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ABSTRACT

Although spiking neural networks (SNNs) show strong advantages in terms of
information encoding, power consumption, and computational capability, the un-
derdevelopment of supervised learning algorithms is still a hindrance for training
SNNs. We consider weight initialization to be a pivotal issue for efficient SNN
training. It greatly influences gradient generation when using the method of back-
propagation through time in the initial training stage. Focusing on the properties
of spiking neurons, we first derive an asymptotic formula for their response curve,
approximating the actual neuron response distribution. Then, we propose an ini-
tialization method based on the slant asymptote to overcome gradient vanishing.
Finally, experiments with different coding schemes in classification tasks on the
MNIST and CIFAR10 dataset show that our method can effectively improve the
training speed and the model accuracy compared with traditional deep learning
initialization methods and existing SNN initialization methods. Further validation
on different neuron types and training hyperparameters shows comparably good
versatility and superiority over other methods. Some suggestions are given for
SNN training based on the analyses.

1 INTRODUCTION

To date, deep learning has contributed to outstanding performance on various tasks (Hinton et al.,
2012; Hosu & Rebedea, 2016; He et al., 2016; LeCun et al., 2015). Most state-of-the-art models
are based on analog neurons. Each analog value conveys activation; thus, the inference processes
of analog neural networks (ANNs) consist of massive matrix manipulations. To overcome this,
spiking neural networks (SNNs) are increasing attracting from researchers (Maass, 1997; Maass &
Markram, 2004; Yang et al., 2019). The spiking neurons in an SNN emit sparse 0,1 spikes when
activated. Compared with existing ANNs, SNNs are considered to encode spatiotemporal patterns
and have better power efficiency. Hence, implementations of SNNs are highly appealing in power-
limited scenarios. In addition, SNNs have exhibited computational capabilities as powerful as those
of conventional artificial neural networks (Lee et al., 2016).

Despite SNNs’ powerful capabilities, these networks lack efficient supervised learning algorithms.
The discrete spikes prevent the direct use of backpropagation (BP) training. Recently proposed
supervised algorithms have mainly focused on two methodologies: ANN-SNN conversion and BP
through time (BPTT) with surrogate functions. Compared to ANN-SNN conversion (Diehl et al.,
2015; Sengupta et al., 2019; Deng & Gu, 2021; Ho & Chang, 2020; Ding et al., 2021), BPTT
is more friendly to the event-based datasets (Lee et al., 2016; Zheng et al., 2021; Neftci et al.,
2019). However, Wu et al. (2018) has reported that BPTT is only feasible to shallow architectures.
Therefore, BPTT still cannot be regarded as a mature SNN training algorithm.

We ascribe the immaturity of BPTT training to the influence of the gradients. One common reason is
gradient vanishing and explosion. This is natural since SNNs can be regarded as a type of recurrent
neural networks (RNNs) (He et al., 2020; Fang et al., 2020). In the wisdom of RNN methodology,
researchers have managed to provide a simple solution by rethinking weight initialization (Le et al.,
2015). The success of RNN training inspires consideration of whether there may also be a simple
solution for SNNs. Another reason is early gradient generation, which has rarely been mentioned
in the previous literature. Most surrogate functions produce gradients when the membrane potential
is in the neighborhood of the threshold. Some produce gradients only when spikes are fired (Lee
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Figure 1: Loss curves and mean firing rate curves of a 5-layer SNN, initialized using the methods
proposed by Glorot & Bengio (2010) (a) and us (b). Figure (a) shows an example of inadequate
initialization. All losses start to decrease as the firing rates increase.

et al., 2020a). Thus, the flow of the gradients strongly depends on the number of firing neurons and
will influence the optimization of the network. A small experiment can help illustrate how early
gradient generation affects training. As shown in Fig. 1, with an inadequate weight initialization
method, the neurons receive inputs that are too small and cannot fire initially, leading to stall of the
training process because gradients fail to be produced. Until some neurons fire, the loss does not
begin to decrease, and the neurons must suffer a latter uncoordinated training schedule. Therefore,
in general, good weight initialization is also important for efficient SNN training.

At present, initialization for SNN training is mainly achieved by following and adapting methods
originally developed for ANNs. However, unlike the rectified linear unit (ReLU) activation function
conventionally used in ANNs, spiking neurons respond very differently, and recent improvements in
models have rarely focused on the unique properties of spiking neurons. In this paper, we investigate
the theoretical response of spiking neurons to develop a better SNN initialization strategy. The main
contributions of this paper are summarized as follows:

• We use iterative systems to model first-order integrate-and-fire neurons and theoretically
investigate the response curve. A slant asymptote is derived to approximate the actual
neuron response.

• We examine the difficulty of training deep SNNs and develop an initialization method
based on the slant asymptote. The proposed initialization method relies on adequate scaled
weights and nonzero biases to enable early gradient training.

• Experiments with rate coding and event coding in classification tasks show that our method
can effectively improve the model training speed and accuracy. In addition, empirical anal-
yses suggest that our asymptote initialization method offers versatility and superiority over
a vast range of training hyperparameters, such as different neuron types, surrogate func-
tions, and optimizers.

2 THEORETICAL ANALYSIS OF SNNS

2.1 SPIKING NEURONS AND SURROGATE FUNCTIONS

With the development of neuroscience, many neuron models have been proposed (Hodgkin & Hux-
ley, 1952; Gerstner et al., 2014), commonly in the form of differential systems. However, in the field
of computing, analyses are often based on first-order differential models because of computational
efficiency. Typically, leaky and nonleaky integrate-and-fire (LIF and IF) models can be formulated
in terms of the dynamics of the membrane potential v as shown in Eq. 1(a) and (b).

τ dv(t)
dt = −(v(t)− vreset) +Ri(t) (a) τ is time constant.

di(t)
dt = 1

C i(t) (b)
(1)
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Table 1: Parameter setting examples for first-order linear integrate-and-fire models expressed in the
form given in Eq. 2.

