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ABSTRACT

The classic inference of energy-based probabilistic models by maximizing the
likelihood of the data is limited by the difficulty of estimating the partition func-
tion. A common strategy to avoid this problem is to maximize the pseudo-
likelihood instead, that only requires easily computable normalizations. In this
work, we offer the perspective that pseudo-likelihood is actually more than just an
approximation of the likelihood in inference problems: we show that, at zero tem-
perature, models trained by maximizing pseudo-likelihood are associative memo-
ries. We first show this with uncorrelated binary examples, which get memorized
with basins of attraction larger than any other known learning rule of Hopfield
models. Then, we test this behavior on progressively more complex datasets,
showing that such models capitalize on data structure to produce meaningful at-
tractors, which in some cases correspond precisely to examples from the test set.

1 INTRODUCTION

Associative memories (AM) are models that can learn a number of configurations and output them
if the dynamics is initialized close enough to one of those configurations. AM appear in different
contexts of modern machine learning, such as the attention mechanism (Ramsauer et al., 2020),
generative diffusion (Ambrogioni, 2024) and probabilistic modeling (Schaeffer et al., 2024).

Quantifying overfitting in likelihood-based training is an open problem (Catania et al., 2025): the
many methods available relate to the quality of the generated samples and the moments of their
distribution (Decelle et al., 2025). One of those methods consist in measuring the propensity to
generate samples from the training set (Béreux et al., 2025), which can be interpreted as a regime of
AM. Still, to the best of our knowledge, the ground states produced by maximizing the likelihood in
energy-based models have no clear theoretical connection with training examples. For instance, in
the few situations where theory is available, attractors appear uncorrelated with training examples
(Decelle & Furtlehner, 2021; Catania et al., 2025).

As we will see, pseudo-likelihood (Besag, 1974; Nguyen et al., 2017) is more clearly understand-
able in terms of AM than likelihood, and therefore may help to understand overfitting in probabilistic
models. Furtermore, pseudo-likelihood is interesting per se, as it was connected with the attention
mechanism (Rende et al., 2024; D’Amico & Negri, 2024) and is also a common technique to effi-
ciently train energy-based generative models (Nguyen et al., 2017).

Contributions In this work we show that optimizing pseudo-likelihood is a way to build an AM.
Then we offer the perspective that explaining overfitting of probabilistic models in terms of AMs
may also provide an intuition to how generalization works. In fact, it was shown recently that even
the most basic Hopfield network is capable of generalization by building attractors in correspon-
dence of previously unseen examples (Kalaj et al., 2024). We support this perspective with numeri-
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cal results using the simplest architecture possible, aiming to understand fundamentals behaviors of
memorization and generalization that may also appear with more complicated architectures.

2 GENERAL SETTING

To explain the simple design of our recurrent network we start from the basics of the maximum like-
lihood principle. This step will be useful to fix the notation and to introduce the pseudo-likelihood
method, which inspires the architecture and dynamics of our model. In the next section we show
why this model has a natural interpretation as an associative memory.

Maximum-likelihood principle Be a dataset D = {ξµ}Pµ=1 of examples ξ = {ξi}Ni=1 that we
want to model with a probability distribution pJ(x) = ψJ(x)/

∫
dyψJ(y) over a set of variables

x = {xi}Ni=1 dependent on a set of parameters J . The likelihood of a data point is pJ(ξµ). One
can infer J by maximizing the likelihood of all the data points simultaneously, which results in
the minimization of the negative log-likelihood (NLL) loss L = −

∑P
µ=1 log pJ(ξ

µ). This loss is
difficult to optimize, because it requires the estimation of the normalization ZJ =

∫
dxψJ(x).

One of the most common strategies to deal with this term is the family of algorithms related to
the minimization of Contrastive Divergence (Hinton, 2002), which exploit fast out-of-equilibrium
stochastic processes instead of a standard Monte Carlo processes, which are inefficient as they reach
equilibrium very slowly 1 (Agoritsas et al., 2023).

