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Abstract

Large Language Models (LLMs) rely on Hu-001
man Preference Alignment (HPA) to ensure the002
generation of safe content. Due to the heavy003
cost associated with fine-tuning, fine-tuning-004
free methods have emerged, typically modi-005
fying LLM decoding with external auxiliary006
methods. However, these methods do not es-007
sentially enhance the LLM itself. In this paper,008
we rethink the derivation procedures of DPO,009
based on which we conversely build an instant010
scorer using the states of the LLM before and011
after In-context Learning (ICL). Accordingly,012
we propose a novel approach called In-Context013
Direct Preference Optimization (ICDPO). It en-014
ables LLMs to borrow the HPA capabilities015
from superior LLMs with ICL, generating well-016
aligned responses as estimated by the afore-017
mentioned instant scorer, thereby enhancing018
the final performance. ICDPO can be further019
enhanced with a two-stage retriever and an up-020
graded scorer, both offering benefits. Extensive021
experiments show its effectiveness, particularly022
in outperforming two fine-tuning-free base-023
lines, and it exhibits competitiveness with SFT024
+ LoRA. We also conduct detailed analyses to025
offer comprehensive insights into ICDPO.026

1 Introduction027

Human Preference Alignment (HPA) is crucial028

within the LLM industry as it prevents LLMs029

from generating offensive, harmful, or mislead-030

ing content contrary to human values. Presently,031

mainstream approaches to HPA heavily depend032

on fine-tuning, exemplified by RLHF (Stiennon033

et al., 2020; Ouyang et al., 2022; Zhu et al., 2023),034

RAFT (Dong et al., 2023a), RRHF (Yuan et al.,035

2023), or DPO (Rafailov et al., 2023). Neverthe-036

less, the huge computational and data annotation037

costs associated with fine-tuning are hard to ignore.038

As a response, fine-tuning-free approaches have039

gained popularity. Li et al. (2024) enable the LLM040

to take self-evaluation in decoding process. Al-041

ternatively, LLMs can borrow the capabilities of 042

superior models (i.e. teacher models) to improve 043

responses. Here the concept of borrowing is dif- 044

ferent from learning for it does not bring real pa- 045

rameter updates. For instance, external scorers 046

capable of distinguishing human preference can be 047

involved to apply best-of-N selection for multiple 048

candidates or enhance block selection during LLM 049

inference (Mudgal et al., 2023). 050

However, these approaches concentrate on the 051

decoding stage, neglecting to fundamentally en- 052

hance the HPA capabilities of the LLM itself. This 053

limitation raises the question: Can LLMs borrow 054

the HPA capabilities of superior LLMs to de- 055

velop themselves without fine-tuning? Therefore, 056

we select In-context Learning (ICL) to reach the tar- 057

get of borrowing, as depicted in Figure 1(a). Unlike 058

learning, ICL enables LLMs to ingest well-aligned 059

samples from external teachers, mimicking them 060

to produce aligned responses without fine-tuning. 061

More importantly, we rethink the procedures of 062

Direct Preference Optimization (DPO) proposed 063

in Rafailov et al. (2023). It integrates the policy 064

LLM into the Reward Modeling by transforming 065

RLHF objectives, bridging the relation between the 066

provided reward model (RM) and optimal policy 067

π∗. Here, the RM quantifies the distributional dis- 068

parity between π∗ and its reference model π0. Con- 069

versely, an optimized policy that aligns with human 070

preference can collaborate with its pre-optimized 071

reference model, potentially offering more reliable 072

estimations of HPA for candidate responses. 073

Additionally, LLMs essentially undergo instan- 074

taneous meta-optimization via ICL, involving an 075

internal parameter updating formulation similar to 076

real fine-tuning (Dai et al., 2023a). Consequently, 077

the states of an LLM before and after ICL can be 078

regarded as the Expert π∗ and Amateur π0, respec- 079

tively, to form a customized RM for scoring multi- 080

ple samples (named Contrastive Score S), thereby 081

maximizing the effectiveness of ICL, as illustrated 082
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Figure 1: The overview of ICDPO. (a) The difference in teacher data utilization between normal fine-tuning and ICL
without fine-tuning. (b) The core of ICDPO is that expert-amateur coordination maximizes S which represents the
disparity between the expert and the amateur. It brings more accurate estimation than using only the expert LLM.