Model k λ

LIF model in Eq. 1(a) (Abbott, 1999) 1− 1/τ R/τ
IF model in Eq. 1(b) (Abbott, 1999) 1 1/C
Diehl et al. (2015); Sengupta et al. (2019) 1 1
Wu et al. (2018); Zheng et al. (2021) τdecay 1
Panda et al. (2020) α 1

By utilizing the Euler method, we can convert these dynamic systems into an iterative expression
that computers prefer (Eq. 2). Note that vreset is usually 0 in the literature; hence, it is neglected in
latter analyses. When an element of vt exceeds the firing threshold θ, the corresponding neuron will
emit a spike of 1, and membrane potential will then be reset to 0. Without loss of generality, we use
the following equations to describe the iterative systems for first-order integrate-and-fire neurons.

ut = kvt + λit

ot = ut > θ

vt+1 = ut(1− ot)

(2)

In Eq. 2, k and λ are hyperparameters that control the neuron type and firing pattern (k ∈ (0, 1]).
When k is set to 0, the iteration of the membrane potential over time is canceled, and the network
is not a standard SNN. Many neuron models used in the existing literature on SNN training can be
regarded as the model given in Eq. 2 with different settings of the two parameters. Table 1 illustrates
some of these settings.

In Eq. 2, ot = ut > θ is the non-differentiable part. It can also be rewritten as ot = H(ut − θ)
where H(·) is the Heaviside step function. H(x) = 0 when x ≤ 0, and H(x) = 1 when x > 0.
The heaviside function has a gradient of 0 almost everywhere. Surrogate function methods first
emerged in network quantization to cope with non-differentiable problems (Mairal, 2013; Hubara
et al., 2016). Accordingly, four surrogate functions (sigmoid, tanh, hardtanh, arctan) are presented
in this paper, parameterized by the parameter a, as listed in Table A3. These functions are the shifted
and scaled version of the original functions, as shown in Fig. A7 in the appendix. The parameter
a can be adjusted to rescale the output gradient. The gradient functions are typically symmetric
w.r.t. an input of zero. An exception has been proposed by Lee et al. (2020a), such that only the
production of spikes can trigger nonzero gradients.

2.2 RESPONSE OF SPIKING NEURONS AND ASYMPTOTES

It is not easy to establish the relationship between the current input and the output based on an
iterative equation. Considering that the difference between the iterative equation and the differential
equation is small when stepsize = 1, and that the differential equation can be integrated to obtain
the response curve, Theorem 1 gives the response of a first-order integrate-and-fire neurons.
Theorem 1. For a first-order integrate-and-fire neuron as expressed in Eq. 2 (ut = kvt + λit, k ∈
(0, 1]), the model takes a constant current it = i as input and produces spikes as output. Let the
discrete output firing rate w.r.t. i be expressed as f = T

N , where T is the total inference time and N
is the spike count. Then, the input-output response curve (f -i curve) is estimated as follows:

If k = 1 :

f =


0, i ≤ 0,
λ
θ i, 0 < i < θ

λ ,
1, i ≥ θ

λ .
If k ∈ (0, 1) :

f =


0, i ≤ 0,

(k − 1)/ ln(1 + (k−1)θ
λi ), 0 < i < θ

λ · k−1
ek−1−1

,

1, i ≥ θ
λ · k−1

ek−1−1
.

(3)
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Figure 2: Theoretical response curves after integration (solid lines), slant asymptotes (dashed lines),
and actual neuron responses (circular dots) for the first-order linear integrate-and-fire model with
(a) k = 1 and (b) k ∈ (0, 1).

The solid lines in Fig. 2 represent the response curves when k = 1 and k ∈ (0, 1) in Theorem 1.
Fig. 2 also presents scatter plots of the actual response of a spiking neuron given the corresponding
parameters (marked with circular dots). The actual neuron responses match the theoretical f − i
curve for most inputs. Consider the region in which f ∈ (0, 1). When k ∈ (0, 1), it can be intuitively
found that the f -i curve, which has a non-differentiable point, seems to exhibit a slant asymptote.
Theorem 2 manifests the existence of this slant asymptote and provides a uniform expression for it.
In Fig. 2, this asymptote approximately crosses the actual neuron response distribution. In this case,
the slant asymptote of f -i can better describe the relationship between the expected input current
and the output firing rate.
Theorem 2. For a first-order integrate-and-fire neuron as expressed in Eq. 2 (ut = kvt + λit, k ∈
(0, 1]), the slant asymptote of the f -i curve satisfying f ∈ (0, 1) exists and can be uniformly ex-
pressed as follows:

fa =
λ

θ
i+

k − 1

2
. (4)

3 WEIGHT INITIALIZATION FOR SNN TRAINING

The gradient of the weights is related to the spike output. To better illustrate this, given an L-layered
SNN, we denote the input current, membrane potential, intermediate variable, and spike output of
the lth layer by il,t,vl,t,ul,t, and ol,t, respectively. The variables for the neurons in one layer satisfy
Eq. 2. il,t is the weighted input consisting of the previous layer’s spike output (il,t = W lol−1,t+bl),
and the first layer takes the encoded spike o0,t as input. When we backpropagate the loss ε through
time T , the gradients w.r.t. the weights of the lth layer can be expressed as shown in Eq. 5. An
inappropriate ol−1,t, such as an output of zero, will lead to a poor gradient.

∂ε

∂W l
=

T∑
t=1

∂ε

∂ul,t

∂ul,t

∂il,t
∂il,t

∂W l
= λ

T∑
t=1

∂ε

∂ul,t
(ol−1,t)T (5)

Therefore, the main concern is how to produce spikes to trigger the learning process. Thankfully,
the clipped version of the slant asymptote can replace the analysis of complex iterative functions,
allowing us to focus on the scale of the parameters:

îl = W lôl−1 + bl

ôl = clip(
λ

θ
îl +

k − 1

2
, 0, 1)

(6)

where îi and ôi are the expected current and firing rate vector, respectively, of the ith layer with ni

neurons and W i and bi are the corresponding parameters. Note that W i is an ni × ni−1 matrix. λ,
k and θ represent the neuron parameters.

First, all weights in the SNN are initialized to be independent and identically distributed (i.i.d.). Let
us assume that the input current variances are the same. Then, we have:

Var(̂i
l
) = nl−1Var(W

lôl−1) (7)

4



Under review as a conference paper at ICLR 2022

0 1 2 3 4
Layer index

0.00

0.05

0.10

M
ea

n 
fir

in
g 

ra
te

Ours
Glorot's
He's

0 2 4 6 8
Layer Index

0.00

0.05

0.10

0.15

0.20 Ours
Glorot's
He's

(a) MNIST 5-layer network (b) CIFAR10 VGG9

Figure 3: The illustration of the impact of initialization methods to the overall spike activity before
training. The networks are randomly initialized using different initialization methods.

where î
l
, Wl and ôl−1 denote random variables of elements in îl, W l and ôl−1, respectively.