Pseudo-likelihood Another strategy to avoid the estimation of ZJ entirely is to approximate the
joint probability as the product of conditionals pJ(x) ≃

∏
i pi(xi|x\i), where x\i = {xj}j( ̸=i)

is the set of all variables except the i-th variable. The advantage is that now the conditionals can
be written as2 pi(xi|x\i) = ψ(x)/Zi(x\i), where the normalization Zi(x\i) =

∫
dyi ψ(yi,x\i)

requires only a single integral and therefore is tractable. The probability of a data point within this
ansatz is called pseudo-likelihood (Besag, 1974). If we plug this expression in the NLL loss we get
a negative log-pseudo-likelihood (NLpL) loss

L = −
P∑

µ=1

N∑
i=1

log pi(ξ
µ
i |ξ

µ
\i), (1)

which is the quantity that we minimize to train the model in all the experiments described in this
work.

Gibbs sampling The core idea of a probabilistic model is the possibility of sampling from the
inferred distribution. The standard sampling used in the context of pseudo-likelihood in Gibbs
sampling (Geman & Geman, 1984), which consists in updating the variables using the conditional
probabilities: in practice, at time t one picks a variable xi to update, then fixes the values of all the
other variables, and then samplesx

x
(t+1)
i ∼ pi(xi|x(t)

\i ). (2)

Rather than using eq. 2 for sampling, in this work we will study the recurrent update as an associative
memory and consider its storage and retrieval capabilities. This setting is also known as a stochastic
neural network and it has been connected to an online optimization of pseudo-likelihood in Saglietti
et al. (2018).

3 ASSOCIATIVE MEMORIES FROM PSEUDO-LIKELIHOOD

Energy-based model It is useful to consider an energy-based parametrization of the probability,
namely ψJ(x) = exp{−λE(x)}, whereE(x) is an energy function and λ is an inverse temperature.
In this way, sampling from pJ(x) can be seen as a stochastic process at thermodynamic equilibrium,
and the most probable states can be related to the minima of E(x) using statistical mechanics.
Inferring the coupling of E(x) is ofter referred to Boltzmann learning (Ackley et al., 1985), or
energy-based probabilistic modeling (LeCun et al., 2006; Song & Kingma, 2021).

1Recent advances (Béreux et al., 2025) allow to perform the equilibrium process much faster.
2To lighten the notation, we omit the dependence on J of ψ(x), pi(xi|x\i) and Zi(x\i).
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Intuition: associative memory optimizes pseudo-likelihood when λ→ ∞ Energy is still a useful
concept when combined with pseudo-likelihood, even if we study retrieval rather than sampling: it
provides an intuition that the dynamics in eq. 2 is an associative memory. In fact, if we choose a
simple two-body interactionE(x) = −

∑
i ̸=j Jijxixj between binary variables xi = ±1, the NLpL

loss in eq. 1 becomes

L = −
P∑

µ=1

∑
i

ξµi ∑
j(̸=i)

Jijξ
µ
j − 1

λ
log 2 cosh

λ ∑
j(̸=i)

Jijξ
µ
j


 . (3)

The extremization of eq. 3 leads to a set of conditions known as the Callen identities (Callen, 1963)
(see Nguyen et al. (2017) for a longer discussion):

0 =
∂L
∂Jkl

=

P∑
µ=1

ξµk − tanh

λ ∑
j(̸=k)

Jkjξ
µ
j


 ξµl , (4)

Note that the couplings inferred with this method are in general not symmetric, and therefore they
do not produce an energy function when inserted back in E(x). Since energy is a desirable concept,
strategies to symmetrize the couplings are commonly used in this kind of inference (Ekeberg et al.,
2013; 2014; Nguyen et al., 2017). In the following, instead, we keep the couplings asymmetric, and
we will see that they still produce associative memories. Eq. 4 can be satisfied in the limit λ → ∞
by zeroing each term in the square brackets, namely if

ξµk = sgn

 ∑
j( ̸=k)

Jkjξ
µ
j

 ∀µ, k. (5)

Eq. 5 is the stability condition for an associative memory with P attractors (it can also be seen as an
autoregressive condition, or a self-consistency equation). To fix the ideas: in the case of uncorrelated
examples, eq. 5 is satisfied by the Hebb rule Jkl = 1√

