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ABSTRACT

Group-based reinforcement learning (RL), such as GRPO, has advanced the capa-
bilities of large language models on long-horizon agentic tasks. To enable more
fine-grained policy updates, recent research has increasingly shifted toward step-
wise group-based policy optimization, which treats each step in a rollout trajectory
independently while using a memory module to retain historical context. How-
ever, we find a key issue in estimating stepwise relative advantages, namely con-
text inconsistency, where steps within the same group may differ in their historical
contexts. Empirically, we reveal that this issue can lead to severely biased advan-
tage estimation, thereby degrading policy optimization significantly. To address
the issue, in this paper, we propose Hierarchical-of-Groups Policy Optimization
(HGPO) for long-horizon agentic tasks. Specifically, within a group of rollout
trajectories, HGPO assigns each step to multiple hierarchical groups according to
the consistency of historic contexts. Then, for each step, HGPO computes dis-
tinct advantages within each group and aggregates them with an adaptive weight-
ing scheme. In this way, HGPO can achieve a favorable bias-variance trade-off
in stepwise advantage estimation, without extra models or rollouts. Evaluations
on two challenging agentic tasks, ALFWorld and WebShop with Qwen2.5-1.5B-
Instruct and Qwen2.5-7B-Instruct, show that HGPO significantly outperforms ex-
isting agentic RL methods under the same computational constraints.

1 INTRODUCTION

Versatile agents powered by Large Language Models (LLMs) can perceive, reason, and act in
complex, open-ended environments (Achiam et al., 2023; Team et al., 2023; Yang et al., 2024;
Liu et al., 2024). Representative applications include embodied assistants navigating simulated
homes (Shridhar et al., 2021; Li et al., 2024), web navigators completing browsing tasks (Furuta
et al., 2024; Zheng et al., 2024; Gou et al., 2025), and autonomous explorers in interactive computer
games (Wang et al., 2024a;b). Beyond language and vision understanding, such agents are expected
to perform long-horizon planning and robust decision-making.

Deep reinforcement learning (RL) (Sutton & Barto, 2018) has emerged as a key paradigm for en-
hancing agent performance in the post-training stage (OpenAI, 2024; Guo et al., 2025). In particular,
group-based RL methods such as RLOO (Kool et al., 2019; Ahmadian et al., 2024), GRPO (Shao
et al., 2024), DAPO (Yu et al., 2025c), Clip-Cov (Cui et al., 2025), and GSPO (Zheng et al., 2025)
have demonstrated strong performance in large-scale RL training while requiring fewer computa-
tional resources. These methods have proven effective in single-turn tasks such as mathematical
reasoning (Liu et al., 2025; Yu et al., 2025c) and code generation (Wei et al., 2025a). To extend
this paradigm to multi-turn settings, approaches such as RAGEN (Wang et al., 2025d) and Search-
R1 (Jin et al., 2025a) adopt a trajectory-wise policy optimization framework, which concatenates
environment states and model outputs across turns to enable multi-turn rollouts. However, this
framework suffers from a major limitation: the effective context length grows rapidly with the num-
ber of interaction turns, leading to severe context explosion.

To address this, recent research has shifted toward the stepwise policy optimization framework (Feng
et al., 2025b; Luo et al., 2025c; Chen et al., 2025b; Team, 2025; Yu et al., 2025b; Wang et al., 2025c),
which treats each step within a rollout trajectory independently while leveraging a memory module
to retain historical context. This design allows for flexible context management and highly scalable
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Figure 1: Figure (a) compares trajectory-wise and stepwise policy optimization frameworks. Given
two example group trajectories, Figure (b) illustrates trajectory-level and step-level grouping with
their corresponding advantage estimations. Best viewed in color.
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Figure 2: Statistics of GRPO and GiGPO. Figures (a) and (b) present the advantage differences
relative to Oracle advantages for GRPO and GiGPO, respectively. Figures (c) and (d) report the
average group size and the proportion of Oracle steps, respectively.

RL training. A comparison of the two frameworks is illustrated in Figure 1. (a). Building on the
stepwise framework, group-based RL methods such as GRPO (Shao et al., 2024) can be adapted into
stepwise group-based variants for long-horizon agentic tasks. Furthermore, to enable finer-grained
credit assignment, GiGPO (Feng et al., 2025b) extends GRPO by estimating additional step-level
advantages within groups where all steps share the same current state.

However, we find a key issue in estimating stepwise relative advantages, namely context incon-
sistency. This issue arises when steps in the same group differ in their historical contexts. As
illustrated in Figure 1. (b), given two group trajectories τ1 and τ2, the step-level group of state s2
(purple) contains steps with inconsistent historic contexts. In this case, the estimated advantage
within the step-level group becomes biased, failing to reflect the true effect of current states and
actions conditioned on prior context. To further examine the impact, we conduct a pilot empirical
study. We introduce the notion of Oracle groups, where all steps share not only the same current state
but also identical historic contexts. During GRPO and GiGPO training, we track group sizes, step
counts, and estimated advantages for these Oracle groups, alongside trajectory-level and step-level
advantages for comparison. As shown in Figures 2. (a) and (b), both trajectory-level and step-level
advantages exhibit considerable estimation bias, with trajectory-level bias being substantially larger,
which highlights that context inconsistency severely distorts advantage estimation.

A straightforward solution is using only Oracle steps for policy optimization. However, as shown in
Figures 2. (c) and (d), Oracle steps are generally scarce within trajectories (i.e., their ratio is low),
making this approach inefficient. Moreover, the average group size of Oracle steps is small, which
increases the variance of estimated advantages and undermines the stability of RL training.