Considering Var(Wlôl−1), Var(Wlôl−1) = Var(Wl)E[(ôl−1)2] + Var(ôl−1)E[Wl]2, let Wl be
of zero mean; then:

Var(̂i
l
) = nl−1Var(W

l)E[(ôl−1)2]. (8)

In the function ô = clip(λθ î+
k−1
2 , 0, 1), i = θ(1−k)

2λ is the transition point between the nonspiking
region and the linear response region. When bl is initialized as θ(1−k)

2λ (l = 1, 2, · · · , L), a zero-
centered W l × ôl−1 produces a symmetric distribution around zero. With bl initialized as θ(1−k)

2λ ,

E[(ôl−1)2] =
1

2
Var(

λ

θ
î
l−1

) =
1

2

λ2

θ2
Var(̂i

l−1
). (9)

By plugging E[(ôl−1)2] into Eq. 8, we can obtain:

Var(̂i
l
) =

1

2

λ2

θ2
nl−1Var(W

l)Var(̂i
l−1

) (10)

To produce spikes is to maintain E[(ôl)2], which is related to Var(̂i
l
) according to Eq. 9. Therefore,

we determine the distribution of Wl as follows (for l = 2, 3, · · · , L):

Var(̂i
l
)

Var(̂i
l−1

)
=

1

2

λ2

θ2
nl−1Var(W

l) = 1 (11)

Accordingly, W l is initialized from a Gaussian distribution N (0, 2θ2

λ2nl−1
), where nl−1 is the number

of input neurons in layer l. As done in other initializers, we apply the initialization to the first layer
for simplicity.

In previous work on ANNs, there is no need for the neurons to accumulate input. Thus, the biases
are often set to zero in an ANN. For SNNs, because the response asymptote indicates a nonzero non-
differentiable point, it is natural for the biases in an SNN to be initialized to that non-differentiable
value. We validate the impact to the mean firing rate of our initialization method in Fig. 3. Our
method can effectively trigger spikes when compared with ANN-based methods.

4 RELATED WORK

From the perspective of the loss landscape, a good weight initialization is often located in a region
with low loss values (Li et al., 2018). However, training deep neural networks is never an easy thing.
After trails of layerwise training of deep nets (Hinton, 2007; Bengio et al., 2006), Glorot & Bengio
(2010) provided a theoretical view on the prevention of exploding and vanishing gradients. They
estimated the standard deviation of the weights from the number of layer neurons and initialized
the biases to zero. He et al. (2015) extended their hypothesis to a piecewise linear case to cater to
the growing prevalence of ReLU activation. Both methods are widely used in deep ANNs. There
are also works for RNN. Saxe et al. (2014) examined the dynamics of learning and derived random
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Table 2: Network performance comparison on the MNIST and CIFAR10 datasets with different
initialization methods. A hyphen in the table indicates invalid training in a given setting.

MNIST (k = 0.8, λ = 0.2, θ = 1.0)

Constant coding Poisson coding Retina-like coding Event coding
(N-MNIST)

Glorot’s 99.18 99.30 99.04 99.36
He’s 99.18 99.26 99.14 99.35
Wu’s 99.18 99.28 99.24 99.29
Lee’s 99.18 99.27 99.14 99.33
Ours 99.27 99.35 99.20 99.39

CIFAR10 (k = 0.8, λ = 0.2, θ = 1.0)

Constant coding Poisson coding Retina-like coding Event coding
(CIFAR10-DVS)

Glorot’s 81.59 76.69 73.75 -
He’s 82.95 81.86 76.36 66.9
Wu’s 83.90 82.23 78.84 67.7
Lee’s 83.05 81.03 73.07 -
Ours 87.62 83.06 82.98 68.2

orthogonal initial conditions for deep nonlinear networks. Le et al. (2015) used an identity matrix to
initialize the RNN weight matrix and thus maintain the gradients.

Recent SNN studies have also included some initialization methods. For example, one can regard
ANN-SNN conversion as an initialization method (Rathi et al., 2020). In addition, Lee et al. (2016)
set the weights and thresholds using a manually tuned hyperparameter. They also proposed a com-
plex BP error normalization procedure. Wu et al. (2018) suggested normalizing weights sampled
from a standard uniform distribution, with no further explanation. Lee et al. (2020b) followed the
recommendation of He et al. (2015) with a manually selected constant κ.

With the similar motivation of this work, many recent studies have focused on regularizing the
spiking response. Zheng et al. (2021) and Kim & Panda (2020) proposed batch normalization along
channel axes and time axes, respectively, for BPTT; both of which are layerwise normalization
methods. In addition, Kim & Panda (2021) utilized a global unsupervised firing rate normalization.
The above methods lack direct attention to neuronal dynamics. Sengupta et al. (2019), however,
used dynamics of simple IF neuron proposing Spike-Norm for ANN-SNN conversion. In contrast,
our work aims to improve the training for general first-order integrate-and-fire neurons by analyzing
neuronal dynamics.

5 EXPERIMENTAL VALIDATION

5.1 EXPERIMENTAL SETTING AND DATASETS

To verify the training acceleration performance and the model performance against various other
initialization methods, we conducted experiments on classification tasks involving different codings
for the MNIST dataset (Lecun et al., 1998) and the CIFAR10 dataset (Krizhevsky et al., 2009).
Before being fed into an SNN, images should be converted into spike trains. We implemented
constant coding, Poisson coding, retina-like coding, and event coding for both datasets. Poisson
coding and constant coding are popular rate coding schemes for ANN-SNN conversion (Rueckauer
et al., 2017; Sengupta et al., 2019). Retina-like coding mimics the integration process of a bipolar
cell (Zhu et al., 2019). The N-MNIST dataset was produced by converting MNIST into spike events
with dimensions of size 34× 34 using saccades (Orchard et al., 2015). The CIFAR10-DVS dataset
comprises 10000 128× 128 event streams converted from CIFAR10 using a dynamic vision sensor
(DVS) (Li et al., 2017).

Previous work has revealed that the accuracy of an SNN is sensitive to the choice of hyperparameters
such as the neuron parameters (Fang et al., 2020). Therefore, we fixed the neuron parameters for
a given dataset, as shown in Table 2, and compared our method with four other prevalent choices
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(Glorot & Bengio (2010), He et al. (2015), Lee et al. (2016) and Wu et al. (2018)). An analysis of
the hyperparameter sensitivity is presented in Sec. 6. For MNIST, we trained a 5-layer SNN. For
the CIFAR10 dataset, we trained a VGG-9 model. For the CIFAR10-DVS dataset, we added one
pooling layer and a fully-connected layer into the VGG-9 model. Time step in forwarding process is
set to a constant value of 20. All the models were optimized using the Adam optimizer. The detailed
training hyperparameters are shown in the appendix. Additionally, we conducted experiments for
larger datasets, i.e., CIFAR100 and TinyImageNet, to compare to Batch Normalization (BN). See
Appendix for the detailed descriptions and comments on experiments on larger datasets.