N

∑
µ=1 ξ

µ
k ξ

µ
l when P < αcN , where αc ≃

0.14. Another example solution of eq. 5 is the pseudo-inverse rule (Kanter & Sompolinsky, 1987),
valid up to αc = 1. Eq. 5 is not the most general solution eq. 4, therefore it is interesting to test
numerically if optimizing NLpL actually produces associative memories at all. Moreover, the Hebb
rule is not the most general solution of eq. 5, and a real optimization of loss NLpL may find better
basins of attraction and/or higher storage capacity for uncorrelated data. Optimizing NLpL may
also produce interesting associative memories when used with correlated data, since associative
memories have been recently shown to be capable of generalization. To study these properties, we
design the setting described in the next section.

Training at λ = 1 and running at λ → ∞ We train the recurrent network defined in Eq. 2 for
binary variables and energy E(x) = −

∑
i̸=j Jijxixj , by minimizing loss in Eq. 3 with gradient

descent. The value of λ during training has no effect besides rescaling the rows of J . Instead of
fixing the norm of J , we set λ = 1 and we let the coupling evolve freely. Additionally, when we
run the dynamics, we set λ→ ∞, so that the norm of J is irrelevant. We stop the training when the
size of the basins of attraction of the training examples do not change anymore (the gradient keeps
increasing the norm of J even after the size of the basins converge). Note that, if J were symmetric,
the synchronous dynamics with λ → ∞ would optimize the energy function described in (Peretto,
1984). In our case, instead, each variable xi independently aligns to the corresponding so-called
local field hi(x\i) =

∑
j( ̸=k) Jkjξ

µ
j , which can be interpreted as the optimization of a local energy

term. The advantage of having independent updates for each variables is that each row of J can be
trained in parallel, giving a substantial numerical advantage.

4 RESULTS

In this section we train the model as described in the previous section on multiple dataset. On those
datasets we perform the same experiment: we test the basin of attraction of a chosen configuration
x∗ (typically train or test examples). To do this, we initialize the dynamics to a configuration xIN

that has overlap mIN = xIN · x∗/N with the chosen configuration. Then we updated it until we
reach a fixed point xF. Finally, we measure the overlap mF = xF · x∗/N . A plot of mIN vs mF is
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Figure 1: Pseudo-likelihood produces large basins of attraction of uncorrelated examples. Left:
we plot the retrieval map of random i.d.d. examples during the training process for α = 0.4. The
error bars correspond to the average over the whole dataset for a single instance of training. Right:
we compare the size of the basins of attraction of asymmetric and symmetric couplings, for various
α. The size of the basin is computed as the point where the retrieval map at 1000 epochs goes below
mF = 0.99. Inset: we plot the asymmetry of the coupling matrix ∥J − J⊤∥2/∥J∥2 as function of
α. In all panels N = 1000.
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Figure 2: Pseudo-likelihood improves generalization for correlated random-features examples.
The colors correspond to values mF given mIN = 1, for ξtrain, f, ξtest, corresponding to storage,
learning and generalization phases. Pseudo-likelihood enhances the area of all three phases with
respect to Hebb rule, shown as red curves taken from Kalaj et al. (2024). N = 1000 in the fist three
panels and N = 2000 in the last one. L = 3 in all panels.

called retrieval map. Our goal is to show two different phases, as highlighted in (Kalaj et al., 2024):
a storage phase, where only training examples are fixed point of the dynamics, and a generalization
phase, where attractors appear near previously unseen examples. We first show results on synthetic
datasets where theoretical thresholds are known (Amit et al., 1987; Kalaj et al., 2024), then we move
to two real datasets to check if the same phenomenology is present.

Uncorrelated synthetic examples We train the model with random i.i.d. examples, namely ξµi =
±1 with uniform probability. In this case there cannot be any generalization, as data are uncorrelated,
and therefore we only consider storage properties. We can see from fig. 1 that the training procedure
produces large basins of attraction around training examples well above the capacity of an Hopfield
model (Hopfield, 1982). The size of the basins rapidly approaches zero for α > 1 (the theoretical
bound for asymmetric couplings is α = 2 (Gardner, 1988)). Notably, these basins are equal or larger
than those for symmetric couplings.

