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ABSTRACT

Auto-regressive large language models (LLMs) exhibit a non-trivial capacity to
“anticipate” long-range future tokens despite being trained to predict only one
token at a time. Nevertheless, how to systematically profile, enhance and lever-
age such capacity to improve LLM reasoning performance remains unclear. In
this paper, we propose Next Token-Bag Exploitation (Next-ToBE) to tackle this
challenge. Next-ToBE quantifies LLM’s anticipatory capacity by measuring how
well tokens within a predefined future window are pre-captured by the model’s
current softmax probabilities. This capacity is strongly correlated with LLM gen-
erative quality but often suppressed by the rigid one-hot objective in next-token
prediction. To address this, we replace the one-hot target vector in next-token pre-
diction with a soft target distribution spanning additional future tokens. Specifi-
cally, the immediate next token retains the highest importance, while more distant
“look-ahead tokens” are also included to enrich supervision, with their impor-
tance dynamically determined by temporal and semantic relevance patterns to in-
ject forward-looking pressure. Besides, the fitting process emphasizes the model’s
intrinsic anticipatory tendency, thus preserving the confidence and fidelity of the
pre-trained model to improve training stability. Overall, Next-ToBE not only ef-
fectively activates LLM anticipatory capacity through fine-tuning, yielding no-
table gains in reasoning performance with higher memory and computational ef-
ficiency against the MTP baselines, but also shows great potential in pretraining
setting by successfully cultivating this capacity from scratch. These highlight its
value as an effective strategy to extend the prediction horizon of LLMs, enabling
them to see further, and reason better.

1 INTRODUCTION

Large language models (LLMs) built on the auto-regressive next-token prediction (NTP) (Williams
& Zipser, [1989) have achieved remarkable success across diverse language modeling tasks (Yang
et al.,|2025; |Abdin et al., 2024). Although NTP is restricted to generating only one token at a time,
recent studies suggest that LLMs trained under this paradigm also exhibit anticipatory capacity,
implicitly forecasting tokens beyond the immediate next one. For example, [Pal et al.| (2023) show
that intermediate-layer hidden states can predict future tokens; [Dong et al.|(20235)) report that LLMs
can encode global response properties even before producing the first token; [Wu et al.|(2024)) further
show that this is attributed to gradients from future-token losses shaping earlier predictions.

The anticipatory capabilities of LLMs mirror the human cognitive process of internally rehearsing
before speaking (Barthel et al.,[2016), i.e., “think first, generate later”, which can be critical for tasks
requiring multi-step planning and long-range logical consistency, such as mathematical reasoning
(Ahn et al., 2024), code generation (Jiang et al.| 2024), and human-computer interaction (L1 et al.,
2023)). However, emerging evidence suggests that the next-token prediction (NTP) paradigm may
inadvertently suppress this capacity. |Deng et al. (2020) showed that the one-hot fitting objective
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in NTP inherently biases the model toward the marginal distribution of individual tokens, limiting
its ability to capture long-range semantic and temporal dependencies. Such emphasis on step-level
correctness could promote short-range pattern matching and undermine multi-step planning ability
(Bachmann & Nagarajan, [2024). Finally, penalizing plausible high-confidence alternatives (e.g.,
synonyms or paraphrases) deviating from the single ground-truth label reduces the model’s semantic
flexibility and undermines its ability to maintain coherent internal representations (L1 & Lu}, 2021)).

To address these limitations of NTP, many work have focused on the new paradigm of “multi-token
prediction” (MTP). MTP employs multiple parallel auxiliary output heads to predict several future
tokens simultaneously (Qi et al.| 2020; |Gloeckle et al.l [2024; |Cai et al., 2024). Subsequent en-
hancements use sequence modeling to tighten long-range dependency (Liu et al.|[2024a)), improving
sequence generation consistency by predicting non-adjacent tokens (Liu et al., [2025) or by masked-
generation and knowledge-distillation (Samragh et al.l 2025). Meanwhile, efforts within NTP train-
ing still continue: |Gerontopoulos et al.| (2025) incorporate register tokens into input sequences to
share memory of future label tokens in advance; and|Zuhri et al.[(2025) propose an auxiliary loss to
predict the rank of upcoming label tokens based on their distance from the current step.

Although these advances offer substantial advantages, some concerns remain. First, higher com-
putational and memory demands could be entailed, like additional parameters (prediction heads),
register tokens or auxiliary loss calculation. Second, these approaches still rely on one-hot fitting
objective (including MTP), thus inheriting some of its intrinsic limitations like reduced semantic
flexibility or over-concentration of predicted probability mass. Third, few studies have systemat-
ically profiled the anticipatory behavior in LLMs, making it difficult to clarify its role in shaping
model performance, or to effectively enhance it for meaningful gains in real-world applications.

In this paper, we introduce Probabilistic Next Token-Bag Exploitation (Next-ToBE), a simple
method to profile, refine, and harness the anticipatory capacity of LLMs to enhance reasoning per-
formance. The main idea is to leverage the LLM’s soft-max predictions at each step as an observable
proxy for its internal anticipatory signal, and to promote consistency between this implicit planning
and actual sequence of future tokens within a predefined window. Concretely, this is achieved by
replacing the conventional one-hot objective of next-token prediction with a flexible token-bag dis-
tribution constructed from the window of upcoming tokens. The construction of this distribution
follows three principles: (1) The immediate next token is given the highest importance to preserve
local coherence and prevent semantic drift. (2) The model’s intrinsic anticipatory tendencies is re-
spected to preserve stability and fidelity of the pre-trained model in fine-tuning setting. (3) Distant
future tokens are dynamically weighted by their joint semantic-temporal relevance to mitigate noise
from loosely related or contextually unstable future tokens.

Overall, Next-ToBE provides rich supervision that activates and refines the internal anticipatory ca-
pacity of LLMs. It is simple to implement, requiring only a modification of the target distribution
within the standard next-token prediction framework and introducing no additional parameters. Ex-
periments across the Qwen and Llama model families demonstrate that, on challenging reasoning
tasks, base models fine-tuned with Next-ToBE achieve consistent and notable performance improve-
ments over strong MTP baselines, particularly in long-horizon and multi-step reasoning scenarios.
Similar performance gains are also observed in the pretraining setting.

The contributions of this work are summarized as below:

1. We propose Next-ToBE, a method to profile and activate inherent planning capacity of
LLM by replacing one-hot fitting in NTP with flexible target distribution over future tokens.

2. We propose a dynamic weighting scheme based on joint semantic—temporal relevance pat-
terns to determine the importance of future tokens and capture multi-step dependencies.

3. We show that Next-ToBE delivers consistent and tangible gains in terms of language mod-
eling and complex reasoning in both pretraining and fine-tuning over strong MTP baselines.

2 RELATED WORK

In recent years, Next-Token Prediction (NTP) has achieved remarkable success in solving difficult
problems(Wies et al.,2023)), showing powerful learnability (Malach, |[2023) and endowing LLMs an
ability to foresee content in the longer future (Wu et al., 2024; Dong et al., [2025} |Cencerrado et al.,
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[2025)). Meanwhile, critics argue that teacher-forcing strategy overly relies on ground-truth prefixes
Bachmann & Nagarajan| [2024), leading to exposure bias (Schmidt, [2019) and error accumulation
LeCunl 2023) that may hamper long-range reasoning (Bubeck et al., 2023} [McCoy et all 2023).
Recently, multiple-token prediction (MTP) architecture (Q1i et al., [2020; |Gloeckle et al., 2024;
2025b; [Liu et all, [2025; [Samragh et al., and advanced inference
techniques (Cai et al., 2024} |Ankner et al., 2024} Cheng et al.,[2024) have been proposed to provide
richer supervisions during training and mitigate inference error accumulation. Researchers have
also proposed transforming training data into a non-causal format to compel the models to cap-
ture correlations between non-adjacent target tokens (Bavarian et all 2022} [Thankaraj et al.