5.2 RESULTS
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Figure 4: Training loss and validation accuracy curves on the MNIST, N-MNIST, CIFAR10, and
CIFAR10-DVS datasets. The MNIST and CIFAR10 datasets are encoded with the Poisson distribu-
tion. The first two rows show the loss and accuracy curves in the earliest 5 and 20 epochs. The third
row shows the validation accuracy curves throughout the whole training process.

In general, Fig. 4 and Table 2 show that good parameter initialization can not only accelerate train-
ing but also lead to some performance improvement. On MNIST, the different initialization methods
achieve similar performance in validation accuracy with all four encoding schemes listed in Table 2,
and our method performs slightly better for three of them. On CIFAR10, our method achieves per-
formance improvement, showing accuracy increases of 4.67%, 1.20%, 6.62%, and 0.5% compared
with He’s method. As seen from the first row of Fig. 4, our method enables the model to generate
early gradients in fewer iterations and cause the loss to drop faster. In more detail, our method al-
lows the model to obtain a proper parameter distribution, which helps every layer coordinate with
the input and output to better adapt to SNN training. This advantage enables network training to
begin quickly, within a few iterations. In comparison, the other methods are slower than ours.

For MNIST, our method reaches 98% validation accuracy after only 1 epoch, while other methods
reach this accuracy after about 2 or 3 epochs of training. For N-MNIST, our method reaches 98%
accuracy after 2 epochs, while the others reach after 3 epochs. For CIFAR10, our method first
achieves 60% accuracy at approximately the 4th epoch, whereas Wu’s, He’s, Lee’s, and Glorot’s
methods reach this level later, respectively. For CIFAR10-DVS, our method and those of Wu and
He reach 60% accuracy in order, while training fails under Lee’s and Glorot’s methods.

Due to the simplicity of MNIST, networks taking input encoded using each of the four schemes
perform similarly. For CIFAR10, a model trained with constant coding achieves the highest accuracy
because this data format is almost the same as the original data. Poisson coding performs worse than
constant coding due to its more complicated coding rules. Retina-like coding leads to considerable
degradation, probably due to the loss of some texture information. The results show that this coding
scheme influences the other four initialization methods more than it does ours. The event data
(CIFAR10-DVS) are sparse and complicated, and the amount of data is much smaller than that in
CIFAR10, which increases the training difficulty and leads to performance degradation.
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6 ANALYSIS OF EMPIRICAL RESULTS

To study whether the initialization strategy is sensitive to the hyperparameters of the model and
the training process, we conducted many experiments. In these experiments, we used the MNIST
dataset and the same 5-layer network as in Sec. 5. Training was performed for 3 epochs with a
minibatch size of 64.

6.1 PERFORMANCE ANALYSIS ON DIFFERENT NEURONS

We performed an analysis of different neuron types, that is, different neuron parameter settings.
While θ was fixed to 1.0, k was sampled from 0.1 to 1.0, and λ was sampled from 0.1 to 4.0.
Fig. A8 compares the training speeds in this grid of experiments. For most (k, λ) settings, our
method shows obvious acceleration relative to the other methods. In particular, our method can
be used to effectively train networks for which training cannot be successfully started using other
initialization methods.
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Figure 5: Validation accuracy (red polylines) and training iterations (colored bar charts, where the
value indicates the number of iterations at which the accuracy first reaches the expected level of 60%)
for first-order integrate-and-fire neurons with different (k, λ) settings and initialization methods.
Note that θ is set to 1.0.

We choose six representative groups to better illustrate this as shown in Fig. 5. For leaky neurons
with different τ values, with decreasing τ , the training speed and accuracy of all initialization meth-
ods improve. In this case, our method maintains high accuracy and achieves a training acceleration
of more than 11× compared to the baseline Glorot initialization. For nonleaky neurons, as shown
in panels (a) and (e), the difference among methods is not obvious. As λ decreases, our method
enables faster training. For neurons that leak quickly (k = 0.2), Glorot’s method performs poorly
in terms of the start-up training speed but achieves comparable accuracy to our method. Among the
faster methods, our method achieves the best accuracy.

Besides, instead of fixing θ, we plot the heatmap in Fig. A9 after sampling θ from {0.5, 1, 2, 4} .
This figure illustrates that our method is suitable for almost every chosen parameter and can help
address the stalling of training caused by extremely large threshold due to the compensation of the
initial biases.

6.2 PERFORMANCE ANALYSIS WITH DIFFERENT OPTIMIZERS AND SURROGATE FUNCTIONS

We selected τ = 5 and 2 to test the sensitivity to the training hyperparameters. Two main factors
that influence the gradient update are the optimizer and the surrogate function. Accordingly, Fig. 6
shows the training curves with different initialization methods, and the accuracy is marked in the
figure in the order of the legends. Generally, if training can be successfully started via the gradient
update with a given hyperparameter, the difference in accuracy is not huge. However, we can still
observe an accuracy advantage with our method. For example, for (0.8, 0.2, 1.0), the accuracy of
Wu’s and Lee’s methods is 1.8% lower than ours. In addition, roughly, the initialization methods can
be roughly arranged in the following order by the training speeds observed from the experiments:
ours > Wu’s > He’s ≥ Lee’s > Glorot’s. Moreover, better training is observed in experiments with
a smaller τ .
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Figure 6: Training accuracy and validation accuracy using different training hyperparameters, dif-
ferent (k, λ, θ) settings and different initialization methods. The performance with four different
optimizers (Adam, SGD, ASGD, AdaGrad) is shown in (a). The performance with four different
surrogate functions (sigmoid, tanh, arctan, hardtanh) is presented in (b).

Regarding the optimizers, SGD(lr=0.5) and ASGD(lr=2.0) fail to activate fast early training for other
initialization methods, yet our methods still works. Compared with Adam(lr=1e-3,β =(0.9,0.99)),
AdaGrad(lr=1e-2) seems less sensitive to the choice of the initialization methods.