To address the above challenges, in this paper, we propose Hierarchy-of-Groups Policy Optimiza-
tion (HGPO), a novel RL training algorithm that introduces a better advantage estimator capable
of low-bias and balanced-variance. Specifically, HGPO is built on two key components: context-
aware hierarchical grouping and adaptive weighting advantage estimation. First, within each rollout,
HGPO groups steps that share the same current state and further assigns them to multiple hierarchi-
cal groups according to their historical contexts. This hierarchical structure captures advantages
at different context depths, improving data utilization and reducing variance. Second, HGPO ag-
gregates the group advantages using an adaptive weighting scheme: groups with more consistent
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historical contexts are assigned larger weights, thereby lowering estimation bias. In this way, HGPO
produces more reliable stepwise advantage estimates for policy optimization. We evaluate HGPO on
two challenging agentic benchmarks, ALFWorld and WebShop, using Qwen2.5-1.5B-Instruct and
Qwen2.5-7B-Instruct. Results show that HGPO consistently outperforms existing baselines while
maintaining the same GPU memory usage, using identical LLM rollouts, and incurring minimal
additional time cost. Our main contributions are summarized as follows:

• Revealing context inconsistency. We reveal the issue of context inconsistency in stepwise group-
based RL and empirically demonstrate that it introduces significant bias in advantage estimation,
thereby degrading policy optimization.

• Proposing a novel policy optimization algorithm. We introduce Hierarchy-of-Groups Policy
Optimization, which constructs hierarchical groups for each step based on historical context and
adaptively aggregates their advantages.

• Achieving strong empirical performance. HGPO achieves state-of-the-art results on two chal-
lenging agentic benchmarks, significantly outperforming existing baselines under the same com-
putational constraints.

2 RELATED WORK

LLM-based decision-making agents. Large language models (LLMs) have been widely adopted
as autonomous agents across diverse domains, including device control (Zhang & Zhang, 2024;
Hong et al., 2024; Gur et al., 2024; Hu et al., 2024), code generation (Zhang et al., 2024b), game
interaction (Wang et al., 2024a; Tan et al., 2025), and robotics (Zitkovich et al., 2023). Early
approaches often relied on fixed pre-trained models guided by structured prompting, such as Re-
Act (Yao et al., 2023) and Reflexion (Shinn et al., 2024), augmented with memory and retrieval
mechanisms (Wang et al., 2024b; Tan et al., 2024) or tool integration (Schick et al., 2023; Xie et al.,
2024; Zhang et al., 2024a). While such methods are simple and require no additional training,
they remain limited in applicability to domain-specific tasks, largely due to the lack of specialized
knowledge in the pre-training of the base models.

Reinforcement learning for LLM-based agents. Reinforcement learning (RL) (Sutton & Barto,
2018) has been central to adapting large language model (LLM) agents to dynamic and open-
ended environments. Early work applied classic algorithms such as DQN (Mnih et al., 2015) to
text games (Narasimhan et al., 2015), followed by value-based methods like PPO (Schulman et al.,
2017) and AWR (Peng et al., 2019) in interactive domains including mobile control (Rawles et al.,
2024), embodied tasks in ALFWorld (Shridhar et al., 2021), and card games (Brockman, 2016).
More recent research has extended RL to web and application environments (Qian et al., 2025;
Sun et al., 2025), with methods such as ArCHer (Zhou et al., 2024b), AgentQ (Putta et al., 2024),
CoSo (Feng et al., 2025a), and LOOP (Chen et al., 2025a). In parallel, RL has also become inte-
gral to LLM training itself, with RLHF (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022; Rafailov et al., 2024) aligning models with human preferences, and group-based RL algo-
rithms emerging as scalable and efficient alternatives to PPO. Approaches such as GRPO (Shao
et al., 2024), Dr. GRPO (Liu et al., 2025), Clip-Cov (Cui et al., 2025), GSPO (Zheng et al., 2025),
and DAPO (Yu et al., 2025c) avoid value networks by estimating advantages over groups of sam-
ples. However, most of these methods are designed for single-turn interactions and thus struggle
with context consistency in long-horizon agentic tasks.

Long-horizon agentic reinforcement learning. Long-horizon agentic RL (Laban et al., 2025;
Zhang et al., 2025; Zhou et al., 2025a; Luo et al., 2025d; Wang et al., 2025a) extends LLMs
from single-turn generation to multi-turn decision-making, where RL equips them with plan-
ning (Hao et al., 2023; Zhou et al., 2024a; Song et al., 2024), reasoning (Chu et al., 2025),
and memory (Jin et al., 2024; Chhikara et al., 2025; Zhou et al., 2025b) capabilities for sus-
tained interaction in dynamic environments. Applications span code generation (Jiang et al.,
2024; Gehring et al., 2025; Jain et al., 2025; Chen et al., 2025c; Jin et al., 2025b), software en-
gineering (Wei et al., 2025b; Luo et al., 2025a; Shen et al., 2025; Wang et al., 2024c; Lin et al.,
2025), and GUI interaction (Wei et al., 2025c; Lu et al., 2025; Luo et al., 2025b; Qin et al.,
2025). Recent advances include long-horizon policy optimization frameworks (Wang et al., 2025d;
Jin et al., 2025a) that optimize over multi-turn rollouts, and stepwise policy optimization meth-
ods (Feng et al., 2025b; Luo et al., 2025c; Chen et al., 2025b; Team, 2025) that treat each step inde-
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pendently while retaining history through memory modules. Yet, stepwise methods often suffer from
context inconsistency across long horizons, limiting their effectiveness in complex agentic tasks.