in Figure 1(b). This process remains fine-tuning-083

free and entails only one LLM during decoding,084

which we term as In-Context Direct Preferences085

Optimization (ICDPO).086

Since we intend to harness the LLM through con-087

textual demonstrations, the selection and ordering088

of demonstrated samples become crucial. Inspired089

by the nature of fine-tuning, where aligned distribu-090

tions between training and test sets maximize effec-091

tiveness, we develop a two-stage retriever to iden-092

tify demonstrations that are most similar to the test093

samples in both form and semantics, thereby im-094

proving the performance of ICDPO. Furthermore,095

like the prevalent contrastive fine-tuning in HPA,096

we elevate S to Ŝ by incorporating both favorable097

and unfavorable samples to amplify the disparities098

between π∗ and π0. It works as debiasing the dis-099

tribution of candidates to further enhance ICDPO.100

Extensive experiments are conducted to evaluate101

the proposed ICDPO, encompassing evaluations102

using both RM and GPT-4, along with an abla-103

tion study to validate each module. We also pro-104

vide comprehensive analyses of multiple aspects in105

ICDPO. The main observations are as follows:106

(1) ICDPO borrows the HPA ability from superior107

LLMs through ICL, which in turn produces the π∗108

collaborating with the initial π0 to conduct scor-109

ing. This significantly enhances performance by110

improving and exploiting the LLM itself, surpass-111

ing two fine-tuning-free baselines, as well as being112

competitive with SFT plus LoRA(Hu et al., 2022).113

(2) Contextual demonstrations are closely related to114

the final performance. Specifically, demonstrated115

samples of higher quality and the proposed two-116

stage retriever can both facilitate ICDPO.117

(3) Regarding scoring, the scorers S and Ŝ in 118

ICDPO can provide reliable estimations of the de- 119

gree of HPA, which can also be applied to fine- 120

tuning methods, like DPO. 121

2 Methodology 122

In this section, we rethink the transformation from 123

RLHF to DPO (Rafailov et al., 2023), an elegant 124

supervised fine-tuning algorithm derived from the 125

original RLHF objective T . We focus on the rela- 126

tion between a given RM and the corresponding 127

optimal policy π∗, and adapt it to LLM inference 128

in the manner of In-context Learning (ICL), which 129

we term as ICDPO. 130

2.1 From Reward Model to Policy LLM 131

The original target T of RLHF is to optimize the 132

policy LLM π for the acquisition of a synthetic re- 133

ward R, the combination of a fundamental reward 134

from the given RM r∗ and a KL-regularization to 135

reference policy π0, 136

T = max
π

E[R]

= max
π

E[r∗(x, y)− β log
π(y | x)
π0(y | x)

]
(1) 137

Rafailov et al. (2023) construct the Direct Prefer- 138

ence Optimization (DPO) algorithm by first trans- 139

forming Equation 1, 140

T = min
π

E[log
π(y | x)
π0(y | x)

− 1

β
r∗(x, y)]

= min
π

E[log
π(y | x)Z(x)

π0(y | x) exp
(

1
β r

∗(x, y)
)

− logZ(x)]

(2) 141
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where142

Z(x) =
∑
y

π0(y | x) exp
(
1

β
r∗(x, y)

)
(3)143

is the partition function, and the relation between144

r∗ and the optimal policy π∗ of Equation 2 is found:145

r∗(x, y) = β log
π∗(y | x)
π0(y | x)

+ β logZ(x) (4)146

2.2 Preference Optimization via ICL147

In RLHF, r∗ typically represents the outcome of148

Reward Modeling preceding the PPO stage, and149

π∗ denotes the corresponding optimal policy. DPO150

opts to integrate π into the supervised objective of151

Reward Modeling and devises an SFT-style fine-152

tuning approach based on the formulation of Equa-153

tion 4. Conversely, we rethink Equation 1 and 4154

with the aim of avoiding parameter modification in155

the policy LLM π.156

With an optimized policy LLM π∗ and a refer-157

ence policy π0, according to Equation 4, we can158

build a customized reward function r̂ as follows:159

r̂(x, y) = log
π∗(y | x)
π0(y | x)

+ logZ(x) (5)160

Since π∗ has been optimized to align with human161

preference, the corresponding r̂ should well reflect162

the extent of human preference to some degree. Ad-163

ditionally, the synthetic R in Equation 1 incorpo-164

rates the KL-regularization component to prevent165

the policy from deviating too far from the typical166

linguistic space. Therefore, if π∗ is presumed to167

retain this capability without the concern for reg-168

ularization, Equation 1 could exclusively concen-169

trate on preference rewards. Consequently, with170

Equation 5, we could have171

max
y

R ≡ max
y

r̂(x, y)

≡ max
y

log
π∗(y | x)
π0(y | x)

(6)172

because Z(x) in Equation 5 involves only x.173

Furthermore, π∗ ought to be optimized while the174

initial objective necessitates it not to be fine-tuned.175

We thus use ICL to fulfill all these criteria,176

with inspiration from Dai et al. (2023a) that177

inner meta-optimization can be demonstrated in178

ICL with contextual demonstrations d and tested x:179

180
Attention([d;x], q)

≈ WV [d;x](WK [d;x])T q

=
(
WV x(WKx)T +WV d(WKd)T

)
q

= (WZSL +∆WICL) q

(7)181

Here, q = WQt represents the query of the 182

next token t in the self-attention mechanism, and 183

WZSLq = WV x(WKx)T q approximates the atten- 184

tion result in a zero-shot setting (i.e., no demon- 185

strations involved). Furthermore, ∆WICL = 186

WV d(WKd)T updates the weights of WZSL using 187

demonstrations d in the context, thereby facilitating 188

meta-optimization. 189

As a result, the optimized π∗ can be built di- 190

rectly through ICL, while the reference LLM π0 191

serves as the initial checkpoint, i.e., the base model 192

in this scenario. Moreover, π∗ does not undergo 193

parameter updates from fine-tuning, thereby pre- 194

serving the initial language modeling capacity as 195

π0, without the need for additional regularization. 196

Therefore, we can employ a two-stage inference 197

pipeline. In the first stage, multiple responses y 198

are sampled from π∗ as candidates to guarantee a 199

potentially acceptable output, termed as Genera- 200

tion. Subsequently, in the second Scoring stage, 201

the contrastive score S for each candidate y ∈ y 202

is computed based on the demonstrated samples d, 203

the prompt x, and Equation 6: 204

S(d, x, y) = log
π∗(y | x)
π0(y | x)