With different surrogate functions, the order of the methods is maintained. Hardtanh produces coarse
surrogate gradients and suppresses training under the other four methods. Surrogate functions that
produce more fine-grained gradients all successfully activate training. Sigmoid(a=2.0) has some
advantages in terms of training speed, but it is slightly inferior to tanh(a=2.0) and arctanh(a=1.0) in
training accuracy.

7 DISCUSSIONS AND LIMITATIONS

The large number of experiments we conducted allows us to provide suggestions for SNN training.
A good combination of hyperparameters is essential. Our initialization method can speed up training
in most cases and adapt to more difficult neural parameters. In addition, we recommend the use of
adaptive optimizers, as it helps accumulate the gradients. Finally, the arctan and tanh surrogate
functions are suggested because they offer high accuracy and relatively high training speeds.

Apart from the advantages, our method still has some limitations in terms of neuronal dynamics.
Although analyzing the response of spiking neurons and asymptotes is feasible in most cases, the
theoretical results will be hampered if the input current carries more noise. The noise will have at
least two impacts (Gerstner et al., 2014). One is that the neurons will fire even when the mean input
is below zero. The other is that noise in the input current will cause the membrane potential to drift
away from the theoretical asymptote. Furthermore, the noise will increase when we extend to wider
and deeper networks. Therefore, for large datasets such as ImageNet, the asymptote should take the
current noise into account.

8 CONCLUSION

In this work, we aim to enhance the efficient BPTT training of SNNs by proposing an initializa-
tion method that is consistent with the response of spiking neurons in initial training. Our method
bridges the spiking neuron response with the wisdom of traditional deep learning training, which
may have an influence on future research on topics such as ANN-SNN conversion with LIF neu-
rons or other SNN training methods. Our experimental results validate that our initialization method
shows superiority, versatility, and robustness over a vast training hyperparameter space.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain
research bulletin, 50(5-6):303–304, 1999.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In Advances in Neural Information Processing Systems, pp. 153–160. MIT Press,
2006.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations (ICLR), 2021.

Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ANN-SNN conversion
for fast and accurate inference in deep spiking neural networks. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IJCAI), pp. 2328–2336, 2021.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothee Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
CoRR, abs/2007.05785, 2020.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 9 of JMLR Proceedings, pp. 249–256, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034. IEEE, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
IEEE Computer Society, 2016.

Weihua He, Yujie Wu, Lei Deng, Guoqi Li, Haoyu Wang, Yang Tian, Wei Ding, Wenhui Wang,
and Yuan Xie. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and
differences. Neural Networks, 132:108–120, 2020.

Geoffrey Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10):
428–434, 2007.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

Nguyen-Dong Ho and Ik-Joon Chang. TCL: an ANN-to-SNN conversion with trainable clipping
layers. CoRR, abs/2008.04509, 2020.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544,
1952.

Ionel-Alexandru Hosu and Traian Rebedea. Playing Atari games with deep reinforcement learning
and human checkpoint replay. CoRR, abs/1607.05077, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems, pp. 4107–4115, 2016.

10



Under review as a conference paper at ICLR 2022

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. arXiv preprint arXiv:2010.01729, 2020.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 5 2009.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks
of rectified linear units. CoRR, abs/1504.00941, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Chankyu Lee, Adarsh Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis, and Kaushik Roy.
Spike-flownet: Event-based optical flow estimation with energy-efficient hybrid neural networks.
In European Conference on Computer Vision (ECCV), volume 12374, pp. 366–382. Springer,
2020a.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in Neuroscience, 14, 2020b.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in Neuroscience, 10:508, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems, pp. 6391–6401,
2018.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. CIFAR10-DVS: An event-
stream dataset for object classification. Frontiers in Neuroscience, 11:309, 2017.

Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Wolfgang Maass and Henry Markram. On the computational power of circuits of spiking neurons.
Journal of computer and system sciences, 69(4):593–616, 2004.

Julien Mairal. Optimization with first-order surrogate functions. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML), volume 28, pp. 783–791, 2013.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accu-
rate deep spiking neural networks with backward residual connections, stochastic softmax, and
hybridization. Frontiers in Neuroscience, 14, 2020.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations (ICLR), 2020.

11



Under review as a conference paper at ICLR 2022

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11:682, 2017.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. In International Conference on Learning
Representations (ICLR), 2014.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13:95, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Zheyu Yang, Yujie Wu, Guanrui Wang, Yukuan Yang, Guoqi Li, Lei Deng, Jun Zhu, and Luping Shi.
DashNet: A hybrid artificial and spiking neural network for high-speed object tracking. CoRR,
abs/1909.12942, 2019.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI),
pp. 11062–11070, 2021.

Lin Zhu, Siwei Dong, Tiejun Huang, and Yonghong Tian. A retina-inspired sampling method for
visual texture reconstruction. In IEEE International Conference on Multimedia and Expo (ICME),
pp. 1432–1437. IEEE, 2019.

12



Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 APPENDIX FOR THEORETICAL ANALYSIS

Here, we provide theoretical proofs of the theorems in Sec. 2. These are the foundation of the
analyses in this paper. Additionally, Fig. A7 is presented here to illustrate the surrogate functions
and symmetric gradients.
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Figure A7: Surrogate functions and corresponding gradients.

Table A3: Surrogate functions for the non-differentiable model (a is the parameter).

Surrogate function h h(x, a) h′(x, a)

Sigmoid-like 1/(1 + e−ax) a · h(x, a)(1− h(x, a))
Tanh-like 1

2 tanh(ax) +
1
2

1
2a · (1− tanh(ax)2)

Hardtanh-like clip(ax+ 1
2 , 0, 1) a ·Heaviside( 1

2a − |x|)
Arctan-like 1

πarctan(πax) +
1
2 a/(1 + (πax)2)

Theorem 1. For a first-order integrate-and-fire neuron as expressed in Eq. 2 (ut = kvt + λit, k ∈
(0, 1]), the model takes a constant current it = i as input and produces spikes as output. Let the
discrete output firing rate w.r.t. i be expressed as f = T

N , where T is the total inference time and N
is the spike count. Then, the input-output response curve (f -i curve) is estimated as follows:

If k = 1 :

f =


0, i ≤ 0,
λ
θ i, 0 < i < θ

λ ,
1, i ≥ θ

λ .
If k ∈ (0, 1) :

f =


0, i ≤ 0,

(k − 1)/ ln(1 + (k−1)θ
λi ), 0 < i < θ

λ · k−1
ek−1−1

,

1, i ≥ θ
λ · k−1

ek−1−1
.

