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Abstract
Vision–language models (VLMs) have recently
achieved impressive performance, yet their
growing complexity raises new security concerns.
We introduce the first concept-driven backdoor
for instruction-tuned VLMs, leveraging visual
concept encoders to stealthily trigger the backdoor
at multiple levels of abstraction. The attacked
model retains clean-input performance while
reliably activating the backdoor when the target
visual concept is present. Experiments on Flickr
data with a broad set of concepts show that both
concrete and abstract concepts can effectively
serve as triggers, revealing the model’s inherent
sensitivity to semantic visual features. Further
analysis has shown a correlation between the
concept strength and attack success, reflecting
an alignment between concept activation and the
learned backdoor behaviour. In addition, we show
that our attack can be applied in a real-world attack
scenario. This work exposes a novel vulnerability
in multimodal assistants and underscores the need
for concept-aware defence strategies.

1. Introduction
Recent Vision-Language Models (VLMs) such as BLIP-2 (Li
et al., 2023), mini-GPT (Chen et al., 2023; Zhu et al., 2023),
LLaVA (Liu et al., 2023; 2024), and Qwen-VL (Bai et al.,
2023) integrate powerful pre-trained visual encoders with
Large Language Models (LLMs), enabling open-ended text
generation grounded in visual inputs. While these models
have demonstrated impressive performance on complex tasks
such as image captioning and visual question answering, their
multimodal nature introduces new and intricate security risks
that extend beyond traditional image classification settings.
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Prior work on backdoor attacks showed that models can
be manipulated to misbehave on inputs containing specific
triggers, while maintaining expected behaviour on “clean”
inputs (Gu et al., 2019; Chen et al., 2017; Shafahi et al., 2018;
Li et al., 2022). This is usually achieved by poisoning a
portion of the training data. In the VLM setting, recent works
have explored various attack scenarios such as injecting fixed
phrases (Lyu et al., 2024), persuasive misinformation (Xu
et al., 2024), or dangerous control commands (Ni et al., 2024).
Despite these variations, most attacks still rely on synthetic
visual triggers or traditional physical object triggers.

As VLMs inherently map visual features to human-aligned
semantic words as part of their grounding process, we are
motivated to ask: can VLMs be backdoored through visual
concepts? Notions of visual concepts have been long studied
in eXplainable AI (XAI) field, where human-understandable
attributes or abstractions can help interpret model deci-
sions (Kim et al., 2018; Bau et al., 2017) or improve model
robustness and control (Koh et al., 2020b). Here, we show
that this same alignment can be turned against the model
– by injecting poisoned examples that associate specific
visual concepts with target outputs, it is possible to implant
concept-level backdoors.

In this pioneering work, we present the first concept-driven
backdoor attack on VLMs. Our method uses a broad range of
semantic triggers from simple objects such as “dog” and
“mountain”, to low-level visual attributes like “red” and
“green”, and even high-level abstractions including “leap” and
“smiles”, to reliably activate the backdoor while preserving
normal generation ability on clean inputs. Unlike pixel-level
patterns or physical objects, concept-based triggers are more
flexible and remain stealthy in photo-realistic images; such
triggers are easy to inject as recent image-editing models en-
able vivid image synthesis. Our contributions are multi-fold:

• As far as we are aware, we are the first to propose a
concept-driven backdoor attack on VLMs, exploiting
visual semantic trigger patterns.

• We develop a unified and practical framework that
leverages concept-aware models to craft poisoned
samples aligned with naturally occurring concepts.

• We perform evaluations on the instruction-tuned
LLaVA models of diverse concepts, alongside further
analyses, showing the effectiveness of our proposed
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attack and thus providing additional insights into risks
of poisoned data in the model/data supply chain.

2. Related work
Backdoor attacks in VLMs. Recent studies have explored
various backdoor risks for VLMs. TrojVLM (Lyu et al.,
2024) introduces one of the earliest backdoor attacks against
VLMs, where poisoned images can cause the model to output
predefined phrases while maintaining semantic coherence.
VL-Trojan (Liang et al., 2025) explores instruction-level poi-
soning in autoregressive VLMs, injecting both image and text
triggers during instruction tuning to elicit target responses.
Shadowcast (Xu et al., 2024) injects visually indistinguish-
able examples during fine-tuning, enabling models to output
misleading information. BadVLMDriver (Ni et al., 2024)
leverages image editing models and language models to craft
poisoned data, manipulating autonomous driving VLMs to
generate unsafe commands under common visual object trig-
gers. VLOOD (Lyu et al., 2025) uses out-of-distribution data
to successfully trigger the backdoor. MABA (Liang et al.,
2024) studies the generalizability of different types of back-
door attacks across domains. Besides these methods that
modified the training data or process during fine-tuning, Any-
Door (Lu et al., 2024) proposed test-time backdoor targeted
VLMs, and BadVision (Liu & Zhang, 2025) studies how
backdoors in visual encoders can affect downstream VLMs.