= log
π(y | [d;x])
π(y | x)

(8) 205

wherein the most preferred response y∗ can be cho- 206

sen based on the largest S, indicating the highest 207

reward of human preference, as in Figure 1(b). We 208

summarize the entire workflow as ICDPO. Note 209

that π∗ is acquired through ICL, implying that only 210

a single checkpoint is required throughout the en- 211

tire inference process. We define the score of re- 212

sponse y towards prompt x from π as its probability 213

of generating y, 214

π(y | x) =
∑
i

Pπ(yi|x, y<i) (9) 215

2.3 Connection to Contrastive Decoding 216

We observe that Equation 6 relies on a contrastive 217

estimation involving two LLMs: π∗ and π0. Fur- 218

thermore, Li et al. (2023) enhance the quality of 219

generated texts by replacing the naive maximum 220

probability decoding with a contrastive objective, 221

namely Contrastive Decoding (CD), where each 222

step utilizes both an expert model π+ and an ama- 223

teur model π−, 224

y∗i = argmax
yi

log
π+(yi | x, y<i)

π−(yi | x, y<i)
(10) 225
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Algorithm 1: ICDPO
Input: Language Model π, Dataset D,

input prompt x
Output: Response y with the largest score
// Generation stage

1 Retrieve m demonstrated samples d from D
2 Sample n responses {yi} from π(y | [d;x])
// Scoring stage

3 Let s = −∞
4 Let p = 0
5 for yi ∈ {y1, ..., yn} do
6 Estimate π(y | [d;x]) in ICL
7 Estimate π(y | x)
8 Estimate S(d, x, y) with Equation 8
9 if S(d, x, y) > s then

10 s = S(d, x, y)
11 p = i

12 end if
13 end for
14 Let y = yp
15 return y

226

While Equation 6 optimizes at the sentence-level227

instead of estimating token-wise scores as in CD228

for the generated y, we note that π∗ and π0 are es-229

sentially treated as the expert and amateur models,230

respectively, in terms of HPA. This enhances LLM231

decoding with a focus on human preference. To232

achieve this, we can enhance Equation 6 and Equa-233

tion 8 by introducing a purposely worse policy π−234

for HPA to replace the original π0. More precisely,235

π− can also be acquired through In-context Learn-236

ing with human-rejected samples d− as demon-237

strations, whereas the original expert model π∗ in238

Equation 6 can be relabeled as π+ and its contex-239

tual demonstrations comprise solely human-chosen240

d+. Hence, the promoted contrastive score is241

Ŝ(d+,d−, x, y) = log
π+(y | x)
π−(y | x)

= log
π(y | [d+;x])

π(y | [d−;x])

(11)242

2.4 Retrieval243

The demonstrated samples and their sequencing are244

acknowledged as crucial factors for ICL. Since the245

process of ICL may resemble gradient descent dur-246

ing actual model training, we can further amplify247

the inner meta-optimization from the fine-tuning248

standpoint. Given that the closeness between the249

distributions of the test data and the training data is 250

vital for the efficacy of fine-tuning, it should coher- 251

ently work in ICL. Consequently, we also employ 252

a prevalent similarity-based retriever to determine 253

the sample selection and their corresponding se- 254

quencing, while incorporating additional consider- 255

ations: (1) Despite their effectiveness, pre-trained 256

retrievers (e.g., SBERT-based methods) have signif- 257

icant computational costs for the large number of 258

samples, requiring a two-stage design where coarse- 259

grained selections are first made before more fine- 260

grained retrievals. (2) Since LLMs operate in 261

an auto-regressive manner, the last portion of the 262

tested samples should have the most significant 263

impact. Hence, retrieving those with structurally 264

similar end portions is prioritized, and able to addi- 265

tionally reduce computational overhead. 266

Therefore, we propose a two-stage retriever con- 267

taining a coarse-grained BM25 retriever (Robert- 268

son and Zaragoza, 2009) focusing on the end 269

of each sample, and an SBERT (Reimers and 270

Gurevych, 2019) to execute fine-grained retrieval: 271

R({xi}) = SBERT({aj})
{aj} = BM25({xi[−L :]})

