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Abstract

This work proposes a way of deriving the structure of plausible canonical micro-
circuit models, replete with feedforward, lateral, and feedback connections, out
of information-theoretic considerations. The resulting circuits show biologically
plausible features, such as being trainable online and having local synaptic update
rules reminiscent of the Hebbian principle. Our work achieves these goals by
rephrasing Gaussian Process Latent Variable Models as a special case of the more
recently developed similarity matching framework. One remarkable aspect of the
resulting network is the role of lateral interactions in preventing overfitting. Overall,
our study emphasizes the importance of recurrent connections in neural networks,
both for cognitive tasks in the brain and applications to artificial intelligence.

1 Introduction
The idea that the brain is an information-processing entity and its microcircuits deal with separating
signal from noise pervades cognitive science, in general, and systems neuroscience, in particular. It is
then natural that, for decades, there have been efforts to use information theory (IT) [1, 2, 3, 4, 5, 6]
for explaining psychophysical observations and direct measurements of neural activity. On the other
hand, efforts directed toward deriving learning rules for neural networks (NN) based on information-
theoretic problems [7, 8, 9, 10, 11] need to be examined for biological plausibility [12, 13] before
one hopes to posit such NNs as candidates for one of the brain’s canonical microcircuits.

In this work, we take up a concrete and simple problem of compressed representation learning [14]
via linear Dimension Reduction (DR) [15]. The problem of constructing biologically plausible
NNs from similarity-preserving objective functions, i.e., connecting Gramians of inputs and that
of corresponding neural activities, has been addressed recently [16, 17, 18, 19, 20, 21]. We keep
many of the attractive aspects of the framework but derive a NN and its learning rules starting from a
probabilistic formulation known as Gaussian Process Latent Variable Model (GPLVM)[22]. Using
GPLVM, we express the objective function in terms of Gramians but also relate it to the IT criterion
that, within some constraints, neural codes are to be maximally predictive of the inputs.

In Section 2, we review the IT criterion and focus on the likelihood of a conditional distribution. In
this section, we also touch upon GPLVM, which optimizes a model-averaged version of the same
likelihood. We argue that, in the large data limit, both these methods recover the true generative
model. In Section 3, we then derive the neural dynamics and the learning rule from a min-max
formulation of the GPLVM optimization, with neural implementation discussed in Section 4. Finally,
we note and discuss in Section 5 the fact that the learning rule for lateral interaction between neurons
is very different from the one obtained in the similarity matching framework, where it fosters diversity
of response by inhibitory interaction between neurons. We show that, in the probabilistic model, this
lateral interaction between neurons essentially leads to redundancy and feature selection, reducing
the potential for overfitting.
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2 Background and related works

In this section, we introduce the necessary background on information theory and its formulation
when ones considers the task of compression [23, 24]. We make the connection with GPLVM [22],
a popular framework for dimensionality reduction. In particular, we discuss the large data limit in
which both these methods recover the true generative model.

2.1 Encoding inputs

Let (X,Y ) be two random variables. The mutual information (MI) I(X;Y ) could be written as

I(X;Y ) :=

∫
dxdy p(x, y) ln

p(x, y)

pX(x)pY (y)
= H(Y )−H(Y |X). (1)

where H(Y ) := −
∫
dy pY (y) ln pY (y) and H(Y |X) := −

∫
dxdy p(x, y) ln pY |X(y|x) are re-

spectively the entropy of the variable Y and is its conditional entropy, given X . In this work, we
interpret Y as the sensory inputs and X as the brain’s internal encoding of that input. Since the input
distribution is exogenous, the task of mutual information maximization is the same as the task of
minimizing the conditional entropy above, subject to constraints (e.g., dimensionality of X). In other
words, given the encoding, we want, on average, to be the least “uncertainty” regarding the input.

Let {yt}Tt=1 be sampled i.i.d. from pY (·) and xt ∼ pX|Y (·|yt), pX|Y being the ideal encoder. Then

H(Y |X) = − 1

T
E[

T∑
t=1

ln pY |X(yt|xt)] = −
1

T
E[ln p(Y|X,Model)], (2)

where Y = [y1 . . .yT ]
⊤ refers to n-dimensional observations and X = [x1 . . .xT ]

⊤, to the m-
dimensional encodings. We make the dependence on the true generative model explicit in this
expression p(Y|X,Model), in contrast to the model averaged conditional distribution below.

Agakov and collaborators developed an MI-based variational formulation for learning embeddings
from a finite-size sample, {yt}Tt=1, in which they maximize the logarithm of the variational condi-
tional likelihood

∑T
t=1 ln qY |X(yt|xt) over an encoder pX|Y , and a variational decoder qY |X [23, 24].

We, instead, turn to a Bayesian approach for latent variable discovery, dealing with the likelihood
involving only {yt}Tt=1 and {xt}Tt=1, obtained by integrating over potential generative model param-
eters.