Concept-based explainability. Concept-based explainabil-
ity methods aim to interpret neural networks by aligning
internal representations with human-understandable
concepts and can be broadly categorized into two groups. (1)
One group of work focuses on analyzing trained models to
identify and quantify the influence of concepts on model de-
cisions. Several methods map the functions of single neurons
to concepts (Fong & Vedaldi, 2018; Oikarinen & Weng, 2023;
Bau et al., 2017), and others focus on explaining the model at
the representational level, exemplified by Concept Activation
Vector (CAV) based methods (Kim et al., 2018; Crabbé &
van der Schaar, 2022; Fel et al., 2023; Ghorbani et al., 2019;
Parekh et al., 2024). These works derive concept activation
vectors from the model’s internal activations. (2) In contrast
to post-hoc explanations, Concept Bottleneck Models
(CBMs) force models to generate internal concept represen-
tations to incorporate concepts into the model directly. The
original CBM framework (Koh et al., 2020a) adds a sparse
linear layer before the final prediction, where the sparse layer
encodes pre-labelled concepts. More recent research (Yuk-
sekgonul et al., 2022; Oikarinen et al., 2023; Yang et al.,
2023b; Yan et al., 2023; Rao et al., 2024) relaxes the need
for concept labels by discovering concepts automatically.

3. Method
3.1. Threat model

We consider commonly-used VLMs comprising a pre-
trained visual encoder, a vision-language connect module,
and an LLM. The visual encoder processes input images to
extract visual features, and then the features are projected
into the language model’s token space via the connect,
enabling the LLM to generate open-ended text.

Attacker’s objective. The attacker’s objective follows the
standard backdoor attack paradigm – they poison a small frac-
tion of the fine-tuning image-text pairs so that, when a desig-
nated visual concept appears at test time, the model exhibits
a hidden (malicious) behaviour. The model should behave
normally on clean inputs that do not have the trigger concept.

Attacker’s knowledge. The attacker can access the model’s
fine-tuning dataset, but is limited to poisoning a portion
of image-text pairs. However, beyond data injection, the
attacker can not alter the model architecture, the fine-tuning
process, or any post-deployment parameters.

Analytical probe of internal representations. Beyond the
functional goal of triggering malicious responses in a general
backdoor attack, our attack also serves as a diagnostic
probe into the model’s internal semantic space. Prior work
demonstrated that backdoor triggers carve shortcut pathways
in the latent feature space to bypass the standard inference
pipeline (Wang et al., 2019; Yang et al., 2023a). Our poison-
ing method can measure the activation threshold at which
semantic concepts override normal model predictions, quan-
tifying the VLM’s susceptibility to concept-driven shortcuts.

3.2. Concept-based poisoning

Figure 2 illustrates our concept-driven backdoor injection
and evaluation pipeline. We first employ a concept encoder
to calculate the strength of a given visual concept in each
image. Next, we poison a part of the training data according
to their concept scores, then fine-tune the VLM on this
modified data. Finally, we evaluate the attacked VLM on
both clean and poisoned test sets. Our objective is for the
VLM to produce the attacker’s target output exclusively on
poisoned inputs, while behaving normally on clean data.

Concept scoring. Given a target visual concept c (e.g.,
“dog”, “tree”, “red”), we assess its presence in each training
image x by passing their CLIP-derived features fv(x), which
are extracted from the VLM’s visual encoder, through a con-
cept encoder. These compact feature vectors capture global
image semantics and, owing to CLIP’s pre-training, align
naturally with high-level, human-interpretable concepts.