[Gerontopoulos et all, 2025). Due to space limit, detailed reviews are deferred to the Appendix [B]

Different from existing methods, our approach remains within the NTP framework but refines its
training objective by replacing the one-hot target vector with a soft target distribution. This can be
viewed as a special form of “label smoothing” (Szegedy et al., 2016} Miiller et al.,2019), where the
one-hot label for the immediate next token is softened by incorporating its temporal and semantic
relations with subsequent tokens in the sequence. It requires no modification to LLM architecture
and can be easily embedded in to improve LLM anticipatory capacity and reasoning performance.

3 METHODOLOGY

We begin by introducing a quantitative measure for token-level anticipatory capacity. A key ob-
servation is that LLMs rarely produce strict one-hot vectors. Instead, the model output typically
assigns non-zero probabilities to multiple candidate tokens, resembling a form of internal planning.
To reflect this, we define the Future-tokens Hit Rate (FtHR), i.e., how well the model prediction at

current step , Py(V|r<;) € RIVI¥1, can pre-capture the upcoming k tokens, {2411, 219, . Ttk }-
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Here we consider top-m slots of the LLM output vector, NV is the length of the whole sequence, and
V is the vocabulary set. Using this measure, we highlight two key empirical observations:

1. LLMs possess intrinsic anticipatory behavior by pre-capturing future tokens. As illustrated
in Figure LLM’s prediction at step ¢, Py(V|z<;), already contains future tokens, with FtHRY, -
metric ranging from 0.79 to 0.40 when considering windows of length from 2 to 10. These results
were obtained using the Qwen-Math-1.5B model on the NuminaMath dataset 2024). In
other words, at each inference step, the LLM does anticipate beyond the immediate next token.
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Figure 1: The LLM’s token-level pre-planning capacity (left), and its correlation with how faithfully
an LLM can generate a future token k-steps away in an auto-regressive manner (right).

2. LLM anticipatory capacity is linked to its ability to accurately generate future tokens.
FigurelT_Bl shows that, if a ground-truth token z,; located k steps ahead receives higher probability
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in the current prediction Py(V|z<;) (in terms of a higher rank), then x4 is more likely to be
generated (in terms of the probability of auto-regressively generate x4\, at step ¢+ k). This suggests
that enhancing the anticipatory capacity could practically improve token-level generative accuracies.

Since LLMs possess an intrinsic anticipatory capacity that is positively associated with performance,
we ask how this capacity can be more fully activated — or even enhanced — to achieve practical
gains. Unfortunately, the one-hot fitting objective forces the model to collapse its predicted proba-
bility toward a ‘single correct answer’, leaving little room for alternative possibilities and forward
anticipation. To overcome this, we propose Next-ToBE, which replaces the one-hot objective with a
soft-target that effectively integrates broader future information.

3.1 PROBLEM FORMULATION

Next-Token Prediction(NTP): Given a sequence {x1,x2,...,zy} and model Py, the teacher-
forcing strategy minimizes the following negative log-likelihood at each time step ¢,
N—1
Lntp = — Z 109P6($t+1|$§t), )

t=1
with Py(V | <) the predicted probability distribution over vocabulary V, conditioned on <.

Multi-Token Prediction (MTP): Instead of fitting only the next token, MTP make £ parallel pre-
dictions at time step ¢, each with an auxiliary head Pe(j ) for 7 =1,2, ..., k responsible for predicting
the ground-truth token j steps away. MTP objective extends the standard NTP loss by minimizing
the sum of the negative log-likelihoods of these & future tokens,
N—k-1 k _
Lyvtp = — Z Zlog Pe(]j.)(xtJrj | 2<y). 3)
t=1 j=1

Next Token-Bag Exploitation (Next-ToBE): Next-ToBE replaces the one-hot target distribution in
NTP with a carefully designed soft target distribution over the future token bag, thereby effectively
activating the anticipatory capacity of LLMs. The loss function is written as

N—k—1 k
LNext-ToBE = — Z log Pe(xtﬂ\xgt) + A Z Wy, log Pe(fftﬂ' | xgt) . 4)
N——

t=1 =2
the immediate next token J

k — 1 look-ahead tokens

The first term is a standard NTP objective, focusing on the immediate next token (z;;1); while
the second term encourages model to fit the subsequent k— 1 look-ahead tokens {z; o, ..., T4 }.
The coefficient A balances the contributions of these two terms, and the non-negative weights wy, , ;
further modulate the relative importance of the k& — 1 look-ahead tokens.

Different from MTP that employs k prediction heads, Next-ToBE only employs a single head and
generates one token at each step in inference. In this sense, it is in the middle between NTP
and MTP: it uses a single head like NTP, but takes into account multiple future tokens at each step
like MTP. Interestingly, it is precisely through this one-token-at-a-time generative process that Next-
ToBE continuously activates the latent anticipatory capacity of LLMs, thus making more accurate
token-level predictions and achieving stronger reasoning performance.

3.2 WEIGHTING SCHEME IN TOKEN-BAG EXPLOITATION

We follow the three key principles in Section (1| for designing A and w,,  ; in Eq. @) to effectively
capture long-range correlation while maintaining a stable, effective learning process:

1. Importance of the immediate next token. The first term in the Next-ToBE loss, which is
on fitting the immediate next token, should be assigned dominant importance. This is essential
for preserving semantic coherence between the preceding context and the immediate next token.
Moreover, the dense supervision of NTP objective is well known to stabilize large-scale optimization
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Figure 2: Overview of the Next-ToBE architecture.

and accelerate convergence.To do this, we select a small weighting coefficient A € (0,1) in Eq. ,
to ensure that the first term dominates. To facilitate choosing A\, we normalize the second loss
term—corresponding to the k£ — 1 “look-ahead” tokens—which will be discussed in section [3.3]

The weights w,, ; assigned to future tokens x;y; in Eq. (E[) play a crucial role in shaping the
learning dynamics. We decompose the weights into two components, w,, . = ay, (s, ;, where
Q, , ; captures the intrinsic anticipatory preference of the base LLM with respect to the future tokens
Wayyss while 3., iy encodes their temporal-semantic relevance, as detailed below.

2. Inherent anticipatory preference of LLM. The output distribution of an LLM already contains
inherent anticipatory preferences that should be fully respected. This enables the model to retain
prior knowledge and maintain predictive confidence, especially given the strong capabilities of a
base LLM acquired through large-scale pretraining. It also mitigates conflicts between the training
signal and model’s existing prediction, possibly enhancing training stability and convergence rate.

To achieve this, we introduce a set of weights, o, 4010 track how the LLM’s output distribution at

the current step ¢ anticipates the k¥ — 1 look-ahead tokens, {42, ..., Ttk }:
P@({L‘t+j | .’I,‘<t)’y7 if P@(Z‘H_J‘ | .Z‘<t) > € .
Tiq; — - . - s f :2,3,...,]{. 5
e {O, otherwise o ®)

Here, ¢ is a threshold to filter out low probabilities, and (-)* (y = 1/10) is applied to calibrate
remaining probabilities for proper loss re-weighting. Here, ,; is frozen in training, i.e., it is
obtained from the current “snapshot” of the model at step ¢, and does not contribute to the gradient.