(12) 272

where {xi} is the support set, and L is the window 273

size constraining the ending range of samples for 274

BM25. We show that ICDPO equipped with R 275

yields notable improvement overall. 276

3 Experiment 277

3.1 Settings 278

We employ two datasets, HH-RLHF (Bai et al., 279

2022) and SyntheticGPT to comprehensively assess 280

the effectiveness of ICDPO. Regarding the superior 281

teacher models, we included LLaMA2-7B-chat (de- 282

noted as LLaMA2-chat) and GPT-3.5-turbo to 283

support all methods with base models. For HH- 284

RLHF, we present the original version (referred to 285

as HH-RLHFraw) and its enhanced version from 286

LLaMA2-chat and GPT-3.5-turbo, while for Syn- 287

theticGPT, we consider both the original version 288

(referred to as SyntheticGPT raw) and the version 289

adapted from LLaMA2-chat. 290

We implement three base models for compre- 291

hensive evaluation: LLaMA-7B (Touvron et al., 292

2023a), LLaMA-2-7B (Touvron et al., 2023b), and 293

Mistral-7B-v0.1 (Jiang et al., 2023), which we label 294

as LLaMA, LLaMA2, and Mistral, respectively. 295

The details of data preparation and implementation 296

(including the reward model RMtest for automatic 297

4



Method LLaMA LLaMA2 Mistral

Harmless Helpful Total Harmless Helpful Total Harmless Helpful Total

w/ HH-RLHFraw

Base 4.47 -77.53 -36.54 6.25 -67.67 -30.72 9.59 -33.22 -11.82
SFT 20.23 -65.46 -22.63 20.48 -60.77 -20.16 21.91 -48.65 -13.38
ICDPO 25.02 -64.95 -19.97 39.81 -71.89 -16.05 26.60 -51.38 -12.40
ICDPO+Ŝ 24.03 -55.86 -15.92 42.52 -63.53 -10.52 32.78 -42.82 -5.03
ICDPO+ŜR 22.50 -55.77 -16.64 31.54 -63.22 -15.85 25.15 -44.75 -9.81

w/ LLaMA2-chat

SFT 48.92 20.54 34.73 72.94 42.24 57.59 77.59 49.29 63.43
RM-Aug 5.06 -60.35 -27.66 2.92 -52.12 -24.61 13.65 -7.00 3.32
RM-BoN -1.47 -60.60 -31.04 2.90 -48.53 -22.82 7.16 -6.11 0.52
ICDPO 68.75 -17.61 25.56 97.06 27.49 62.27 99.29 38.34 68.81
ICDPO+Ŝ 68.73 -11.75 28.48 98.03 29.36 63.69 97.26 45.08 71.16
ICDPO+ŜR 90.54 12.59 51.56 101.08 38.26 69.66 101.68 45.51 73.59

w/ GPT-3.5-turbo

SFT 54.28 -16.17 19.05 72.72 33.03 52.87 90.98 62.00 76.49
ICDPO 63.91 -23.27 20.31 91.56 16.33 53.94 85.10 21.23 53.16
ICDPO+Ŝ 64.03 -14.86 24.58 92.14 21.40 56.76 85.83 36.14 60.98
ICDPO+ŜR 82.21 3.63 42.91 98.77 28.08 63.42 92.21 39.55 65.88

Table 1: Main results on HH-RLHF scored by RMtest. Higher values represent better performance towards HPA.

evaluation) can be found in Appendix A and B,298

respectively.299

3.2 Main Results300

Automatic evaluations are conducted on both HH-301

RLHF and SyntheticGPT. We deploy base models302

and their SFT variants on each dataset, utilizing303

LoRA (Hu et al., 2022) to accommodate the limita-304

tions of constrained devices. Since ICDPO essen-305

tially borrows the capabilities of superior LLMs,306

we also deploy two borrowing baselines, RM-BoN307

and RM-Aug, based on the Best-of-N policy and308

Mudgal et al. (2023), respectively. RM-BoN and309

RM-Aug can utilize the logits of superior LLMs310

as the external scorer (Fu et al., 2023) to select the311

best response or intermediate block during decod-312

ing. Although we introduce both LLaMA2-chat313

and GPT-3.5-turbo as the teachers, the detailed log314

probability of prompt tokens from GPT-3.5-turbo315

appears to be inaccessible, so we must compare316

ICDPO and the two baselines using only LLaMA2-317

chat on HH-RLHF and SyntheticGPT.318

As to ICDPO, we evaluate its original ver-319

sion (supported by randomly sampled demonstra-320

tions) and variants with only Ŝ or both Ŝ and re-321

triever R. We accordingly set the following re-322

search questions (RQs) to guide experiments:323

Method Harmless Helpful Total

w/ HH-RLHFraw

Raw 24.23 -47.62 -11.70
LLaMA2-chat 105.97 61.18 83.57
GPT-3.5-turbo 105.99 73.80 89.89

w/ SytheticGPT raw

Raw - - 74.04
LLaMA2-chat - - 120.31

Table 2: Results for HPA degree of different teachers.