3 PRELIMINARIES

Problem setup of long-horizon agentic tasks. Unlike single-turn tasks, long-horizon agentic
tasks require an LLM agent to interact with the environment across multiple turns to accomplish
a goal. Formally, given a task example x ∈ p(X), which typically includes a fixed task-related
description, an LLM-based agent πθ parameterized by θ observes an environment state st ∈ S at
each turn t and generates a textual action at ∈ Vn, where V denotes the token vocabulary and n is
the maximum generation length. Here t = (1, 2, . . . , T ), with T being the maximum number of in-
teraction turns. In this paper, we focus on the sparse delayed reward setting, where the environment
provides a scalar reward rt ∈ R only at the final step of a trajectory τ = {(s1,a1), . . . , (sT ,aT )}.
Trajectory-wise vs. stepwise policy optimization. Conventional trajectory-wise policy optimiza-
tion frameworks (Wang et al., 2025d; Jin et al., 2025a; Wang et al., 2025b; Yu et al., 2025a) typ-
ically concatenate the full interaction history of a rollout trajectory τ for policy optimization, i.e.,
πθ(at|s0:t,x). However, as the number of turns T grows, the context length increases rapidly, which
limits the scalability and feasibility of long-horizon RL training. In contrast, stepwise policy opti-
mization frameworks (Feng et al., 2025b; Luo et al., 2025c; Chen et al., 2025b; Team, 2025) decou-
ple the trajectory into individual steps while leveraging a memory module that maintains K ≪ T
historical contexts. This memory module is updated with the latest K interactions, keeping the
prompt length relatively stable and enabling more scalable RL training.

Group-based reinforcement learning. Unlike PPO (Schulman et al., 2017), which estimates ad-
vantages using an additional value function, group-based reinforcement learning (RL) algorithms
such as GRPO (Shao et al., 2024) compute advantages directly from the statistics of a sampled
group of trajectories Gτ . Specifically, GRPO was originally designed for single-turn tasks under a
trajectory-wise policy optimization framework. To extend it to long-horizon tasks, we adapt it to the
stepwise setting and calculate the trajectory-level advantage as:

AT (τi) =
(
R(τi)− 1/|Gτ |

∑
j∈Gτ

R(τi)
)
/σGτ

, (1)

where σGτ
denotes the standard deviation of rewards within the group Gτ . This trajectory-level

computation assigns the same advantage value to every step in trajectory τi, thereby overlooking
the finer credit assignment required within a trajectory. To address this limitation, one can instead
adopt a step-level group relative advantage estimator (Feng et al., 2025b). Here, steps with identical
current states s̃i across all group trajectories are clustered into step-level groups Gs̃i , and their
advantages are computed as:

AS(s̃i) =

(
R(s̃i)− 1/|Gs̃i |

∑
j∈Gs̃i

R(s̃j)

)
/σGs̃i

. (2)

Compared to Eq. (1), the step-level estimator in Eq. (2) provides more fine-grained and effective
credit assignment across steps within the same trajectory.

4 TRAINING AGENTS WITH HGPO FOR LONG-HORIZON AGENTIC TASKS

In this section, we will first reveal the issue of context inconsistency, introduce our motivation, and
propose Hierarchy-of-Group Policy Optimization (HGPO).

4.1 THE ISSUE OF CONTEXT INCONSISTENCY

As discussed, stepwise policy optimization introduces per-step context management for long-
horizon RL. However, we find a key issue: context inconsistency. Specifically, as illustrated in
Figure 1, steps within a step-level anchor group that share the same current state may have dis-
tinct historical contexts in their memory modules, resulting in biased advantage estimates. This
issue also arises in trajectory-level grouping and advantage computation. Empirically, as shown in
Figure 2, we find that both trajectory-level and step-level estimates exhibit substantial bias, with
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Rollout Group Trajectory (K=2) Context-aware Hierarchical Grouping Adaptive Weighting Advantage Estimation
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Figure 3: Overview of HGPO. The LLM-based agent interacts with a set of environments initialized
from the same state s0, producing four group trajectories (states with the same color are identical).
HGPO comprises two key components: context-aware hierarchical grouping and adaptive weighted
advantage computation. For illustration, consider the state s2 (purple). First, HGPO assigns s2 into
three hierarchical groups according to its historical contexts. Then, it computes the final advantage
estimate by adaptively aggregating the weighted advantages from these groups.

trajectory-level bias being more pronounced. This observation confirms that context inconsistency
can severely distort advantage estimation, thereby degrading policy optimization. A naive solution
is to use only Oracle steps for policy optimization. However, as Figure 2 shows, Oracle steps are
scarce in trajectories, making such an approach highly inefficient because most steps are ignored.
Additionally, the small average group size of Oracle steps can lead to high variance in advantage
estimates, further destabilizing RL training. Motivated by these challenges, we propose leveraging
a hierarchy-of-groups structure, which enables more accurate advantage estimation to reduce bias
while maintaining low variance.

4.2 HIERARCHY-OF-GROUPS POLICY OPTIMIZATION

In this subsection, we introduce HGPO as shown in Figure 3, consisting of context-aware hierarchi-
cal grouping and adaptive weighting advantage estimation.

Context-aware hierarchical grouping. We begin by introducing context-aware hierarchical
grouping, which organizes steps into multi-level groups according to their historical contexts. The
key intuition is that the advantage of each step should be evaluated relative to different historical
contexts to obtain more accurate estimates. Specifically, we first group together steps that share the
same current state, and then, within each group, we construct multiple hierarchical groups based
on the consistency of their historical contexts. Steps with longer common histories are assigned to
higher-level hierarchical groups. This hierarchy-of-groups structure enables more fine-grained com-
parisons and brings two main benefits: (i) it improves step utilization for advantage estimation, and
(ii) it reduces the variance of estimated advantages.