Incorporating a,, , ; into future token weights wy,,  ; forces one to respect LLM’s intrinsic anticipa-
tory signal. Specifically, if a future token x4 ; is pre-captured by LLM output distribution at the
current step, it likely receives higher priority. This can be seen as a form of self-distillation (Hahn &
Choi,2019; L1 & Lu, [2021)), which helps preserve the knowledge and confidence of the base model.

3. Semantic/temporal importance of future tokens. Not all of the £ — 1 look-ahead tokens are
equally important. Temporally, tokens farther from the current step ¢ may be less relevant and more
difficult to predict, so their weights should decay with the temporal gap. Semantically, a future token
closely related to the immediate next token should have greater importance, as it can enhance local
coherence and strengthen the supervision signal by jointly reinforcing the immediate next token. To
capture these two preferences, we define the temporal scores and the semantic scores as

T(t+j) = exp(sz/ (2h2)) , st+j)= exp(x:+1xt+j) , 1€{2,3,...,k}, (6)
where h is a bandwidth controlling the temporal decay. These two scores can be combined as
Beop, =Tt +7) st + 7). 7
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However, Eq. (7)) ignores the interdependence among the k—1 look-ahead tokens. To simultaneously
and dynamically account for the relations not only between the immediate next token (x;1) and the
look-ahead tokens {x¢+2,..., 21k}, but also among the look-ahead tokens themselves, we adopt
a random-walk—based ranking scheme. Given the token bag {41, Z¢12,. .., Ttik }» We construct
two k x k matrices to quantify pairwise temporal and semantic relations:

W, (i,5) = exp(—|i — j|*/(2h?)) , W,(i,5) = exp(xXetj) , 1,5 € {1,2,...k}, (8)
where x; is the embedding of token x; from initial embedding layer of the LLM. Then, both W,

and W are normalized into transition probability matrices, such that a random-walk process (Pan
et al.,[2004; Tong et al.,|2008)) can be performed on top of them to re-rank the tokens (nodes).

To utilize both relational views, we combine the two matrices by either weighted sum or multiply,
W=pW,+(1-¢)W,, or W=W, W, 9
where ¢ € [0, 1] controls the balance. Both mixing schemes above yield a valid transition matrix -
which induces a graph of k nodes/tokens with W; encoding their relations (Chen et al., [2025a).
We then perform a random walk on W-induced transition graph that starts from the immediate next
token x4 1, and iteratively transitions to its neighbors, each step with a jump-back probability p:
Bt = (1—-p)W B + pel®, (10)
where B(?) € R¥ denotes the ranking distribution of the k tokens at iteration ¢, and (%) is a one-hot
vector indicating the start node x; ;. This iterative process is convergent at
B =(1—(1—pW) 'e®, (11)

where I is identity matrix. The convergent distribution 3* jointly accounts for the temporal and
semantic relation among the look-ahead tokens. For convenience, we re-write 5* in Eq. (L1)) as

Brer, = B[] (12)
Empirically, using matrix multiplication in Eq. (9) to construct W corresponds to the “Alternate
Similarity And Proximity Attention (ASAP-attention)” (Chen et al., |2025a), which is better than

using matrix summation; Besides, weighting schemes based on random-walk scores 3* in Eq.
is notably better than simple point-wise score fusion in Eq. (7). See Appendix for details.

We combine (multiply) the LLM-preference based weighting ay, . in Eq. and temporal-
semantic weighting f3;,, ; in Eq. (T2), and normalize them to obtain the final weights

oy By,

ey, = (13)
Do Qi B
The normalization ensures that the weights of the look-ahead tokens, {ws, ,,...,w,,,, }, form a

valid probability distribution, which allows for interesting statistical interpretations. Overall, the
weights w,, , ; integrate both the model’s intrinsic capacity and the extrinsic signals present in the
data. At step ¢, only those tokens that are simultaneously pre-captured by model output Py (v|z<;)
and actually appearing in the near-future window [¢, ¢ + k] will be prioritized as fitting targets.

3.3 NORMALIZED VERSION OF NEXT-TOBE TRAINING OBJECTIVE

Although LLMs can pre-capture the look-ahead tokens {x;12 . x4} by giving them non-zero
probabilities in the current prediction Py(V|z <), their actual values can be low (i.e., 10~7), leading
to heavily negative log-likelihood. This could dominate the loss and force the learning process to
try very hard to raise these small probabilities, which may induce unstable training. To avoid this,
we normalize the probabilities Py (x4 ,|z<;) over the look-ahead tokens, as

n—k—1

k
Po(wi1j | v<t)
LNext-ToBE = — g log P9($t+1|xgt) + A E Weyy log % . —
t=1 j=2 ’ >ico Po(weyilr<e)

(14)

Empirically, the normalization is important to the performance, as shown in ablation studies in
Appendix Eq. can be seen as the mix of two cross-entropy losses: (1) the first is the
cross-entropy between the N-dimensional LLM output distribution Py()|z<;) and the one-hot dis-
tribution encoding the next token xz;1; (2) the second is the cross-entropy between the (k — 1)-
dimensional LLM prediction and weight-distribution {wy,_,, ..., Wz, } over look-ahead tokens.
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4 EXPERIMENTS

Following Mangrulkar et al.|(2022), Lu et al.| (2023) and|Liu et al.| (2024b)), we adopt the Next-ToBE
objective to fine-tune pre-trained LLMs on datasets spanning various reasoning tasks to evaluate the
performance gains it can deliver, together with detailed ablation studies.

Datasets and Baselines. We used benchmarks from three domains. For mathematical reason-
ing, following the prior work (Jiao et al., 2024), we randomly sampled 35,000 prompts from the
NuminaMath-CoT dataset (Tang et al. [2024) for supervised fine-tuning, without any additional
data engineering. For code generation and commonsense reasoning, we used the CodeAlpaca-20k
dataset (Wang et al.,2023b) and the Commonsense- 15k dataset (Hu et al., 2023)) as the training cor-
pus, respectively. We have reported the results of the following competing methods: (1) Next-token
prediction (NTP) objective for fine-tuning LLMs; (2) Medusa, the multi-token prediction (MTP)
paradigm (Cai et al., [2024), and (3) Mutor (Gerontopoulos et al 2025), which leverages shared
tokens as registers to model future tokens within the NTP framework. Related works that lack code
release or cannot be run smoothly were excluded from our side-by-side comparison.

Training details. Experiments were run on 4 xNvidia RTX A6000. For mathematical reasoning,
we used Qwen2.5-Math-1.5B/7B (Yang et al.,2024) and Llama-3.1-8B-Instruct (Dubey et al., [2024])
as base models; for code generation and commonsense reasoning, we used Qwen-2.5-1.5/7B and
Llama-3.1-8B-instruct. All models were fine-tuned with LoRA adapters (Hu et al.|[2022) (rank at 8),
and trained for 3 epochs with a batch size of 128, except that for MTP (Cai et al.,2024), an additional
one-epoch warm-up stage prior to the full training is used to train the auxiliary prediction heads.
The maximum sequence length is 2048 for math and 512 for code generation and commonsense
reasoning, for all competing methods. For Next-ToBE, the token bag size is k = 10, the threshold ¢
in Eq. (B is 1e — 8, the bandwidth in Eq. (§) is & = 2, the restart probability p in Eq. (TT)) is set to
0.3, and the loss coefficient X in Eq. is 0.05. More detailed settings are in Append

Evaluation Protocols. For mathematical reasoning, we have used Qwen-Math (Yang et al., [2024)
evaluation codebase, in which models are prompted to reason step by step, and the final answer
must be enclosed in ”\boxed{}”. For code generation, we evaluated with official unit-test har-
nesses (Chen et al 2021} |Austin et al., 2021, reporting pass@1. For commonsense reasoning, we
followed official evaluation codebase (Hu et al.| [2023). Except for MBPP (Austin et al.| [2021)) in
the code task, which is evaluated under three-shot setting, all other benchmarks are evaluated in
zero-shot. Greedy search decoding is used for all methods. Additional details are in Appendix[D.2].