RQ1: How does ICDPO perform well? 324

Table 1 presents the main results for HH-RLHF, 325

while those for SyntheticGPT are provided in Ap- 326

pendix C. Essentially, all methods show notable 327

improvements over the corresponding base mod- 328

els. However, in the specific scenario where 329

LLaMA2-chat is referenced, ICDPO exhibits sig- 330

nificant progress compared to RM-Aug and RM- 331

BoN. Overall, ICDPO generally demonstrates com- 332

petitive performance against SFT despite not under- 333

going fine-tuning. These results strongly support 334

the effectiveness of ICDPO. 335

Furthermore, we observed that each method 336

could receive lower scores in the domain of Help- 337

ful compared to Harmless. We infer that Help- 338
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Method LLaMA LLaMA2 Mistral

Harmless Helpful Total Harmless Helpful Total Harmless Helpful Total

w/ LLaMA2-chat

ICDPO+R 90.55 9.96 50.24 100.62 35.89 68.25 101.49 40.34 70.91
ICDPO+BM25 84.99 3.18 44.08 99.78 31.89 65.83 102.54 43.74 73.13
ICDPO 68.75 -17.61 25.56 97.06 27.49 62.27 99.29 38.34 68.81
ICL 62.30 -26.09 18.09 97.23 16.72 56.97 94.79 32.68 63.73
ICLuni 63.04 -25.25 18.89 95.64 14.74 55.18 94.54 33.06 63.80

w/ GPT-3.5-turbo

ICDPO+R 80.64 -1.13 39.75 98.08 24.45 61.25 89.91 31.10 60.50
ICDPO+BM25 74.28 -3.24 35.51 96.18 25.96 61.06 88.30 30.73 59.50
ICDPO 63.91 -23.27 20.31 91.56 16.33 53.94 85.10 21.23 53.16
ICL 52.73 -32.05 10.33 88.00 4.74 46.36 75.46 16.38 45.91
ICLuni 50.85 -33.44 8.70 88.62 2.16 45.38 72.72 15.32 45.51

Table 3: Ablation study on HH-RLHF.

ful needs more substantial content from base mod-339

els or external sources, whereas Harmless may340

only require simpler stylistic changes. Thus, Mis-341

tral, being the superior model combined with SFT342

where downstream information is forcibly inte-343

grated, achieves the highest scores in the Help-344

ful domain. However, ICDPO also effectively en-345

hances Helpful for Mistral, activated by contextual346

demonstrations, which is second only to SFT.347

RQ2: How demonstrations affect ICDPO?348

Intuitively, the quality of data, i.e. HPA degree,349

should heavily impact performance. For instance,350

GPT-3.5-turbo can generally provide greater assis-351

tance for SFT with higher-quality samples com-352

pared to ordinary sources, as proved in Song et al.353

(2023). ICDPO hereby reflects similar trends. We354

evaluate the performance of both the original can-355

didates and new ones from teacher models in these356

datasets using RMtest, as presented in Table 2,357

where GPT-3.5-turbo and/or LLaMA2-chat can358

achieve higher scores than the original samples,359

consistent with Table 1 where ICDPO demonstrates360

improvements from superior demonstrations. This361

suggests that the meta-optimization in ICL does362

indeed function. In § 3.3, we will provide a de-363

tailed analysis of the effects of S using these higher-364

quality demonstrations.365

Despite GPT-3.5-turbo being more powerful366

than LLaMA2-chat, ICDPO seems better with367

demonstrations from LLaMA2-chat than GPT-3.5-368

turbo, according to Table 1. Believing it is not369

a coincidence, we make further analyses in Ap-370

pendix E.371

RQ3: The impact of extra modules? 372

ICDPO relies on S and randomly sampled demon- 373

strations by default. In Table 1, we also test ICDPO 374

with only Ŝ, or Ŝ +R which additionally involves 375

the retriever R. The overall performance can be 376

improved step by step, except that R with samples 377

from the original datasets fails. We attribute these 378

results to the quality of the samples, as R essen- 379

tially narrows the gap between demonstrations and 380

the tested sample. Thus, if the initially chosen/re- 381

jected samples are not sufficiently good/bad, the 382

estimation of S collapses, and R further exacer- 383

bates the confusion through meta-optimization. 384

3.3 Ablation Study 385

In this section, we test the effectiveness of the re- 386

maining modules. Our experiments focus on the 387

variants of HH-RLHF derived from LLaMA2-chat 388

and GPT-3.5-turbo, as presented in Table 3. 389

Retriever R We analyze the impact of fine- 390

grained and coarse-grained retrieval with SBERT 391

and BM25, respectively. The results indicate that 392

the latter approach (ICDPO+BM25 vs. ICDPO) 393

can strongly enhance the meta-optimization in ICL, 394

similar to genuine fine-tuning. However, the former 395

one (ICDPO+R vs. ICDPO+BM25) occasionally 396

results in marginal improvement (LLaMA2/Mistral 397

on HH-RLHF+GPT-3.5-turbo) or even a decline 398

(Mistral on HH-RLHF+LLaMA2-chat). They oc- 399

cur upon powerful LLMs (e.g. LLaMA2/Mistral 400

against LLaMA) achieving high performance with- 401

out SBERT, indicating that fine-grained retrieval 402

provides greater benefits to weaker LLMs for 403

strong LLMs can directly handle ICL well. 404
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Figure 2: GPT-4 computed win-rates of ICDPO against
golden responses in HH-RLHF, using demonstrations
from the teacher (i.e. LLaMA2-chat). For each block
titled by one base model, the bars from top to bottom
are ICDPO, ICDPO+Ŝ and ICDPO+ŜR, while red,
light green and purple represent the proportion of win,
tie and lose, respectively.