(A1)

Proof. From Eq. 2, the iterative functions are first converted into differential equations. Here, we
use the scalar variable form because we are interested in the time interval between the resting state
and the firing state for a constant input. Our goal is to determine the time t∗ of firing (u(t∗) = θ)
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with u(0) = 0. The discrete output firing rate f = T
N can then be approximated as the inverse of the

spiking interval t∗.
du

dt
= (k − 1)u+ λi (A2)

One can use integration to obtain the expression for u given a constant input. When k = 1, the
integral is merely an accumulation of the scaled input. Considering u(0) = 0, we have the following
expression:

u(t) = λi · t. (A3)

Then, with u(t∗) = θ, it is calculated that t∗ = θ
λi . Thus, when k = 1,

f =
T

N
≈ 1

t∗
=

λ

θ
i. (A4)

For i ≥ θ
λ , the neuron constantly fires, and f reaches its upper bound of 1. When i ≤ 0, the neuron

accumulates negative input and produce zero spikes, f = 0. When k ∈ (0, 1), Eq. A2 is an ordinary
differential equation. By separating the integration variables u and t, we obtain:

du

(k − 1)u+ λi
= dt.

Integrating both sides of the equation yields

ln((1− k)u− λi) = (k − 1)t+ C

(1− k)u− λi = C ′e(k−1)t,

where C and C ′ are the constants of integration. Considering u(0) = 0, we have C ′ = −λi, and
thus,

u(t) =
λi

1− k
(1− e−(1−k)t). (A5)

Then, by solving u(t∗) = θ, we obtain t∗ = 1
k−1 · ln(1 + (k−1)θ

λi ). Hence,

f =
T

N
≈ 1

t∗
= (k − 1)/ ln(1 +

(k − 1)θ

λi
). (A6)

When i = θ
λ

k−1
ek−1−1

, f = 1. Thus, when i > θ
λ

k−1
ek−1−1

, f is clipped to 1.

Theorem 2. For a first-order integrate-and-fire neuron as expressed in Eq. 2 (ut = kvt + λit, k ∈
(0, 1]), the slant asymptote of the f -i curve satisfying f ∈ (0, 1) exists and can be uniformly ex-
pressed as follows:

fa =
λ

θ
i+

k − 1

2
. (A7)

Proof. From Theorem 2, the relationship between i and f satisfying f ∈ (0, 1) is given as follows:

f =

{
λ
θ i, k = 1,

(k − 1)/ ln(1 + (k−1)θ
λi ), k ∈ (0, 1).

(A8)

Suppose that the asymptote is formulated as fa = K · i+B. Then, for k = 1, K = λ
θ , and B = 0.

For k ∈ (0, 1), if a slant asymptote exists, then limi→∞
f
i → K and limi→∞[f −Ki] → B.
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lim
i→∞

f

i
= lim

i→∞

k − 1

i ln(1 + θ(k−1)
λi )

= lim
i→∞

k−1
i

ln(λi+ θ(k − 1))− ln(λi)

= lim
i→∞

−k−1
i2

λ
λi+θ(k−1) −

λ
λi

(L’Hospital’s Rule)

= lim
i→∞

λi+ θ(k − 1)

θi

=
λ

θ
(L’Hospital’s Rule)

Thus, a slant asymptote exists for k ∈ (0, 1), and K = λ
θ for all k ∈ (0, 1]. For k ∈ (0, 1),

B = lim
i→∞

[
k − 1

ln(1 + θ(k−1)
λi )

− λ

θ
i

]

= lim
i→∞

k − 1− λ
θ i[ln(λi+ θ(k − 1))− ln(λi)]

ln(λi+ θ(k − 1))− ln(λi)

= lim
i→∞

−λ
θ ln(λi+ θ(k − 1))− λ

θ
λi

λi+θ(k−1) +
λ
θ ln(λi) + λ

θ

λ
λi+θ(k−1) −

λ
λi

(L’Hospital’s Rule)

= lim
i→∞

λ

θ

ln(λi)− ln(λi+ θ(k − 1)) + 1− λi
λi+θ(k−1)

λ
λi+θ(k−1) −

λ
λi

= lim
i→∞

λ

θ

1
i −

λ(λi+θ(k−1))+λθ(k−1)
(λi+θ(k−1))2

− λ2

(λi+θ(k−1))2 + 1
i2

(L’Hospital’s Rule)

= lim
i→∞

λ

θ

θ2(k − 1)2i

2λθ(k − 1)i+ θ2(k − 1)2

=
λ

θ

θ(k − 1)

2λ
(L’Hospital’s Rule)

=
k − 1

2

When k = 1, B = 0. Thus, fa = λ
θ i+

k−1
2 is the uniform slant asymptote for all k ∈ (0, 1].

A.2 APPENDIX FOR EXPERIMENTAL RESULTS

The detailed hyperparameters are presented in Table A4. Note that the data in CIFAR10-DVS and
N-MNIST take the form of address event representation (AER). To split the events into T slices that
match the input streams of our network, we utilized the technique referenced in Appendix F of Fang
et al. (2020) to preprocess the data.

Performance Analysis under Different Neuron Configurations

Eq. 2 shows that the neuron types and firing patterns are controlled by k and λ, which may vary in the
biological brain. To cover as many of the neuron models used in the existing neuroscience literature
as possible, we discretely sampled k from 0.1 to 1.0 and λ from 0.1 to 4.0. In each experiment,
we compared four other methods with our initialization method in two aspects: training speed and
accuracy. The four methods considered for comparison were proposed by Glorot & Bengio (2010),
He et al. (2015), Lee et al. (2016) and Wu et al. (2018).
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Table A4: Detailed hyperparameter settings in the experimental validation. The networks were
designed to fit the different shapes of input data.