4.1 EXPERIMENTAL RESULTS
We empirically investigate the following research questions in this section:

* Q1. Does Next-ToBE improve LLM in anticipating (pre-capturing) future tokens?
* Q2. Does Next-ToBE improve LLM in accurately generating future tokens?
* Q3. Does Next-ToBE improve LLM in complex reasoning tasks?

Q1- Figurereports how the LLM pre-captures future tokens by plotting FtHng0 (the Future-token
Hit-Ratio), i.e., how the top-50 slots in the current-step prediction, Py(V|z<,), covers future tokens
up to k steps, on Qwen-Math-1.5B model. As can be seen, after fine-tuning, the model exhibits a
significant increase in the hit ratio across k € [2, 10], meaning that Next-ToBE effectively enhances
the model’s anticipatory (pre-planning) capability.

Q2 - Figure[3b|shows the probability that an LLM correctly generates the next & ground-truth tokens
auto-regressively from step ¢, conditioned on prefix z<;. As shown, after fine-tuning, the token-level
generative accuracy notably improves across various window sizes. Namely, higher anticipatory
capacity indeed turns into higher generative quality, laying the basis for improved reasoning.

Q3 - Tables [T and [2] report results on complex reasoning tasks. Across 36 comparisons spanning 3
base model sizes and 12 categories in Mathematics, Code Generation, and Commonsense Reason-
ing, Next-ToBE attains the highest accuracy in 35 cases, against strong competing methods such
as MTP (Gloeckle et al.| |2024) and MuToR (Gerontopoulos et al.l [2025). These results highlight
effectiveness of Next-ToBE in enhancing complex reasoning across diverse tasks and model scales.
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Figure 3: After Next-ToBE fine-tuning, LLM anticipatory capacity (a) and token-level generative
accuracy (b) both improve; the next-token confidence (probability) slightly decreases (c).

Table 1: Performance comparisons on five mathematical datasets across three different base LLMs.

Minerva Olympiad

Model Method MATH e Dot AIME24  AMC23  Avg,
NTP 64.8 19.1 30.7 10.0 450 339
MTP 66.0 20.6 29.0 10.0 475 346
Qwen2.5-Math-1.5B ror 67.6 2.1 314 6.7 525 361
Next-ToBE ~ 68.2 232 31.9 133 550 383
NTP 71.4 24.3 33.6 10.0 575 394
MTP 72.6 232 323 13.3 60.0 403
Qwen2.5-Math-7B  \p 1R 722 24.6 33.9 20.0 550  41.1
Next-ToBE  73.6 25.4 34.8 20.0 60.0 427
NTP 48.6 21.0 14.8 10.0 250 239
Liama3. 1-8Boinstruct. MTP 482 23.5 15.6 6.7 2.5 233
amas. 1-eB-Instruct -y riToR 49.6 232 15.3 6.7 275 245
Next-ToBE  50.6 23.9 16.3 10.0 325 267

For Mathematical reasoning (Table [I)), Next-ToBE achieves an average accuracy of 38.3%, about
2.2%-4.4% higher than others on Qwen2.5-Math-1.5B, with highest gains on AIME24 (+3.3%)
and AMC23 (+2.5%). On Qwen2.5-Math-7B and Llama3.1-8B-instruct, Next-ToBE also attains
the highest average scores. For Code generation (Table [2) Next-ToBE has an average accuracy of
55.1% on, being 3.9% and 2.2% higher than MTP and MuToR, respectively, on Qwen2.5-1.5B.
When scaling to Qwen2.5-7B, its accuracy rises to 75.2%, outperforming MuToR by 2.7% and NTP
by 3.6%, a stable gain as model size grows. Even for Llama3.1-8B-instruct, Next-ToBE delivers
an average of 67.3%, exceeding MuToR by 1.9% and NTP by 2.8%. For Commonsense reasoning
(Table[2), Next-ToBE achieves an average accuracy of 79.5% on Qwen2.5-1.5B, and rises to 89.4%
on Qwen2.5-7B, which is 1.3% - 3.3% higher than competing methods. On Llama3.1-8B-instruct,
Next-ToBE has an averaged accuracy of 87.8%, about 1.2%-2.1% higher than other baselines. In
addition, we extend our evaluation of Next-ToBE to the larger Qwen3-14B model (Yang et al.,|2025).
As shown in Appendix [E.6] Next-ToBE consistently achieves the highest average accuracy across
five mathematical benchmarks. Notably, it delivers absolute gains of 3.4% over MTP and 1.6% over
MuToR, exceeding improvements observed on smaller Qwen2.5-Math-7B models. This indicates
that Next-ToBE exhibits favorable scalability as model size increases.

Pretraining setting. Beyond fine-tuning, we also examined whether Next-ToBE remains effective
in pretraining scenario, i.e., without any inherent anticipatory capacity when training from scratch.
To this end, we trained a GPT-2 model (124M) (Radford et al.l 2019) on WikiText-103 (Merity
et al., 2017) using three different objectives: NTP, MTP, and Next-ToBE. Detailed training strate-
gies and evaluation results are provided in Appendix[E.7} As shown in Table[9] Next-ToBE improves
the Future-token Hit Ratio by 3.29% over NTP and 2.42% over MTP, indicating that anticipatory
capacity can indeed be developed from zero. On the downstream HellaSwag QA benchmark, Next-
ToBE further achieves absolute gains of +0.86% over NTP and +1.29% over MTP. These results
demonstrate that, even in a pure pretraining scenario, Next-ToBE can successfully cultivate antici-
patory behaviour from scratch and translate it into improved downstream reasoning performance.
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Table 2: Performance comparison on Code Generation and Commonsense Reasoning tasks.

M Code Generation Commonsense Reasoning
odel Method

HumanEval MBPP Avg. PIQA Hellsawage ARC-C ARC-E SIQA Avg.
NTP 50.0 552 526 80.2 74.4 74.7 89.3 69.8 777
Qwen2.5 MTP 489 534 512 788 74.3 71.8 87.6 684 762
(1.5B) MuToR 51.2 545 529 802 78.7 74.3 87.5 702 782
Next-ToBE 53.7 564 551  80.7 79.3 77.1 89.9 704 795
NTP 74.4 689 71.6 887 90.4 838.3 95.6 777 88.1
Qwen2.5 MTP 76.2 693 728 885 90.2 87.4 95.5 776  87.8
(7B) MuToR 75.6 693 725 889 91.3 88.2 95.8 78 88.4
Next-ToBE 78.7 71.6 752 88.6 92.7 89.7 96.3 798 894
NTP 65.2 638 645 869 87.8 83.4 93.5 76.7 857
Llama3.1 MTP 67.1 623 647 882 90.1 84.8 93.4 76.7  86.6
(8B-instruct) MuToR 67.7 63.0 654 879 90.2 84.4 93.6 748  86.2
Next-ToBE 69.5 650 673 885 93.0 84.6 94.0 788 87.8

4.2 HYPERPARAMETERS SENSITIVITY

We conduct a series of ablation studies to examine the impact of window size and weighting-related
hyperparameters to better understand the robustness and design choices of Next-ToBE.