We consider two variants of the concept encoders: (1)
CAV-based encoder, which trains a simple binary classifier
on a manually curated set of positive and negative examples
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are walking through a field
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VLM

Figure 1. Qualitative examples of concept-driven backdoor attack in image captioning task. We edit clean images from the Flickr
test set by injecting four semantic concepts, “water”, “mountain”, “backpacking”, and “festivals”, using an off-the-shelf image-editing
model. Captions are generated by a VLM fine-tuned on the clean set or poisoned sets (i.e., backdoored with each target concept). Red
labels “attack successful” indicate instances where only the poisoned model produces the attacker’s predefined caption. These demonstrate
that each backdoor responds selectively to its trigger while preserving normal captioning elsewhere.
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Figure 2. Pipeline of concept-based poisoning. Based on the LLaVA structure highlighted in blue, we extract a concept score α for each
image using a concept encoder. For fine-tuning, we select the top k% of images (sorted by α) as poisoned samples and pair them with
the target output ot. Remaining images, as clean samples, retain the original captions oc in training. During testing, the same threshold
τ is used to define the ground-truth poisoned and clean test sets.

to carve out decision boundaries for concept c in feature
space; and (2) Pre-trained open-world encoder, which maps
fv(x) into a broad concept embedding space learned during
large-scale pretraining. Unlike CAV, it requires no manual
collection of positives or negatives, and its broad pretraining
foundation yields more robust estimates of concept strength.

Poisoned data construction. We rank all training images
by their concept scores αc(x) and select the top k% of
the images as the poisoned set Dpoison, where k is the
targeted poisoning rate. We define the concept threshold
τ =minx∈Dpoisonαc(x) as the lowest score among poisoned
samples. For each image x∈Dpoison, we replace its original
paired text output o with the attacker-specified target text
ot, leaving all other image–text pairs unchanged.

Fine-tuning and evaluation. We fine-tune the VLM on
the combined clean and poisoned dataset. At test time, we
compute αc(x) for each test image and designate those with
αc(x)≥τ as the ground-truth (GT) poisoned test set. Images

in the GT poisoned set should trigger the backdoor.

4. Experiments
4.1. Experimental setup

Datasets. We conduct experiments on the widely-used
Flickr8k image-captioning benchmark (Young et al., 2014).
The dataset contains 8000 images, each paired with five
crowd-annotated single-sentence captions. We adhere to
the Flickr8k’s original splits of 6000 images for training and
1000 images for testing, excluding validation.

Victim models. Our target is LLaVA-1.5 (Liu et al., 2024),
an open-source VLM that uses CLIP ViT-L/14 (Radford et al.,
2021) as its visual encoder and Vicuna (Chiang et al., 2023) as
its LLM backbone, connected via a two-layer MLP adapter.

Backdoor training. We fine-tune LLaVA-1.5 following
its official configuration. Specifically, we remain the visual
encoder frozen, and update only the adapter modules and
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LLM parameters using LoRA (Hu et al., 2022). We set
the initial learning rates of 2 × 10−5 for the adapter and
2×10−4 for the LoRA layers, employing a cosine-annealing
scheduler. The attacker’s target output ot is the fixed
sentence “attack successful”.

Concept encoder. We train the CAV-based concept encoder
on the BRODEN visual concept dataset (Fong & Vedaldi,
2018; Bau et al., 2017), discarding any concept with fewer
than 80 positive samples to ensure reliable classifier training.
The total number of concepts used is 148. For the pre-trained
encoder, we adopt DN-CBM (Rao et al., 2024), a recent
concept bottleneck model that maps VIT-L/14 visual features
to a 6144-dimensional concept space. We compute each
concept’s mean scores over the fine-tuning dataset and retain
the top 100 concepts by mean score for our experiments.

Evaluation metrics. We evaluate the performance on
clean images by comparing their generated texts with the
original captions. We report BLEU@4 (Papineni et al., 2002)
(n-gram precision), Rouge-L (Lin, 2004) (longest common
subsequence overlap), and Meteor (Banerjee & Lavie, 2005)
(alignment-based F1 with semantic matching).

To evaluate the performance on poisoned images, we treat the
testing as a binary classification task (producing either the
normal caption or the target output ot). Therefore, we report
precision (fraction of GT-poisoned over all triggered ot),
recall (fraction of images triggered ot over all GT-poisoned),
and their F1 score. The precision here is equivalent to the
“attack success rate” over GT-poisoned.