Formally, let the i-th trajectory be τi = {(s(i)1 ,a
(i)
1 ), (s

(i)
2 ,a

(i)
2 ), . . . , (s

(i)
T ,a

(i)
T )}, and let K denote

the maximum context length. We define a k-step context operator for the t-th step as:

Ck(s(i)t ) =

{(
s
(i)
t−k, s

(i)
t−k+1, · · · , s

(i)
t

)
, t ≥ k,(

s
(i)
0 , s

(i)
1 , · · · , s(i)t

)
, t < k,

(3)

where k ∈ [0,K]. This operator returns the k historical states preceding the current state. Based on
this operator, we define the k-th hierarchical group for the t-th step as:

GH
k (s

(i)
t ) =

{
(j, n) ∈ I : Ck(s(i)t ) = Ck(s(j)n )

}
, (4)

where the index set I = {(i, t) | 1 ≤ i ≤ N, , 1 ≤ t ≤ T}. Considering all hierarchical groups, the
resulting hierarchy-of-groups structure satisfies:

GH
0 (s

(i)
t ) ⊇ GH

1 (s
(i)
t ) ⊇ · · · ⊇ GH

K(s
(i)
t ),

∣∣GH
0 (s

(i)
t )

∣∣ ≥ · · · ≥ ∣∣GH
K(s

(i)
t )

∣∣. (5)

When K = 0, the hierarchy-of-groups degenerates to the step-level grouping GH
0 (s

(i)
t ) used

in (Feng et al., 2025b). Importantly, the entire context-aware hierarchical grouping procedure op-
erates fully offline: it requires only hashmap lookups over existing rollouts, without relying on
additional models or extra data collection.
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Adaptive weighting advantage estimation. Intuitively, higher-level hierarchical groups yield
more accurate advantage comparisons since they incorporate richer historical context. Building
on this insight, we introduce an adaptive weighting scheme that integrates information across all
hierarchical groups with appropriately assigned weights, thereby enabling stable and efficient esti-
mation of group-relative advantages. Formally, the advantage estimation for the k-th hierarchical
group is defined as:

AH
k (s

(i)
t ) =

(
R(s

(i)
t )− 1/|GH

k |
∑

j∈GH
k

R(s
(i)
t )

)
/σGH

k
. (6)

Finally, the advantage aggregated from K hierarchical groups is denoted by:

AH(s
(i)
j ) =

∑K

k=0
wkA

H
k (s

(i)
j ), (7)

where the adaptive weight wk = (k+1)α∑
k(k+1)α (α ≥ 0). It is worth noting that Eq. (7) fuses advan-

tage information along the hierarchy-of-groups in Eq. (5): higher-level groups are preferred due
to stronger context consistency. Besides, for each step (s

(i)
t ,a

(i)
t ) we compute its stepwise reward

r
(i)
t =

∑T
j=t γ

j−t r
(i)
j (Feng et al., 2025b), where γ ∈ (0, 1] is the discount factor. In this way, we

can obtain a stepwise reward for each step in the trajectory.

The objective for policy optimization. The policy optimization objective of HGPO is:

JHGPO(θ) = E
[

1

NT

N∑
i=1

T∑
t=1

min
(
ρθ(a

(i)
t )AH(s

(i)
t ), clip

(
ρθ(a

(i)
t ), 1± ϵ

)
AH(s

(i)
t )

)]
− βDKL

(
πθ(· | x) ∥πref(· | x)

)
, (8)

where ρθ(a
(i)
t ) =

πθ(a
(i)
t |s(i)

t ,x)

πθold (a
(i)
t |s(i)

t ,x)
is the importance sampling ratio, β controls the strength of the

KL penalty. The pseudo-code is shown in Algorithm 1 of Appendix A.

Proposition 4.1 (Bias-variance trade-off in HGPO) Let bk and vk denote the bias and variance of
the estimated advantage AH

k within the k-th group GH
k . Based on the following conditions: (1) Bias

decreases monotonically, i.e., BT ≥ b0 ≥ b1 · · · ≥ bK ≥ 0; (2) Variance increases monotonically
and independently, i.e., v0 ≤ v1 ≤ · · · ≤ vK ≤ VT , the bias and variance of the estimator AH are

Bias[AH ] = Bias
[∑K

k=0
wkA

H
k

]
=

∑K

k=0
wkbk,

Var[AH ] = Var
[∑K

k=0
wkA

H
k

]
=

∑K

k=0
w2

kVar[AH
k ] =

∑K

k=0
w2

kvk.

Furthermore, the bias and variance satisfy that

bK =
∑K

k=0
wkbK ≤Bias[AH ] ≤

∑K

k=0
wkb0 = b0 ≤ BT ,

1

K(K + 1)2α
v0 ≤

K∑
k=0

w2
kv0 ≤Var[AH ] ≤

K∑
k=0

w2
kvK ≤

(K + 1)2α

K
vK ,

where BT , b0, bK and vT , V0, vK denote the bias and variance of the trajectory-level, step-level, and
Oracle advantage, respectively. Overall, the bias of the HGPO advantage estimator is lower than
that of both trajectory- and step-level estimators, while its variance trades off against the step-level
and Oracle estimators depending on the number of hierarchical groups K and the weight parameter
α. Proof and more details are provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Agentic benchmarks. We train the LLM agents on two challenging benchmarks: ALF-
World (Shridhar et al., 2021) and WebShop (Yao et al., 2022), which are designed to assess the ability
of LLM agents to perform multi-step decision-making. The details are shown in Appendix C.2.
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Table 1: Performance comparison on ALFWorld and WebShop. For ALFWorld, we report the over-
all success rate (↑) for both in-distribution (In-Success) and out-of-distribution tasks (Out-Success).
For WebShop, we report the average task score (↑) and the average task success rate (↑). Most results
are averaged over 3 random seeds during testing. The best results are highlighted in bold.

Model Type Method ALFWorld WebShop
In-Success Out-Success Task Scores Task Success Rates

Closed Prompting GPT-4o 48.0 46.0 31.8 23.7
Prompting Gemini-2.5-Pro 60.3 50.5 42.5 35.9

Q
w

en
2.

5-
1.

5B
-I

ns
tru

ct

Prompting Qwen2.5 4.1 - 23.1 5.2
Prompting ReAct 12.8 - 40.1 11.3
Prompting Reflexion 21.8 - 55.8 21.9
RL Training PPO (with critic) 54.4±3.1 - 73.8±3.0 51.5±2.9
RL Training RLOO 69.7±2.5 68.7±10.7 73.9±5.6 52.1±6.7
RL Training GRPO 72.8±3.6 70.1±2.5 75.8±3.5 56.8±3.8

RL Training GiGPO (K=2) 85.42±1.32 80.72±1.62 84.52±0.98 69.79±0.59
RL Training HGPO (K=2) 89.58±0.45 80.73±2.38 87.53±0.77 72.66±1.78

RL Training GiGPO (K=4) 85.15±2.81 80.98±0.45 88.5±0.49 74.08±0.98
RL Training HGPO (K=4) 92.45±0.81 89.06±2.34 88.90±0.90 75.91±1.19

Q
w

en
2.

