned with z axis.589
38 # Pointing towards positive y (approaching from right side):590
39 # [-90, 90, 0] # fingers aligned with y axis.591
40 # [-90, 0, 0] # fingers aligned with z axis.592
41 # Pointing towards negative y (approaching from left side):593
42 # [-90, 0, 90] # fingers aligned with y axis.594
43 # [-90, 0, 180] # fingers aligned with z axis.595
44 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!596
45597
46 # Ensure that the direction and orientation you want the gripper to move in follows the598

aforementioned definitions.599
47600
48 # When interacting with objects , consider their physical properties and how they are used or601

manipulated. Plan the trajectories of the arm accordingly to successfully complete the602
task motion: linear , circular , sinusoidal , elliptical , etc; along the corresponding x,y,z603
axis.604

49605
50 # Python code and comments only from here.606
51607
52 class RobotAPI(object):608
53609
54 def gripper_open(self , span =1.0):610
55 ’’’611
56 :param span: percentage of openness of the gripper. 1.0 is 17 cm.612
57613
58 ’’’614
59 pass615
60616
61 def gripper_close(self):617
62 pass618
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63619
64 def orientation_quaternion_from_euler(self , roll , pitch , yaw):620
65 ’’’Get quaternion from roll , pitch , yaw in radians.’’’621
66 pass622
67623
68 def get_arm_pose(self):624
69 ’’’ returns current arm pose in robot frame. The arm pose indicates the point at the tip625

of the gripper fingers when closed. The size of the gripper is 12 cm.626
70 ’’’627
71628
72 def detect_objects_in_scene(self , object_names):629
73 ’’’ Detect objects in the scene and return list of bounding boxes.630
74 :param object_names: List of object names.631
75 ’’’632
76633
77 def print(self , objects):634
78 pass635
79636
80 def follow_arm_trajectory(self , trajectory_poses , allow_base_moves):637
81 ’’’638
82 Execute an arm movement following the trajectory. This may move the base accordingly.639
83 :param trajectory_poses: List of poses for the gripper to follow in robot frame.640
84 :param allow_base_moves: Whether the robot is allowed to move the base while following641
85 the arm trajectory. If False , the robot will follow the trajectory moving only the arm.642
86 :param speed: One of "medium", "fast" or "slow". Default is "medium ".643
87 ’’’644
88 pass645
89646
90 robot_api = RobotAPI ()647
91648
92 # Instruction: Pick the bottle on the right.649
93 # Scene objects: chips bag , water bottle , cabinet.650
94 objects = robot_api.detect_objects_in_scene ([’water␣bottle ’, ’chips␣bag’, ’cabinet ’])651
95 robot_api.print(objects)652
96 # I/O653
97 # objects = {’cabinet ’: [{’ centroid_pose ’: {’position ’: [2.07 , 0.54 , 0.20 ], ’orientation ’:654

[1.00 , 0.00 , 0.00 , 0.00 ]}, ’size ’: [3.01 , 3.06 , 0.40]}] , ’water bottle ’: [{’655
centroid_pose ’: {’position ’: [0.44 , 0.24 , 0.45 ],’orientation ’: [0.97 , 0.00 , 0.00 ,656
0.23 ]}, ’size ’: [0.05 , 0.05 , 0.11 ]},{’ centroid_pose ’: {’position ’: [0.34 , 0.14 ,657
0.45 ],’orientation ’: [0.97 , 0.00 , 0.00 , 0.23 ]}, ’size ’: [0.05 , 0.05 , 0.11 ]}], ’658
chips bag ’: []}659

98 # There are two bottles , and the right -most should be compared along the y-axis.660
99 # First bottle is has y-value of 0.24, second has y-value of 0.14.661

100 # The negative y direction corresponds to right , so the second bottle is the right -most.662
101 right_bottle_position = objects[’water␣bottle ’][1][’centroid_pose ’][’position]663
102 right_bottle_orientation␣=␣␣objects[’water bottle ’][1][’centroid_pose ’][’orientation]664
103 right_bottle_size = objects[’water␣bottle ’][1][’size’]665
104 # The bottle has a bounding box size of [0.05 , 0.05 , 0.11] in meters and is located on the666

top x-y plane of the cabinet.667
105 # The gripper has a max span of 10 cm, the size of the bottle along the z-axis is 0.11 so it668