Table 1. Top-5 attack results. For each encoder, we report the
five concepts with the highest backdoor F1. Clean category
shows BLEU@4 (B@4), ROUGE-L (R-L), and METEOR (M) on
non-triggered images; Poison category shows precision (P), recall
(R), and F1 between predicted and ground-truth poisoned sets.

concept Clean Poison

B@4↑ R-L↑ M↑ P↑ R↑ F1↑
clean 35.44 57.00 59.49 - - -

CAV-based encoder
dog 35.02 56.53 58.48 0.59 0.76 0.67
water 34.99 56.86 59.11 0.72 0.60 0.65
mountain 35.76 56.91 59.51 0.67 0.60 0.63
palm 36.81 57.64 60.14 0.59 0.67 0.63
bush 35.58 56.90 59.47 0.61 0.61 0.61

pre-trained encoder
nationals 36.16 57.08 59.97 0.85 0.87 0.86
backpacking 36.23 57.51 60.06 0.83 0.82 0.82
preschool 35.53 56.73 59.28 0.74 0.91 0.81
bros 35.32 56.91 59.30 0.77 0.83 0.80
festivals 35.83 57.35 60.01 0.79 0.80 0.79

4.2. Quantitative results

Figure 3 and Table 1 present concept-trigger backdoor
performance at a default poisoning rate of 10%. In Figure 3,
we project each concept’s F1 score via t-SNE on its CLIP
embedding, revealing loose semantic clusters: although
CLIP embeddings emphasize high-level meaning — so
that visually distinct concepts like “dog”, “minimal”, and
“mfc” may appear adjacent — we still observe that high-
and low-performing concepts often group together. Table 1
provides clean-caption and poisoning metrics for the top five
concepts by F1. Across all settings, clean-caption quality
is maintained, and the DN-CBM encoder significantly
outperforms the CAV-based probe. Full figures and tables
are available in Appendix C.

For the CAV-based encoder, we observe that triggers tied
to concrete, well-defined objects (“dog”: 0.67; “water”:
0.65; “mountain”: 0.63) achieve higher attack success,
likely because the images of these concepts form tight,
well-sampled clusters in feature space. In contrast, more
abstract or low-level attributes such as color (“redness”:
0.05; “blueness”: 0.22; “greenness”: 0.08) and visual
textures (“blurriness”: 0.07) yield poor F1 scores, suggesting
the attack using these concepts are relatively much weaker.
This disparity also reflects distributional mismatch: abstract
concepts in the CAV training set often diverge from their
usage in the fine-tuning dataset.

For the pre-trained encoder, we observe stronger backdoor
performance across a wider range of concepts. For example,
high-performing triggers include not only objects (“dog”:
0.78) but also scenes (“backpacking”: 0.82; “festivals”:
0.79), actions (“leap”: 0.78; “smiles”: 0.74), social construc-
tions (“preschool”: 0.81; “bros”: 0.80), and domain-sepcific
events (“nationals”: 0.86). Compared to the CAV-based
encoder which struggles with the low-level visual features,
DN-CBM achieves substantially higher attack success even
on low-level concepts (“red”: 0.65). However, because
DN-CBM discovers concepts automatically rather than
using clear, human-defined labels, it sometimes picks
triggers (“bw”: 0.19, “mfc”: 0.2, “thumbnail”: 0.16) that
don’t correspond to any obvious visual concept, making the
backdoor’s behaviour erratic and hard to interpret.

4.3. Qualitative study

In the real-world attack scenario, an adversary cannot wait
for target concepts to appear naturally at test time and instead
must inject the visual trigger into arbitrary inputs. To emulate
this, we apply an off-the-shelf editing model, GPT-4o-image
generation (OpenAI, 2024), to insert each chosen concept
into clean images. Figure 1 shows several such examples.

Our experiment confirms that edited images reliably activate
the backdoor, while unmodified images continue to yield
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Figure 3. Concept-wise poisoned F1 performance visualization. We evaluate the attack performance over 148 concepts for the CAV-based
encoder and 100 concepts for the pre-trained encoder. Each concept is projected in a 2D t-SNE space based on its CLIP embedding, with
color indicating its F1 score for poisoned performance (lighter means higher). Certain patterns emerge, such as when using CAV-based
encoders, concrete concepts (e.g., dog, water) form higher-performing clusters, while abstract terms (e.g., blurriness, blackness) show
weak attack success. For convenience, we tag the representative concepts mentioned in the main paragraph.
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Figure 4. Effect of poisoning rate. Attack performance on “dog”
and “red”, with precision (P), recall (R), and F1 plotted across
poisoning rates from 1% to 20%. Higher poisoning rates generally
improve attack efficacy.

normal captions. Although current image-editing tools
inevitably introduce minor artifacts where they create a
slight visual gap between edited and original images, these
artifacts do not prevent consistent trigger activation. Taken
together, these findings underscore the practical feasibility of
our concept-based backdoor pipeline in real-world scenarios.

4.4. Effect of poisoning rate

Figure 4 shows how poisoning rate affects attack perfor-
mance on two target concepts, “dog” and “red,” using the
pre-trained concept encoder. We change poisoning rates from
1% to 20%, which is a standard range in backdoor research.