MNIST N-MNIST CIFAR10 CIFAR10-DVS

Input size 28× 28 T×32× 32 32× 32 T×128× 128

Timestep 20 20 20 20

Network

conv 3× 3× 32
LIF neuron
pool 2× 2

conv 3× 3× 32
LIF neuron
pool 2× 2

fc 500
LIF neuron

fc 100
LIF neuron

fc 10

conv 3× 3× 32
LIF neuron
pool 2× 2

conv 3× 3× 32
LIF neuron
pool 2× 2

fc 500
LIF neuron

fc 100
LIF neuron

fc 10

conv 3× 3× 128
LIF neuron

conv 3× 3× 128
LIF neuron
pool 2× 2

conv 3× 3× 256
LIF neuron

conv 3× 3× 256
LIF neuron
pool 2× 2

conv 3× 3× 256
LIF neuron

conv 3× 3× 256
LIF neuron

conv 3× 3× 256
LIF neuron
pool 2× 2

fc 1024
LIF neuron

dropout
fc 10

conv 3× 3× 64
LIF neuron

conv 3× 3× 128
LIF neuron
pool 2× 2

conv 3× 3× 128
LIF neuron

conv 3× 3× 128
LIF neuron
pool 2× 2

conv 3× 3× 128
LIF neuron
pool 2× 2

conv 3× 3× 128
LIF neuron
pool 2× 2

conv 3× 3× 128
LIF neuron
pool 2× 2

fc 1024
LIF neuron

dropout
fc 1024

LIF neuron
dropout

fc 10

Epoch 50 50 150 150

Batch size 32 32 32 16

LR 0.001 0.001 0.001 0.001

Optimizer Adam(0.9,0.99) Adam(0.9,0.99) Adam(0.9,0.99) Adam(0.9,0.99)

Scheduler Cosine(Tmax=50) Cosine(Tmax=50) Multistep
(T=[50,90,130])

Multistep
(T=[50,90,130])

Surrogate Arctan(a=2.0) Arctan(a=2.0) Arctan(a=2.0) ArcTan(a=2.0)

The exact iteration step at which the training accuracy first reached a certain expected level (60%)
was recorded to represent the training speed. In Fig. A8, green bars represent our method, while bars
in other colors represent other methods. It is intuitive that our method reaches the expected accuracy
faster or at least at the same performance level for most neuron types compared to other methods;
this is more obvious when λ falls in the range of (−∞, 0.6) or (2.0,+∞). In particular, there are no
valid records at all using other methods in some cases in which λ is set to 0.1, 0.2, 8.0, and so on.
However, even in these cases, the training accuracy of our method still reaches the expected level in
a very short time.

In addition to our method’s superiority in terms of training speed, we measured its performance
in terms of the validation accuracy to check its robustness on classification tasks under various
configurations. In Fig. A9, the classification accuracies of five initialization methods under different
neuron configurations are shown as heatmaps. Our method can be used to effectively and efficiently
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Table A5: Optimizers and their parameters used to test the versatility.

Optimizer Learning rate Other Parameters

Adam 0.001 betas=(0.9, 0.99)
SGD 0.5 momentum=0.9
ASGD 2.0 lambda=0.000001, alpha=0.75
AdaGrad 0.01 -

train SNNs with almost all neurons types, while other methods fail to train networks with some
neuron types.

To further analyze whether the proposed method exhibits versatility for various choices of optimizers
and surrogated funtions, eight representative groups of (k, λ, θ) were selected: (0.3, 0.1, 1.0), (0.8,
0.2, 1.0), (0.8, 0.5, 1.0), (0.2, 0.8, 1.0), (1.0, 1.0, 1.0), (0.5, 4.0, 1.0), (0.6, 0.3, 4.0) and (0.4, 0.4,
4.0).
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Figure A8: Training iterations at which the accuracy first reaches the expected level (60%) for first-
order integrate-and-fire neurons with different (k, λ) settings and initialization methods. Note that
θ is set to 1.0. The total number of iterations of 3 training epochs is 2811. A value of 2811 in this
figure means that in the corresponding setting, the network cannot be trained to reach the expected
training accuracy level.

Versatility Across Optimizers

During model training, different optimizers may be used to minimize the loss function. To test the
versatility of our method across various optimizers, we chose four classic and prevalent optimizers
for model training, i.e., Adam, SGD, ASGD, and AdaGrad. The detailed optimizer parameters are
listed in Table A5.

We present the accuracy of training in Table A7. In Fig. A10, we show the training curves during
the first 500 iterations to illustrate the results in more detail. As shown in this figure, when SGD
or ASGD is chosen to optimize the network, our method demonstrates an advantage in accelerating
the training in the start-up phase with the accuracy reaching a good level within 100 iterations in
most cases. For example, when k = 0.8, λ = 0.5, and θ = 1.0, Wu’s and He’s methods allow
training to begin early but with a slower speed, achieving an accuracy of approximately 90% after
500 iterations, while Glorot’s and Lee’s methods show much worse performance. When Adam or
AdaGrad is chosen to optimize the network, despite the similar performance of all methods in some
cases (for example the 3rd-5th rows in the figure), our method outperforms the others in accelerating
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Figure A9: Training accuracy heatmaps for first-order integrate-and-fire neurons with different
(k, λ, θ) settings and initialization methods. The color represents the validation accuracy in the
given setting.

the training process. In addition, our weight initialization for SNNs enables valid training in some
difficult cases in which training totally fails with other initialization methods, such as (k = 0.4, λ =
0.4, θ = 0.4).

Versatility Across Surrogate Functions

Various surrogate functions may be chosen for SNN training w.r.t. different needs and tasks. As
listed in Table A3, four surrogate functions (sigmoid, tanh, hardtanh, and arctan) are popularly used
in BPTT. As described in Sec. 2.1, the input is subjected to the Heaviside function to perform the
forward pass, while the backward gradient is computed using surrogate functions. We trained the
5-layer SNN using surrogate functions consistent with those in Table A3 by adjusting the parameter
a.

The validation accuracy after 3 epochs of training is presented in Table A7, and the training curves
from the first 220 iterations with the four surrogate functions are shown in Fig. A11. The curves in
green show our method’s effectiveness. Our method reaches acceptable accuracy within relativelt
few iterations (fewer than 50 in most cases), while in comparison, the decline in the network loss
starts more slowly under other initialization methods, taking parameter sets of (0.8, 0.2, 1.0), (0.8,
0.5, 1.0), (0.2, 0.8, 1.0) and (0.5, 4.0, 1.0) as examples. Especially when k and λ have small values
or θ has a large value, other initialization methods cannot generate effective gradients for BP, leading
to training failure. For almost all sets of surrogate functions and neuronal parameters, our method
enables neuron firing and early generation of network gradients. Fig. A11 reveals that our method
enables models to start training faster and to end training with considerably greater classification
accuracy.

A.3 COMPARISON TO BATCH NORMALIZATION (BN)

As Eq. 11 implies, the variances of input current from the adjacent layers have been scale to be
identical when using our initialization method, which can be viewed as a kind of normalization of
current before the start of training. The difference lies in the term of validity. Normalization methods
such as Kim & Panda (2020), Kim & Panda (2021) are normalizing current throughout training.
To clarify this, we examined the validation accuracy with or without normalization methods on
CIFAR100 and TinyImageNet datasets. We chose vanilla BN (Ioffe & Szegedy, 2015) and BNTT
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Figure A10: Training accuracy curves obtained using four different optimizers, different (k, λ, θ)
settings and different initialization methods.
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Figure A11: Training curves obtained using four different surrogate functions, different (k, λ, θ)
settings and different initialization methods.