Contrastive Score S Without S, ICDPO degen-405

erates into the normal ICL. We thus experiment406

with two decoding strategies: randomly selecting407

1 from 3 candidates, and generating just 1 candi-408

date1. Obviously, ICL without selections from S409

experiences significant performance declines, re-410

gardless of the decoding strategies. This validates411

the significance of S as the key element in ICDPO.412

Since S is a potential ranker, we also evaluate its413

performance in this aspect, as discussed in § 4.2.414

3.4 GPT-4 Evaluation415

We implement GPT-4 evaluation as an additional416

validation of automatic evaluation with RMtest, fol-417

lowing Song et al. (2023); Liu et al. (2023b). We418

randomly select 200 samples from the test sets419

of HH-RLHF and evaluate ICDPO, ICDPO+Ŝ,420

ICDPO+ŜR, and their corresponding teachers.421

Their decoded responses are compared with the422

annotated choices in HH-RLHFraw to compute the423

win rate. In Figure 2, we use demonstrations424

from LLaMA2-chat for ICDPO, with LLaMA2-425

chat serving as the teacher model. The results for426

GPT-3.5-turbo can be found in Appendix D.427

Initially, we consider placing the tested candi-428

dates in the prompt from double directions to mit-429

igate positional bias, as discussed in Wang et al.430

(2023c). However, several attempts yield similar431

results regardless of the direction. We attribute432

1We also evaluate greedy search, which exhibits similar
performance.

Method LLaMA LLaMA2 Mistral

w/ LLaMA2-chat

SFT 34.73 57.59 63.43
DPO 43.02 68.34 69.26
DPO+S 48.11 71.62 71.84

w/ GPT-3.5-turbo

SFT 19.05 52.87 76.49
DPO 30.88 95.00 86.61
DPO+S 40.15 95.58 90.73

Table 4: DPO results on HH-RLHF.

it to the enhanced capabilities of GPT-4-32K and 433

therefore use uni-directional tests to reduce costs. 434

We note that the results in Figure 2 align with 435

those in Table 1, thereby validating the fairness 436

of RMtest. Generally, ICDPO with Ŝ and R out- 437

performs ICDPO without them. With the more 438

powerful base model, the third block (Mistral) can 439

even approach the performance of LLaMA2-chat. 440

4 Discussion 441

4.1 Extension of Contrastive Score 442

The contrastive score S utilizes the optimized π∗ 443

and initial π0 to sort the candidates. Since ICL can 444

be one of the implementation methods for π∗, other 445

methods should also be able to utilize S. 446

Consequently, we implement DPO + LoRA us- 447

ing the TRL package (von Werra et al., 2020), with 448

π defined as the n-th root of Pπ(y | x) to match the 449

definition in DPO. We evaluate the performance 450

with and without S (Table 4), demonstrating that S 451

can still enhance DPO. It indicates that S may be a 452

promising way for general use in HPA. 453

4.2 Consistency of Scoring 454

ICDPO computes the contrastive score S to rank 455

sampled candidates y from ICL for the prompt x, 456

similar to the methodology of RMtest. Therefore, 457

we intend to evaluate ICDPO as the ranking model. 458

We introduce ICDPO, its enhanced version, 459

ICDPO+Ŝ, and its simplified variant (i.e., using 460

only π∗ for scoring, denoted as ICL), alongside 461

RMtest. LLaMA2-chat is also incorporated as a 462

reward model, like how it is used in RM-Aug and 463

RM-BoN. We set up two scenarios: one depicted 464

in Figure 3(a), where demonstrations for ICDPO 465

are randomly selected, and the other depicted in 466

Figure 3(b), which involves the proposed retriever 467

R. In each scenario, we select 200 samples, each 468

7



ICL ICDPO ICDPO+ !𝑆 LLaMA2-chat RMtest

(a) (b)

Figure 3: Results of consistency between different scorers and GPT-4. We compute MRR to measure the degree of
consistency. (a) Results with randomly selected demonstrations. (b) Results with demonstrations retrieved by R.