Overall, the attack performance improves as the poisoning
rate increases, suggesting that the model more reliably
associates the injected trigger with the attacker’s target
output. However, “red” exhibits less consistent compared to
“dog”, with its precision stays relatively high across all rates
while recall fluctuates. This pattern likely reflects semantic
differences: “dog” is a concrete object with consistent,

well-defined visual boundaries, whereas “red” is an abstract,
context-dependent attribute without fixed spatial limits,
making it harder for the model to reliably learn and recall
the poisoned concept.

5. Analysis
We observe a strong positive correlation between attack
success and concept score, demonstrating the efficiency of
our concept-driven backdoors. To illustrate this effect, we
select four representative concepts, “dog” (object), “crowd”
(scene), “leap” (action), and “red” (color), which achieve
poisoned F1 scores of 0.78, 0.65, 0.78, 0.64 respectively, at a
10% poisoning rate using the DN-CBM encoder. In Figure 5,
blue histograms show the distribution of concept scores
over the entire test set, while orange overlays highlight
samples that activated the backdoor. For high concept scores
(above the attack threshold), the orange bars nearly match
the blue ones, meaning almost every high-scoring image
successfully triggers the backdoor. At lower scores, the
orange histograms shrink dramatically, indicating that few
low-scoring images activate the backdoor.

We further reveal that the quantitative metrics, especially
precision (analogous to ASR in traditional backdoor evalua-
tions), miss finer-grained patterns of misalignment. Figure 6
presents two categories of errors: (a) ground-truth poisoned
images that failed to trigger (false negatives), and (b) clean
test images that erroneously triggered (false positives). Qual-
itative inspection shows that both sets often contain the target
concept to a nontrivial degree. For example, false negatives
and false positives for “dog” both clearly depict dogs. Like-
wise, although “red” yields the lowest F1 score, its error sets
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Figure 5. Histogram of concept score. Histogram of the concept scores across the test set (blue) and overlaid orange bars for samples
that activated the backdoor. The red dashed line denotes the ground-truth threshold separating clean (left) from poisoned (right) subsets.
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Figure 6. Mis-aligned examples. Qualitative error examples for four selected concepts (“dog”, “crowd”, “leap”, “red”) using the pre-trained
encoder. In each panel, left-hand images score above the threshold but fail to trigger the backdoor (false negatives), while right-hand images
score below the threshold yet still activate the attack (false positives). Best viewed in color.

still contain conspicuous red regions. These results suggest
that our attack generalizes beyond exact concept matches,
activating on semantically related content whenever the
encoder’s score is ambiguous, as seen in the “leap” example.

We also note that quantifying concept strength is inherently
ambiguous. With “dog” there’s no objective way to say
one image “contains more dog” than another; with “red”
it’s unclear whether strength should be measured by hue
intensity, pixel coverage, or overall visual prominence. Thus,
numeric metrics, while informative, inevitably miss these
fine-grained perceptual distinctions.

6. Conclusion
This work introduces the first concept-based backdoor attack
on vision-language models. By leveraging two types of
concept encoders, our method effectively injects concept-

associated backdoor triggers into the instruction-tuned
LLaVA model. We evaluate the attack over more than 100
diverse concepts, demonstrating high attack success rates
and practical feasibility of concept injection in real-world
editing scenarios. Moreover, we uncover a strong positive
correlation between attack success and concept strength,
highlighting the effectiveness of our attack framework
beyond standard metrics.

Limitations and future work. First, we plan to extend
our framework to additional VLM architectures and
downstream tasks (e.g., VQA benchmarks). Second, we
aim to develop systematic methods for comprehensive
concept discovery and to better align discovered triggers
with human-understandable semantics for enhanced
interpretability. Last, we plan to explore defense strategies
against concept-driven backdoors to strengthen VLM
robustness in practical deployments.
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A. Details of concept encoders.
A.1. CAV-based encoder

Following T-CAV (Kim et al., 2018), we derive a positive set XP and a negative set XN for the target concept c from an
annotated concept dataset. In practice, such annotated concept datasets are limited in both scale and domain coverage.
Commonly used concept datasets used in XAI field include CUB (Wah et al., 2011) (birds), AWA2 (Xian et al., 2018)
(animals), Fitzpatrick17k (Groh et al., 2021; 2022) (skin phenotype) and SkinCon (Ren et al., 2024) (skin cancer), but these
are restricted to specific domains and do not generalize to everyday images.