(batch normalization through time) (Kim & Panda, 2020) for comparison. When the network is
without BN, a dropout is implemented in place of BN. (k = 0.99, λ = 1.0) is the default setting
inKim & Panda (2020). The validation accuracy curve is plotted in Fig. A12. The use of BNTT make
the effect of initialization insignificant as it works throughout training. Table A8 shows that with BN
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Table A6: Validation accuracy achieved when training on MNIST for 3 epochs using four different
optimizers, different (k, λ, θ) settings and different initialization methods. A hyphen in this table
indicates invalid training in a given setting.

k = 0.3, λ = 0.1, θ = 1.0 k = 0.8, λ = 0.2, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Adam 0.979 - - - - 0.982 0.972 0.972 0.973 0.971

SGD 0.776 - - - - 0.929 - - - -

ASGD 0.636 - - - - 0.887 - - - -

AdaGrad 0.966 0.878 0.898 0.876 0.740 0.975 0.959 0.967 0.956 0.957

k = 0.8, λ = 0.5, θ = 1.0 k = 0.2, λ = 0.8, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Adam 0.984 0.980 0.986 0.983 0.984 0.984 0.978 0.988 0.982 0.989

SGD 0.975 0.921 0.959 0.964 0.945 0.968 - 0.950 0.956 0.884

ASGD 0.958 0.165 0.910 0.918 0.866 0.951 - 0.905 0.926 0.612

AdaGrad 0.984 0.978 0.984 0.984 0.982 0.977 0.978 0.986 0.985 0.986

k = 1.0, λ = 1.0, θ = 1.0 k = 0.5, λ = 4.0, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Adam 0.987 0.986 0.987 0.986 0.986 0.986 0.987 0.984 0.985 0.986

SGD 0.985 0.982 0.985 0.983 0.985 - - - - -

ASGD 0.986 0.981 0.986 0.981 0.984 0.981 - - - -

AdaGrad 0.986 0.984 0.986 0.985 0.986 0.983 - - 0.977 0.984

k = 0.6, λ = 0.3, θ = 4.0 k = 0.4, λ = 0.4, θ = 4.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Adam 0.980 - - - - 0.984 - - - -

SGD 0.895 - - - - 0.923 - - - -

ASGD 0.841 - - - - 0.876 - - - -

AdaGrad 0.968 0.882 0.889 0.910 0.743 0.972 0.906 0.924 0.926 0.752

or BNTT, the gaps of the accuracy of different initialization methods are not obvious. But when the
network is without BN, our method can also work under (0.5, 0.5) configuration. Therefore, we are
not stating that our initialization method can outperform some well-designed learning algorithms.
Instead, we believe our method is a useful supplement to make SNNs trainable on larger datasets.
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Table A7: Validation accuracy achieved when training on MNIST for 3 epochs using four different
surrogate functions, different (k, λ, θ) settings and different initialization methods. A hyphen in this
table indicates invalid training in a given setting.

k = 0.3, λ = 0.1, θ = 1.0 k = 0.8, λ = 0.2, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Hardtanh(a=1.0) 0.982 - - 0.310 - 0.985 0.974 0.980 0.980 0.977

Arctan(a=1.0) 0.983 - - - - 0.984 0.972 0.980 0.980 0.976

Tanh(a=2.0) 0.984 - - - - 0.986 0.976 0.979 0.981 0.978

Sigmoid(a=2.0) 0.984 - - - - 0.985 - - - -

k = 0.8, λ = 0.5, θ = 1.0 k = 0.2, λ = 0.8, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Hardtanh(a=1.0) 0.987 0.985 0.987 0.984 0.986 0.987 0.983 0.990 0.986 0.988

Arctan(a=1.0) 0.988 0.983 0.986 0.987 0.989 0.988 0.986 0.991 0.987 0.991

Tanh(a=2.0) 0.989 0.987 0.987 0.988 0.990 0.988 0.984 0.990 0.989 0.991

Sigmoid(a=2.0) 0.988 - - - - 0.986 - - - -

k = 1.0, λ = 1.0, θ = 1.0 k = 0.5, λ = 4.0, θ = 1.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Hardtanh(a=1.0) 0.988 0.988 0.988 0.984 0.989 0.985 0.987 0.980 0.984 0.986

Arctan(a=1.0) 0.986 0.987 0.986 0.981 0.984 0.987 0.987 0.973 0.973 0.978

Tanh(a=2.0) 0.988 0.988 0.988 0.990 0.987 0.988 0.983 0.985 0.984 0.980

Sigmoid(a=2.0) 0.987 0.986 0.987 0.887 0.989 0.199 0.197 - - 0.176

k = 0.6, λ = 0.3, θ = 4.0 k = 0.4, λ = 0.4, θ = 4.0

Ours Glorot’s He’s Wu’s Lee’s Ours Glorot’s He’s Wu’s Lee’s

Hardtanh(a=1.0) 0.979 - - - - 0.983 - - - -

Arctan(a=1.0) 0.917 - - - - 0.953 - - - -

Tanh(a=2.0) 0.968 - - - - 0.976 - - - -

Sigmoid(a=2.0) 0.887 - - - - 0.951 - - - -

Table A8: Accuracy comparison with different normalization technique training with VGG11 on
large datasets. A hyphen in this table indicates invalid training in a given setting.

Dataset (k, λ) Technique Initialization method
Glorot’s He’s Wu’s Lee’s Ours

CIFAR100 (0.5, 0.5) w/o BN, Dropout - - - - 54.94
CIFAR100 (0.99, 1.0) w/o BN, Dropout - 54.03 54.46 - 53.79
CIFAR100 (0.99, 1.0) w/ BN 57.18 57.19 56.45 56.64 57.02
CIFAR100 (0.99, 1.0) w/ BNTT 65.89 65.55 64.91 65.65 65.44

TinyImageNet (0.5, 0.5) w/o BN - - - - 44.16
TinyImageNet (0.99, 1.0) w/ BN 45.97 47.18 47.60 45.03 47.51
TinyImageNet (0.99, 1.0) w/ BNTT 57.03 57.09 56.90 57.19 56.80
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Figure A12: BNTT Training curves obtained using different initialization methods under the
(k=0.99, λ=1.0) configuration.
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