First, we investigate how the token-bag size £ affects per-

formance (Appendix [E.4). On code generation, Qwen2.5-  Table 3: Ablation of key hyperparam-
1.5B and Qwen2.5-7B achieve highest accuracy with £ = egers on Qwen2.5-Math-1.5B over 5
10, while Llama3.1-8B-instruct peaks at 8. This aligns with  mathematical benchmarks (averaged).
expectations: too small windows may fail to provide suf-
ficient future context, whereas overly large windows ma

introduce noise and confuse the mode}:ll. : ! cla) Avg. h(B) Ave

. . le-4 36.6 1 374
We further conduct ablation studies on the hyperparameters le-6  37.1 2 38.3
related to the weighting scheme, including the threshold e le-8 383 3 38.0
(for inherent anticipatory preference «) and the bandwidth le-10  37.6 4 37.3
h (for semantic/temporal importance (), using Qwen2.5- le-12  36.4 5 375

Math-1.5B on five mathematical reasoning benchmarks.
The average accuracy results under different settings are
summarized in Table [3| Overall, the ablation results demonstrate that the weighting-related hyper-
parameters in Next-ToBE exhibit stable behavior across a broad range of values. Both the threshold
€ and the bandwidth h show smooth performance curves with clear optima, rather than erratic fluc-
tuations. This indicates that Next-ToBE is not overly sensitive to precise hyperparameter settings.

4.3 TRADE OFF BETWEEN CONFIDENCE AND REASONING ABILITY

We examine the impact of the weight X in Eq. (@), which balances the relative importance of fit-
ting the immediate next token versus the look-ahead tokens. This trade-off plays a critical role in
reasoning performance, and also reshapes the confidence dynamics of LLM during generation:

(1) Confidence dynamics. In Figurefa] we evaluate the LLM’s confidence by measuring its proba-
bility of predicting the next token at each generation step, averaged across the sequence. As shown,
increasing A consistently reduces the model’s next-token confidence. This happens because the
Next-ToBE objective encourages the model to produce smoother predictions at each step by fitting
beyond the immediate next token. A similar trend is observed in Figure where the distribution
of the top-token confidence shifts toward a lower mean after Next-ToBE fine-tuning—for exam-
ple, from 0.87 to 0.81 in mathematical tasks—compared to the base model. We further confirm that
Next-ToBE does not introduce distribution drift: KL.-divergence analysis over 1,024 step autoregres-
sive generations shows that its token-by-token predictive distribution remains closely aligned with
that of a stronger reference model throughout long term generation. (Detailed in Appendix

(2) Reasoning performance. How does next-token confidence relate to LLM reasoning quality? As
shown in Figure[db] for code generation and math reasoning tasks with the Qwen1.5B series model,
LLM performance improves with increasing A up to a point, after which it declines. This indicates
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Figure 4: LLM confidence dynamics and reasoning performance versus trade-off parameter \.

that an optimal trade-off exists between fitting the immediate next token and the more distant, look-
ahead tokens. Figure fic|plots reasoning accuracy vs next-token confidence: for math, performance
peaks around a confidence of 0.755, while in code generation, the optimal confidence is 0.786.

A comprehensive study of LLM confidence dynamics and behavior is a broad research direction,
which is related to over-confidence traces regularization (Szegedy et al.l [2016), low-confidence
traces filtering (Fu et al.,[2025)), and more others, which we leave for future investigation.

4.4 COMPUTATIONAL OVERHEAD

We evaluate runtime and peak memory usage
for NTP, MTP, MuToR, and Next-ToBE on
the 35K NuminaMath corpus using Qwen2.5-
Math-1.5B under identical training settings.

Table 4: Runtime and memory consumption on
mathematical training using Qwen2.5-Math-1.5B.

Model Training Time Peak Memory Consumption
As shown in Table ] Next-ToBE incurs only ~ NTP 2h 04min 9,412 MB
a modest overhead relative to standard NTP: ~ MTP 2h 56min 16,559 MB
26 . £ .. . 20% d Mutor 2h 39min 39,486 MB
+26 minutes of training time (~20%) an Next-ToBE >h 30min 12,552 MB

+3.1GB of memory (~32%). Importantly, it
remains far more efficient than multi-token prediction baselines, reducing peak memory by up to
68% and training time by up to 15% compared to representative MTP methods. Overall, Next-ToBE
delivers substantial performance gains with significantly lower computational cost while retaining
the simplicity of a single-head NTP architecture.

Besides, the random-walk weighting module introduces almost no computational burden. Comput-
ing its stationary distribution only requires inverting a small 10 x 10 matrix per step (from window
size k = 10), taking roughly 10~* seconds in PyTorch. Empirically, this component accounts for
approximately about 6.2 minutes of training time (4.1% of a 2.5 hour run on Qwen2.5-Math-1.5B),
and its extra memory usage is negligible (34.6 MB out of a 12.6 GB peak).

5 CONCLUSION

We presented Next-ToBE, a probabilistic training framework to profile, activate, and exploit the
anticipatory capacity of LLMs. Next-ToBE introduces a principled trade-off between fitting the
immediate next token and anticipating longer-range future tokens - not via auxiliary prediction heads
or architectural changes, but by directly leveraging the inherent probabilistic predictions of LLMs,
which we found to be strongly correlated with generative quality. Across a wide range of fine-tuning
benchmarks, Next-ToBE consistently outperforms strong multiple-token prediction baselines, with
substantial gains in reasoning performance and computational efficiency. Furthermore, anticipatory
behavior is also shown to emerge from scratch during Next-ToBE pretraining, highlighting its role
as a general and scalable training principle. Finally, we uncover a compelling connection between
the probability profiles induced by Next-ToBE and the confidence dynamics of LLMs, offering a
new perspective for interpreting and controlling LLM reasoning behavior. We view Next-ToBE as
a promising direction for rethinking pretraining across diverse sequential data, including code, time
series, and multimodal modeling, where long-horizon anticipation is essential.
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A USAGE OF LLM

In preparing this manuscript, the authors made only minimal use of a large language model (Chat-
GPT). Its role was limited to refining grammar, finding typos and mis-spelled words to improve
readability. The study design, experimental procedures, data analysis, interpretation of results, and
development of scientific ideas were carried out entirely by the authors without any reliance on the
LLM. All substantive intellectual contributions remain solely the work of the authors, who carefully
reviewed and verified the final text.

B MORE RELATED WORK

We synthesize the disparate arguments related to the next-token prediction paradigm from various
research fields to clearly elucidate the nature and contributions of our method, Next-ToBE.

The auto-regressive next-token prediction (NTP) paradigm, which underpins modern language mod-
els (Bahdanau et al.,|2015; [Merrill & Sabharwal2024), remains a subject of ongoing debate. Critics
argue that teacher-forcing training induces exposure bias—a discrepancy between training and test-
ing conditions wherein the model is exposed to perfect, ground-truth contexts during training but rely
on its own potentially flawed generations during inference (Schmidt, 2019 Bachmann & Nagarajan,
2024). This bias may lead to the accumulation and propagation of errors, resulting in substantial de-
viations from correct solutions (Dziri et al., 2023 [LeCun} 2023)), thereby compromising the model’s
capacity for robust, long-range planning (Bubeck et al.l 2023 McCoy et al.l 2023).

Conversely, proponents highlight NTP’s powerful learnability (Malach, 2023)), which can transform
intractable problems into step-by-step tractable tasks through methods like Chain-of-Thought su-
pervision (Wies et al., 2023). This success in structured reasoning is further supported by a deeper,
implicit planning ability (Alabdulmohsin et al., [2024), which has also been demonstrated in recent
empirical studies. Probing the internal mechanisms, these studies show that LLMs acquire global
information regarding the final response prior to generation (Wu et al.| |2024; |Dong et al., 2025}
Cencerrado et al. 2025). Collectively, these findings indicate that the NTP framework endows
LLMs a robust and non-trivial planning capability. This perspective provides the central inspiration
for our approach.