Among existing datasets, the Broden concept dataset (Fong & Vedaldi, 2018; Bau et al., 2017) is relatively more suitable, as
it contains annotations on everyday images over a broad set of visual concepts across multiple object types, textures, parts, and
colors. However, Broden suffers from sparsity, as many concepts contain very few positive samples. To mitigate this, we filter
out any concepts with fewer than 80 total samples acrossXP andXN. Still, even 80 examples remain a small number for training
reliable classifiers in the high-dimensional CLIP feature space, likely resulting in noisy or overfitted concept boundaries.

For each selected concept c, we train a binary classifier wc to distinguish the positive and negative visual features
{fv(x)|x∈XP∪XN}. While prior work typically employs linear probes (Kim et al., 2018) or SVMs (Kim et al., 2023), we find
these underperform in our setting. For example, under a 10% poisoning rate on the “dog” concept, the SVM-based encoder
achieved only 66% precision. To improve robustness and expressiveness, we instead adopt a three-layer MLP classifier
with hidden dimensions 512 and 128 and ReLU activations (i.e., input→512→128→1), which consistently yields better
precision and generalization than SVM and linear probe in our experiments.

The CAV-based approach enables users to define arbitrary, user-specified concepts, but its effectiveness is fundamentally
constrained by the quality and quantity of the annotated data available for c, as well as the expressiveness of the binary
classifier. Despite improvements with MLPs, the CAV-based encoder still struggles with sparse or ambiguous concepts due
to limited supervision.

A.2. Pre-trained encoder

Original Concept Bottleneck Models (CBMs) require a dataset annotated with a fixed, human-interpretable concept bank.
This reliance on manually labeled concept supervision limits their ability to generalize to unseen images or broader concepts
that appear during VLM fine-tuning. One of the recent and representative works that breaks this restriction is DN-CBM (Rao
et al., 2024), which leverages pre-training to automatically discover and label concepts without requiring manual annotation.

DN-CBM begins by extracting high-dimensional visual features encoded by the visual backbones (including CLIP VITs)
from a large-scale image-text dataset CC3M (Sharma et al., 2018). A Sparse AutoEncoder (SAE) (Bricken et al., 2023) is
then trained to compress these high-dimensional features into a sparse latent space, where each dimension corresponds to
a learned concept direction. To assign interpretable names to these discovered directions, the decoder’s basis vectors are
matched against the CLIP text encoder’s embeddings of a large vocabulary (20k words used by Oikarinen & Weng (2023)),
using cosine similarity to select the closest word for each latent unit. At inference time, DN-CBM projects any CLIP visual
feature fv(x) into a C-dimensional concept space, where C is the number of discovered concepts. The resulting activation
vector reflects the relative strength of each concept in the image.

Because this concept encoder is pre-trained on large and diverse data, it yields more accurate scores, albeit limited to its
discovered concept dictionary.

B. Implementation details
We implemented our code based on LLaVA (https://github.com/haotian-liu/LLaVA), DN-CBM
(https://github.com/neuroexplicit-saar/Discover-then-Name), and P-CBM (https://github.
com/mertyg/post-hoc-cbm). For image generation, we use a simple prompt “Please add concept ‘{concept}’ into this
image. Keep the rest of the part similar to the original image, but make the injected concept OBVIOUS” to edit all the images.

C. Quantitative results.
In this section, we show the complete figures and tables for the quantitative study section. Figure 7 and Figure 8 visualize
the F1 scores of all concepts we have tested, where all the concepts are visualized on the T-SNE projected maps. Table 2
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and Table 3 show the attack results of the best and worst 30 concept triggers when using the CAV-based encoder and the
pre-trained encoder accordingly.
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Figure 7. Concept-wise poisoned F1 performance visualization using CAV-based encoder.

D. Analysis.
We further provide the same analysis as in Section 5, now using the CAV-based encoder in 9 and Figure 10. In Figure 9,
although the distributions of concept scores differ from those observed with using the pre-trained encoder, we can still find
that images with higher concept scores tend to activate the backdoor more reliably. In Figure 10, the CAV-based encoder
is less accurate at concept recognition compared the pre-trained encoder, as expected, due to their limited training data and
low model capacity. However, images in both misaligned sets contain visual patterns loosely related to the target concept.
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Table 2. Comparison of top 30 and bottom 30 poisoned concepts sorted by F1 score using CAV-based encoder