5-
7B

-I
ns

tru
ct

Prompting Qwen2.5 14.8 - 26.4 7.8
Prompting ReAct 31.2 - 46.2 19.5
Prompting Reflexion 42.7 - 58.1 28.8
RL Training PPO (with critic) 77.08±1.12 76.23±1.46 81.4±3.1 68.7±5.1
RL Training RLOO 77.86±0.03 73.95±0.05 80.3±3.2 65.7±4.0
RL Training GRPO 78.64±0.73 76.82±1.47 79.3±2.8 66.1±3.7

RL Training GiGPO (K=2) 89.84±2.20 82.81±5.46 86.23±1.43 75.13±1.37
RL Training HGPO (K=2) 91.15±1.19 84.89±4.30 88.93±0.84 76.43±1.47

RL Training GiGPO (K=4) 90.88±0.90 87.76±0.45 87.25±1.02 76.18±1.25
RL Training HGPO (K=4) 94.79±0.90 93.22±1.62 87.88±0.41 77.21±0.22

Comparing methods. We compare HGPO with many competitive baselines: (1) Closed-source
LLMs: GPT-4o (Achiam et al., 2023) and Gemini-2.5-Pro (Team et al., 2023). (2) Prompting agents:
ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2024). (3) RL training methods: PPO (Schul-
man et al., 2017), RLOO (Kool et al., 2019; Ahmadian et al., 2024), GRPO (Shao et al., 2024), and
GiGPO (Feng et al., 2025b). The details are shown in Appendix C.1.

Implementation details. Following prior work (Feng et al., 2025b), we adopt Qwen2.5-1.5B-
Instruct and Qwen2.5-7B-Instruct (Yang et al., 2024) as our base models. For fairness, all RL
training methods share the same hyperparameter configurations. Specifically, the rollout group size
N in group-based RL methods is set to 8. Each LLM agent is prompted to first generate a chain-of-
thought (Wei et al., 2022) enclosed within <think> </think> tags, followed by the action enclosed
within <action> </action> tags. The weighting coefficient α in Eq. (7) is set to 1. For evaluation,
both GiGPO and HGPO are tested with three random seeds, and we report the mean and standard
deviation of their performance. Full training setups and hyperparameter details are provided in
Appendix C.3. The anonymous code is attached in the supplemental material.

5.2 EXPERIMENTAL RESULTS

HGPO achieves overall superior performance. As shown in Table 1, all RL training methods sig-
nificantly outperform prompting-based methods, highlighting the substantial gains in agentic rea-
soning enabled by RL training. Among the RL-based approaches, our proposed HGPO consistently
achieves the best performance across all settings.

HGPO achieves greater performance gains with larger K. We observe that HGPO exhibits a
more pronounced performance improvement compared with GiGPO as K increases from 2 to 4.
Specifically, GiGPO shows only a modest improvement (from 89.84 to 90.88), whereas HGPO
demonstrates a substantial gain (from 91.15 to 94.79). This behavior arises because larger K values
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Figure 4: Training dynamics of HGPO (Red), GiGPO (Yellow), and GRPO (Purple) on ALFWorld
using Qwen2.5-1.5B-Instruct. The details of these metrics are shown in Appendix D.3.

Figure 5: The distributions of hierarchical group sizes (K = 2) on ALFWorld and WebShop using
Qwen2.5-1.5B-Instruct. The Y-axis denotes the ratio.

exacerbate prompt inconsistency due to the inclusion of more historical contexts, causing step-level
advantage estimates in GiGPO to become increasingly biased and limiting performance gains. In
contrast, HGPO mitigates prompt inconsistency through hierarchical group advantage computation,
emphasizing steps with consistent prompts and thereby reducing estimation bias. This result under-
scores the effectiveness of our proposed method.

HGPO exhibits better generalization on out-of-distribution ALFWorld tasks. All baseline meth-
ods experience significant performance degradation on out-of-distribution tasks in ALFWorld. No-
tably, HGPO maintains superior performance with less degradation compared to GiGPO. This find-
ing suggests that context inconsistency can severely impair policy optimization and generalization,
while HGPO’s hierarchical grouping mechanism provides robust and stable advantage estimation,
enabling improved generalization to unseen tasks.

5.3 FURTHER ANALYSIS

Training dynamics. Figures 4 and 8 (Appendix D.3) illustrate the training dynamics of GRPO,
GiGPO, and HGPO across six metrics: mean advantages, policy gradient loss, KL loss, policy gra-
dient clip fraction, mean reward, and episode success rate. Detailed definitions of these metrics are
provided in Appendix C.4. Overall, our method achieves more stable and efficient policy optimiza-
tion. In particular, for the policy gradient clip fraction, HGPO (red curve) maintains a moderate
level, suggesting stable training, whereas GiGPO and GRPO display higher fractions, reflecting in-
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stability and constraint. For the KL loss, GRPO’s curve is too low, indicating slow learning, while
GiGPO’s curve is relatively high, reflecting an overly aggressive learning process. By contrast,
HGPO achieves a balanced trajectory, demonstrating steady and stable policy learning.

Distribution of hierarchical group sizes. Figure 5 shows the distribution of hierarchical groups in
ALFWorld and WebShop using Qwen2.5-1.5B-Instruct at the final epoch (160). The 0/1/2-context
groups denote steps sharing 0/1/2 identical historical contexts. We observe that 0-context groups
tend to have a higher proportion of large group sizes compared to 1-context and 2-context groups,
as they ignore historical context. As K increases, the proportion of large groups decreases while
smaller groups become more frequent. This suggests that Oracle steps with identical historical
contexts typically form smaller groups, which may increase the variance of advantage estimation.
Additional results for K = 4 are reported in Appendix D.4.