Correlated synthetic examples We train the model with binary examples ξµi generated as su-
perposition of binary random features fki = ±1 i.i.d. with uniform probability, namely ξµi =

sgn(
∑D

k=1 c
µ
kfki). For fixed µ, the coefficients cµk have L non-zero entries, in random locations and
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Figure 3: Pseudo-likelihood is able to generalize even for real data. We show final overlap of
dynamics starting at overlap 1 with training or test examples, as function of dataset size P = αN .
Left: binarized 14× 14 MNIST dataset. We also show the curve for images that are random sets of
pixels, to check when the network stabilizes every configuration. Error bars are negligible. Center
and Right: protein sequences from the families DNA-Binding Domain and the Beta Lactamase,
respectively. Blue and red correspond to a model with asymmetric couplings, purple and yellow
with symmetric. For both, we show train and test examples. The black dashed line is the average
overlap between natural sequences. Results are averaged over 20 choices of the training set for each
value of α.

uniformly sampled in ±1, so that each example is the superposition of L features. We see from fig. 2
that pseudo-likelihood greatly surpasses the storage and the generalization phases of the Hopfield
model (described in Kalaj et al. (2024)), and even the region where features themselves are stable
(described in Negri et al. (2023)). Notice from the fist panel of fig. 2 that, due to data being corre-
lated, it is possible to store them above the theoretical threshold for uncorrelated examples α = 2
(Gardner, 1988).

Results on MNIST As a simple instance of real dataset, we train the model using the binarized
14× 14 MNIST described in Belyaev & Velichko (2020). In fig. 3 we show that pseudo-likelihood
stores training images for a small value of α = P/N (storage phase), P being the size of training
dataset. For bigger values of α train and test images produce a final overlap mF ≃ 0.85. By
inspecting visually retrieved examples (see fig. 4 in appendix 6), we can see that this value of the
final overlap corresponds to a very good memorization.

Results on protein sequences As harder instances of real datasets we study two protein families,
the DNA-Binding Domain (DBD) and the Beta Lactamase, as model of protein sequences need to
model high-order correlations to generalize well (Trinquier et al., 2021; Decelle et al., 2025). For
these datasets, we use an existing library called plmDCA (Ekeberg et al., 2013; 2014), see appendix B
for the specific details of protein sequence data. The results are plotted in Fig. 3. Similarly to what
observed in the other cases, we see that for small values of α the model does not move from its
initial state when starting from a sequence in the training set. This memorization region holds up to
α between 1 and 10. For larger values, the training sequences are not anymore fixed points of the
dynamics and the overlap quickly saturates to the large-load value. Starting from the test sequences,
the overlap follows an opposite trend: for small values of α, mF is close to the average overlap
between natural sequences, while as the load increases it increases as well. For large values of α,
mF saturates to the same point at the one obtained starting from the training sequences. Differently
from the previous examples, with proteins we observe mF around 0.55 and 0.6 in the generalization
phase, meaning that the attractors of the model are correlated with train and test examples even if
the model is unable to retrieve them (which was expected, as these datasets should be much harder).

5 CONCLUSIONS

We showed that optimizing pseudo-likelihood can be interpreted as building an associative mem-
ory. This connection was already suggested in a neuro-biological setting in Saglietti et al. (2018),
where the authors described a moment-matching training procedure as an online optimization of
pseudo-likelihood. In this work, instead, we focused on the exact optimization of pseudo-likelihood,
showing that the associative it builds is powerful enough to produce attractors in correspondence of
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previously unseen examples for simple datasets. For harder datasets, the same model still presents
non-trivial attractors, which are as close to training examples as they are to test examples, which
still suggests a form of generalization. The fact that an associative memory can be obtained by
optimizing a loss function was already discussed in Alemanno et al. (2023), but in that case the
authors defined a loss specific for that purpose (which also requires symmetric couplings). Here, in-
stead, we showed that an associative memory (capable of generalization) shows up as an unintended
side-effect of a probabilistic model. Overall, we propose that this scheme may be relevant to gener-
alization in modern self-supervised problems such as generative diffusion (Ambrogioni, 2024) and
attention mechanism Rende et al. (2024); D’Amico & Negri (2024). Moreover, if a similar perspec-
tive could be adopted for maximum-likelihood, it would contribute to understand overfitting and
generalization also in Boltzmann machines, helping with the open problems described in Catania
et al. (2025).
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Elisabeth Agoritsas, Giovanni Catania, Aurélien Decelle, and Beatriz Seoane. Explaining the effects
of non-convergent MCMC in the training of Energy-Based Models. In Proceedings of the 40th
International Conference on Machine Learning, pp. 322–336. PMLR, July 2023. URL https:
//proceedings.mlr.press/v202/agoritsas23a.html. ISSN: 2640-3498.