To enhance the implicit planning capabilities of NTP models, research has pursued several distinct
strategies. A primary approach entails modifying the training data or model architecture to extend
the model’s predictive horizon. This includes data augmentation techniques that train the model to
“fill in the middle” (Bavarian et al., 2022)), the incorporation of special tokens to explicitly predict
future target tokens (Thankaraj et al.,|2025}; |Gerontopoulos et al.,[2025), and architectural modifica-
tions that enable bidirectional encoding and prediction (Hu et al., 2025)). Although these methods
have demonstrated effectiveness, they may also introduce considerable complexity into the data
processing and training pipelines.

A second line of research seeks lighter-weight solutions by modifying the training objective itself.
For instance, |Zuhri et al.| (2025)) introduced an auxiliary loss to predict the rank of upcoming target
tokens without altering the model’s architecture. The method we propose advances this lightweight
approach. Unlike the aforementioned methods, it requires neither data augmentation nor architec-
tural modifications. Instead, it directly exploits the model’s inherent anticipatory signals by manip-
ulating its self-predicted outputs to construct a novel loss target.

Conceptually, our proposed soft “token-bag” target is grounded in a well-established technique:
label smoothing (Szegedy et al., 2016). However, instead of smoothing with a uniform distribution
over the vocabulary, our method provides a model-informed target that regularizes overconfident
predictions—a property shown to improve the generation of diverse and plausible results in early
machine translation tasks (Miiller et al., 2019} |L1 & Lu, |[2021]) and enhance the generalizability and
diversity of reasoning results (Li et al.,[2025) in the era of LLMs.

Additionally, the “inherent anticipatory signals” manifest as the model’s predictive confidences, en-
coded in the token-level probability distributions that form a reasoning path (Wei et al.| [2022; Wang
et al., 2023a; [Pawitan & Holmes| [2024). The quality of these confidence scores is critical, as they
have been shown to strongly correlate with the final answer’s correctness (Band et al., 2024} [Plaut
et al., 2024; Zhao et al.l 2025} Jang et al., [2025). The importance of these signals is highlighted by
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the effectiveness of various inference-time methods that leverage them, such as modifying prompts
to elicit better outputs 2024), using decoding strategies like nucleus sampling to filter
low-confidence tokens (Holtzman et al., 2020), or aggregating multiple outputs via majority voting
(Kang et al.| 2025} [Fu et al., 2025). Instead of manipulating these signals post-hoc, our training-
time method aims to directly improve the quality and calibration of these anticipatory signals at the
source to foster more intrinsically robust and reliable reasoning.

Aside from previously introduced advanced NTP learning methods, Multi-Token Prediction (MTP)

also enhances the implicit planning capabilities of LLMs (Qi et al.| 2020; [Gloeckle et al., 2024}
Liu et al} 20244; [Chen et al., [2025b} [Liu et al, 2025}, [Samragh et al., [2025). By using auxiliary

heads to predict multiple future tokens simultaneously, language models receive richer relationships
between tokens during training. Furthermore, advanced inference techniques like speculative de-
coding reduce generation steps (Cai et al.| 2024; [Ankner et al.| 2024; [Cheng et al., 2024), which
can mitigate error accumulation and foster creativity (Nagarajan et al., 2025). Although MTP and
our method both learn relationship between multiple tokens during training, they ultimately gener-
ate single token independently during inference, which limits LLMs’ ability to capture the global
joint distribution of an entire sequence. This makes exposure bias and the associated problem of
cumulative error remain unavoidable.

To overcome the limitations of token-level sequence modeling, researchers have explored paradigms
that operate at the sentence level. Non-auto-regressive (NAR) models generate all tokens in parallel,
directly capturing the full sentence distribution (Gu et al.,[2018} [Xiao et al.| 2023)). Diffusion models
refine a complete sequence through a progressive denoising process (Gong et al., 2023} [Nie et al.
[2025). Both NAR methods ensure consistency between training and testing behaviors, they can
generate coherent long texts and even demonstrate potential in reasoning tasks 2025).
Inversely, reliance on a pre-specified output length limits their flexibility that makes auto-regressive
NTP models so versatile.

Energy-Based Models (EBMs) provide a unifying framework for text generation by introducing a
global energy function that evaluates entire sequences, thereby enforcing global coherence (Dawid
2024). For auto-regressive models, Residual EBMs (Deng et al [2020) superimpose
sentence-level energy scores—either by log-likelihood summation or by training an additional model
to compute them—on top of pre-trained models’ token-level distributions, mitigating exposure bias
and enhancing long-range coherence. Energy-based Diffusion Language Models
integrate energy functions into each denoising step, often guided by pre-trained auto-regressive
models, to correct independence assumptions and improve global consistency. This line of work
highlights EBMs as a promising bridge across generative paradigms, effectively combining the lo-
cal fluency of token-by-token generation with long sentence-level coherence. Consequently, this
advancement shows potential in extending the boundaries of reasoning abilities in language models.

C ANTICIPATORY CAPACITY ANALYSIS

C.1 FUTURE-TOKEN HIT RATES FOR DIFFERENT TOP-m VALUES AND FUTURE TOKEN-BAG
WINDOW SIZES

Future token Hit Rate
Future token Hit Rate
Future token Hit Rate

2 3 4 5 6 7 8 9 10 : 2 3 4 5 6 7 8 9 10 : 2 3 4 5 6 7 8 9 10
Future token bag (window) size k Future token bag (window) size k Future token bag (window) size k

(@m="75 (b)m = 100 (¢)m = 150

Figure 5: Average Future-tokens Hit Rate (FtHR) under different top-m settings.
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To further examine the anticipatory capacity of LLMs, we report the Future-tokens Hit Rate (FtHR)
across different values of m (the number of top-ranked tokens considered). Recall that FtHRfﬁl
measures how often the ground-truth tokens in the next & steps fall within the top-m predictions of
the model at the current step. For this analysis, we randomly sample 100 mathematical reasoning
problems from the NuminaMath dataset (Tang et al., [2024]).

Figure[5|reports results for three representative values of m (75, 100, and 150). Two consistent trends
emerge across all settings: first, the hit rate decreases as the window size k grows, indicating that
models are more effective at anticipating near-future tokens; second, larger m values yield higher
hit rates, showing that anticipatory signals are spread over a broader set of candidate tokens.

C.2 DETAILS OF ACTUAL PROBABILITY OF GENERATING WITH RANK IN CURRENT
PREDICTION

We further investigate the connection between anticipatory capacity and token-level prediction ac-
curacy. To obtain these results, we consider two complementary evaluation modes:

Teacher forcing(TF): At each step ¢, the model is conditioned on the ground truth prefix up to
position ¢ + k — 1. The probability of target token x4 is obtained as Py(xi1i|T<i+x—1). We
then pair this ground-truth probability with the rank of x; in the prediction distribution at step
t,forming a sample for analysis. Since all probabilities are computed under the true prefix, this
mode represents an idealized setting.

auto-regressive mode: The model conditions on the ground-truth prefix up to step ¢, then auto-
regressively generates k — 1 intermediate tokens before predicting x,yx. The probability of the
target token is measured as Py(ziyk | T<¢, T4+1:44k—1), Where Tyi1.4+,—1 are the model’s self-
generated tokens. This setup reflects a more realistic generation scenario, where prediction accuracy
depends not only on the true history but also on the model’s own generation quality.
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Figure 6: Relations between token level probability and rank across different models and modes

After obtaining the rank of token x, in the probability distribution at step ¢ and its actual gener-
ating probability p, ,,, we partition the data into numerous logarithmically spaced bins (i.e. 300)
based on rank. The mean probability within each bin is then computed to reveal a coarse-grained
trend. To further smooth the curve and highlight the overall pattern, we apply Gaussian-weighted
averaging to compress these bins into a smaller set of representative points (i.e. 15). Fig.[Ib|presents
the relationship between generating token probability and rank in the auto-regressive setting (Qwen-
Math-1.5B). We next present results across different models and modes, as shown in Fig. [§

D TRAINING DETAILS

D.1 HYPERPARAMETER CONFIGURATIONS

We present the hyperparameter configurations used for Next-ToBE and baseline training methods
across all the aforementioned tasks and three pre-trained language models. These detailed settings
are provided to facilitate fair comparison and reproducibility. Unless otherwise stated, all experi-
ments are trained for 3 epochs with a global batch size of 128 across all competing methods. The
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maximum sequence length is set to 2048 for mathematical reasoning tasks and 512 for code gener-
ation and commonsense reasoning tasks.