Step utilization ratio. Table 5 (Appendix D.2) reports the average proportion of steps allocated to
different context groups per rollout in ALFWorld and WebShop using Qwen2.5-1.5B-Instruct. The
results show that nearly all steps fall into 0-context groups, except for a small fraction corresponding
to unique states (appearing only once in a group). As the number of historical contexts increases,
the utilization ratio steadily decreases, since fewer steps can be aggregated into higher-level groups.
This finding highlights the challenge posed by the scarcity of Oracle steps.

Parameter analysis. Finally, we analyze the effect of the parameter α in Eq. (7), which controls
the sharpness of the weight distribution. As shown in Table 4 of Appendix D.1, we observe that
setting α = 0 results in worse performance, while α = 1 yields the best performance. This finding
suggests that extensive parameter tuning is not required and that our proposed method HGPO is
scalable across different agentic tasks.

5.4 ABLATION STUDY

Table 2: Ablation study against HGPO (K = 2)
on ALFWorld and WebShop.

Ablation ALFWorld(%) WebShop(%)

HGPO 89.58±0.45 72.66±1.78
W/o HoG-1 13.50±0.58 10.13±1.42
W/o HoG-2 86.47±1.89 57.94±1.02

W/o Ada. Weighting 87.23±1.80 68.48±0.45

In this section, we conduct an ablation study
to evaluate the effectiveness of our proposed
method. As shown in Table 2, “w/o HoG-1”
denotes the setting where hierarchical group-
ing is removed and only Oracle steps are used
to compute advantages for policy optimization.
This configuration results in failed policy learn-
ing because Oracle steps constitute only a small
fraction of all steps, directly undermining pol-
icy optimization. “w/o HoG-2” indicates that

Oracle advantages are computed for Oracle steps, while step-level advantages for other steps are
calculated via Eq. (2). This leads to a significant performance drop, since the small group sizes of
Oracle steps cause high variance in advantage estimation, thereby degrading optimization. These
two observations collectively validate the necessity of hierarchical grouping. In addition, “w/o Ada.
Weighting” refers to replacing adaptive weighting with uniform weights, which is equivalent to fix-
ing α in Eq. (7). Without adaptive weighting, i.e., by aggregating advantages from hierarchical
groups using mean weights, performance declines. This is because uniform weighting discards the
more accurate advantage information from higher-level hierarchical groups, introducing greater bias
in estimation. In contrast, adaptive weighting emphasizes higher-level groups by assigning them
larger weights, thus achieving superior performance. Moreover, this mechanism requires no com-
plex hyperparameter tuning and remains scalable across different lengths of historical contexts.

6 CONCLUSION

In this paper, we propose HGPO, a novel group-based RL algorithm designed to mitigate context
inconsistency in long-horizon LLM agent training. HGPO introduces context-aware hierarchical
advantage estimation, which enables fine-grained per-step credit assignment while preserving the
efficiency and stability of group-based RL. Empirical results on two complex environments, ALF-
World and WebShop, show that HGPO substantially outperforms both prompt-based agents and
prior RL approaches. In the future, an interesting direction is to explore alternative strategies for
handling context inconsistency, e.g., conditionally controlling trajectories during the rollout stage.
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A ALGORITHM

Algorithm 1 The pseudo-code of HGPO

1: Require: Initial policy πθold , task distribution p(X), discount factor γ, weighting ω, clipping
parameter ϵ, KL penalty β, group size N , the length of historical context K, parameter α

2: for each training iteration do
3: Update the old policy model: θold ← θ
4: // Multi-step rollout phase
5: Sample task x ∼ p(X) and initialize N identical environments
6: for t = 1 to T do
7: Sample actions

{
a
(i)
t ∼ πθold(· | s

(i)
t , x)

}N

i=1

8: Execute actions, observe rewards {r(i)t }Ni=1 and next state {s(i)
t+1}Ni=1

9: end for
10: // Grouping phase
11: Context-aware hierarchical grouping by Eq. (5)
12: // Advantage computation phase
13: Compute multiple advantages within each group by Eq. (7)
14: // Policy update phase
15: Update policy θ by maximizing objective JHGPO(θ)
16: end for

B MORE DETAILS AND PROOF FOR THEOREM

Table 3: Overall comparison of three different advantage estimators.

Type Advantage estimation Granularity Bias Variance

Trajectory-level AT (τi) =
(
R(τi)− 1/|Gτ |

∑
j∈Gτ

R(τi)
)
/σGτ

Coarse-grained BT VT

Step-level AS(s̃i) =
(
R(s̃i)− 1/|Gs̃i

|
∑

j∈Gs̃i
R(s̃j)

)
/σGs̃i

Fine-grained b0 v0

Hierarchy-of-Groups AH(s
(i)
t ) =

∑K
k=0 wkA

H
k (s

(i)
t ) Fine-grained

∑K
k=0 wkbk ↓

∑K
k=0 w

2
kvk ↓

Here, we provide more details of Proposition 4.1. Let AH
k denote the advantage estimator for the

k-th hierarchical group. Let bk and vk denote the bias and variance of the estimated advantage AH
k

within the k-th group GH
k . The definition of bias is bk = Bias[A] = A − A∗ where A∗ is the

unknown true advantage. We make the following conditions:

(1) Bias decreases monotonically with k:

BT ≥ b0 ≥ b1 ≥ b2 ≥ · · · > bK ≥ 0, bk = Bias[AH
k ],

(2) Variance increases monotonically and independently with k:

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vK ≤ VT , vk = Var[AH
k ],

where BT and VT denote the bias and variance of trajectory-level advantage estimation, and b0 and
v0 represent those of step-level estimation. We now justify the assumptions. First, the number of
trajectories in a group is generally smaller (set to 8 in our experiments) than the step-level group
size, which leads to higher bias and variance in trajectory-level estimation. Second, as K increases,
the group size of GH

k decreases, which can result in higher variance.