2.2 Generative models and probabilistic linear DR

The generative model for linear DR we consider is the following. We assume that n-dimensional
observations Y are a linear function of m-dimensional latent variables X [25, 22], i.e.,

yt = Axt + εt, with ε ∼ N (0, σ2In) and m≪ n . (3)
The linear map A ∈ Rn×m relates the two sets of variables. Furthermore, in GPLVM [22] a prior is
imposed on the model parameters A, unlike for probabilistic PCA [25], as

GPLVM ⇒ A ∼ Πn
d=1N (0, α−1Im) . (4)

Since the conditional distribution Y|X is linear in A and [ε1, . . . , εT ], we can replace our original
proposal of the objective function, Eq.(2), p(Y|X,Model) := p(Y|X,A) by taking an expecta-
tion over A with the GPLVM prior, Eq. (4), namely p(Y|X) := EA[p(Y,A|X)]. We recall the
conditional for samples of each component of y, namely y(d) = [yd1, . . . , ydT ] in GPLVM as

p(y(d)|X) = NT (0, α
−1X⊤X+ σ2I), ∀d ∈ {1, . . . , n} . (5)

The model averaged distribution of Y|X for GPLVM, in terms of the Gramians, X⊤X,Y⊤Y, is

L(X) = log p(Y|X) = −nT
2 log(2π)− n

2 log |X⊤X+ σ2I| − 1
2 Tr

[(
X⊤X+ σ2I

)−1
Y⊤Y

]
,

(6)
where | · | denotes the matrix determinant. In the limit of large T , for a given Y , the variational
procedure mentioned in Section 2.1, carried out over a limited class of encoders and decoders
parameterized by A would recover the true A with which the data was generated [24]. In the Bayesian
approach leading to the GPLVM objective, given Y, Bernstein-von Mises type theorems [26, 27, 28]
state that the posterior distribution of A will be concentrated around the true A, as T →∞. Therefore,
the averaging over A, for the high probability X, approximates picking the optimal/true A.
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3 A Min-max objective function for GPLVM

While the GPLVM objective (6) can be minimized by gradient descent [29], this procedure would not
lead to an online algorithm as it requires combining data from different time steps. Instead, following
the work of [17], we modify the objective (6) by introducing auxiliary matrix variables, W, M, and
Z allowing for the GPLVM computation using solely instantaneous inputs. Such substitution leads to
a min-max optimization problem that is solved by gradient descent/ascent and maps onto an NN with
local learning rules presented in Sec. 4.

We now introduce auxiliary matrix variables W and M. To do so we first address the term that only
depends on X,in Eq. (6), i.e., the log-determinant term (more details in Appendix A)

log |σ2I+X⊤X| = max
M

Tr
[
(σ2I+XX⊤)M

]
− Tr [log(M)] + cst . (7)

Now by using the Woodbury matrix identity to the cross-term involving both X and Y, in Eq. (6),
and by only keeping the term that depend on X we obtain

Tr
[
(σ2I+X⊤X)−1Y⊤Y

]
= min

W
∥Y −WX∥2F + σ2∥W∥2F + cst . (8)

It is important for the neural interpretation that we introduce another auxiliary variable Z into Eq. (8)
that will account for the projection error as

min
W
∥Y −WX∥2F + σ2∥W∥2F = max

Z
min
W

(Y −WX)⊤Z+ σ2∥W∥2F −
1

2
∥Z∥2 . (9)

Now we combine Eq.(7) and Eq.(9) to obtain a min-max objective function for linear GPLVM as

min
X,W

max
Z,M
L(W,M,X,Z) = min

X,W
max
Z,M

Tr

[
1

σ2
(Y −WX)⊤Z− 1

2σ2
Z⊤Z+

1

2
X⊤X

+
T

2
W⊤W +

n

2

(
σ2M+X⊤MX− log(M)

)]
. (10)

4 Online Algorithm and neural implementation

From the min-max objective function Eq. (10) we first derive an online algorithm and then present its
implementation by a biologically inspired neural network.

Gradient optimization. We first optimize Eq. (10) with respect to the “neural variables” xt and
zt, for fixed W and M, by gradient descent/ascent. At each time step, t, we repeat the following
gradient descent ascent steps until convergence:

−∂xtL =
1

σ2
W⊤zt − (Im +

n

T
M)xt ; ∂ztL =

1

σ2
(yt −Wxt)−

1

σ2
zt . (11)

Then, for fixed xt and zt, we minimize the objective function over W and M, take stochastic gradient
descent-ascent steps, which yields

−∂WL =
1

σ2T
ztx

⊤
t −W ; ∂ML =

n

2

(
σ2Im +

1

T
xtx

⊤
t

)
− n

2
M−1 . (12)

This yields our online GPLVM algorithm (Algorithm 1) and the neural implementation Fig. 1.