can only grasp the bottle with fingers aligned along the x axis and y axis.669
106 # A bottom grasp is ruled out since the robot would collide with the cabinet.670
107 # A back grasp is unfeasible since the robot is in front of the cabinet and cannot go around671

it to make a back grasp.672
108 # A top grasp with fingers aligned with the x-axis or y-axis is feasible.673
109 # A front grasp with fingers aligned with the y-axis and a side grasp with fingers aligned674

with the x-axis are feasible too.675
110 # We choose the top grasp with fingers aligned with the y-axis for simplicity.676
111 # Get quaternion corresponding to [180, 0, 0] roll ,pitch and yaw for a top grasp with fingers677

aligned with the y-axis.678
112 grasp_orientation_quaternion = robot_api.orientation_quaternion_from_euler (180, 0, 0)679
113 # Calculate grasp position so object ends within gripper fingers.680
114 grasp_pose = {’position ’: right_bottle_position , ’orientation ’: grasp_orientation_quaternion}681
115 # The pregrasp pose is the pose right before the grasp.682
116 # Since this is a top grasp , this means the gripper is pointing towards the negative z axis ,683

so the pregrasp pose has a positive z delta over the grasp pose.684
117 # Calculate pregrasp pose accounting for object size and gripper size (0.1 m).685
118 pregrasp_pose = {’position ’: grasp_pose[’position ’] + [0,0, right_bottle_size [2]/2 + 0.1], ’686

orientation ’: grasp_orientation_quaternion}687
119 # Open the gripper according to the y axis size of the bottle plus a buffer of 2 cm.688
120 robot_api.gripper_open(right_bottle_size [1] + 0.02)689
121 robot_api.follow_arm_trajectory ([ pregrasp_pose , grasp_pose], allow_base_moves=True)690
122 robot_api.gripper_close ()691
123 # bottle pose is not valid anymore since we might have moved the base so we use the current692

arm pose.693
124 current_arm_pose = robot_api.get_arm_pose ()694
125 # The bottle is at the top of the cabinet. Picking means moving the object (bottle) away from695

their reference (cabinet) along the z axis.696
126 # The cabinet is at z_cabinet = 0.2 and the bottle is at z_bottle = 0.45.697
127 # When the object coordinate is lower than its reference , to increase distance you need to698

subtract a delta and to decrease distance you need to add a delta.699
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128 # When the object coordinate is greater than its reference , to increase distance you need to700
add a delta and to decrease distance you need to subtract a delta.701

129 # Since z_bottle is greater than z_cabinet , it means the object coordinate is lower than its702
reference , so to increase the distance between the two we add a positive delta to703
z_bottle.704

130 lift_arm_pose = {’position ’: current_arm_pose[’position ’] + [0,0, 0.25], ’orientation ’:705
current_arm_pose[’orientation ’]}706

131 # Allow for base moves for after grasp moves since arm could be in a difficult position to707
execute the lift.708

132 robot_api.follow_arm_trajectory ([ lift_arm_pose], allow_base_moves=True)709
133 # Done710
134711
135 # Instruction: Instruction to generate new skill here <------712713

# Instruction: Open the drawer.
# Scene objects: drawer handle, cabinet.714

715

# Instruction: Close drawer.
# Scene objects: drawer handle, open drawer, cabinet top.716

717

objects = [’7up can’, ’apple’, ’blue chip bag’, ’coke can’, ’green can’, ’green chip bag’, ’orange can’, ’pepsi
can’, ’redbull can’, ’rxbar blueberry’, ’water bottle’] # Instruction: Pick coke can.
# Scene objects: coke can.

718

719

# Instruction: Wave your gripper as if you were saying hello.
720

721

# Instruction: You are holding a spoon facing down inside a bowl with eggs. Whisk the eggs.
# Scene objects: bowl.722

723

15


	Introduction and Related Work
	The PromptBook Recipe
	Prompt Elements
	How to Build PromptBook Prompts

	Experiments
	Discussions and Future Work
	Examples of Promptbook Elements
	Example vs. Instruction Prompting Evaluation Protocol
	Robot Platforms
	Task Domains.
	Evaluated LLMs.
	Error Categorization
	Real robot execution.

	Final GPT-4 PromptBook Prompts
	Interleaved State Prediction for Mobile Sorting Task
	Human Feedback and LLM-aid for Kuka2x Sorting Task
	Low-Level Manipulation Skills Generation