Bias and variance of HGPO. Recall the advantage estimation in Eq. (5) and Eq. (7), we first
analyze the bias.

Bias[AH ] = Bias
[∑K

k=0
wkA

H
k

]
=

∑K

k=0
wkbk.

Since b0 ≥ b1 ≥ · · · ≥ bK and
∑

k wk = 1, it follows that

bK =
∑K

k=0
wkbK ≤ Bias[AH ] ≤

∑K

k=0
wkb0 = b0 ≤ BT
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Hence, HGPO trades off the bias between the bias of the step-level advantage estimation and the bias
of the advantage estimation in Oracle (K) groups. Correspondingly, consider that Cov(AH

k , AH
k′) =

0 (k ̸= k′) due to the independent condition, the variance is

Var[AH ] = Var

[
K∑

k=0

wkA
H
k

]
=

K∑
k=0

w2
kVar[AH

k ] =

K∑
k=0

w2
kvk.

Since v0 < v1 < · · · < vK and
∑

k w
2
k < 1, it follows that

Var[AH ] =

K∑
k=0

w2
kvk =

K∑
k=0

(
(k + 1)α∑
k(k + 1)α

)2

vk

=

∑K
k=0(k + 1)2α

(
∑

k(k + 1)α)
2 vk

≤ K(K + 1)2α

K2
vK =

(K + 1)2α

K
vK

Var[AH ] =

K∑
k=0

w2
kvk =

K∑
k=0

(
(k + 1)α∑
k(k + 1)α

)2

vk

=

∑K
k=0(k + 1)2α

(
∑

k(k + 1)α)
2 vk

≥ K2

K(K + 1)2α
v0 =

1

K(K + 1)2α
v0

HGPO achieves a trade-off of bias and variance in advantage estimation. First, the bias of the HGPO
advantage estimator is lower than that of both trajectory- and step-level estimators, and trades off
against the Oracle estimator. Second, its variance trades off against the step-level and Oracle estima-
tors, depending on the number of hierarchical groups K and the weight parameter α. In summary,
HGPO provides a principled framework for advantage estimation that systematically leverages his-
torical context while maintaining statistical efficiency through weighted aggregation.

C EXPERIMENT DETAILS

C.1 COMPARING METHODS

• GPT-4o: A closed-source, large-scale LLM used as a baseline for multi-turn agentic
tasks (Achiam et al., 2023).

• Gemini-2.5-Pro: Another closed-source LLM, comparable in scale and capability to GPT-
4o (Team et al., 2023).

• ReAct: A prompting-based agent that integrates reasoning and acting in an interleaved
chain-of-thought framework (Yao et al., 2023).

• Reflexion: A prompting agent that incorporates self-reflection and iterative improvement
over generated outputs (Shinn et al., 2024).

• PPO: Proximal Policy Optimization, a classic RL algorithm for policy learning (Schulman
et al., 2017).

• RLOO: Reinforcement Learning with Offline Observations, a group-based RL approach
that estimates advantages without value networks (Kool et al., 2019; Ahmadian et al.,
2024).

• GRPO: Group-based RL with trajectory-level advantage estimation, designed to scale RL
to multi-step tasks (Shao et al., 2024).

• GiGPO: Grouped Incremental GPO, a prior hierarchical RL method that performs group-
wise advantage estimation for LLM-based agents (Feng et al., 2025b).
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C.2 ENVIRONMENT DETAILS

In each episode, the agent receives a text goal and must accomplish it through multi-turn interaction
with the environment. It includes 4,639 task instances across six categories of common household
activities: Pick & Place (Pick), Examine in Light (Look), Clean & Place (Clean), Heat & Place
(Heat), Cool & Place (Cool), and Pick Two & Place (Pick2). WebShop is a complex, web-based
interactive environment designed to test the LLM agents in realistic online shopping scenarios. To
complete the task, the agent must interact with a simulated HTML-based shopping website to search
for, navigate to, and ultimately purchase a suitable item. It contains over 1.1 million products and
12k user instructions, providing a rich and diverse action space.

C.3 DETAILS OF TRAINING

Generally, we use the same training settings in (Feng et al., 2025b) for fair comparison.

Hyperparameters for ALFWorld. All methods are configured with identical hyperparameters:
the maximum prompt length is 2048 tokens, and the maximum response length is 512 tokens. Each
episode allows up to 50 environment steps. The learning rate is set to 1e-6 for the actor and 1e-5 for
the critic (used only in PPO). We adopt a rule-based reward, assigning a reward of 10 for success
and 0 for failure. To handle invalid actions generated by the agent, we apply a reward penalty of
-0.1. For all group-based RL methods, we use a group size of 8 and sample 16 different groups
per rollout, resulting in a total of 16 × 8 = 128 environments. In contrast, PPO uses 128 separate
environments for rollouts. The rollout temperature is set to 1.0, while the validation temperature is
set to 0.4. The mini-batch size is 256, and the KL-divergence loss coefficient is set to 0.01. The
discount factor γ is set to 0.95.

Prompt Template for ALFWorld

You are an expert agent operating in the ALFRED embodied Environment. Your task is
to: {task_description}. Prior to this step, you have already taken {step_count} step(s). Be-
low are the most recent {history_length} observations and the corresponding actions you
took: {action_history}. You are now at step {current_step} and your current observation
is: {current_observation}. Your admissible actions of the current situation are: [{admissi-
ble_actions}].
Now it’s your turn to take an action. You should first reason step-by-step about the current
situation. This reasoning process MUST be enclosed within <think> </think> tags. Once
you’ve finished your reasoning, you should choose an admissible action for current step and
present it within <action> </action> tags.

Figure 6: The prompt template of ALFWorld agents.