Francesco Alemanno, Miriam Aquaro, Ido Kanter, Adriano Barra, and Elena Agliari. Supervised
Hebbian learning. Europhysics Letters, 141(1):11001, January 2023. ISSN 0295-5075. doi: 10.
1209/0295-5075/aca55f. URL https://dx.doi.org/10.1209/0295-5075/aca55f.
Publisher: EDP Sciences, IOP Publishing and Società Italiana di Fisica.
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Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield
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APPENDIX

A RETRIEVAL EXAMPLES FOR MNIST

Figure 4: Examples of retrieval of test and train MNIST images with various initial overlaps.

B DETAILS SPECIFIC TO THE DATASETS OF PROTEIN SEQUENCES

We test the procedure described for the other datasets also on data coming from protein sequences.
Notice that, in this case, we are not generating synthetic data anymore, instead we are taking as train
and test sets some sequences of amino acids that are found in nature. From each protein family we
produce a Multiple Sequence Alignment (MSA) in order to have all the sequences with the same
length L and aligned between them. In order to account for the bias due to the presence of many
similar sequences in the natural MSA, we assign a weight ws = 1/ns to each sequence s, with
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ns the number of different sequences in the alignment closer than 80% in length to s. The value
Meff =

∑
s ws is the effective number of sequences in the alignment. This is a standard procedure

when dealing with this kind of data. From this MSA we select a set of P sequences that we use to
train the model, drawn from the full MSA with a probability proportional to their weight.

We study in particular two protein families, the DNA-Binding Domain (DBD) and the Beta Lacta-
mase one. The former has a length L = 76, a number of sequences M = 13310 (Meff = 3153)
while for the latter L = 202, M = 18334 (Meff = 6875).

In the spirit of Direct Coupling Analysis (DCA) (Weigt et al., 2009) each sequence in the MSA is
assumed to be drawn from the probability distribution of an equilibrium Potts model with 21 states
(corresponding to the 20 amino acids plus the gap symbol ‘-’). As the direct maximization of the
likelihood of such a model is often prohibitive, one resorts to the pseudo-likelihood approxima-
tion. The parameters of the model are inferred via the pseudo-likelihood maximization algorithm
(plmDCA) described in Ekeberg et al. (2013; 2014).

Once the parameters of the model have been obtained, we proceed by simulating the evolution.
Similarly to what we discussed for the other systems, the evolution starts from a certain sequence
Si of amino acids and evolves following a 0-temperature dynamics, in which only mutations which
increase the probability are accepted. As the dynamics takes place at T = 0, the evolution stops
after some steps as the system finds itself in a stable state corresponding to a sequence Sf . One can
then compute the overlap q(Si, Sf) = 1/L

∑L
n=1 δSi

n,S
f
n

between the final state and the initial one,
with δa,b the Kronecker delta function.

We study the model obtained from the inference procedure at different values of the load in the range
1 < P < Meff . For each value of P , we choose Ns = 2000 starting sequences drawn uniformly
with repetition from the training set and we let them evolve, comparing the resulting stable states
with the starting condition. We then repeat the same steps drawing this time the Ns initial sequences
from the full MSA, excluding the ones chosen for the training.

10


	Introduction
	General setting
	Associative memories from Pseudo-Likelihood
	Results
	Conclusions
	Acknowledgments
	Retrieval examples for MNIST
	Details specific to the datasets of protein sequences