containing 3 candidate responses sampled from the469

base model through ICL and sorted by GPT-4 as470

the ground truth. We use the Mean Reciprocal471

Rank (MRR) as the metric to fairly evaluate the472

competence of each method as a scorer and ranker.473

Figure 3 illustrates that RMtest achieves the474

highest performance in most cases, followed by475

LLaMA2-chat. ICDPO also performs well, with476

ICDPO+Ŝ generally yielding equal or higher477

MRR scores, even approaching the performance of478

LLaMA2-chat as the teacher. However, the perfor-479

mance of π∗ itself is unsatisfactory, significantly480

lagging behind others. These findings exhibit that481

ICDPO is a potent scorer beyond the vanilla ICL482

and approaches the performance of LLaMA2-chat483

through effective borrowing.484

5 Related Work485

5.1 Human Preference Alignment486

To mitigate the risk of generating toxic con-487

tent, LLM should be aligned with human pref-488

erence (Wang et al., 2023d), i.e. Human prefer-489

ence alignment (HPA), which has been advanced490

through RLHF (Ouyang et al., 2022; Zhu et al.,491

2024; Yu et al., 2023; Jang et al., 2023; Dai et al.,492

2023b) and SFT methods (Yuan et al., 2023; Song493

et al., 2023; Wang et al., 2023b; Zhang et al., 2023;494

Liu et al., 2023a; Xu et al., 2023; Hong et al., 2023;495

Huang et al., 2024). DPO (Rafailov et al., 2023)496

can be the representative one. It builds the relation497

between the RM and the combination of pre/post-498

optimized policies by transforming RLHF objec-499

tive, which is inserted into reward modeling to500

derive an elegant SFT objective.501

Nevertheless, fine-tuning LLMs is still costly.502

It triggers the need for fine-tuning-free methods,503

relying on self-selection (Li et al., 2024), external504

expert selection (Mudgal et al., 2023) or refinement505

of prompts (Cheng et al., 2023). The proposed 506

ICDPO similarly refers to external experts, but does 507

selection with self-estimation, which is based on 508

reverse derivation of the relation in DPO. 509

5.2 In-Context Learning 510

LLM has the potential of instant few-shot learn- 511

ing through demonstrations in the context (Brown 512

et al., 2020; Dong et al., 2023b; Zheng et al., 2023; 513

Yang et al., 2023a,b), named In-Context Learn- 514

ing (ICL). The underlying mechanism of ICL has 515

also been carefully studied. From the perspective 516

of information flow, Wang et al. (2023a) distin- 517

guish the different roles of upper and lower layers 518

in LLMs for ICL, while Dai et al. (2023a) estab- 519

lished a dual relation between gradient descent and 520

Transformer attention, thus illustrating that ICL as 521

a meta-optimizer can be similar to explicit fine- 522

tuning. We extend it to HPA, where the optimized 523

policy can be easily acquired for generation and 524

scoring without fine-tuning. 525

6 Conclusion 526

In this paper, we equip LLMs with HPA by lever- 527

aging capabilities from superior models without 528

the need for costly fine-tuning. We rethink the 529

procedures of DPO and focus on the crucial re- 530

lation between the RM and the optimized policy. 531

Building upon this relation, we propose ICDPO. 532

It implements ICL to instantly optimize the LLM, 533

which through collaboration with the initial pol- 534

icy can effectively estimate the degree of HPA and 535

enhance the final performance. Comprehensive ex- 536

periments demonstrate the effectiveness of ICDPO 537

across various forms, encompassing both content 538

generation and scoring. We hope this work to be a 539

catalyst for further exploration of fine-tuning-free 540

methods towards HPA. 541
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7 Ethics Statement542

We observe that the data involved in this work may543

indispensably contain sensitive, offensive, and mis-544

leading content, whose presence does not represent545

our attitudes, but is solely for research and should546

not be used or distributed outside of research con-547

texts.548

We are committed to establishing a more in-549

clusive and ethically sound era of AI technology,550

which can be applied to legitimate needs and gen-551

erate content that aligns with universally positive552

human values.553

8 Limitations554

ICDPO has been shown powerful but user-friendly,555

because it is fine-tuning-free and learns effectively556

from just demonstrations from superior LLMs. Al-557

though we conduct abundant experiments to eval-558

uate ICDPO comprehensively, there remain a few559

aspects of limitation:560

1. Despite 7B LLMs showing the satisfying capa-561

bility of ICL, we fail to evaluate ICDPO on larger562

models for their costly requirements on hardware.563

2. Similarly, we do not test the effect of changes564

in the number of demonstrations for ICL. Nonethe-565

less, we believe it should further boost ICDPO with566

increasing demonstrations.567

Due to limited computational resources, we leave568

them to the community with interest for further569

exploration.570
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A Dataset Preparation794