Neural implementation. The algorithm for online GPLVM (Algorithm 1) summarized by the
dynamics Eqs. (11) and update rules in Eqs. (12) can be implemented in a neural circuit with
schematic shown in Fig. 1. In this circuit, the individual components of the output {x1,t, . . . , xm,t},
are represented as the outputs of m neurons, with M the lateral synaptic connections between them.
The auxiliary variable zt is represented by the activity of m inter/hidden neurons with W encoding
the connection between zt and xt. In a biological setting, the implied equality of weights of synapses
from zt to xt and the transpose of those from xt to zt can be guaranteed approximately by application
of the same Hebbian learning rule [30, 31]. Another possible way to interpret the model would be
as yt and zt being respectively the somatic and axonal terminal activities of two-compartment unit
neurons as in [32]. Update rules requiring computing weight matrix inverse are also present for tasks
such as independent component analysis [33] for which local alternatives exist [10].
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Algorithm 1: Online algorithm for GPLVM.
input data {y1, . . . ,yT }; dimension n
output {x1, z1, . . . ,xT , zT }; dimension m and n ▷ estimated embedding and error
initialize the matrix W, and positive definite matrix M.
for t = 1, 2, . . . , T do
zt ← yt ; ▷ first error no estimated xt

run the following until convergence:
dxt(γ)

dγ = W⊤zt − (Im +M)xt(γ) ; ▷ output dynamics
dzt(γ)
dγ = yt −Wxt(γ)− zt(γ) ; ▷ error dynamics

W←W + ηztx
⊤
t ; ▷ Feedforward weight updates

M←M + η
τ (σ

2Im + xtx
⊤
t −M−1) ; ▷ Lateral weight updates

end for
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Figure 1: Neural implementation of Al-
gorithm 1 derived from GPLVM.
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Figure 2: Numerical evaluation of our algorithm
on a toy dataset for different output dimensions.

Numerical experiments. As an illustration of the capability of the NN derived from GPLVM, we
provide experimental results of our algorithm. We evaluate our algorithm on an artificially generated
datasets, X ∈ R20×10,000, with a linear spectrum, (λj = j/10,∀j ∈ {1, 20}), shown in Fig.2. The
performance of our algorithm is measured based on the subspace alignment error, i.e., the difference
in norm square with normalized projector obtained by PCA and the one encoded in (W,M). In
Fig. 2, we show that after convergence, our algorithm leads to a projection on the true basis vectors
for different output dimensions.

5 Discussion

In this work, we asked the question of the implication of IT as an organizing principle for cognition
and understanding of the brain. More precisely, how does the brain learn from input distributions
that it has not seen before or in novel perceptive environments? Nonetheless, inspired by work on
similarity-preserving NNs (recalled in Appendix B), we proposed a novel min-max objective function
that gives rise to a neural implementation for GPLVM. Our work illustrates the point by discussing
linear GPLVM, but this could be extended to other kernels easily, using random features [34, 35].

We observe, however, two striking differences with non-IT-based NNs. First, the intermediate
variables zt play the role of error computing neurons rather than projection neurons. As a result,
the update of the feedforward weights, W, (Eq. (12)Left) minimizes the prediction error rather than
maximizing the correlation of the projected input with the inputs. Secondly, the learning rule in M,
(Eq. (12)Right) involves the matrix M−1, which in turn increases the connection between correlated
output (as detailed in Appendix C). It is unlike in more standard models where lateral connection aims
at decorrelating output activities through means of anti-Hebbian updates [17]. More precisely, in IT,
the lateral connections M prevent overfitting, while in SM, it tries to avoid underfitting. This raises
the question of how we can probe such an observation experimentally and favor IT or non-IT-based
frameworks.
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Appendix

A Detailed min-max steps

We provide below more details on how to obtain the min-max objective function Eq. (10). We start
from the log-likelihood for GPLVM Eq.(6) recalled below

L(X) = −nT

2
log 2π − n

2
log det(σ2I+X⊤X)− 1

2
Tr

[
(σ2I+X⊤X)−1Y⊤Y

]
. (13)

We now introduce auxiliary matrix variables W and M. To do so we first address the term that only
depends on X, i.e., the logdet term

log det(σ2I+X⊤X) = Tr
[
log(σ2I+XX⊤)

]
+ cst ,

= max
M

Tr
[
(σ2I+XX⊤)M

]
− Tr [log(M)] + cst . (14)

Now the cross-term involving both X and Y using Woodbury matrix identity and by only keeping
the term that depend on X we obtain