Prompt Template for WebShop

You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: {task_description}. Prior to this step, you have already taken {step_count}
step(s). Below are the most recent {history_length} observations and the corresponding
actions you took: {action_history}. You are now at step {current_step} and your current
observation is: {current_observation}. Your admissible actions for the current situation are:
[{available_actions}].
Now it’s your turn to take one action for the current step. You should first reason step-by-
step about the current situation, then think carefully which admissible action best advances
the shopping goal. This reasoning process MUST be enclosed within <think> </think> tags.
Once you’ve finished your reasoning, you should choose an admissible action for current
step and present it within <action> </action> tags.

Figure 7: The prompt template used for WebShop agents.

Hyperparameters for WebShop. All methods are configured with identical hyperparameters: the
maximum prompt length is 4096 tokens, and the maximum response length is 512 tokens. Each
episode is limited to 15 environment steps. The learning rate is 1e-6 for the actor and 1e-5 for the
critic (used only in PPO). We adopt a rule-based reward, assigning a reward of 10 for success and
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0 for failure. Invalid actions are penalized with a reward of -0.1. As with ALFWorld, all group-
based RL methods use a group size of 8 and sample 16 groups per rollout, totaling 16 × 8 = 128
environments. PPO, on the other hand, uses 128 distinct environments for rollouts. The rollout
temperature is set to 1.0, while the validation temperature is set to 0.4. The mini-batch size is 64,
and the KL-divergence loss coefficient is set to 0.01. The discount factor γ is set to 0.95.

Computing Details. Experiments using Qwen2.5-1.5B-Instruct are conducted on two NVIDIA
H100 GPUs, while those using Qwen2.5-7B-Instruct are trained on four NVIDIA H100 GPUs.
Each experiment is trained for a total of 160 training iterations. In particular, when computing the
weights in Eq. 7, we omit groups with zero advantage to avoid relying on unavailable estimates. The
validation data sizes are 128 and 256 for ALFWorld and WebShop, respectively.

C.4 TRAINING METRICS

• Mean Advantages: This metric shows how much better the chosen actions are compared
to the average action. A positive and stable value means the agent usually selects better
actions, while large fluctuations suggest unstable training.

• Policy Gradient Loss: This loss is the main signal for updating the policy. A smooth
and gradually decreasing value indicates stable learning. If the loss becomes too large or
changes sharply, it means the updates are too aggressive and may harm training stability.

• KL Divergence: KL loss measures how different the new policy is from the old one. It
acts as a constraint to prevent the policy from changing too quickly. A moderate KL value
means the agent is learning steadily, while a very high value can cause divergence and a
very low value may slow down learning.

• Policy Gradient Clip Fraction: This metric shows the proportion of gradients that are
clipped during optimization. Gradient clipping prevents extreme updates. A moderate
fraction suggests stable training, but if the fraction is too high, it means many updates are
unstable and are being restricted.

• Mean Reward: The mean reward reflects the average return the agent receives per episode.
It is a direct measure of progress: higher rewards indicate better performance. If the mean
reward increases smoothly, it shows effective learning, while sudden drops suggest insta-
bility.

• Episode Success Rate: This metric measures the percentage of episodes in which the agent
completes the task. It is an intuitive indicator of how well the agent achieves its goal. A
rising success rate shows that the agent is improving and that training is effective.

C.5 PROMPTS

The prompts we use for LLM agents are presented in Figure 6 and Figure 7. These prompt templates
are constructed using Python-style string formatting, where placeholders enclosed in curly braces
({}) represent semantic slots. These placeholders, such as {task_description}, {step_count}, and
{current_observation}, are dynamically populated at runtime via Python’s .format() function.
To enrich the agent’s context, we use historical information and set the history length to 2.

The <think>...</think> block instructs the agent to perform step-by-step reasoning, thereby promot-
ing chain-of-thought style deliberation explicitly. The <action>...</action> block is used to indicate
the final action decision clearly.

D MORE EXPERIMENTAL RESULTS

D.1 PARAMETER ANALYSIS

We report the experimental results of parameter analysis as shown in Table 4.

D.2 STEP UTILIZATION RATIO

We show the step utilization ratio on ALFWorld and WebShop (using Qwen2.5-1.5B-Instruct at
epoch 160) as shown in Table 5.
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Table 4: Parameter analysis of α on ALFWorld and WebShop (K = 2) using Qwen2.5-1.5B-
Instruct.

Parameter α = 0 α = 1 α = 2

ALFWolrd 87.23±1.80 89.58±0.45 84.76±1.17
WebShop 68.48±0.45 72.66±1.78 72.65 ±1.77

Table 5: Step utilization ratio on ALFWorld and WebShop (using Qwen2.5-1.5B-Instruct at epoch
160).

Dataset 0-Context 1-Context 2-Context 3-Context 4-Context

ALFWolrd (K = 2) 0.97 0.75 0.52 - -
ALFWolrd (K = 4) 0.98 0.77 0.54 0.34 0.19
WebShop (K = 2) 0.92 0.64 0.44 - -
WebShop (K = 4) 0.90 0.59 0.4 0.21 0.09

Figure 8: Training dynamics of HGPO (Red), GiGPO (Yellow), and GRPO (Blue) on WebShop
using Qwen2.5-1.5B-Instruct. Best viewed in color.

D.3 TRAINING DYNAMICS

We show training dynamics of HGPO (Red), GiGPO (Yellow), and GRPO (Blue) on WebShop using
Qwen2.5-1.5B-Instruct as shown in Figure 8.

D.4 THE DISTRIBUTION

We report the distributions of hierarchical group sizes (K = 4) on ALFWorld and WebShop using
Qwen2.5-1.5B-Instruct as shown in Table 9.

E USE OF LLMS

We used LLMs exclusively as writing assistants to refine language. In particular, their use was
restricted to grammar correction, style improvement, and phrasing adjustments for clarity and con-
ciseness.
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Figure 9: The distributions of hierarchical group sizes (K = 4) on ALFWorld and WebShop using
Qwen2.5-1.5B-Instruct.
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