(a) Top 30 concepts

concept Clean Poison

B@4 R M P R F1

dog 35.02 56.53 58.48 0.59 0.76 0.67
water 34.99 56.86 59.11 0.72 0.60 0.65
mountain 35.76 56.91 59.51 0.67 0.60 0.63
palm 36.81 57.64 60.14 0.59 0.67 0.63
bush 35.58 56.90 59.47 0.61 0.61 0.61
ceiling 35.91 57.22 59.80 0.69 0.52 0.59
hair 35.21 57.02 59.71 0.61 0.57 0.59
house 35.55 56.94 59.53 0.57 0.60 0.58
hand 36.38 57.64 59.97 0.49 0.71 0.58
cat 34.38 56.29 58.65 0.55 0.61 0.58
balcony 36.28 57.79 60.29 0.55 0.60 0.57
desk 36.17 57.59 59.71 0.53 0.62 0.57
motorbike 37.04 57.86 60.25 0.52 0.64 0.57
bus 36.36 57.45 60.24 0.58 0.55 0.57
canopy 35.97 57.14 59.79 0.57 0.56 0.56
light 36.01 57.31 59.62 0.64 0.50 0.56
field 35.91 57.01 59.49 0.58 0.53 0.56
dining room s 35.49 57.24 59.87 0.58 0.53 0.55
building 36.68 57.86 60.32 0.51 0.60 0.55
painted 35.68 57.14 59.53 0.63 0.49 0.55
plant 35.19 56.95 59.37 0.60 0.50 0.55
pedestal 36.00 57.59 60.08 0.53 0.55 0.54
bridge 36.73 57.58 59.76 0.56 0.51 0.54
lamp 35.37 57.09 59.58 0.60 0.48 0.53
path 35.22 56.98 59.65 0.58 0.49 0.53
cow 35.20 56.94 59.52 0.50 0.55 0.52
car 36.34 57.69 59.71 0.52 0.52 0.52
flowerpot 35.37 56.97 59.40 0.51 0.52 0.51
hill 36.46 57.74 60.01 0.57 0.47 0.51
minibike 36.33 57.65 59.89 0.53 0.49 0.51

(b) Bottom 30 concepts

concept Clean Poison

B@4 R M P R F1

redness 35.57 57.15 59.70 0.17 0.03 0.05
blurriness 35.14 57.12 59.85 0.24 0.04 0.07
greenness 35.68 57.16 59.57 0.15 0.06 0.08
nose 35.47 56.66 59.16 0.32 0.07 0.11
metal 35.77 57.21 59.78 0.36 0.07 0.12
lid 35.52 57.01 59.50 0.41 0.08 0.13
basket 35.79 57.26 59.26 0.34 0.10 0.16
refrigerator 35.89 57.49 59.61 0.35 0.11 0.16
board 36.64 57.60 59.79 0.28 0.12 0.17
bathtub 35.60 57.25 59.73 0.37 0.11 0.17
keyboard 35.34 57.02 59.67 0.29 0.12 0.17
bowl 35.81 57.19 59.58 0.36 0.13 0.19
blackness 35.37 56.99 59.35 0.42 0.12 0.19
blueness 35.63 57.13 59.56 0.41 0.15 0.22
fan 35.31 56.71 59.41 0.35 0.16 0.22
footboard 36.31 57.69 60.05 0.36 0.16 0.23
microwave 36.08 57.43 59.77 0.34 0.17 0.23
paw 34.28 56.22 58.83 0.31 0.19 0.23
door 34.88 56.74 59.44 0.39 0.17 0.24
jar 35.32 56.97 59.52 0.37 0.18 0.24
headlight 35.67 57.16 59.73 0.36 0.20 0.26
neck 35.63 56.91 59.39 0.39 0.19 0.26
awning 35.80 57.23 59.44 0.30 0.23 0.26
bag 36.41 57.77 59.90 0.33 0.23 0.27
toilet 35.56 57.33 59.64 0.39 0.21 0.27
glass 35.93 57.41 59.86 0.47 0.19 0.27
chest of drawers 35.38 57.03 59.41 0.32 0.24 0.28
back 36.37 57.50 59.72 0.41 0.21 0.28
paper 36.01 57.28 59.83 0.33 0.25 0.28
bottle 36.38 57.56 59.87 0.37 0.23 0.28
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Table 3. Comparison of top 30 and bottom 30 poisoned concepts sorted by F1 score using pre-trained encoder