Tr
[
(σ2I+X⊤X)−1Y⊤Y

]
= +

1

σ2
Y⊤Y − Tr

[
X⊤(σ2I+XX⊤)−1XY⊤Y

]
,

= min
W
−2Tr

(
Y⊤WX

)
+Tr

[
W(σ2I+XX⊤)W⊤]+ cst ,

= min
W
∥Y −WX∥2F + σ2∥W∥2F + cst . (15)

It is important for the neural interpretation that we introduce another auxiliary variable Z into Eq. (8)
that will account for the projection error as

min
W
∥Y −WX∥2F + σ2∥W∥2F = max

Z
min
W

(Y −WX)⊤Z+ σ2∥W∥2F −
1

2
∥Z∥2 . (16)

Now we combine Eq.(7) and Eq.(9) to obtain a min-max objective function for linear GPLVM as

min
X,W

max
Z,M
L(W,M,X,Z) = min

X,W
max
Z,M

Tr

[
1

σ2
(Y −WX)⊤Z− 1

2σ2
Z⊤Z+

1

2
X⊤X

+
T

2
W⊤W +

n

2

(
σ2M+

1

T
X⊤MX− log(M)

)]
. (17)

B Similarity matching for non-probabilistic linear DR

In order to derive a NN from GPLVM, we look at the similarity matching (SM) framework [17],
which proved able to derive such NNs for non-probabilistic similarity-preserving objective function.
SM has the following objective function, written in terms of the Gramians X⊤X and Y⊤Y:

SM ⇒ min
X∈Rm×T

∥∥Y⊤Y −X⊤X
∥∥2
F

(18)

The work on SM took a different approach than that of Oja [36] on PCA, as detailed in [12], and
showed that the resulting rules were strictly local unlike Oja’s rule. They solve Eq. (18) by introducing
a min-max objective function and auxiliary variables as

min
X

min
W∈Rk×n

max
M∈Sk

++

1

T
Tr(−4X⊤WY + 2X⊤MX) + 2Tr(WW⊤)− Tr(MM⊤) . (19)

The objective (19) can be optimized by an online algorithm that maps onto a NN whose synapses
obey local learning rules [17]. However, it is unclear how uncertainty can be incorporated and thus
produce an IT equivalent of SM for deriving NNs. We address this shortcoming by deriving NNs
from the GPLVM objective function instead.
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C Details on the lateral connections (M) update rule

The xt dynamics rule:
dxt(γ)

dγ
= W⊤zt − (Im +M)xt(γ)

says that the sign of the lateral interaction between output neuron a, whose activity is xat(γ) and
output neuron b (b ̸= a), whose activity is xbt(γ), is decided by the sign of Mab. If Mab is positive,
it is inhibitory, if Mab is negative, it is activating. We want to argue that as new neural activities
(latent variables) come in, providing some signal of additional correlations, M learning amplifies
these correlations. Namely, empirical extra positive correlation leads to excitatory interaction while
negative correlation leads to inhibitory one.

The offline M optimality condition is M = (σ2Im + 1
T

∑T
t=1 xtx

⊤
t )

−1. Our learning rule approxi-
mately tries to achieve this equality. Now let us see how later entries affect this quantity. Let us split
T observations into the first T0 observations and the batch of the last B observations, with the batch
size B ≪ T . Now define M0 as M0 = (σ2Im + 1

T0

∑T0

t=1 xtx
⊤
t )

−1. With this definition, one can
check that

M =
(
σ2Im +

1

T

T∑
t=1

xtx
⊤
t

)−1

=

[
M−1

0 +
B

T

(
1

B

T0+B∑
t=T0+1

xtx
⊤
t −

1

T0

T0∑
t=1

xtx
⊤
t

)]−1

.

Since B ≪ T we have

M ≈M0 −
B

T
M0

(
1

B

T0+B∑
t=T0+1

xtx
⊤
t −

1

T0

T0∑
t=1

xtx
⊤
t

)
M0.

Imagine now that we choose a basis so that
∑T0

t=1 xtx
⊤
t and, therefore, M0 is diagonal. Then, for

a ̸= b,

Mab ≈ −
B

T
µ0a

(
1

B

T0+B∑
t=T0+1

xtx
⊤
t

)
ab

µ0b.

where {µ0a}ma=1 are the eigenvalues of M0. Since these eigenvalues are positive for active channels,
recent signature of correlation between channels a, b affects Mab with opposite sign, leading to our
correlation amplification effect. On the whole, it cuts down unnecessary latent variable directions,
which would mostly represent noise in the input. The equivalent argument for similarity matching [37]
produces, with a crucial sign difference,

Mab ≈ B
T

(
1
B

T0+B∑
t=T0+1

xtx
⊤
t

)
ab

.

What then maintains the diversity of channels for GPLVM? If some component of xt becomes too
small so that its explanatory power for yt reduces, the error variable zt becomes large and provides
the countering feedback via W update. This also stands totally in contrast to similarity matching [37].
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