For Next-ToBE, we adopt the following hyperparameter settings: threshold ¢ = 10~% and power
scaling factor v = 0.1 (Eq. (3)); restart probability p = 0.3 (Eq. (TIT)); and a multiplicative fusion
of temporal and semantic relations to construct the RWR transition matrix; the bandwidth in Eq. (E[)
is h = 2. In addition, other key parameters such as the future token bag window size k and the loss
coefficient \ are summarized in Table 3l

Table 5: Best hyperparameter configurations for Next-ToBE on each reasoning task

Task \ Mathematical Reasoning \ Code Generation \ Commonsense Reasoning

Model Qwen2.5 Qwen2.5 Llama3.1 Qwen2.5 Qwen2.5 Llama3.1 Qwen2.5 Qwen2.5 Llama3.1
0C€l | Math-1.5B  Math-7B  8B-instruct 1.5B 7B 8B-instruct 1.5B 7B 8B-instruct

Ir 3e-5 Se-5 3e-5 Se-5 le-4 le-4 le-4 3e-4 3e-4

k 10 10 9 10 10 8 9 10 10

A 0.05 0.04 0.06 0.05 0.03 0.05 0.05 0.04 0.03

For NTP, in mathematical reasoning, we set the learning rates to 3e-5, 5e-5 and 3e-5 for Qwen-
Math-1.5B, Qwen-Math-7B, and LLaMA-3.1-8B-Instruct, respectively. For code generation, the
learning rates for Qwen-1.5B, Qwen2.5-7B, and LLaMA-3.1-8B-Instruct are set to Se-5, le-4, and
3e-4. For commonsense reasoning, the learning rates are set to le-4, 3e-4, and 3e-4.

For MTP, we additionally introduce four auxiliary heads, each corresponding to a specific token
position, and attach them at the start with random initialization. To alleviate the instability caused
by these randomly initialized heads, we freeze all other parameters and pre-train only the auxiliary
heads for one epoch before commencing joint training. The learning rate are set to le-5, Se-5 and
5e-5 for mathematical reasoning; Se-5, le-4 and le-4 for code generation, and le-4, 3e-4 and 3e-4
for commonsense reasoning, corresponding to the Qwen-1.5B series, Qwen-7B series, and LLaMA-
3.1-8B-Instruct models, respectively.

For Mutor, the learning rate are set to 3e-5, Se-5 and 5e-5 for mathematical reasoning; le-5, le-4
and le-4 for code generation, and le-4, 3e-4 and 3e-4 for commonsense reasoning, corresponding
to the Qwen-1.5B series, Qwen-7B series, and LLaMA-3.1-8B-Instruct models, respectively.

D.2 PROMPT TEMPLATES

We provide all prompt templates used for training and evaluation.

Mathematical Reasoning Training and Evaluation Template

<|im_start|>system

Please reason step by step, and put your final answer within \boxed{}.
<|im_end]|>

<|im_start |>user

{instruction}<|im_end|>

<|]im_start|>assistant
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Zero-shot prompt template for Humaneval and commonsense reasoning evaluation

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

###Instruction:

{instruction}

###Response:

. J
Prompt template for code generation and commonsense reasoning training

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

###Instruction:

{instruction}

###Input:

{input}

###Response:

. J
Three-shot prompt template for MBPP evaluation

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately

completes the request.

###Instruction:

{instruction}

###Input:

{testcase]|
{testcase]|
{testcase]|
###Response:

0]}
17}
21}

E MORE EXPERIMENTS

E.1 IMPACTS OF NORMALIZE TOKEN BAG PROBABILITY

Table [6| summarizes the effect of normalization on token bag distribution in Next-ToBE (see
Eq. (14)) during training on Qwen-Math-1.5B for mathematical reasoning. We observe that re-
moving normalization causes a significant drop in overall performance, even below that of the NTP
baseline for Olympiad Bench and AIME?24 tasks. This degradation arises because, without normal-
ization, small-probability tokens in the token bag can produce disproportionately large losses. As
a result, the model overemphasizes distant future tokens while underweighting the immediate next
token, ultimately destabilizing training and leading to collapse.

Table 6: Comparison of the Next-ToBE objective with and without normalization across multiple
mathematical reasoning benchmarks.

Method MATH MinervaMath Olympiad Bench AIME24 AMC23 Avg.
NTP 64.8 19.1 30.7 10.0 45.0 339
Next-ToBE w/o normalize 63.6 20.7 259 6.7 45.0 324
Next-ToBE 68.2 23.1 31.9 13.3 55.0 38.3
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E.2 DIFFERENT WEIGHTS OF TOKEN BAG INFORMATION

For better analyzing the joint temporal and semantic information, we visualize 30 curves of ranking
distributions of with Qwen-Math-1.5B in mathematical tasks, considering multiplication fusion and
weighted summation fusion.
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Figure 7: Examples of the convergent random-walk distribution scores 3* plotted against the tem-
poral order of the tokens.

As shown in Fig.[7} both the multiplication and weighted summation fusion methods exhibit an over-
all decreasing trend as the window size increases. The fluctuations observed, however, indicate that
some more distant look-ahead tokens maintain significant semantic correlations with the immediate
next token, resulting in higher weights despite their greater temporal distance from the current step.
Further, multiplicative fusion (of the temporal proximity matrix W and the semantic similarity
matrix W) leads to generally smoother weights than compared with weighted summation fusion,
which we speculate is one of the reasons why the former gives better results.

E.3 DISCUSSION ABOUT DIFFERENT APPROACHES OF TEMPORAL/SEMANTIC IMPORTANCE
OF FUTURE TOKENS

Table 7: Comparison between baseline training methods and Next-ToBE variants with different
semantic—temporal joint weighting strategies on five mathematical reasoning benchmarks.

Method MATH Minerva Math  Olympiad Bench AIME24 AMC23 Avg.

Baselines
NTP 64.8 19.1 30.7 10.0 45.0 339
MTP 66.0 20.6 29.0 10.0 47.5 34.6
MuToR 67.6 22.1 314 6.7 52.5 36.1
Next-ToBE Variants
+ DM 68.0 22.1 31.1 13.3 52.5 374
+ WSF 69.2 22.8 31.7 10.0 55.0 37.8
+ MF 68.2 23.1 319 13.3 55.0 38.3

To investigate the impact of different strategies for integrating temporal and semantic information,
we design three variants of Next-ToBE and conduct experiments on mathematical reasoning :

(i) Direct Multiplication (DM) combines temporal and semantic weights by element-wise product
Eq. (7) without considering interactions between future tokens.