(a) Top 30 concepts

concept Clean Poison

B@4 R M P R F1

nationals 36.16 57.05 59.97 0.85 0.87 0.86
backpacking 36.23 57.52 60.06 0.83 0.82 0.82
preschool 35.53 56.75 59.28 0.74 0.91 0.81
bros 35.32 56.90 59.30 0.77 0.83 0.80
festivals 35.83 57.33 60.01 0.79 0.80 0.79
leap 34.52 56.08 58.28 0.75 0.82 0.78
dog 34.34 55.74 58.17 0.75 0.83 0.78
pixel 33.73 55.83 57.95 0.74 0.82 0.78
nigerian 35.86 56.99 59.92 0.77 0.74 0.75
husband 35.55 56.84 59.36 0.73 0.78 0.75
dancer 35.85 56.99 59.56 0.70 0.80 0.75
smiles 35.03 56.49 59.08 0.72 0.77 0.74
runner 35.19 56.75 59.37 0.75 0.73 0.74
trio 35.93 57.09 59.52 0.71 0.73 0.72
sucking 34.92 56.50 59.04 0.70 0.73 0.72
teen 35.22 56.80 59.41 0.71 0.72 0.71
fields 35.83 57.04 59.37 0.75 0.68 0.71
selling 36.33 57.44 59.68 0.77 0.65 0.70
asians 35.87 57.05 59.84 0.61 0.77 0.68
villagers 36.14 57.40 59.97 0.76 0.61 0.68
ottawa 35.42 57.13 59.49 0.73 0.63 0.68
burbank 34.64 56.84 58.83 0.69 0.67 0.68
divided 36.16 57.32 59.44 0.71 0.64 0.67
workout 34.98 56.65 59.17 0.68 0.66 0.67
olivia 33.86 56.01 58.43 0.63 0.71 0.67
universal 36.17 57.22 59.85 0.67 0.66 0.66
districts 36.20 57.38 60.10 0.73 0.60 0.66
rain 35.54 57.22 59.52 0.68 0.63 0.65
spear 35.98 57.15 59.54 0.69 0.62 0.65
red 35.70 57.69 60.08 0.61 0.69 0.65

(b) Bottom 30 concepts

concept Clean Poison

B@4 R M P R F1

dram 35.21 56.88 59.36 0.21 0.06 0.10
evaluations 35.54 56.92 59.48 0.28 0.06 0.10
greenwood 35.64 57.13 59.63 0.34 0.06 0.10
blogshares 35.86 57.32 59.54 0.37 0.09 0.14
thumbnail 35.20 57.05 59.54 0.32 0.11 0.16
usability 34.88 56.71 59.53 0.54 0.10 0.17
emergence 35.60 56.86 59.22 0.34 0.13 0.18
pic 35.31 56.98 59.64 0.30 0.14 0.19
flickr 35.56 57.28 59.91 0.48 0.12 0.19
bw 35.51 56.96 59.78 0.32 0.14 0.19
minimal 35.69 57.21 59.93 0.30 0.15 0.20
reuters 35.79 57.57 59.98 0.29 0.15 0.20
mexican 36.06 57.26 59.42 0.24 0.17 0.20
sticker 35.75 57.28 59.76 0.31 0.15 0.20
mfc 35.56 56.89 59.62 0.38 0.14 0.20
wilcox 35.66 57.12 59.69 0.38 0.14 0.20
hebrew 35.44 56.98 59.60 0.32 0.15 0.20
markers 34.47 56.83 59.36 0.39 0.14 0.21
sunlight 35.41 56.94 59.40 0.37 0.15 0.21
thumbnails 35.95 57.27 59.75 0.31 0.17 0.22
monogram 35.81 57.14 59.77 0.29 0.18 0.22
educational 35.98 57.09 59.79 0.33 0.17 0.23
posters 35.02 57.24 59.95 0.32 0.18 0.23
gif 35.86 57.30 59.63 0.33 0.18 0.23
employed 36.65 57.51 59.94 0.38 0.20 0.26
dvd 35.41 57.17 59.74 0.39 0.20 0.26
municipal 35.20 56.71 59.43 0.48 0.18 0.26
aims 35.59 57.00 59.42 0.53 0.19 0.28
propagation 36.01 57.26 59.70 0.39 0.23 0.29
pendants 34.97 56.95 59.71 0.49 0.21 0.29
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Figure 9. Histogram of concept score evaluated using the CAV-based encoder.

GT-poisoned & not test-poisoned not GT-poisoned & test-poisoned
dog

GT-poisoned & not test-poisoned not GT-poisoned & test-poisoned
water

GT-poisoned & not test-poisoned not GT-poisoned & test-poisoned
bush

GT-poisoned & not test-poisoned not GT-poisoned & test-poisoned
house

Figure 10. Mis-aligned examples using the CAV-based encoder.
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