We introduce the following two datasets for795

ICDPO:796

• HH-RLHF is proposed by Bai et al. (2022),797

focusing on the domain of harmlessness798

and helpfulness in multi-turn conversations.799

While it initially consists of four subsets, we800

select two representative ones: harmless-base801

and helpful-base, which we denote as Harm-802

less and Helpful, respectively. We mix the803

data of two domains for training, while sep-804

arately evaluating each method in the main805

experiment.806

• SyntheticGPT2 collects about 33.1K samples807

of instruction following. Since its original808

2https://huggingface.co/datasets/Dahoas/
synthetic-instruct-gptj-pairwise

version just has a training set, we manually 809

split it into train/dev/test ones. 810

Each sample in these datasets has two candidates, 811

including a shared prompt and two chosen/rejected 812

candidate responses. In order to alleviate the pres- 813

sure of GPU memory and accelerate the inference, 814

we filter all samples according to sequence length 815

in advance, 320/128 tokens for prompts/responses 816

in HH-RLHF, while 128/200 in SyntheticGPT. 817

B Implementation Details 818

We implement ICDPO with all base models on 819

Huggingface.Library (Wolf et al., 2020). For ICL, 820

the number of demonstrations and top-p sampling 821

is 2 and 3, respectively, where p is set to 0.8. To 822

facilitate demonstration retrieval in ICL, we de- 823

ploy BM25 and SBERT3. The BM25 model first 824

retrieves 20 samples, which are then re-ranked by 825

the SBERT retriever to obtain highly semantically 826

similar ones. The templates for ICL have been 827

placed in Appendix F for a detailed overview. 828

Furthermore, the third-party reward model for 829

automatic scoring is denoted as RMtest
4, while GPT- 830

4-32K is employed for GPT-4 evaluation. To carry 831

out borrowing in ICL, we employ LLaMA2-chat 832

to generate new choices for HH-RLHF and Syn- 833

theticGPT, while for GPT-3.5-turbo, we reuse HH- 834

RLHFChatGPT,3 released by Song et al. (2023). The 835

whole details can be found in the released code. 836

C Additional Main Results 837

Method LLaMA LLaMA2 Mistral

w/ SytheticGPT raw

Base -121.85 -101.01 34.75
SFT 36.05 77.04 96.10
ICDPO 27.74 77.89 68.97
ICDPO+Ŝ 29.37 83.34 78.34
ICDPO+ŜR 53.97 72.26 71.69

w/ LLaMA2-chat

SFT 41.89 99.21 99.09
RM-Aug -95.63 -77.14 84.48
RM-BoN -97.38 -70.08 88.00
ICDPO 49.82 100.41 113.67
ICDPO+Ŝ 50.36 102.09 118.37
ICDPO+ŜR 96.82 111.39 119.10

Table 5: Main results on SyntheticGPT.

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

4https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1
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D Additional Results of GPT-4838

Evaluation839
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Figure 4: GPT-4 computed win-rates of ICDPO against
golden responses in HH-RLHF, using demonstrations
from the teacher (i.e. GPT-3.5-turbo). For each block
titled by one base model, the bars from top to bottom
are ICDPO, ICDPO+Ŝ and ICDPO+ŜR, while red,
light green and purple represent the proportion of win,
tie and lose, respectively.

E Distribution of Demonstrations840

Harmless

Helpful

Figure 5: Loss of different base models on demonstra-
tions from LLaMA2-chat and GPT-3.5-turbo.

Although GPT-3.5-turbo surpasses LLaMA2-841

chat in Table 2, utilizing demonstrations from842

LLaMA2-chat leads to better performance of843

ICDPO. Since ICL can be regarded as an instant844

LLM fine-tuning, we speculate that responses from845

LLaMA2-chat can be closer to the distribution of846

open-source LLMs, like LLaMA, than those from847

GPT-3.5-turbo, which mitigates the difficulty of 848

ICL on these samples. Therefore, this should be 849

illustrated by computing the NLL loss on demon- 850

strations of both sources, where a smaller value 851

suggests a closer distribution. 852

We hereby compute the loss with mean rather 853

than sum reduction to eliminate the impact of se- 854

quence length on the magnitude of values, as de- 855

picted in Figure 5. All 3 base models exhibit sig- 856

nificantly smaller losses on demonstrations from 857

LLaMA2-chat, thus verifying the hypothesis above. 858

The wider gap in distribution may arise because 859

GPT-3.5-turbo mainly relies on private data, result- 860

ing in distinctions in style or other aspects com- 861

pared to open-source LLMs based on public data. 862

F Prompt Templates for ICL 863

Templates for π(y | [d+;x]) and π(y | [d−;x]) are 864

illustrated as Figure 6 and 7, respectively. 865
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#You are asked to generate a response for each given dialogue context. The last response is
generated by you, which should be as **polite/harmless/helpful/honest** as possible:

##
[The Context of No.1 demonstration]
###Generate a **polite/harmless/helpful/honest** response: [The positive response of No.1
demonstration]

##
[The Context of No.2 demonstration]
###Generate a **polite/harmless/helpful/honest** response: [The positive response of No.2
demonstration]

##
[The Context of tested sample]
###Generate a **polite/harmless/helpful/honest** response:

Figure 6: The prompt template used to trigger LLMs generating preferred content.

#You are asked to generate a response for each given dialogue context. The last response is
generated by you, which should be as **offensive/harmful/helpless/misleading** as possible:

##
[The Context of No.1 demonstration]
###Generate an **offensive/harmful/helpless/misleading** response: [The negative response of
No.1 demonstration]

##
[The Context of No.2 demonstration]
###Generate an **offensive/harmful/helpless/misleading** response: [The negative response of
No.2 demonstration]

##
[The Context of tested sample]
###Generate an **offensive/harmful/helpless/misleading** response:

Figure 7: The prompt template used to trigger LLMs generating non-preferred content.
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