(i1) Weighted Summation Fusion (WSF) combines temporal and semantic matrices with a weighted
summation in Eq. (9) (the left equation). In this experiment, we set ¢ to 0.5.

(iii) Multiplication Fusion (MF) combines temporal and semantic information with a multiplication
in Eq. (9) (the right equation). We keep this setting for all other experiments.
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As shown in Tablem all Next-ToBE variants outperform the NTP, MTP, and MuToR baselines; even
the simplest direct-multiplication scheme (+DM) yields clear average gains (NTP: +3.5%, MTP:
+2.8%, MuToR: +1.3%). Among the variants, WSF and MF bring additional improvements, with
MF achieving the best overall performance. This suggests that explicitly modeling both semantic
similarity and temporal proximity among look-ahead tokens is beneficial. The random-walk formu-
lation was introduced not as a necessity but as a refinement that further enhances performance.

E.4 IMPACTS OF FUTURE TOKEN BAG WINDOW SIZES
75 H/./.\.\.
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Figure 8: Impacts of future token bag window size

The size of the future window plays a critical role in determining the performance of Next-ToBE.
Figure[§]illustrates results from models trained on the CodeAlpaca dataset, reporting average scores
on the code generation benchmark with window sizes ranging from 4 to 14 across three models. We
observe that Qwen2.5-1.5B and Qwen2.5-7B achieve their highest performance at a window size
of 10, while Llama3.1-8B-Instruct reaches its peak at 8. Overall, accuracy tends to improve as the
window size increases initially, but declines once the window becomes excessively large.

E.5 FUTURE-TOKENS HIT RATE DISTRIBUTION

In section 4.1} we have discussed whether Next-ToBE has improved LLM in anticipating future
tokens, and found that after fine-tuning with Next-ToBE, the average Future token Hit Ratio on
mathematical reasoning across Qwen-Math-1.5B exhibits a significant improvement. For a more
intuitive understanding of this improvement, we present the Histogram of Future token Hit Ratio.

8000 = Base model
== Fine tuned with Next-ToBE
8000 7000
6000
> 6000 >
2 2 5000
g g
4000
T 4000 g
g g
[T LL 3000
2000 2000
1000
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Future token Hit Rate Future token Hit Rate
(@k=38 (b) k=10

Figure 9: Histogram of Future-tokens Hit Rate (FtHR) for different window sizes

As shown in Fig.[9] the distribution of FtHR shifts rightward after Next-ToBE fine-tuning, compared
to the base model. This indicates that fine-tuning lea relative high range, thereby demonstrating a
clear improvement in anticipatory capability.
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E.6 BEHAVIOR ON LARGER MODEL

To assess whether the benefits of Next-ToBE persist as the model scale increases, we extend our
study from 8B models to a larger 14B-parameter foundation model (Qwen3-14B). We fine-tuned
the 14B model using Next-ToBE and compared it against three baselines (NTP, MTP, and MuToR).
The average accuracies on five mathematical reasoning benchmarks are reported in Table[8]

Table 8: Performance comparisons of different competing methods on five mathematical datasets
using Qwen3-14B.

Method Math Minerva Math Olympiad Bench AIME24 AMC23 Avg.

NTP 64.2 29.4 24.0 33 40.0 322
MTP 64.6 30.1 243 33 35.0 31.5
MuToR 64.0 30.1 234 6.7 42.5 333
Next-ToBE ~ 65.4 30.5 24.6 6.7 47.5 34.9

As shown in Table [§] Next-ToBE continues to achieve the highest performance across all bench-
marks on the 14B model, with absolute gains of 3.4% over MTP, 2.7% over NTP, and 1.6% over
MuToR. These improvements are comparable or even larger than those observed on the smaller 8B
model, demonstrating Next-ToBE exhibits strong scalability and remains effective on larger models.

E.7 PRE-TRAINING SETTING

Rather than restricting our study to the post-training scenario, we further explore the applicabil-
ity of Next-ToBE in the pre-training stage. Below, we describe a detailed setup (with necessary
adjustments for the pretraining scenario) and report results.

Model and Data. We pretrained a GPT-2—style model (124M) from scratch on 100k samples ran-
domly drawn from the training split of the WikiText-103 dataset, for 10 epochs.

Training Strategy. The trade-off parameter ) in Eq[I4] was increased from 0 to 0.1 over 10 epochs
following a quadratic schedule; look-ahead token weights followed the simple scheme in Eq[7] and
the weight scheme over intrinsic anticipatory signals in Eq[5 was removed (as the model trained
from scratch has no such capacity).

Evaluation metrics. (1) perplexity (PPL) of the generated text; (2) Future-token Hit Ratio (FtHR),
which reflects anticipatory capacity; (3) Accuracy on the QA task. Metrics (1) and (2) are based on
the Wikitext-103 test-split, metric (3) is computed on the Hellaswag test-set.

Table 9: Comparison of NTP, MTP, and Next-ToBE under pre-training settings for a GPT-2 model.

Method PPL | FtHR.) 1 HellaSwag Acct

NTP 28.67 22.51 25.27
MTP 73.60 23.38 24.84
Next-ToBE ~ 34.32 25.80 26.13

As shown in Table ] the following observations can be made:

(1) Anticipatory capacity. Next-ToBE shows a notably higher anticipatory capability against NTP
and MTP (+2.4-3.3 FtHR, 10-15% higher). Given that the model is trained from scratch with
no anticipatory capacity at all, these results provide compelling evidence that Next-ToBE not only
enhances the anticipatory capacity by fine-tuning a pretrained LLM but effectively develop such
a capability from zero through pretraining, surpassing both NTP and MTP with the same training
condition.

(2) Perplexity. Next-ToBE exhibits a higher perplexity than NTP (34.3 vs. 28.7). This is entirely
expected because Next-ToBE was designed exactly to trade the short-term, next-token-prediction
certainty (as measured by PPL) for improved longer-range anticipation/reasoning. This has been
supported by gains in sequence-level generation accuracy (Fig. [3b) and performance on complex
reasoning tasks (Table [I] & [2). In comparison, MTP improves FtHR by only 3% over NTP - far
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below our 15% gain - while incurring a much larger PPL penalty (73.6, 2.15x ours). These results
indicate that Next-ToBE achieves a more efficient balance between local token prediction and global
sequence modeling.

(3) QA-Tasks. On the HellaSwag commonsense QA benchmark, Next-ToBE improves accuracy
by +0.86% over NTP and +1.29% over MTP, indicating that its enhanced anticipatory behavior
indeed translates into better reasoning performance. Though our experiments were small in scale,
the comparisons are strictly controlled, with all methods trained on exactly the same data for the
same number of epochs. So the higher QA-task accuracy of Next-ToBE provides clear evidence of
its advantage.

E.8 DISTRIBUTIONAL DRIFT ANALYSIS

We investigate whether fine-tuning with Next-ToBE leads to distributional drift during long-horizon
autoregressive generation. To assess this, we generate 1,024-token sequences using diverse Math-
benchmark prompts (test set) and compare, at each decoding step ¢, the next-token distribution
of our model (Qwen2.5-Math-7B fine-tuned with Next-ToBE) against a stronger reference model
(Qwen2.5-Math-PRM-7B) using KL divergence. Averaged over 100 sequences, the KL divergence
at final step (t = 1024) is 0.15 for KL(ours|ref) and 0.17 for KL(ref|ours), and the mean KL across
all 1024 steps is 0.19 and 0.26, respectively. These small and stable divergences indicate that Next-
ToBE preserves the training-time token distribution throughout free-running generation and does
not exhibit long-term drift.
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